1 //===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transform is designed to eliminate unreachable internal globals from the 10 // program. It uses an aggressive algorithm, searching out globals that are 11 // known to be alive. After it finds all of the globals which are needed, it 12 // deletes whatever is left over. This allows it to delete recursive chunks of 13 // the program which are unreachable. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/IPO/GlobalDCE.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/TypeMetadataUtils.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Transforms/IPO.h" 29 #include "llvm/Transforms/Utils/CtorUtils.h" 30 #include "llvm/Transforms/Utils/GlobalStatus.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "globaldce" 35 36 static cl::opt<bool> 37 ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore, 38 cl::desc("Enable virtual function elimination")); 39 40 STATISTIC(NumAliases , "Number of global aliases removed"); 41 STATISTIC(NumFunctions, "Number of functions removed"); 42 STATISTIC(NumIFuncs, "Number of indirect functions removed"); 43 STATISTIC(NumVariables, "Number of global variables removed"); 44 STATISTIC(NumVFuncs, "Number of virtual functions removed"); 45 46 namespace { 47 class GlobalDCELegacyPass : public ModulePass { 48 public: 49 static char ID; // Pass identification, replacement for typeid 50 GlobalDCELegacyPass() : ModulePass(ID) { 51 initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry()); 52 } 53 54 // run - Do the GlobalDCE pass on the specified module, optionally updating 55 // the specified callgraph to reflect the changes. 56 // 57 bool runOnModule(Module &M) override { 58 if (skipModule(M)) 59 return false; 60 61 // We need a minimally functional dummy module analysis manager. It needs 62 // to at least know about the possibility of proxying a function analysis 63 // manager. 64 FunctionAnalysisManager DummyFAM; 65 ModuleAnalysisManager DummyMAM; 66 DummyMAM.registerPass( 67 [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); }); 68 69 auto PA = Impl.run(M, DummyMAM); 70 return !PA.areAllPreserved(); 71 } 72 73 private: 74 GlobalDCEPass Impl; 75 }; 76 } 77 78 char GlobalDCELegacyPass::ID = 0; 79 INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce", 80 "Dead Global Elimination", false, false) 81 82 // Public interface to the GlobalDCEPass. 83 ModulePass *llvm::createGlobalDCEPass() { 84 return new GlobalDCELegacyPass(); 85 } 86 87 /// Returns true if F is effectively empty. 88 static bool isEmptyFunction(Function *F) { 89 BasicBlock &Entry = F->getEntryBlock(); 90 for (auto &I : Entry) { 91 if (isa<DbgInfoIntrinsic>(I)) 92 continue; 93 if (auto *RI = dyn_cast<ReturnInst>(&I)) 94 return !RI->getReturnValue(); 95 break; 96 } 97 return false; 98 } 99 100 /// Compute the set of GlobalValue that depends from V. 101 /// The recursion stops as soon as a GlobalValue is met. 102 void GlobalDCEPass::ComputeDependencies(Value *V, 103 SmallPtrSetImpl<GlobalValue *> &Deps) { 104 if (auto *I = dyn_cast<Instruction>(V)) { 105 Function *Parent = I->getParent()->getParent(); 106 Deps.insert(Parent); 107 } else if (auto *GV = dyn_cast<GlobalValue>(V)) { 108 Deps.insert(GV); 109 } else if (auto *CE = dyn_cast<Constant>(V)) { 110 // Avoid walking the whole tree of a big ConstantExprs multiple times. 111 auto Where = ConstantDependenciesCache.find(CE); 112 if (Where != ConstantDependenciesCache.end()) { 113 auto const &K = Where->second; 114 Deps.insert(K.begin(), K.end()); 115 } else { 116 SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE]; 117 for (User *CEUser : CE->users()) 118 ComputeDependencies(CEUser, LocalDeps); 119 Deps.insert(LocalDeps.begin(), LocalDeps.end()); 120 } 121 } 122 } 123 124 void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) { 125 SmallPtrSet<GlobalValue *, 8> Deps; 126 for (User *User : GV.users()) 127 ComputeDependencies(User, Deps); 128 Deps.erase(&GV); // Remove self-reference. 129 for (GlobalValue *GVU : Deps) { 130 // If this is a dep from a vtable to a virtual function, and we have 131 // complete information about all virtual call sites which could call 132 // though this vtable, then skip it, because the call site information will 133 // be more precise. 134 if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) { 135 LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> " 136 << GV.getName() << "\n"); 137 continue; 138 } 139 GVDependencies[GVU].insert(&GV); 140 } 141 } 142 143 /// Mark Global value as Live 144 void GlobalDCEPass::MarkLive(GlobalValue &GV, 145 SmallVectorImpl<GlobalValue *> *Updates) { 146 auto const Ret = AliveGlobals.insert(&GV); 147 if (!Ret.second) 148 return; 149 150 if (Updates) 151 Updates->push_back(&GV); 152 if (Comdat *C = GV.getComdat()) { 153 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { 154 MarkLive(*CM.second, Updates); // Recursion depth is only two because only 155 // globals in the same comdat are visited. 156 } 157 } 158 } 159 160 void GlobalDCEPass::ScanVTables(Module &M) { 161 SmallVector<MDNode *, 2> Types; 162 LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n"); 163 164 auto *LTOPostLinkMD = 165 cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink")); 166 bool LTOPostLink = 167 LTOPostLinkMD && 168 (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0); 169 170 for (GlobalVariable &GV : M.globals()) { 171 Types.clear(); 172 GV.getMetadata(LLVMContext::MD_type, Types); 173 if (GV.isDeclaration() || Types.empty()) 174 continue; 175 176 // Use the typeid metadata on the vtable to build a mapping from typeids to 177 // the list of (GV, offset) pairs which are the possible vtables for that 178 // typeid. 179 for (MDNode *Type : Types) { 180 Metadata *TypeID = Type->getOperand(1).get(); 181 182 uint64_t Offset = 183 cast<ConstantInt>( 184 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 185 ->getZExtValue(); 186 187 TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset)); 188 } 189 190 // If the type corresponding to the vtable is private to this translation 191 // unit, we know that we can see all virtual functions which might use it, 192 // so VFE is safe. 193 if (auto GO = dyn_cast<GlobalObject>(&GV)) { 194 GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility(); 195 if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit || 196 (LTOPostLink && 197 TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) { 198 LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n"); 199 VFESafeVTables.insert(&GV); 200 } 201 } 202 } 203 } 204 205 void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId, 206 uint64_t CallOffset) { 207 for (auto &VTableInfo : TypeIdMap[TypeId]) { 208 GlobalVariable *VTable = VTableInfo.first; 209 uint64_t VTableOffset = VTableInfo.second; 210 211 Constant *Ptr = 212 getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset, 213 *Caller->getParent()); 214 if (!Ptr) { 215 LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n"); 216 VFESafeVTables.erase(VTable); 217 return; 218 } 219 220 auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts()); 221 if (!Callee) { 222 LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n"); 223 VFESafeVTables.erase(VTable); 224 return; 225 } 226 227 LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> " 228 << Callee->getName() << "\n"); 229 GVDependencies[Caller].insert(Callee); 230 } 231 } 232 233 void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) { 234 LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n"); 235 Function *TypeCheckedLoadFunc = 236 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 237 238 if (!TypeCheckedLoadFunc) 239 return; 240 241 for (auto U : TypeCheckedLoadFunc->users()) { 242 auto CI = dyn_cast<CallInst>(U); 243 if (!CI) 244 continue; 245 246 auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 247 Value *TypeIdValue = CI->getArgOperand(2); 248 auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 249 250 if (Offset) { 251 ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue()); 252 } else { 253 // type.checked.load with a non-constant offset, so assume every entry in 254 // every matching vtable is used. 255 for (auto &VTableInfo : TypeIdMap[TypeId]) { 256 VFESafeVTables.erase(VTableInfo.first); 257 } 258 } 259 } 260 } 261 262 void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) { 263 if (!ClEnableVFE) 264 return; 265 266 // If the Virtual Function Elim module flag is present and set to zero, then 267 // the vcall_visibility metadata was inserted for another optimization (WPD) 268 // and we may not have type checked loads on all accesses to the vtable. 269 // Don't attempt VFE in that case. 270 auto *Val = mdconst::dyn_extract_or_null<ConstantInt>( 271 M.getModuleFlag("Virtual Function Elim")); 272 if (!Val || Val->getZExtValue() == 0) 273 return; 274 275 ScanVTables(M); 276 277 if (VFESafeVTables.empty()) 278 return; 279 280 ScanTypeCheckedLoadIntrinsics(M); 281 282 LLVM_DEBUG( 283 dbgs() << "VFE safe vtables:\n"; 284 for (auto *VTable : VFESafeVTables) 285 dbgs() << " " << VTable->getName() << "\n"; 286 ); 287 } 288 289 PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) { 290 bool Changed = false; 291 292 // The algorithm first computes the set L of global variables that are 293 // trivially live. Then it walks the initialization of these variables to 294 // compute the globals used to initialize them, which effectively builds a 295 // directed graph where nodes are global variables, and an edge from A to B 296 // means B is used to initialize A. Finally, it propagates the liveness 297 // information through the graph starting from the nodes in L. Nodes note 298 // marked as alive are discarded. 299 300 // Remove empty functions from the global ctors list. 301 Changed |= optimizeGlobalCtorsList(M, isEmptyFunction); 302 303 // Collect the set of members for each comdat. 304 for (Function &F : M) 305 if (Comdat *C = F.getComdat()) 306 ComdatMembers.insert(std::make_pair(C, &F)); 307 for (GlobalVariable &GV : M.globals()) 308 if (Comdat *C = GV.getComdat()) 309 ComdatMembers.insert(std::make_pair(C, &GV)); 310 for (GlobalAlias &GA : M.aliases()) 311 if (Comdat *C = GA.getComdat()) 312 ComdatMembers.insert(std::make_pair(C, &GA)); 313 314 // Add dependencies between virtual call sites and the virtual functions they 315 // might call, if we have that information. 316 AddVirtualFunctionDependencies(M); 317 318 // Loop over the module, adding globals which are obviously necessary. 319 for (GlobalObject &GO : M.global_objects()) { 320 Changed |= RemoveUnusedGlobalValue(GO); 321 // Functions with external linkage are needed if they have a body. 322 // Externally visible & appending globals are needed, if they have an 323 // initializer. 324 if (!GO.isDeclaration()) 325 if (!GO.isDiscardableIfUnused()) 326 MarkLive(GO); 327 328 UpdateGVDependencies(GO); 329 } 330 331 // Compute direct dependencies of aliases. 332 for (GlobalAlias &GA : M.aliases()) { 333 Changed |= RemoveUnusedGlobalValue(GA); 334 // Externally visible aliases are needed. 335 if (!GA.isDiscardableIfUnused()) 336 MarkLive(GA); 337 338 UpdateGVDependencies(GA); 339 } 340 341 // Compute direct dependencies of ifuncs. 342 for (GlobalIFunc &GIF : M.ifuncs()) { 343 Changed |= RemoveUnusedGlobalValue(GIF); 344 // Externally visible ifuncs are needed. 345 if (!GIF.isDiscardableIfUnused()) 346 MarkLive(GIF); 347 348 UpdateGVDependencies(GIF); 349 } 350 351 // Propagate liveness from collected Global Values through the computed 352 // dependencies. 353 SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(), 354 AliveGlobals.end()}; 355 while (!NewLiveGVs.empty()) { 356 GlobalValue *LGV = NewLiveGVs.pop_back_val(); 357 for (auto *GVD : GVDependencies[LGV]) 358 MarkLive(*GVD, &NewLiveGVs); 359 } 360 361 // Now that all globals which are needed are in the AliveGlobals set, we loop 362 // through the program, deleting those which are not alive. 363 // 364 365 // The first pass is to drop initializers of global variables which are dead. 366 std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals 367 for (GlobalVariable &GV : M.globals()) 368 if (!AliveGlobals.count(&GV)) { 369 DeadGlobalVars.push_back(&GV); // Keep track of dead globals 370 if (GV.hasInitializer()) { 371 Constant *Init = GV.getInitializer(); 372 GV.setInitializer(nullptr); 373 if (isSafeToDestroyConstant(Init)) 374 Init->destroyConstant(); 375 } 376 } 377 378 // The second pass drops the bodies of functions which are dead... 379 std::vector<Function *> DeadFunctions; 380 for (Function &F : M) 381 if (!AliveGlobals.count(&F)) { 382 DeadFunctions.push_back(&F); // Keep track of dead globals 383 if (!F.isDeclaration()) 384 F.deleteBody(); 385 } 386 387 // The third pass drops targets of aliases which are dead... 388 std::vector<GlobalAlias*> DeadAliases; 389 for (GlobalAlias &GA : M.aliases()) 390 if (!AliveGlobals.count(&GA)) { 391 DeadAliases.push_back(&GA); 392 GA.setAliasee(nullptr); 393 } 394 395 // The fourth pass drops targets of ifuncs which are dead... 396 std::vector<GlobalIFunc*> DeadIFuncs; 397 for (GlobalIFunc &GIF : M.ifuncs()) 398 if (!AliveGlobals.count(&GIF)) { 399 DeadIFuncs.push_back(&GIF); 400 GIF.setResolver(nullptr); 401 } 402 403 // Now that all interferences have been dropped, delete the actual objects 404 // themselves. 405 auto EraseUnusedGlobalValue = [&](GlobalValue *GV) { 406 RemoveUnusedGlobalValue(*GV); 407 GV->eraseFromParent(); 408 Changed = true; 409 }; 410 411 NumFunctions += DeadFunctions.size(); 412 for (Function *F : DeadFunctions) { 413 if (!F->use_empty()) { 414 // Virtual functions might still be referenced by one or more vtables, 415 // but if we've proven them to be unused then it's safe to replace the 416 // virtual function pointers with null, allowing us to remove the 417 // function itself. 418 ++NumVFuncs; 419 F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType())); 420 } 421 EraseUnusedGlobalValue(F); 422 } 423 424 NumVariables += DeadGlobalVars.size(); 425 for (GlobalVariable *GV : DeadGlobalVars) 426 EraseUnusedGlobalValue(GV); 427 428 NumAliases += DeadAliases.size(); 429 for (GlobalAlias *GA : DeadAliases) 430 EraseUnusedGlobalValue(GA); 431 432 NumIFuncs += DeadIFuncs.size(); 433 for (GlobalIFunc *GIF : DeadIFuncs) 434 EraseUnusedGlobalValue(GIF); 435 436 // Make sure that all memory is released 437 AliveGlobals.clear(); 438 ConstantDependenciesCache.clear(); 439 GVDependencies.clear(); 440 ComdatMembers.clear(); 441 TypeIdMap.clear(); 442 VFESafeVTables.clear(); 443 444 if (Changed) 445 return PreservedAnalyses::none(); 446 return PreservedAnalyses::all(); 447 } 448 449 // RemoveUnusedGlobalValue - Loop over all of the uses of the specified 450 // GlobalValue, looking for the constant pointer ref that may be pointing to it. 451 // If found, check to see if the constant pointer ref is safe to destroy, and if 452 // so, nuke it. This will reduce the reference count on the global value, which 453 // might make it deader. 454 // 455 bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) { 456 if (GV.use_empty()) 457 return false; 458 GV.removeDeadConstantUsers(); 459 return GV.use_empty(); 460 } 461