1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This specialises functions with constant parameters. Constant parameters 10 // like function pointers and constant globals are propagated to the callee by 11 // specializing the function. The main benefit of this pass at the moment is 12 // that indirect calls are transformed into direct calls, which provides inline 13 // opportunities that the inliner would not have been able to achieve. That's 14 // why function specialisation is run before the inliner in the optimisation 15 // pipeline; that is by design. Otherwise, we would only benefit from constant 16 // passing, which is a valid use-case too, but hasn't been explored much in 17 // terms of performance uplifts, cost-model and compile-time impact. 18 // 19 // Current limitations: 20 // - It does not yet handle integer ranges. We do support "literal constants", 21 // but that's off by default under an option. 22 // - The cost-model could be further looked into (it mainly focuses on inlining 23 // benefits), 24 // 25 // Ideas: 26 // - With a function specialization attribute for arguments, we could have 27 // a direct way to steer function specialization, avoiding the cost-model, 28 // and thus control compile-times / code-size. 29 // 30 // Todos: 31 // - Specializing recursive functions relies on running the transformation a 32 // number of times, which is controlled by option 33 // `func-specialization-max-iters`. Thus, increasing this value and the 34 // number of iterations, will linearly increase the number of times recursive 35 // functions get specialized, see also the discussion in 36 // https://reviews.llvm.org/D106426 for details. Perhaps there is a 37 // compile-time friendlier way to control/limit the number of specialisations 38 // for recursive functions. 39 // - Don't transform the function if function specialization does not trigger; 40 // the SCCPSolver may make IR changes. 41 // 42 // References: 43 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable 44 // it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "llvm/Transforms/IPO/FunctionSpecialization.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/CodeMetrics.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/InlineCost.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/TargetTransformInfo.h" 55 #include "llvm/Analysis/ValueLattice.h" 56 #include "llvm/Analysis/ValueLatticeUtils.h" 57 #include "llvm/Analysis/ValueTracking.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/Transforms/Scalar/SCCP.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/SCCPSolver.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include <cmath> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "function-specialization" 68 69 STATISTIC(NumSpecsCreated, "Number of specializations created"); 70 71 static cl::opt<bool> ForceSpecialization( 72 "force-specialization", cl::init(false), cl::Hidden, cl::desc( 73 "Force function specialization for every call site with a constant " 74 "argument")); 75 76 static cl::opt<unsigned> MaxClones( 77 "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( 78 "The maximum number of clones allowed for a single function " 79 "specialization")); 80 81 static cl::opt<unsigned> MinFunctionSize( 82 "funcspec-min-function-size", cl::init(100), cl::Hidden, cl::desc( 83 "Don't specialize functions that have less than this number of " 84 "instructions")); 85 86 static cl::opt<bool> SpecializeOnAddress( 87 "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( 88 "Enable function specialization on the address of global values")); 89 90 // Disabled by default as it can significantly increase compilation times. 91 // 92 // https://llvm-compile-time-tracker.com 93 // https://github.com/nikic/llvm-compile-time-tracker 94 static cl::opt<bool> SpecializeLiteralConstant( 95 "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc( 96 "Enable specialization of functions that take a literal constant as an " 97 "argument")); 98 99 // Estimates the instruction cost of all the basic blocks in \p WorkList. 100 // The successors of such blocks are added to the list as long as they are 101 // executable and they have a unique predecessor. \p WorkList represents 102 // the basic blocks of a specialization which become dead once we replace 103 // instructions that are known to be constants. The aim here is to estimate 104 // the combination of size and latency savings in comparison to the non 105 // specialized version of the function. 106 static Cost estimateBasicBlocks(SmallVectorImpl<BasicBlock *> &WorkList, 107 ConstMap &KnownConstants, SCCPSolver &Solver, 108 BlockFrequencyInfo &BFI, 109 TargetTransformInfo &TTI) { 110 Cost Bonus = 0; 111 112 // Accumulate the instruction cost of each basic block weighted by frequency. 113 while (!WorkList.empty()) { 114 BasicBlock *BB = WorkList.pop_back_val(); 115 116 uint64_t Weight = BFI.getBlockFreq(BB).getFrequency() / 117 BFI.getEntryFreq(); 118 if (!Weight) 119 continue; 120 121 for (Instruction &I : *BB) { 122 // Disregard SSA copies. 123 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 124 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 125 continue; 126 // If it's a known constant we have already accounted for it. 127 if (KnownConstants.contains(&I)) 128 continue; 129 130 Bonus += Weight * 131 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 132 133 LLVM_DEBUG(dbgs() << "FnSpecialization: Bonus " << Bonus 134 << " after user " << I << "\n"); 135 } 136 137 // Keep adding dead successors to the list as long as they are 138 // executable and they have a unique predecessor. 139 for (BasicBlock *SuccBB : successors(BB)) 140 if (Solver.isBlockExecutable(SuccBB) && 141 SuccBB->getUniquePredecessor() == BB) 142 WorkList.push_back(SuccBB); 143 } 144 return Bonus; 145 } 146 147 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) { 148 if (auto *C = dyn_cast<Constant>(V)) 149 return C; 150 if (auto It = KnownConstants.find(V); It != KnownConstants.end()) 151 return It->second; 152 return nullptr; 153 } 154 155 Cost InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) { 156 // Cache the iterator before visiting. 157 LastVisited = KnownConstants.insert({Use, C}).first; 158 159 if (auto *I = dyn_cast<SwitchInst>(User)) 160 return estimateSwitchInst(*I); 161 162 if (auto *I = dyn_cast<BranchInst>(User)) 163 return estimateBranchInst(*I); 164 165 C = visit(*User); 166 if (!C) 167 return 0; 168 169 KnownConstants.insert({User, C}); 170 171 uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() / 172 BFI.getEntryFreq(); 173 if (!Weight) 174 return 0; 175 176 Cost Bonus = Weight * 177 TTI.getInstructionCost(User, TargetTransformInfo::TCK_SizeAndLatency); 178 179 LLVM_DEBUG(dbgs() << "FnSpecialization: Bonus " << Bonus 180 << " for user " << *User << "\n"); 181 182 for (auto *U : User->users()) 183 if (auto *UI = dyn_cast<Instruction>(U)) 184 if (Solver.isBlockExecutable(UI->getParent())) 185 Bonus += getUserBonus(UI, User, C); 186 187 return Bonus; 188 } 189 190 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { 191 if (I.getCondition() != LastVisited->first) 192 return 0; 193 194 auto *C = dyn_cast<ConstantInt>(LastVisited->second); 195 if (!C) 196 return 0; 197 198 BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); 199 // Initialize the worklist with the dead basic blocks. These are the 200 // destination labels which are different from the one corresponding 201 // to \p C. They should be executable and have a unique predecessor. 202 SmallVector<BasicBlock *> WorkList; 203 for (const auto &Case : I.cases()) { 204 BasicBlock *BB = Case.getCaseSuccessor(); 205 if (BB == Succ || !Solver.isBlockExecutable(BB) || 206 BB->getUniquePredecessor() != I.getParent()) 207 continue; 208 WorkList.push_back(BB); 209 } 210 211 return estimateBasicBlocks(WorkList, KnownConstants, Solver, BFI, TTI); 212 } 213 214 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { 215 if (I.getCondition() != LastVisited->first) 216 return 0; 217 218 BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); 219 // Initialize the worklist with the dead successor as long as 220 // it is executable and has a unique predecessor. 221 SmallVector<BasicBlock *> WorkList; 222 if (Solver.isBlockExecutable(Succ) && 223 Succ->getUniquePredecessor() == I.getParent()) 224 WorkList.push_back(Succ); 225 226 return estimateBasicBlocks(WorkList, KnownConstants, Solver, BFI, TTI); 227 } 228 229 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { 230 if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) 231 return LastVisited->second; 232 return nullptr; 233 } 234 235 Constant *InstCostVisitor::visitCallBase(CallBase &I) { 236 Function *F = I.getCalledFunction(); 237 if (!F || !canConstantFoldCallTo(&I, F)) 238 return nullptr; 239 240 SmallVector<Constant *, 8> Operands; 241 Operands.reserve(I.getNumOperands()); 242 243 for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { 244 Value *V = I.getOperand(Idx); 245 Constant *C = findConstantFor(V, KnownConstants); 246 if (!C) 247 return nullptr; 248 Operands.push_back(C); 249 } 250 251 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 252 return ConstantFoldCall(&I, F, Ops); 253 } 254 255 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { 256 if (isa<ConstantPointerNull>(LastVisited->second)) 257 return nullptr; 258 return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); 259 } 260 261 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 262 SmallVector<Constant *, 8> Operands; 263 Operands.reserve(I.getNumOperands()); 264 265 for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { 266 Value *V = I.getOperand(Idx); 267 Constant *C = findConstantFor(V, KnownConstants); 268 if (!C) 269 return nullptr; 270 Operands.push_back(C); 271 } 272 273 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 274 return ConstantFoldInstOperands(&I, Ops, DL); 275 } 276 277 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { 278 if (I.getCondition() != LastVisited->first) 279 return nullptr; 280 281 Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() 282 : I.getTrueValue(); 283 Constant *C = findConstantFor(V, KnownConstants); 284 return C; 285 } 286 287 Constant *InstCostVisitor::visitCastInst(CastInst &I) { 288 return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, 289 I.getType(), DL); 290 } 291 292 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { 293 bool Swap = I.getOperand(1) == LastVisited->first; 294 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 295 Constant *Other = findConstantFor(V, KnownConstants); 296 if (!Other) 297 return nullptr; 298 299 Constant *Const = LastVisited->second; 300 return Swap ? 301 ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL) 302 : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); 303 } 304 305 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { 306 return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); 307 } 308 309 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { 310 bool Swap = I.getOperand(1) == LastVisited->first; 311 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 312 Constant *Other = findConstantFor(V, KnownConstants); 313 if (!Other) 314 return nullptr; 315 316 Constant *Const = LastVisited->second; 317 return dyn_cast_or_null<Constant>(Swap ? 318 simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL)) 319 : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL))); 320 } 321 322 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, 323 CallInst *Call) { 324 Value *StoreValue = nullptr; 325 for (auto *User : Alloca->users()) { 326 // We can't use llvm::isAllocaPromotable() as that would fail because of 327 // the usage in the CallInst, which is what we check here. 328 if (User == Call) 329 continue; 330 if (auto *Bitcast = dyn_cast<BitCastInst>(User)) { 331 if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) 332 return nullptr; 333 continue; 334 } 335 336 if (auto *Store = dyn_cast<StoreInst>(User)) { 337 // This is a duplicate store, bail out. 338 if (StoreValue || Store->isVolatile()) 339 return nullptr; 340 StoreValue = Store->getValueOperand(); 341 continue; 342 } 343 // Bail if there is any other unknown usage. 344 return nullptr; 345 } 346 347 if (!StoreValue) 348 return nullptr; 349 350 return getCandidateConstant(StoreValue); 351 } 352 353 // A constant stack value is an AllocaInst that has a single constant 354 // value stored to it. Return this constant if such an alloca stack value 355 // is a function argument. 356 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, 357 Value *Val) { 358 if (!Val) 359 return nullptr; 360 Val = Val->stripPointerCasts(); 361 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 362 return ConstVal; 363 auto *Alloca = dyn_cast<AllocaInst>(Val); 364 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 365 return nullptr; 366 return getPromotableAlloca(Alloca, Call); 367 } 368 369 // To support specializing recursive functions, it is important to propagate 370 // constant arguments because after a first iteration of specialisation, a 371 // reduced example may look like this: 372 // 373 // define internal void @RecursiveFn(i32* arg1) { 374 // %temp = alloca i32, align 4 375 // store i32 2 i32* %temp, align 4 376 // call void @RecursiveFn.1(i32* nonnull %temp) 377 // ret void 378 // } 379 // 380 // Before a next iteration, we need to propagate the constant like so 381 // which allows further specialization in next iterations. 382 // 383 // @funcspec.arg = internal constant i32 2 384 // 385 // define internal void @someFunc(i32* arg1) { 386 // call void @otherFunc(i32* nonnull @funcspec.arg) 387 // ret void 388 // } 389 // 390 // See if there are any new constant values for the callers of \p F via 391 // stack variables and promote them to global variables. 392 void FunctionSpecializer::promoteConstantStackValues(Function *F) { 393 for (User *U : F->users()) { 394 395 auto *Call = dyn_cast<CallInst>(U); 396 if (!Call) 397 continue; 398 399 if (!Solver.isBlockExecutable(Call->getParent())) 400 continue; 401 402 for (const Use &U : Call->args()) { 403 unsigned Idx = Call->getArgOperandNo(&U); 404 Value *ArgOp = Call->getArgOperand(Idx); 405 Type *ArgOpType = ArgOp->getType(); 406 407 if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) 408 continue; 409 410 auto *ConstVal = getConstantStackValue(Call, ArgOp); 411 if (!ConstVal) 412 continue; 413 414 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 415 GlobalValue::InternalLinkage, ConstVal, 416 "funcspec.arg"); 417 if (ArgOpType != ConstVal->getType()) 418 GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType); 419 420 Call->setArgOperand(Idx, GV); 421 } 422 } 423 } 424 425 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 426 // interfere with the promoteConstantStackValues() optimization. 427 static void removeSSACopy(Function &F) { 428 for (BasicBlock &BB : F) { 429 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 430 auto *II = dyn_cast<IntrinsicInst>(&Inst); 431 if (!II) 432 continue; 433 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 434 continue; 435 Inst.replaceAllUsesWith(II->getOperand(0)); 436 Inst.eraseFromParent(); 437 } 438 } 439 } 440 441 /// Remove any ssa_copy intrinsics that may have been introduced. 442 void FunctionSpecializer::cleanUpSSA() { 443 for (Function *F : Specializations) 444 removeSSACopy(*F); 445 } 446 447 448 template <> struct llvm::DenseMapInfo<SpecSig> { 449 static inline SpecSig getEmptyKey() { return {~0U, {}}; } 450 451 static inline SpecSig getTombstoneKey() { return {~1U, {}}; } 452 453 static unsigned getHashValue(const SpecSig &S) { 454 return static_cast<unsigned>(hash_value(S)); 455 } 456 457 static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { 458 return LHS == RHS; 459 } 460 }; 461 462 FunctionSpecializer::~FunctionSpecializer() { 463 LLVM_DEBUG( 464 if (NumSpecsCreated > 0) 465 dbgs() << "FnSpecialization: Created " << NumSpecsCreated 466 << " specializations in module " << M.getName() << "\n"); 467 // Eliminate dead code. 468 removeDeadFunctions(); 469 cleanUpSSA(); 470 } 471 472 /// Attempt to specialize functions in the module to enable constant 473 /// propagation across function boundaries. 474 /// 475 /// \returns true if at least one function is specialized. 476 bool FunctionSpecializer::run() { 477 // Find possible specializations for each function. 478 SpecMap SM; 479 SmallVector<Spec, 32> AllSpecs; 480 unsigned NumCandidates = 0; 481 for (Function &F : M) { 482 if (!isCandidateFunction(&F)) 483 continue; 484 485 auto [It, Inserted] = FunctionMetrics.try_emplace(&F); 486 CodeMetrics &Metrics = It->second; 487 //Analyze the function. 488 if (Inserted) { 489 SmallPtrSet<const Value *, 32> EphValues; 490 CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); 491 for (BasicBlock &BB : F) 492 Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); 493 } 494 495 // If the code metrics reveal that we shouldn't duplicate the function, 496 // or if the code size implies that this function is easy to get inlined, 497 // then we shouldn't specialize it. 498 if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || 499 (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) && 500 Metrics.NumInsts < MinFunctionSize)) 501 continue; 502 503 // TODO: For now only consider recursive functions when running multiple 504 // times. This should change if specialization on literal constants gets 505 // enabled. 506 if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant) 507 continue; 508 509 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " 510 << F.getName() << " is " << Metrics.NumInsts << "\n"); 511 512 if (Inserted && Metrics.isRecursive) 513 promoteConstantStackValues(&F); 514 515 if (!findSpecializations(&F, Metrics.NumInsts, AllSpecs, SM)) { 516 LLVM_DEBUG( 517 dbgs() << "FnSpecialization: No possible specializations found for " 518 << F.getName() << "\n"); 519 continue; 520 } 521 522 ++NumCandidates; 523 } 524 525 if (!NumCandidates) { 526 LLVM_DEBUG( 527 dbgs() 528 << "FnSpecialization: No possible specializations found in module\n"); 529 return false; 530 } 531 532 // Choose the most profitable specialisations, which fit in the module 533 // specialization budget, which is derived from maximum number of 534 // specializations per specialization candidate function. 535 auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { 536 return AllSpecs[I].Score > AllSpecs[J].Score; 537 }; 538 const unsigned NSpecs = 539 std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); 540 SmallVector<unsigned> BestSpecs(NSpecs + 1); 541 std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); 542 if (AllSpecs.size() > NSpecs) { 543 LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " 544 << "the maximum number of clones threshold.\n" 545 << "FnSpecialization: Specializing the " 546 << NSpecs 547 << " most profitable candidates.\n"); 548 std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); 549 for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { 550 BestSpecs[NSpecs] = I; 551 std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 552 std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 553 } 554 } 555 556 LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; 557 for (unsigned I = 0; I < NSpecs; ++I) { 558 const Spec &S = AllSpecs[BestSpecs[I]]; 559 dbgs() << "FnSpecialization: Function " << S.F->getName() 560 << " , score " << S.Score << "\n"; 561 for (const ArgInfo &Arg : S.Sig.Args) 562 dbgs() << "FnSpecialization: FormalArg = " 563 << Arg.Formal->getNameOrAsOperand() 564 << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() 565 << "\n"; 566 }); 567 568 // Create the chosen specializations. 569 SmallPtrSet<Function *, 8> OriginalFuncs; 570 SmallVector<Function *> Clones; 571 for (unsigned I = 0; I < NSpecs; ++I) { 572 Spec &S = AllSpecs[BestSpecs[I]]; 573 S.Clone = createSpecialization(S.F, S.Sig); 574 575 // Update the known call sites to call the clone. 576 for (CallBase *Call : S.CallSites) { 577 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call 578 << " to call " << S.Clone->getName() << "\n"); 579 Call->setCalledFunction(S.Clone); 580 } 581 582 Clones.push_back(S.Clone); 583 OriginalFuncs.insert(S.F); 584 } 585 586 Solver.solveWhileResolvedUndefsIn(Clones); 587 588 // Update the rest of the call sites - these are the recursive calls, calls 589 // to discarded specialisations and calls that may match a specialisation 590 // after the solver runs. 591 for (Function *F : OriginalFuncs) { 592 auto [Begin, End] = SM[F]; 593 updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); 594 } 595 596 for (Function *F : Clones) { 597 if (F->getReturnType()->isVoidTy()) 598 continue; 599 if (F->getReturnType()->isStructTy()) { 600 auto *STy = cast<StructType>(F->getReturnType()); 601 if (!Solver.isStructLatticeConstant(F, STy)) 602 continue; 603 } else { 604 auto It = Solver.getTrackedRetVals().find(F); 605 assert(It != Solver.getTrackedRetVals().end() && 606 "Return value ought to be tracked"); 607 if (SCCPSolver::isOverdefined(It->second)) 608 continue; 609 } 610 for (User *U : F->users()) { 611 if (auto *CS = dyn_cast<CallBase>(U)) { 612 //The user instruction does not call our function. 613 if (CS->getCalledFunction() != F) 614 continue; 615 Solver.resetLatticeValueFor(CS); 616 } 617 } 618 } 619 620 // Rerun the solver to notify the users of the modified callsites. 621 Solver.solveWhileResolvedUndefs(); 622 623 for (Function *F : OriginalFuncs) 624 if (FunctionMetrics[F].isRecursive) 625 promoteConstantStackValues(F); 626 627 return true; 628 } 629 630 void FunctionSpecializer::removeDeadFunctions() { 631 for (Function *F : FullySpecialized) { 632 LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " 633 << F->getName() << "\n"); 634 if (FAM) 635 FAM->clear(*F, F->getName()); 636 F->eraseFromParent(); 637 } 638 FullySpecialized.clear(); 639 } 640 641 /// Clone the function \p F and remove the ssa_copy intrinsics added by 642 /// the SCCPSolver in the cloned version. 643 static Function *cloneCandidateFunction(Function *F) { 644 ValueToValueMapTy Mappings; 645 Function *Clone = CloneFunction(F, Mappings); 646 removeSSACopy(*Clone); 647 return Clone; 648 } 649 650 bool FunctionSpecializer::findSpecializations(Function *F, Cost SpecCost, 651 SmallVectorImpl<Spec> &AllSpecs, 652 SpecMap &SM) { 653 // A mapping from a specialisation signature to the index of the respective 654 // entry in the all specialisation array. Used to ensure uniqueness of 655 // specialisations. 656 DenseMap<SpecSig, unsigned> UniqueSpecs; 657 658 // Get a list of interesting arguments. 659 SmallVector<Argument *> Args; 660 for (Argument &Arg : F->args()) 661 if (isArgumentInteresting(&Arg)) 662 Args.push_back(&Arg); 663 664 if (Args.empty()) 665 return false; 666 667 for (User *U : F->users()) { 668 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 669 continue; 670 auto &CS = *cast<CallBase>(U); 671 672 // The user instruction does not call our function. 673 if (CS.getCalledFunction() != F) 674 continue; 675 676 // If the call site has attribute minsize set, that callsite won't be 677 // specialized. 678 if (CS.hasFnAttr(Attribute::MinSize)) 679 continue; 680 681 // If the parent of the call site will never be executed, we don't need 682 // to worry about the passed value. 683 if (!Solver.isBlockExecutable(CS.getParent())) 684 continue; 685 686 // Examine arguments and create a specialisation candidate from the 687 // constant operands of this call site. 688 SpecSig S; 689 for (Argument *A : Args) { 690 Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); 691 if (!C) 692 continue; 693 LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " 694 << A->getName() << " : " << C->getNameOrAsOperand() 695 << "\n"); 696 S.Args.push_back({A, C}); 697 } 698 699 if (S.Args.empty()) 700 continue; 701 702 // Check if we have encountered the same specialisation already. 703 if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { 704 // Existing specialisation. Add the call to the list to rewrite, unless 705 // it's a recursive call. A specialisation, generated because of a 706 // recursive call may end up as not the best specialisation for all 707 // the cloned instances of this call, which result from specialising 708 // functions. Hence we don't rewrite the call directly, but match it with 709 // the best specialisation once all specialisations are known. 710 if (CS.getFunction() == F) 711 continue; 712 const unsigned Index = It->second; 713 AllSpecs[Index].CallSites.push_back(&CS); 714 } else { 715 // Calculate the specialisation gain. 716 Cost Score = 0 - SpecCost; 717 InstCostVisitor Visitor = getInstCostVisitorFor(F); 718 for (ArgInfo &A : S.Args) 719 Score += getSpecializationBonus(A.Formal, A.Actual, Visitor); 720 721 // Discard unprofitable specialisations. 722 if (!ForceSpecialization && Score <= 0) 723 continue; 724 725 // Create a new specialisation entry. 726 auto &Spec = AllSpecs.emplace_back(F, S, Score); 727 if (CS.getFunction() != F) 728 Spec.CallSites.push_back(&CS); 729 const unsigned Index = AllSpecs.size() - 1; 730 UniqueSpecs[S] = Index; 731 if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) 732 It->second.second = Index + 1; 733 } 734 } 735 736 return !UniqueSpecs.empty(); 737 } 738 739 bool FunctionSpecializer::isCandidateFunction(Function *F) { 740 if (F->isDeclaration() || F->arg_empty()) 741 return false; 742 743 if (F->hasFnAttribute(Attribute::NoDuplicate)) 744 return false; 745 746 // Do not specialize the cloned function again. 747 if (Specializations.contains(F)) 748 return false; 749 750 // If we're optimizing the function for size, we shouldn't specialize it. 751 if (F->hasOptSize() || 752 shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 753 return false; 754 755 // Exit if the function is not executable. There's no point in specializing 756 // a dead function. 757 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 758 return false; 759 760 // It wastes time to specialize a function which would get inlined finally. 761 if (F->hasFnAttribute(Attribute::AlwaysInline)) 762 return false; 763 764 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 765 << "\n"); 766 return true; 767 } 768 769 Function *FunctionSpecializer::createSpecialization(Function *F, 770 const SpecSig &S) { 771 Function *Clone = cloneCandidateFunction(F); 772 773 // The original function does not neccessarily have internal linkage, but the 774 // clone must. 775 Clone->setLinkage(GlobalValue::InternalLinkage); 776 777 // Initialize the lattice state of the arguments of the function clone, 778 // marking the argument on which we specialized the function constant 779 // with the given value. 780 Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); 781 Solver.markBlockExecutable(&Clone->front()); 782 Solver.addArgumentTrackedFunction(Clone); 783 Solver.addTrackedFunction(Clone); 784 785 // Mark all the specialized functions 786 Specializations.insert(Clone); 787 ++NumSpecsCreated; 788 789 return Clone; 790 } 791 792 /// Compute a bonus for replacing argument \p A with constant \p C. 793 Cost FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C, 794 InstCostVisitor &Visitor) { 795 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " 796 << C->getNameOrAsOperand() << "\n"); 797 798 Cost TotalCost = 0; 799 for (auto *U : A->users()) 800 if (auto *UI = dyn_cast<Instruction>(U)) 801 if (Solver.isBlockExecutable(UI->getParent())) 802 TotalCost += Visitor.getUserBonus(UI, A, C); 803 804 LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated user bonus " 805 << TotalCost << " for argument " << *A << "\n"); 806 807 // The below heuristic is only concerned with exposing inlining 808 // opportunities via indirect call promotion. If the argument is not a 809 // (potentially casted) function pointer, give up. 810 // 811 // TODO: Perhaps we should consider checking such inlining opportunities 812 // while traversing the users of the specialization arguments ? 813 Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); 814 if (!CalledFunction) 815 return TotalCost; 816 817 // Get TTI for the called function (used for the inline cost). 818 auto &CalleeTTI = (GetTTI)(*CalledFunction); 819 820 // Look at all the call sites whose called value is the argument. 821 // Specializing the function on the argument would allow these indirect 822 // calls to be promoted to direct calls. If the indirect call promotion 823 // would likely enable the called function to be inlined, specializing is a 824 // good idea. 825 int Bonus = 0; 826 for (User *U : A->users()) { 827 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 828 continue; 829 auto *CS = cast<CallBase>(U); 830 if (CS->getCalledOperand() != A) 831 continue; 832 if (CS->getFunctionType() != CalledFunction->getFunctionType()) 833 continue; 834 835 // Get the cost of inlining the called function at this call site. Note 836 // that this is only an estimate. The called function may eventually 837 // change in a way that leads to it not being inlined here, even though 838 // inlining looks profitable now. For example, one of its called 839 // functions may be inlined into it, making the called function too large 840 // to be inlined into this call site. 841 // 842 // We apply a boost for performing indirect call promotion by increasing 843 // the default threshold by the threshold for indirect calls. 844 auto Params = getInlineParams(); 845 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 846 InlineCost IC = 847 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 848 849 // We clamp the bonus for this call to be between zero and the default 850 // threshold. 851 if (IC.isAlways()) 852 Bonus += Params.DefaultThreshold; 853 else if (IC.isVariable() && IC.getCostDelta() > 0) 854 Bonus += IC.getCostDelta(); 855 856 LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << Bonus 857 << " for user " << *U << "\n"); 858 } 859 860 return TotalCost + Bonus; 861 } 862 863 /// Determine if it is possible to specialise the function for constant values 864 /// of the formal parameter \p A. 865 bool FunctionSpecializer::isArgumentInteresting(Argument *A) { 866 // No point in specialization if the argument is unused. 867 if (A->user_empty()) 868 return false; 869 870 Type *Ty = A->getType(); 871 if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || 872 (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) 873 return false; 874 875 // SCCP solver does not record an argument that will be constructed on 876 // stack. 877 if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) 878 return false; 879 880 // For non-argument-tracked functions every argument is overdefined. 881 if (!Solver.isArgumentTrackedFunction(A->getParent())) 882 return true; 883 884 // Check the lattice value and decide if we should attemt to specialize, 885 // based on this argument. No point in specialization, if the lattice value 886 // is already a constant. 887 bool IsOverdefined = Ty->isStructTy() 888 ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) 889 : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); 890 891 LLVM_DEBUG( 892 if (IsOverdefined) 893 dbgs() << "FnSpecialization: Found interesting parameter " 894 << A->getNameOrAsOperand() << "\n"; 895 else 896 dbgs() << "FnSpecialization: Nothing to do, parameter " 897 << A->getNameOrAsOperand() << " is already constant\n"; 898 ); 899 return IsOverdefined; 900 } 901 902 /// Check if the value \p V (an actual argument) is a constant or can only 903 /// have a constant value. Return that constant. 904 Constant *FunctionSpecializer::getCandidateConstant(Value *V) { 905 if (isa<PoisonValue>(V)) 906 return nullptr; 907 908 // Select for possible specialisation values that are constants or 909 // are deduced to be constants or constant ranges with a single element. 910 Constant *C = dyn_cast<Constant>(V); 911 if (!C) 912 C = Solver.getConstantOrNull(V); 913 914 // Don't specialize on (anything derived from) the address of a non-constant 915 // global variable, unless explicitly enabled. 916 if (C && C->getType()->isPointerTy() && !C->isNullValue()) 917 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 918 GV && !(GV->isConstant() || SpecializeOnAddress)) 919 return nullptr; 920 921 return C; 922 } 923 924 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, 925 const Spec *End) { 926 // Collect the call sites that need updating. 927 SmallVector<CallBase *> ToUpdate; 928 for (User *U : F->users()) 929 if (auto *CS = dyn_cast<CallBase>(U); 930 CS && CS->getCalledFunction() == F && 931 Solver.isBlockExecutable(CS->getParent())) 932 ToUpdate.push_back(CS); 933 934 unsigned NCallsLeft = ToUpdate.size(); 935 for (CallBase *CS : ToUpdate) { 936 bool ShouldDecrementCount = CS->getFunction() == F; 937 938 // Find the best matching specialisation. 939 const Spec *BestSpec = nullptr; 940 for (const Spec &S : make_range(Begin, End)) { 941 if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) 942 continue; 943 944 if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { 945 unsigned ArgNo = Arg.Formal->getArgNo(); 946 return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; 947 })) 948 continue; 949 950 BestSpec = &S; 951 } 952 953 if (BestSpec) { 954 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS 955 << " to call " << BestSpec->Clone->getName() << "\n"); 956 CS->setCalledFunction(BestSpec->Clone); 957 ShouldDecrementCount = true; 958 } 959 960 if (ShouldDecrementCount) 961 --NCallsLeft; 962 } 963 964 // If the function has been completely specialized, the original function 965 // is no longer needed. Mark it unreachable. 966 if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { 967 Solver.markFunctionUnreachable(F); 968 FullySpecialized.insert(F); 969 } 970 } 971