xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This specialises functions with constant parameters. Constant parameters
10 // like function pointers and constant globals are propagated to the callee by
11 // specializing the function. The main benefit of this pass at the moment is
12 // that indirect calls are transformed into direct calls, which provides inline
13 // opportunities that the inliner would not have been able to achieve. That's
14 // why function specialisation is run before the inliner in the optimisation
15 // pipeline; that is by design. Otherwise, we would only benefit from constant
16 // passing, which is a valid use-case too, but hasn't been explored much in
17 // terms of performance uplifts, cost-model and compile-time impact.
18 //
19 // Current limitations:
20 // - It does not yet handle integer ranges. We do support "literal constants",
21 //   but that's off by default under an option.
22 // - Only 1 argument per function is specialised,
23 // - The cost-model could be further looked into (it mainly focuses on inlining
24 //   benefits),
25 // - We are not yet caching analysis results, but profiling and checking where
26 //   extra compile time is spent didn't suggest this to be a problem.
27 //
28 // Ideas:
29 // - With a function specialization attribute for arguments, we could have
30 //   a direct way to steer function specialization, avoiding the cost-model,
31 //   and thus control compile-times / code-size.
32 //
33 // Todos:
34 // - Specializing recursive functions relies on running the transformation a
35 //   number of times, which is controlled by option
36 //   `func-specialization-max-iters`. Thus, increasing this value and the
37 //   number of iterations, will linearly increase the number of times recursive
38 //   functions get specialized, see also the discussion in
39 //   https://reviews.llvm.org/D106426 for details. Perhaps there is a
40 //   compile-time friendlier way to control/limit the number of specialisations
41 //   for recursive functions.
42 // - Don't transform the function if function specialization does not trigger;
43 //   the SCCPSolver may make IR changes.
44 //
45 // References:
46 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
47 //   it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
48 //
49 //===----------------------------------------------------------------------===//
50 
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/Analysis/AssumptionCache.h"
53 #include "llvm/Analysis/CodeMetrics.h"
54 #include "llvm/Analysis/DomTreeUpdater.h"
55 #include "llvm/Analysis/InlineCost.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/TargetLibraryInfo.h"
58 #include "llvm/Analysis/TargetTransformInfo.h"
59 #include "llvm/Transforms/Scalar/SCCP.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include <cmath>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "function-specialization"
67 
68 STATISTIC(NumFuncSpecialized, "Number of functions specialized");
69 
70 static cl::opt<bool> ForceFunctionSpecialization(
71     "force-function-specialization", cl::init(false), cl::Hidden,
72     cl::desc("Force function specialization for every call site with a "
73              "constant argument"));
74 
75 static cl::opt<unsigned> FuncSpecializationMaxIters(
76     "func-specialization-max-iters", cl::Hidden,
77     cl::desc("The maximum number of iterations function specialization is run"),
78     cl::init(1));
79 
80 static cl::opt<unsigned> MaxClonesThreshold(
81     "func-specialization-max-clones", cl::Hidden,
82     cl::desc("The maximum number of clones allowed for a single function "
83              "specialization"),
84     cl::init(3));
85 
86 static cl::opt<unsigned> SmallFunctionThreshold(
87     "func-specialization-size-threshold", cl::Hidden,
88     cl::desc("Don't specialize functions that have less than this theshold "
89              "number of instructions"),
90     cl::init(100));
91 
92 static cl::opt<unsigned>
93     AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
94                           cl::desc("Average loop iteration count cost"),
95                           cl::init(10));
96 
97 static cl::opt<bool> SpecializeOnAddresses(
98     "func-specialization-on-address", cl::init(false), cl::Hidden,
99     cl::desc("Enable function specialization on the address of global values"));
100 
101 // TODO: This needs checking to see the impact on compile-times, which is why
102 // this is off by default for now.
103 static cl::opt<bool> EnableSpecializationForLiteralConstant(
104     "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
105     cl::desc("Enable specialization of functions that take a literal constant "
106              "as an argument."));
107 
108 namespace {
109 // Bookkeeping struct to pass data from the analysis and profitability phase
110 // to the actual transform helper functions.
111 struct ArgInfo {
112   Function *Fn;         // The function to perform specialisation on.
113   Argument *Arg;        // The Formal argument being analysed.
114   Constant *Const;      // A corresponding actual constant argument.
115   InstructionCost Gain; // Profitability: Gain = Bonus - Cost.
116 
117   // Flag if this will be a partial specialization, in which case we will need
118   // to keep the original function around in addition to the added
119   // specializations.
120   bool Partial = false;
121 
122   ArgInfo(Function *F, Argument *A, Constant *C, InstructionCost G)
123       : Fn(F), Arg(A), Const(C), Gain(G){};
124 };
125 } // Anonymous namespace
126 
127 using FuncList = SmallVectorImpl<Function *>;
128 using ConstList = SmallVectorImpl<Constant *>;
129 
130 // Helper to check if \p LV is either a constant or a constant
131 // range with a single element. This should cover exactly the same cases as the
132 // old ValueLatticeElement::isConstant() and is intended to be used in the
133 // transition to ValueLatticeElement.
134 static bool isConstant(const ValueLatticeElement &LV) {
135   return LV.isConstant() ||
136          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
137 }
138 
139 // Helper to check if \p LV is either overdefined or a constant int.
140 static bool isOverdefined(const ValueLatticeElement &LV) {
141   return !LV.isUnknownOrUndef() && !isConstant(LV);
142 }
143 
144 static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
145   Value *StoreValue = nullptr;
146   for (auto *User : Alloca->users()) {
147     // We can't use llvm::isAllocaPromotable() as that would fail because of
148     // the usage in the CallInst, which is what we check here.
149     if (User == Call)
150       continue;
151     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
152       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
153         return nullptr;
154       continue;
155     }
156 
157     if (auto *Store = dyn_cast<StoreInst>(User)) {
158       // This is a duplicate store, bail out.
159       if (StoreValue || Store->isVolatile())
160         return nullptr;
161       StoreValue = Store->getValueOperand();
162       continue;
163     }
164     // Bail if there is any other unknown usage.
165     return nullptr;
166   }
167   return dyn_cast_or_null<Constant>(StoreValue);
168 }
169 
170 // A constant stack value is an AllocaInst that has a single constant
171 // value stored to it. Return this constant if such an alloca stack value
172 // is a function argument.
173 static Constant *getConstantStackValue(CallInst *Call, Value *Val,
174                                        SCCPSolver &Solver) {
175   if (!Val)
176     return nullptr;
177   Val = Val->stripPointerCasts();
178   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
179     return ConstVal;
180   auto *Alloca = dyn_cast<AllocaInst>(Val);
181   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
182     return nullptr;
183   return getPromotableAlloca(Alloca, Call);
184 }
185 
186 // To support specializing recursive functions, it is important to propagate
187 // constant arguments because after a first iteration of specialisation, a
188 // reduced example may look like this:
189 //
190 //     define internal void @RecursiveFn(i32* arg1) {
191 //       %temp = alloca i32, align 4
192 //       store i32 2 i32* %temp, align 4
193 //       call void @RecursiveFn.1(i32* nonnull %temp)
194 //       ret void
195 //     }
196 //
197 // Before a next iteration, we need to propagate the constant like so
198 // which allows further specialization in next iterations.
199 //
200 //     @funcspec.arg = internal constant i32 2
201 //
202 //     define internal void @someFunc(i32* arg1) {
203 //       call void @otherFunc(i32* nonnull @funcspec.arg)
204 //       ret void
205 //     }
206 //
207 static void constantArgPropagation(FuncList &WorkList,
208                                    Module &M, SCCPSolver &Solver) {
209   // Iterate over the argument tracked functions see if there
210   // are any new constant values for the call instruction via
211   // stack variables.
212   for (auto *F : WorkList) {
213     // TODO: Generalize for any read only arguments.
214     if (F->arg_size() != 1)
215       continue;
216 
217     auto &Arg = *F->arg_begin();
218     if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy())
219       continue;
220 
221     for (auto *User : F->users()) {
222       auto *Call = dyn_cast<CallInst>(User);
223       if (!Call)
224         break;
225       auto *ArgOp = Call->getArgOperand(0);
226       auto *ArgOpType = ArgOp->getType();
227       auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
228       if (!ConstVal)
229         break;
230 
231       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
232                                      GlobalValue::InternalLinkage, ConstVal,
233                                      "funcspec.arg");
234 
235       if (ArgOpType != ConstVal->getType())
236         GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType());
237 
238       Call->setArgOperand(0, GV);
239 
240       // Add the changed CallInst to Solver Worklist
241       Solver.visitCall(*Call);
242     }
243   }
244 }
245 
246 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
247 // interfere with the constantArgPropagation optimization.
248 static void removeSSACopy(Function &F) {
249   for (BasicBlock &BB : F) {
250     for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
251       auto *II = dyn_cast<IntrinsicInst>(&Inst);
252       if (!II)
253         continue;
254       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
255         continue;
256       Inst.replaceAllUsesWith(II->getOperand(0));
257       Inst.eraseFromParent();
258     }
259   }
260 }
261 
262 static void removeSSACopy(Module &M) {
263   for (Function &F : M)
264     removeSSACopy(F);
265 }
266 
267 namespace {
268 class FunctionSpecializer {
269 
270   /// The IPSCCP Solver.
271   SCCPSolver &Solver;
272 
273   /// Analyses used to help determine if a function should be specialized.
274   std::function<AssumptionCache &(Function &)> GetAC;
275   std::function<TargetTransformInfo &(Function &)> GetTTI;
276   std::function<TargetLibraryInfo &(Function &)> GetTLI;
277 
278   SmallPtrSet<Function *, 2> SpecializedFuncs;
279 
280 public:
281   FunctionSpecializer(SCCPSolver &Solver,
282                       std::function<AssumptionCache &(Function &)> GetAC,
283                       std::function<TargetTransformInfo &(Function &)> GetTTI,
284                       std::function<TargetLibraryInfo &(Function &)> GetTLI)
285       : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
286 
287   /// Attempt to specialize functions in the module to enable constant
288   /// propagation across function boundaries.
289   ///
290   /// \returns true if at least one function is specialized.
291   bool
292   specializeFunctions(FuncList &FuncDecls,
293                       FuncList &CurrentSpecializations) {
294     bool Changed = false;
295     for (auto *F : FuncDecls) {
296       if (!isCandidateFunction(F, CurrentSpecializations))
297         continue;
298 
299       auto Cost = getSpecializationCost(F);
300       if (!Cost.isValid()) {
301         LLVM_DEBUG(
302             dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
303         continue;
304       }
305 
306       auto ConstArgs = calculateGains(F, Cost);
307       if (ConstArgs.empty()) {
308         LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
309         continue;
310       }
311 
312       for (auto &CA : ConstArgs) {
313         specializeFunction(CA, CurrentSpecializations);
314         Changed = true;
315       }
316     }
317 
318     updateSpecializedFuncs(FuncDecls, CurrentSpecializations);
319     NumFuncSpecialized += NbFunctionsSpecialized;
320     return Changed;
321   }
322 
323   bool tryToReplaceWithConstant(Value *V) {
324     if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
325         V->user_empty())
326       return false;
327 
328     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
329     if (isOverdefined(IV))
330       return false;
331     auto *Const =
332         isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
333     V->replaceAllUsesWith(Const);
334 
335     for (auto *U : Const->users())
336       if (auto *I = dyn_cast<Instruction>(U))
337         if (Solver.isBlockExecutable(I->getParent()))
338           Solver.visit(I);
339 
340     // Remove the instruction from Block and Solver.
341     if (auto *I = dyn_cast<Instruction>(V)) {
342       if (I->isSafeToRemove()) {
343         I->eraseFromParent();
344         Solver.removeLatticeValueFor(I);
345       }
346     }
347     return true;
348   }
349 
350 private:
351   // The number of functions specialised, used for collecting statistics and
352   // also in the cost model.
353   unsigned NbFunctionsSpecialized = 0;
354 
355   /// Clone the function \p F and remove the ssa_copy intrinsics added by
356   /// the SCCPSolver in the cloned version.
357   Function *cloneCandidateFunction(Function *F) {
358     ValueToValueMapTy EmptyMap;
359     Function *Clone = CloneFunction(F, EmptyMap);
360     removeSSACopy(*Clone);
361     return Clone;
362   }
363 
364   /// This function decides whether it's worthwhile to specialize function \p F
365   /// based on the known constant values its arguments can take on, i.e. it
366   /// calculates a gain and returns a list of actual arguments that are deemed
367   /// profitable to specialize. Specialization is performed on the first
368   /// interesting argument. Specializations based on additional arguments will
369   /// be evaluated on following iterations of the main IPSCCP solve loop.
370   SmallVector<ArgInfo> calculateGains(Function *F, InstructionCost Cost) {
371     SmallVector<ArgInfo> Worklist;
372     // Determine if we should specialize the function based on the values the
373     // argument can take on. If specialization is not profitable, we continue
374     // on to the next argument.
375     for (Argument &FormalArg : F->args()) {
376       LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: "
377                         << FormalArg.getName() << "\n");
378       // Determine if this argument is interesting. If we know the argument can
379       // take on any constant values, they are collected in Constants. If the
380       // argument can only ever equal a constant value in Constants, the
381       // function will be completely specialized, and the IsPartial flag will
382       // be set to false by isArgumentInteresting (that function only adds
383       // values to the Constants list that are deemed profitable).
384       bool IsPartial = true;
385       SmallVector<Constant *> ActualConstArg;
386       if (!isArgumentInteresting(&FormalArg, ActualConstArg, IsPartial)) {
387         LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
388         continue;
389       }
390 
391       for (auto *ActualArg : ActualConstArg) {
392         InstructionCost Gain =
393             ForceFunctionSpecialization
394                 ? 1
395                 : getSpecializationBonus(&FormalArg, ActualArg) - Cost;
396 
397         if (Gain <= 0)
398           continue;
399         Worklist.push_back({F, &FormalArg, ActualArg, Gain});
400       }
401 
402       if (Worklist.empty())
403         continue;
404 
405       // Sort the candidates in descending order.
406       llvm::stable_sort(Worklist, [](const ArgInfo &L, const ArgInfo &R) {
407         return L.Gain > R.Gain;
408       });
409 
410       // Truncate the worklist to 'MaxClonesThreshold' candidates if
411       // necessary.
412       if (Worklist.size() > MaxClonesThreshold) {
413         LLVM_DEBUG(dbgs() << "FnSpecialization: number of candidates exceed "
414                     << "the maximum number of clones threshold.\n"
415                     << "Truncating worklist to " << MaxClonesThreshold
416                     << " candidates.\n");
417         Worklist.erase(Worklist.begin() + MaxClonesThreshold,
418                        Worklist.end());
419       }
420 
421       if (IsPartial || Worklist.size() < ActualConstArg.size())
422         for (auto &ActualArg : Worklist)
423           ActualArg.Partial = true;
424 
425       LLVM_DEBUG(dbgs() << "Sorted list of candidates by gain:\n";
426                  for (auto &C
427                       : Worklist) {
428                    dbgs() << "- Function = " << C.Fn->getName() << ", ";
429                    dbgs() << "FormalArg = " << C.Arg->getName() << ", ";
430                    dbgs() << "ActualArg = " << C.Const->getName() << ", ";
431                    dbgs() << "Gain = " << C.Gain << "\n";
432                  });
433 
434       // FIXME: Only one argument per function.
435       break;
436     }
437     return Worklist;
438   }
439 
440   bool isCandidateFunction(Function *F, FuncList &Specializations) {
441     // Do not specialize the cloned function again.
442     if (SpecializedFuncs.contains(F))
443       return false;
444 
445     // If we're optimizing the function for size, we shouldn't specialize it.
446     if (F->hasOptSize() ||
447         shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
448       return false;
449 
450     // Exit if the function is not executable. There's no point in specializing
451     // a dead function.
452     if (!Solver.isBlockExecutable(&F->getEntryBlock()))
453       return false;
454 
455     // It wastes time to specialize a function which would get inlined finally.
456     if (F->hasFnAttribute(Attribute::AlwaysInline))
457       return false;
458 
459     LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
460                       << "\n");
461     return true;
462   }
463 
464   void specializeFunction(ArgInfo &AI, FuncList &Specializations) {
465     Function *Clone = cloneCandidateFunction(AI.Fn);
466     Argument *ClonedArg = Clone->getArg(AI.Arg->getArgNo());
467 
468     // Rewrite calls to the function so that they call the clone instead.
469     rewriteCallSites(AI.Fn, Clone, *ClonedArg, AI.Const);
470 
471     // Initialize the lattice state of the arguments of the function clone,
472     // marking the argument on which we specialized the function constant
473     // with the given value.
474     Solver.markArgInFuncSpecialization(AI.Fn, ClonedArg, AI.Const);
475 
476     // Mark all the specialized functions
477     Specializations.push_back(Clone);
478     NbFunctionsSpecialized++;
479 
480     // If the function has been completely specialized, the original function
481     // is no longer needed. Mark it unreachable.
482     if (!AI.Partial)
483       Solver.markFunctionUnreachable(AI.Fn);
484   }
485 
486   /// Compute and return the cost of specializing function \p F.
487   InstructionCost getSpecializationCost(Function *F) {
488     // Compute the code metrics for the function.
489     SmallPtrSet<const Value *, 32> EphValues;
490     CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
491     CodeMetrics Metrics;
492     for (BasicBlock &BB : *F)
493       Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
494 
495     // If the code metrics reveal that we shouldn't duplicate the function, we
496     // shouldn't specialize it. Set the specialization cost to Invalid.
497     // Or if the lines of codes implies that this function is easy to get
498     // inlined so that we shouldn't specialize it.
499     if (Metrics.notDuplicatable ||
500         (!ForceFunctionSpecialization &&
501          Metrics.NumInsts < SmallFunctionThreshold)) {
502       InstructionCost C{};
503       C.setInvalid();
504       return C;
505     }
506 
507     // Otherwise, set the specialization cost to be the cost of all the
508     // instructions in the function and penalty for specializing more functions.
509     unsigned Penalty = NbFunctionsSpecialized + 1;
510     return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
511   }
512 
513   InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
514                                LoopInfo &LI) {
515     auto *I = dyn_cast_or_null<Instruction>(U);
516     // If not an instruction we do not know how to evaluate.
517     // Keep minimum possible cost for now so that it doesnt affect
518     // specialization.
519     if (!I)
520       return std::numeric_limits<unsigned>::min();
521 
522     auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
523 
524     // Traverse recursively if there are more uses.
525     // TODO: Any other instructions to be added here?
526     if (I->mayReadFromMemory() || I->isCast())
527       for (auto *User : I->users())
528         Cost += getUserBonus(User, TTI, LI);
529 
530     // Increase the cost if it is inside the loop.
531     auto LoopDepth = LI.getLoopDepth(I->getParent());
532     Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
533     return Cost;
534   }
535 
536   /// Compute a bonus for replacing argument \p A with constant \p C.
537   InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
538     Function *F = A->getParent();
539     DominatorTree DT(*F);
540     LoopInfo LI(DT);
541     auto &TTI = (GetTTI)(*F);
542     LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
543                       << "\n");
544 
545     InstructionCost TotalCost = 0;
546     for (auto *U : A->users()) {
547       TotalCost += getUserBonus(U, TTI, LI);
548       LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
549                  TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
550     }
551 
552     // The below heuristic is only concerned with exposing inlining
553     // opportunities via indirect call promotion. If the argument is not a
554     // function pointer, give up.
555     if (!isa<PointerType>(A->getType()) ||
556         !isa<FunctionType>(A->getType()->getPointerElementType()))
557       return TotalCost;
558 
559     // Since the argument is a function pointer, its incoming constant values
560     // should be functions or constant expressions. The code below attempts to
561     // look through cast expressions to find the function that will be called.
562     Value *CalledValue = C;
563     while (isa<ConstantExpr>(CalledValue) &&
564            cast<ConstantExpr>(CalledValue)->isCast())
565       CalledValue = cast<User>(CalledValue)->getOperand(0);
566     Function *CalledFunction = dyn_cast<Function>(CalledValue);
567     if (!CalledFunction)
568       return TotalCost;
569 
570     // Get TTI for the called function (used for the inline cost).
571     auto &CalleeTTI = (GetTTI)(*CalledFunction);
572 
573     // Look at all the call sites whose called value is the argument.
574     // Specializing the function on the argument would allow these indirect
575     // calls to be promoted to direct calls. If the indirect call promotion
576     // would likely enable the called function to be inlined, specializing is a
577     // good idea.
578     int Bonus = 0;
579     for (User *U : A->users()) {
580       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
581         continue;
582       auto *CS = cast<CallBase>(U);
583       if (CS->getCalledOperand() != A)
584         continue;
585 
586       // Get the cost of inlining the called function at this call site. Note
587       // that this is only an estimate. The called function may eventually
588       // change in a way that leads to it not being inlined here, even though
589       // inlining looks profitable now. For example, one of its called
590       // functions may be inlined into it, making the called function too large
591       // to be inlined into this call site.
592       //
593       // We apply a boost for performing indirect call promotion by increasing
594       // the default threshold by the threshold for indirect calls.
595       auto Params = getInlineParams();
596       Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
597       InlineCost IC =
598           getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
599 
600       // We clamp the bonus for this call to be between zero and the default
601       // threshold.
602       if (IC.isAlways())
603         Bonus += Params.DefaultThreshold;
604       else if (IC.isVariable() && IC.getCostDelta() > 0)
605         Bonus += IC.getCostDelta();
606     }
607 
608     return TotalCost + Bonus;
609   }
610 
611   /// Determine if we should specialize a function based on the incoming values
612   /// of the given argument.
613   ///
614   /// This function implements the goal-directed heuristic. It determines if
615   /// specializing the function based on the incoming values of argument \p A
616   /// would result in any significant optimization opportunities. If
617   /// optimization opportunities exist, the constant values of \p A on which to
618   /// specialize the function are collected in \p Constants. If the values in
619   /// \p Constants represent the complete set of values that \p A can take on,
620   /// the function will be completely specialized, and the \p IsPartial flag is
621   /// set to false.
622   ///
623   /// \returns true if the function should be specialized on the given
624   /// argument.
625   bool isArgumentInteresting(Argument *A, ConstList &Constants,
626                              bool &IsPartial) {
627     // For now, don't attempt to specialize functions based on the values of
628     // composite types.
629     if (!A->getType()->isSingleValueType() || A->user_empty())
630       return false;
631 
632     // If the argument isn't overdefined, there's nothing to do. It should
633     // already be constant.
634     if (!Solver.getLatticeValueFor(A).isOverdefined()) {
635       LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
636                         << "constant?\n");
637       return false;
638     }
639 
640     // Collect the constant values that the argument can take on. If the
641     // argument can't take on any constant values, we aren't going to
642     // specialize the function. While it's possible to specialize the function
643     // based on non-constant arguments, there's likely not much benefit to
644     // constant propagation in doing so.
645     //
646     // TODO 1: currently it won't specialize if there are over the threshold of
647     // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
648     // might be beneficial to take the occurrences into account in the cost
649     // model, so we would need to find the unique constants.
650     //
651     // TODO 2: this currently does not support constants, i.e. integer ranges.
652     //
653     IsPartial = !getPossibleConstants(A, Constants);
654     LLVM_DEBUG(dbgs() << "FnSpecialization: interesting arg: " << *A << "\n");
655     return true;
656   }
657 
658   /// Collect in \p Constants all the constant values that argument \p A can
659   /// take on.
660   ///
661   /// \returns true if all of the values the argument can take on are constant
662   /// (e.g., the argument's parent function cannot be called with an
663   /// overdefined value).
664   bool getPossibleConstants(Argument *A, ConstList &Constants) {
665     Function *F = A->getParent();
666     bool AllConstant = true;
667 
668     // Iterate over all the call sites of the argument's parent function.
669     for (User *U : F->users()) {
670       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
671         continue;
672       auto &CS = *cast<CallBase>(U);
673       // If the call site has attribute minsize set, that callsite won't be
674       // specialized.
675       if (CS.hasFnAttr(Attribute::MinSize)) {
676         AllConstant = false;
677         continue;
678       }
679 
680       // If the parent of the call site will never be executed, we don't need
681       // to worry about the passed value.
682       if (!Solver.isBlockExecutable(CS.getParent()))
683         continue;
684 
685       auto *V = CS.getArgOperand(A->getArgNo());
686       if (isa<PoisonValue>(V))
687         return false;
688 
689       // For now, constant expressions are fine but only if they are function
690       // calls.
691       if (auto *CE = dyn_cast<ConstantExpr>(V))
692         if (!isa<Function>(CE->getOperand(0)))
693           return false;
694 
695       // TrackValueOfGlobalVariable only tracks scalar global variables.
696       if (auto *GV = dyn_cast<GlobalVariable>(V)) {
697         // Check if we want to specialize on the address of non-constant
698         // global values.
699         if (!GV->isConstant())
700           if (!SpecializeOnAddresses)
701             return false;
702 
703         if (!GV->getValueType()->isSingleValueType())
704           return false;
705       }
706 
707       if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
708                                EnableSpecializationForLiteralConstant))
709         Constants.push_back(cast<Constant>(V));
710       else
711         AllConstant = false;
712     }
713 
714     // If the argument can only take on constant values, AllConstant will be
715     // true.
716     return AllConstant;
717   }
718 
719   /// Rewrite calls to function \p F to call function \p Clone instead.
720   ///
721   /// This function modifies calls to function \p F whose argument at index \p
722   /// ArgNo is equal to constant \p C. The calls are rewritten to call function
723   /// \p Clone instead.
724   ///
725   /// Callsites that have been marked with the MinSize function attribute won't
726   /// be specialized and rewritten.
727   void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
728                         Constant *C) {
729     unsigned ArgNo = Arg.getArgNo();
730     SmallVector<CallBase *, 4> CallSitesToRewrite;
731     for (auto *U : F->users()) {
732       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
733         continue;
734       auto &CS = *cast<CallBase>(U);
735       if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
736         continue;
737       CallSitesToRewrite.push_back(&CS);
738     }
739     for (auto *CS : CallSitesToRewrite) {
740       if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
741           CS->getArgOperand(ArgNo) == C) {
742         CS->setCalledFunction(Clone);
743         Solver.markOverdefined(CS);
744       }
745     }
746   }
747 
748   void updateSpecializedFuncs(FuncList &FuncDecls,
749                               FuncList &CurrentSpecializations) {
750     for (auto *SpecializedFunc : CurrentSpecializations) {
751       SpecializedFuncs.insert(SpecializedFunc);
752 
753       // Initialize the state of the newly created functions, marking them
754       // argument-tracked and executable.
755       if (SpecializedFunc->hasExactDefinition() &&
756           !SpecializedFunc->hasFnAttribute(Attribute::Naked))
757         Solver.addTrackedFunction(SpecializedFunc);
758 
759       Solver.addArgumentTrackedFunction(SpecializedFunc);
760       FuncDecls.push_back(SpecializedFunc);
761       Solver.markBlockExecutable(&SpecializedFunc->front());
762 
763       // Replace the function arguments for the specialized functions.
764       for (Argument &Arg : SpecializedFunc->args())
765         if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
766           LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
767                             << Arg.getName() << "\n");
768     }
769   }
770 };
771 } // namespace
772 
773 bool llvm::runFunctionSpecialization(
774     Module &M, const DataLayout &DL,
775     std::function<TargetLibraryInfo &(Function &)> GetTLI,
776     std::function<TargetTransformInfo &(Function &)> GetTTI,
777     std::function<AssumptionCache &(Function &)> GetAC,
778     function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
779   SCCPSolver Solver(DL, GetTLI, M.getContext());
780   FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
781   bool Changed = false;
782 
783   // Loop over all functions, marking arguments to those with their addresses
784   // taken or that are external as overdefined.
785   for (Function &F : M) {
786     if (F.isDeclaration())
787       continue;
788     if (F.hasFnAttribute(Attribute::NoDuplicate))
789       continue;
790 
791     LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
792                       << "\n");
793     Solver.addAnalysis(F, GetAnalysis(F));
794 
795     // Determine if we can track the function's arguments. If so, add the
796     // function to the solver's set of argument-tracked functions.
797     if (canTrackArgumentsInterprocedurally(&F)) {
798       LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
799       Solver.addArgumentTrackedFunction(&F);
800       continue;
801     } else {
802       LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
803                         << "FnSpecialization: Doesn't have local linkage, or "
804                         << "has its address taken\n");
805     }
806 
807     // Assume the function is called.
808     Solver.markBlockExecutable(&F.front());
809 
810     // Assume nothing about the incoming arguments.
811     for (Argument &AI : F.args())
812       Solver.markOverdefined(&AI);
813   }
814 
815   // Determine if we can track any of the module's global variables. If so, add
816   // the global variables we can track to the solver's set of tracked global
817   // variables.
818   for (GlobalVariable &G : M.globals()) {
819     G.removeDeadConstantUsers();
820     if (canTrackGlobalVariableInterprocedurally(&G))
821       Solver.trackValueOfGlobalVariable(&G);
822   }
823 
824   auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
825   SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
826                                         TrackedFuncs.end());
827 
828   // No tracked functions, so nothing to do: don't run the solver and remove
829   // the ssa_copy intrinsics that may have been introduced.
830   if (TrackedFuncs.empty()) {
831     removeSSACopy(M);
832     return false;
833   }
834 
835   // Solve for constants.
836   auto RunSCCPSolver = [&](auto &WorkList) {
837     bool ResolvedUndefs = true;
838 
839     while (ResolvedUndefs) {
840       // Not running the solver unnecessary is checked in regression test
841       // nothing-to-do.ll, so if this debug message is changed, this regression
842       // test needs updating too.
843       LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
844 
845       Solver.solve();
846       LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
847       ResolvedUndefs = false;
848       for (Function *F : WorkList)
849         if (Solver.resolvedUndefsIn(*F))
850           ResolvedUndefs = true;
851     }
852 
853     for (auto *F : WorkList) {
854       for (BasicBlock &BB : *F) {
855         if (!Solver.isBlockExecutable(&BB))
856           continue;
857         // FIXME: The solver may make changes to the function here, so set
858         // Changed, even if later function specialization does not trigger.
859         for (auto &I : make_early_inc_range(BB))
860           Changed |= FS.tryToReplaceWithConstant(&I);
861       }
862     }
863   };
864 
865 #ifndef NDEBUG
866   LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
867   for (auto *F : FuncDecls)
868     LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
869 #endif
870 
871   // Initially resolve the constants in all the argument tracked functions.
872   RunSCCPSolver(FuncDecls);
873 
874   SmallVector<Function *, 2> CurrentSpecializations;
875   unsigned I = 0;
876   while (FuncSpecializationMaxIters != I++ &&
877          FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
878 
879     // Run the solver for the specialized functions.
880     RunSCCPSolver(CurrentSpecializations);
881 
882     // Replace some unresolved constant arguments.
883     constantArgPropagation(FuncDecls, M, Solver);
884 
885     CurrentSpecializations.clear();
886     Changed = true;
887   }
888 
889   // Clean up the IR by removing ssa_copy intrinsics.
890   removeSSACopy(M);
891   return Changed;
892 }
893