xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalDCE.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transform is designed to eliminate unreachable internal globals from the
10 // program.  It uses an aggressive algorithm, searching out globals that are
11 // known to be alive.  After it finds all of the globals which are needed, it
12 // deletes whatever is left over.  This allows it to delete recursive chunks of
13 // the program which are unreachable.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/IPO/GlobalDCE.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/TypeMetadataUtils.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Transforms/IPO.h"
28 #include "llvm/Transforms/Utils/CtorUtils.h"
29 #include "llvm/Transforms/Utils/GlobalStatus.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "globaldce"
34 
35 static cl::opt<bool>
36     ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true),
37                 cl::desc("Enable virtual function elimination"));
38 
39 STATISTIC(NumAliases  , "Number of global aliases removed");
40 STATISTIC(NumFunctions, "Number of functions removed");
41 STATISTIC(NumIFuncs,    "Number of indirect functions removed");
42 STATISTIC(NumVariables, "Number of global variables removed");
43 STATISTIC(NumVFuncs,    "Number of virtual functions removed");
44 
45 namespace {
46   class GlobalDCELegacyPass : public ModulePass {
47   public:
48     static char ID; // Pass identification, replacement for typeid
49     GlobalDCELegacyPass() : ModulePass(ID) {
50       initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
51     }
52 
53     // run - Do the GlobalDCE pass on the specified module, optionally updating
54     // the specified callgraph to reflect the changes.
55     //
56     bool runOnModule(Module &M) override {
57       if (skipModule(M))
58         return false;
59 
60       // We need a minimally functional dummy module analysis manager. It needs
61       // to at least know about the possibility of proxying a function analysis
62       // manager.
63       FunctionAnalysisManager DummyFAM;
64       ModuleAnalysisManager DummyMAM;
65       DummyMAM.registerPass(
66           [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });
67 
68       auto PA = Impl.run(M, DummyMAM);
69       return !PA.areAllPreserved();
70     }
71 
72   private:
73     GlobalDCEPass Impl;
74   };
75 }
76 
77 char GlobalDCELegacyPass::ID = 0;
78 INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
79                 "Dead Global Elimination", false, false)
80 
81 // Public interface to the GlobalDCEPass.
82 ModulePass *llvm::createGlobalDCEPass() {
83   return new GlobalDCELegacyPass();
84 }
85 
86 /// Returns true if F is effectively empty.
87 static bool isEmptyFunction(Function *F) {
88   // Skip external functions.
89   if (F->isDeclaration())
90     return false;
91   BasicBlock &Entry = F->getEntryBlock();
92   for (auto &I : Entry) {
93     if (I.isDebugOrPseudoInst())
94       continue;
95     if (auto *RI = dyn_cast<ReturnInst>(&I))
96       return !RI->getReturnValue();
97     break;
98   }
99   return false;
100 }
101 
102 /// Compute the set of GlobalValue that depends from V.
103 /// The recursion stops as soon as a GlobalValue is met.
104 void GlobalDCEPass::ComputeDependencies(Value *V,
105                                         SmallPtrSetImpl<GlobalValue *> &Deps) {
106   if (auto *I = dyn_cast<Instruction>(V)) {
107     Function *Parent = I->getParent()->getParent();
108     Deps.insert(Parent);
109   } else if (auto *GV = dyn_cast<GlobalValue>(V)) {
110     Deps.insert(GV);
111   } else if (auto *CE = dyn_cast<Constant>(V)) {
112     // Avoid walking the whole tree of a big ConstantExprs multiple times.
113     auto Where = ConstantDependenciesCache.find(CE);
114     if (Where != ConstantDependenciesCache.end()) {
115       auto const &K = Where->second;
116       Deps.insert(K.begin(), K.end());
117     } else {
118       SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
119       for (User *CEUser : CE->users())
120         ComputeDependencies(CEUser, LocalDeps);
121       Deps.insert(LocalDeps.begin(), LocalDeps.end());
122     }
123   }
124 }
125 
126 void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
127   SmallPtrSet<GlobalValue *, 8> Deps;
128   for (User *User : GV.users())
129     ComputeDependencies(User, Deps);
130   Deps.erase(&GV); // Remove self-reference.
131   for (GlobalValue *GVU : Deps) {
132     // If this is a dep from a vtable to a virtual function, and we have
133     // complete information about all virtual call sites which could call
134     // though this vtable, then skip it, because the call site information will
135     // be more precise.
136     if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
137       LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
138                         << GV.getName() << "\n");
139       continue;
140     }
141     GVDependencies[GVU].insert(&GV);
142   }
143 }
144 
145 /// Mark Global value as Live
146 void GlobalDCEPass::MarkLive(GlobalValue &GV,
147                              SmallVectorImpl<GlobalValue *> *Updates) {
148   auto const Ret = AliveGlobals.insert(&GV);
149   if (!Ret.second)
150     return;
151 
152   if (Updates)
153     Updates->push_back(&GV);
154   if (Comdat *C = GV.getComdat()) {
155     for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
156       MarkLive(*CM.second, Updates); // Recursion depth is only two because only
157                                      // globals in the same comdat are visited.
158     }
159   }
160 }
161 
162 void GlobalDCEPass::ScanVTables(Module &M) {
163   SmallVector<MDNode *, 2> Types;
164   LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");
165 
166   auto *LTOPostLinkMD =
167       cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
168   bool LTOPostLink =
169       LTOPostLinkMD &&
170       (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);
171 
172   for (GlobalVariable &GV : M.globals()) {
173     Types.clear();
174     GV.getMetadata(LLVMContext::MD_type, Types);
175     if (GV.isDeclaration() || Types.empty())
176       continue;
177 
178     // Use the typeid metadata on the vtable to build a mapping from typeids to
179     // the list of (GV, offset) pairs which are the possible vtables for that
180     // typeid.
181     for (MDNode *Type : Types) {
182       Metadata *TypeID = Type->getOperand(1).get();
183 
184       uint64_t Offset =
185           cast<ConstantInt>(
186               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
187               ->getZExtValue();
188 
189       TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
190     }
191 
192     // If the type corresponding to the vtable is private to this translation
193     // unit, we know that we can see all virtual functions which might use it,
194     // so VFE is safe.
195     if (auto GO = dyn_cast<GlobalObject>(&GV)) {
196       GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
197       if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
198           (LTOPostLink &&
199            TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
200         LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
201         VFESafeVTables.insert(&GV);
202       }
203     }
204   }
205 }
206 
207 void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
208                                    uint64_t CallOffset) {
209   for (const auto &VTableInfo : TypeIdMap[TypeId]) {
210     GlobalVariable *VTable = VTableInfo.first;
211     uint64_t VTableOffset = VTableInfo.second;
212 
213     Constant *Ptr =
214         getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
215                            *Caller->getParent(), VTable);
216     if (!Ptr) {
217       LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
218       VFESafeVTables.erase(VTable);
219       continue;
220     }
221 
222     auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
223     if (!Callee) {
224       LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
225       VFESafeVTables.erase(VTable);
226       continue;
227     }
228 
229     LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
230                       << Callee->getName() << "\n");
231     GVDependencies[Caller].insert(Callee);
232   }
233 }
234 
235 void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
236   LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
237   Function *TypeCheckedLoadFunc =
238       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
239 
240   if (!TypeCheckedLoadFunc)
241     return;
242 
243   for (auto *U : TypeCheckedLoadFunc->users()) {
244     auto CI = dyn_cast<CallInst>(U);
245     if (!CI)
246       continue;
247 
248     auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
249     Value *TypeIdValue = CI->getArgOperand(2);
250     auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
251 
252     if (Offset) {
253       ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
254     } else {
255       // type.checked.load with a non-constant offset, so assume every entry in
256       // every matching vtable is used.
257       for (const auto &VTableInfo : TypeIdMap[TypeId]) {
258         VFESafeVTables.erase(VTableInfo.first);
259       }
260     }
261   }
262 }
263 
264 void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
265   if (!ClEnableVFE)
266     return;
267 
268   // If the Virtual Function Elim module flag is present and set to zero, then
269   // the vcall_visibility metadata was inserted for another optimization (WPD)
270   // and we may not have type checked loads on all accesses to the vtable.
271   // Don't attempt VFE in that case.
272   auto *Val = mdconst::dyn_extract_or_null<ConstantInt>(
273       M.getModuleFlag("Virtual Function Elim"));
274   if (!Val || Val->getZExtValue() == 0)
275     return;
276 
277   ScanVTables(M);
278 
279   if (VFESafeVTables.empty())
280     return;
281 
282   ScanTypeCheckedLoadIntrinsics(M);
283 
284   LLVM_DEBUG(
285     dbgs() << "VFE safe vtables:\n";
286     for (auto *VTable : VFESafeVTables)
287       dbgs() << "  " << VTable->getName() << "\n";
288   );
289 }
290 
291 PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
292   bool Changed = false;
293 
294   // The algorithm first computes the set L of global variables that are
295   // trivially live.  Then it walks the initialization of these variables to
296   // compute the globals used to initialize them, which effectively builds a
297   // directed graph where nodes are global variables, and an edge from A to B
298   // means B is used to initialize A.  Finally, it propagates the liveness
299   // information through the graph starting from the nodes in L. Nodes note
300   // marked as alive are discarded.
301 
302   // Remove empty functions from the global ctors list.
303   Changed |= optimizeGlobalCtorsList(
304       M, [](uint32_t, Function *F) { return isEmptyFunction(F); });
305 
306   // Collect the set of members for each comdat.
307   for (Function &F : M)
308     if (Comdat *C = F.getComdat())
309       ComdatMembers.insert(std::make_pair(C, &F));
310   for (GlobalVariable &GV : M.globals())
311     if (Comdat *C = GV.getComdat())
312       ComdatMembers.insert(std::make_pair(C, &GV));
313   for (GlobalAlias &GA : M.aliases())
314     if (Comdat *C = GA.getComdat())
315       ComdatMembers.insert(std::make_pair(C, &GA));
316 
317   // Add dependencies between virtual call sites and the virtual functions they
318   // might call, if we have that information.
319   AddVirtualFunctionDependencies(M);
320 
321   // Loop over the module, adding globals which are obviously necessary.
322   for (GlobalObject &GO : M.global_objects()) {
323     GO.removeDeadConstantUsers();
324     // Functions with external linkage are needed if they have a body.
325     // Externally visible & appending globals are needed, if they have an
326     // initializer.
327     if (!GO.isDeclaration())
328       if (!GO.isDiscardableIfUnused())
329         MarkLive(GO);
330 
331     UpdateGVDependencies(GO);
332   }
333 
334   // Compute direct dependencies of aliases.
335   for (GlobalAlias &GA : M.aliases()) {
336     GA.removeDeadConstantUsers();
337     // Externally visible aliases are needed.
338     if (!GA.isDiscardableIfUnused())
339       MarkLive(GA);
340 
341     UpdateGVDependencies(GA);
342   }
343 
344   // Compute direct dependencies of ifuncs.
345   for (GlobalIFunc &GIF : M.ifuncs()) {
346     GIF.removeDeadConstantUsers();
347     // Externally visible ifuncs are needed.
348     if (!GIF.isDiscardableIfUnused())
349       MarkLive(GIF);
350 
351     UpdateGVDependencies(GIF);
352   }
353 
354   // Propagate liveness from collected Global Values through the computed
355   // dependencies.
356   SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
357                                            AliveGlobals.end()};
358   while (!NewLiveGVs.empty()) {
359     GlobalValue *LGV = NewLiveGVs.pop_back_val();
360     for (auto *GVD : GVDependencies[LGV])
361       MarkLive(*GVD, &NewLiveGVs);
362   }
363 
364   // Now that all globals which are needed are in the AliveGlobals set, we loop
365   // through the program, deleting those which are not alive.
366   //
367 
368   // The first pass is to drop initializers of global variables which are dead.
369   std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
370   for (GlobalVariable &GV : M.globals())
371     if (!AliveGlobals.count(&GV)) {
372       DeadGlobalVars.push_back(&GV);         // Keep track of dead globals
373       if (GV.hasInitializer()) {
374         Constant *Init = GV.getInitializer();
375         GV.setInitializer(nullptr);
376         if (isSafeToDestroyConstant(Init))
377           Init->destroyConstant();
378       }
379     }
380 
381   // The second pass drops the bodies of functions which are dead...
382   std::vector<Function *> DeadFunctions;
383   for (Function &F : M)
384     if (!AliveGlobals.count(&F)) {
385       DeadFunctions.push_back(&F);         // Keep track of dead globals
386       if (!F.isDeclaration())
387         F.deleteBody();
388     }
389 
390   // The third pass drops targets of aliases which are dead...
391   std::vector<GlobalAlias*> DeadAliases;
392   for (GlobalAlias &GA : M.aliases())
393     if (!AliveGlobals.count(&GA)) {
394       DeadAliases.push_back(&GA);
395       GA.setAliasee(nullptr);
396     }
397 
398   // The fourth pass drops targets of ifuncs which are dead...
399   std::vector<GlobalIFunc*> DeadIFuncs;
400   for (GlobalIFunc &GIF : M.ifuncs())
401     if (!AliveGlobals.count(&GIF)) {
402       DeadIFuncs.push_back(&GIF);
403       GIF.setResolver(nullptr);
404     }
405 
406   // Now that all interferences have been dropped, delete the actual objects
407   // themselves.
408   auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
409     GV->removeDeadConstantUsers();
410     GV->eraseFromParent();
411     Changed = true;
412   };
413 
414   NumFunctions += DeadFunctions.size();
415   for (Function *F : DeadFunctions) {
416     if (!F->use_empty()) {
417       // Virtual functions might still be referenced by one or more vtables,
418       // but if we've proven them to be unused then it's safe to replace the
419       // virtual function pointers with null, allowing us to remove the
420       // function itself.
421       ++NumVFuncs;
422 
423       // Detect vfuncs that are referenced as "relative pointers" which are used
424       // in Swift vtables, i.e. entries in the form of:
425       //
426       //   i32 trunc (i64 sub (i64 ptrtoint @f, i64 ptrtoint ...)) to i32)
427       //
428       // In this case, replace the whole "sub" expression with constant 0 to
429       // avoid leaving a weird sub(0, symbol) expression behind.
430       replaceRelativePointerUsersWithZero(F);
431 
432       F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
433     }
434     EraseUnusedGlobalValue(F);
435   }
436 
437   NumVariables += DeadGlobalVars.size();
438   for (GlobalVariable *GV : DeadGlobalVars)
439     EraseUnusedGlobalValue(GV);
440 
441   NumAliases += DeadAliases.size();
442   for (GlobalAlias *GA : DeadAliases)
443     EraseUnusedGlobalValue(GA);
444 
445   NumIFuncs += DeadIFuncs.size();
446   for (GlobalIFunc *GIF : DeadIFuncs)
447     EraseUnusedGlobalValue(GIF);
448 
449   // Make sure that all memory is released
450   AliveGlobals.clear();
451   ConstantDependenciesCache.clear();
452   GVDependencies.clear();
453   ComdatMembers.clear();
454   TypeIdMap.clear();
455   VFESafeVTables.clear();
456 
457   if (Changed)
458     return PreservedAnalyses::none();
459   return PreservedAnalyses::all();
460 }
461