1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This specialises functions with constant parameters. Constant parameters 10 // like function pointers and constant globals are propagated to the callee by 11 // specializing the function. The main benefit of this pass at the moment is 12 // that indirect calls are transformed into direct calls, which provides inline 13 // opportunities that the inliner would not have been able to achieve. That's 14 // why function specialisation is run before the inliner in the optimisation 15 // pipeline; that is by design. Otherwise, we would only benefit from constant 16 // passing, which is a valid use-case too, but hasn't been explored much in 17 // terms of performance uplifts, cost-model and compile-time impact. 18 // 19 // Current limitations: 20 // - It does not yet handle integer ranges. We do support "literal constants", 21 // but that's off by default under an option. 22 // - Only 1 argument per function is specialised, 23 // - The cost-model could be further looked into (it mainly focuses on inlining 24 // benefits), 25 // - We are not yet caching analysis results, but profiling and checking where 26 // extra compile time is spent didn't suggest this to be a problem. 27 // 28 // Ideas: 29 // - With a function specialization attribute for arguments, we could have 30 // a direct way to steer function specialization, avoiding the cost-model, 31 // and thus control compile-times / code-size. 32 // 33 // Todos: 34 // - Specializing recursive functions relies on running the transformation a 35 // number of times, which is controlled by option 36 // `func-specialization-max-iters`. Thus, increasing this value and the 37 // number of iterations, will linearly increase the number of times recursive 38 // functions get specialized, see also the discussion in 39 // https://reviews.llvm.org/D106426 for details. Perhaps there is a 40 // compile-time friendlier way to control/limit the number of specialisations 41 // for recursive functions. 42 // - Don't transform the function if function specialization does not trigger; 43 // the SCCPSolver may make IR changes. 44 // 45 // References: 46 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable 47 // it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/ADT/Statistic.h" 52 #include "llvm/Analysis/AssumptionCache.h" 53 #include "llvm/Analysis/CodeMetrics.h" 54 #include "llvm/Analysis/DomTreeUpdater.h" 55 #include "llvm/Analysis/InlineCost.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/TargetLibraryInfo.h" 58 #include "llvm/Analysis/TargetTransformInfo.h" 59 #include "llvm/Transforms/Scalar/SCCP.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/SizeOpts.h" 62 #include <cmath> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "function-specialization" 67 68 STATISTIC(NumFuncSpecialized, "Number of functions specialized"); 69 70 static cl::opt<bool> ForceFunctionSpecialization( 71 "force-function-specialization", cl::init(false), cl::Hidden, 72 cl::desc("Force function specialization for every call site with a " 73 "constant argument")); 74 75 static cl::opt<unsigned> FuncSpecializationMaxIters( 76 "func-specialization-max-iters", cl::Hidden, 77 cl::desc("The maximum number of iterations function specialization is run"), 78 cl::init(1)); 79 80 static cl::opt<unsigned> MaxClonesThreshold( 81 "func-specialization-max-clones", cl::Hidden, 82 cl::desc("The maximum number of clones allowed for a single function " 83 "specialization"), 84 cl::init(3)); 85 86 static cl::opt<unsigned> SmallFunctionThreshold( 87 "func-specialization-size-threshold", cl::Hidden, 88 cl::desc("Don't specialize functions that have less than this theshold " 89 "number of instructions"), 90 cl::init(100)); 91 92 static cl::opt<unsigned> 93 AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden, 94 cl::desc("Average loop iteration count cost"), 95 cl::init(10)); 96 97 static cl::opt<bool> SpecializeOnAddresses( 98 "func-specialization-on-address", cl::init(false), cl::Hidden, 99 cl::desc("Enable function specialization on the address of global values")); 100 101 // TODO: This needs checking to see the impact on compile-times, which is why 102 // this is off by default for now. 103 static cl::opt<bool> EnableSpecializationForLiteralConstant( 104 "function-specialization-for-literal-constant", cl::init(false), cl::Hidden, 105 cl::desc("Enable specialization of functions that take a literal constant " 106 "as an argument.")); 107 108 namespace { 109 // Bookkeeping struct to pass data from the analysis and profitability phase 110 // to the actual transform helper functions. 111 struct ArgInfo { 112 Function *Fn; // The function to perform specialisation on. 113 Argument *Arg; // The Formal argument being analysed. 114 Constant *Const; // A corresponding actual constant argument. 115 InstructionCost Gain; // Profitability: Gain = Bonus - Cost. 116 117 // Flag if this will be a partial specialization, in which case we will need 118 // to keep the original function around in addition to the added 119 // specializations. 120 bool Partial = false; 121 122 ArgInfo(Function *F, Argument *A, Constant *C, InstructionCost G) 123 : Fn(F), Arg(A), Const(C), Gain(G){}; 124 }; 125 } // Anonymous namespace 126 127 using FuncList = SmallVectorImpl<Function *>; 128 using ConstList = SmallVectorImpl<Constant *>; 129 130 // Helper to check if \p LV is either a constant or a constant 131 // range with a single element. This should cover exactly the same cases as the 132 // old ValueLatticeElement::isConstant() and is intended to be used in the 133 // transition to ValueLatticeElement. 134 static bool isConstant(const ValueLatticeElement &LV) { 135 return LV.isConstant() || 136 (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 137 } 138 139 // Helper to check if \p LV is either overdefined or a constant int. 140 static bool isOverdefined(const ValueLatticeElement &LV) { 141 return !LV.isUnknownOrUndef() && !isConstant(LV); 142 } 143 144 static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) { 145 Value *StoreValue = nullptr; 146 for (auto *User : Alloca->users()) { 147 // We can't use llvm::isAllocaPromotable() as that would fail because of 148 // the usage in the CallInst, which is what we check here. 149 if (User == Call) 150 continue; 151 if (auto *Bitcast = dyn_cast<BitCastInst>(User)) { 152 if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) 153 return nullptr; 154 continue; 155 } 156 157 if (auto *Store = dyn_cast<StoreInst>(User)) { 158 // This is a duplicate store, bail out. 159 if (StoreValue || Store->isVolatile()) 160 return nullptr; 161 StoreValue = Store->getValueOperand(); 162 continue; 163 } 164 // Bail if there is any other unknown usage. 165 return nullptr; 166 } 167 return dyn_cast_or_null<Constant>(StoreValue); 168 } 169 170 // A constant stack value is an AllocaInst that has a single constant 171 // value stored to it. Return this constant if such an alloca stack value 172 // is a function argument. 173 static Constant *getConstantStackValue(CallInst *Call, Value *Val, 174 SCCPSolver &Solver) { 175 if (!Val) 176 return nullptr; 177 Val = Val->stripPointerCasts(); 178 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 179 return ConstVal; 180 auto *Alloca = dyn_cast<AllocaInst>(Val); 181 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 182 return nullptr; 183 return getPromotableAlloca(Alloca, Call); 184 } 185 186 // To support specializing recursive functions, it is important to propagate 187 // constant arguments because after a first iteration of specialisation, a 188 // reduced example may look like this: 189 // 190 // define internal void @RecursiveFn(i32* arg1) { 191 // %temp = alloca i32, align 4 192 // store i32 2 i32* %temp, align 4 193 // call void @RecursiveFn.1(i32* nonnull %temp) 194 // ret void 195 // } 196 // 197 // Before a next iteration, we need to propagate the constant like so 198 // which allows further specialization in next iterations. 199 // 200 // @funcspec.arg = internal constant i32 2 201 // 202 // define internal void @someFunc(i32* arg1) { 203 // call void @otherFunc(i32* nonnull @funcspec.arg) 204 // ret void 205 // } 206 // 207 static void constantArgPropagation(FuncList &WorkList, 208 Module &M, SCCPSolver &Solver) { 209 // Iterate over the argument tracked functions see if there 210 // are any new constant values for the call instruction via 211 // stack variables. 212 for (auto *F : WorkList) { 213 // TODO: Generalize for any read only arguments. 214 if (F->arg_size() != 1) 215 continue; 216 217 auto &Arg = *F->arg_begin(); 218 if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy()) 219 continue; 220 221 for (auto *User : F->users()) { 222 auto *Call = dyn_cast<CallInst>(User); 223 if (!Call) 224 break; 225 auto *ArgOp = Call->getArgOperand(0); 226 auto *ArgOpType = ArgOp->getType(); 227 auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver); 228 if (!ConstVal) 229 break; 230 231 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 232 GlobalValue::InternalLinkage, ConstVal, 233 "funcspec.arg"); 234 235 if (ArgOpType != ConstVal->getType()) 236 GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType()); 237 238 Call->setArgOperand(0, GV); 239 240 // Add the changed CallInst to Solver Worklist 241 Solver.visitCall(*Call); 242 } 243 } 244 } 245 246 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 247 // interfere with the constantArgPropagation optimization. 248 static void removeSSACopy(Function &F) { 249 for (BasicBlock &BB : F) { 250 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 251 auto *II = dyn_cast<IntrinsicInst>(&Inst); 252 if (!II) 253 continue; 254 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 255 continue; 256 Inst.replaceAllUsesWith(II->getOperand(0)); 257 Inst.eraseFromParent(); 258 } 259 } 260 } 261 262 static void removeSSACopy(Module &M) { 263 for (Function &F : M) 264 removeSSACopy(F); 265 } 266 267 namespace { 268 class FunctionSpecializer { 269 270 /// The IPSCCP Solver. 271 SCCPSolver &Solver; 272 273 /// Analyses used to help determine if a function should be specialized. 274 std::function<AssumptionCache &(Function &)> GetAC; 275 std::function<TargetTransformInfo &(Function &)> GetTTI; 276 std::function<TargetLibraryInfo &(Function &)> GetTLI; 277 278 SmallPtrSet<Function *, 2> SpecializedFuncs; 279 280 public: 281 FunctionSpecializer(SCCPSolver &Solver, 282 std::function<AssumptionCache &(Function &)> GetAC, 283 std::function<TargetTransformInfo &(Function &)> GetTTI, 284 std::function<TargetLibraryInfo &(Function &)> GetTLI) 285 : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {} 286 287 /// Attempt to specialize functions in the module to enable constant 288 /// propagation across function boundaries. 289 /// 290 /// \returns true if at least one function is specialized. 291 bool 292 specializeFunctions(FuncList &FuncDecls, 293 FuncList &CurrentSpecializations) { 294 bool Changed = false; 295 for (auto *F : FuncDecls) { 296 if (!isCandidateFunction(F, CurrentSpecializations)) 297 continue; 298 299 auto Cost = getSpecializationCost(F); 300 if (!Cost.isValid()) { 301 LLVM_DEBUG( 302 dbgs() << "FnSpecialization: Invalid specialisation cost.\n"); 303 continue; 304 } 305 306 auto ConstArgs = calculateGains(F, Cost); 307 if (ConstArgs.empty()) { 308 LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n"); 309 continue; 310 } 311 312 for (auto &CA : ConstArgs) { 313 specializeFunction(CA, CurrentSpecializations); 314 Changed = true; 315 } 316 } 317 318 updateSpecializedFuncs(FuncDecls, CurrentSpecializations); 319 NumFuncSpecialized += NbFunctionsSpecialized; 320 return Changed; 321 } 322 323 bool tryToReplaceWithConstant(Value *V) { 324 if (!V->getType()->isSingleValueType() || isa<CallBase>(V) || 325 V->user_empty()) 326 return false; 327 328 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); 329 if (isOverdefined(IV)) 330 return false; 331 auto *Const = 332 isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType()); 333 V->replaceAllUsesWith(Const); 334 335 for (auto *U : Const->users()) 336 if (auto *I = dyn_cast<Instruction>(U)) 337 if (Solver.isBlockExecutable(I->getParent())) 338 Solver.visit(I); 339 340 // Remove the instruction from Block and Solver. 341 if (auto *I = dyn_cast<Instruction>(V)) { 342 if (I->isSafeToRemove()) { 343 I->eraseFromParent(); 344 Solver.removeLatticeValueFor(I); 345 } 346 } 347 return true; 348 } 349 350 private: 351 // The number of functions specialised, used for collecting statistics and 352 // also in the cost model. 353 unsigned NbFunctionsSpecialized = 0; 354 355 /// Clone the function \p F and remove the ssa_copy intrinsics added by 356 /// the SCCPSolver in the cloned version. 357 Function *cloneCandidateFunction(Function *F) { 358 ValueToValueMapTy EmptyMap; 359 Function *Clone = CloneFunction(F, EmptyMap); 360 removeSSACopy(*Clone); 361 return Clone; 362 } 363 364 /// This function decides whether it's worthwhile to specialize function \p F 365 /// based on the known constant values its arguments can take on, i.e. it 366 /// calculates a gain and returns a list of actual arguments that are deemed 367 /// profitable to specialize. Specialization is performed on the first 368 /// interesting argument. Specializations based on additional arguments will 369 /// be evaluated on following iterations of the main IPSCCP solve loop. 370 SmallVector<ArgInfo> calculateGains(Function *F, InstructionCost Cost) { 371 SmallVector<ArgInfo> Worklist; 372 // Determine if we should specialize the function based on the values the 373 // argument can take on. If specialization is not profitable, we continue 374 // on to the next argument. 375 for (Argument &FormalArg : F->args()) { 376 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " 377 << FormalArg.getName() << "\n"); 378 // Determine if this argument is interesting. If we know the argument can 379 // take on any constant values, they are collected in Constants. If the 380 // argument can only ever equal a constant value in Constants, the 381 // function will be completely specialized, and the IsPartial flag will 382 // be set to false by isArgumentInteresting (that function only adds 383 // values to the Constants list that are deemed profitable). 384 bool IsPartial = true; 385 SmallVector<Constant *> ActualConstArg; 386 if (!isArgumentInteresting(&FormalArg, ActualConstArg, IsPartial)) { 387 LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n"); 388 continue; 389 } 390 391 for (auto *ActualArg : ActualConstArg) { 392 InstructionCost Gain = 393 ForceFunctionSpecialization 394 ? 1 395 : getSpecializationBonus(&FormalArg, ActualArg) - Cost; 396 397 if (Gain <= 0) 398 continue; 399 Worklist.push_back({F, &FormalArg, ActualArg, Gain}); 400 } 401 402 if (Worklist.empty()) 403 continue; 404 405 // Sort the candidates in descending order. 406 llvm::stable_sort(Worklist, [](const ArgInfo &L, const ArgInfo &R) { 407 return L.Gain > R.Gain; 408 }); 409 410 // Truncate the worklist to 'MaxClonesThreshold' candidates if 411 // necessary. 412 if (Worklist.size() > MaxClonesThreshold) { 413 LLVM_DEBUG(dbgs() << "FnSpecialization: number of candidates exceed " 414 << "the maximum number of clones threshold.\n" 415 << "Truncating worklist to " << MaxClonesThreshold 416 << " candidates.\n"); 417 Worklist.erase(Worklist.begin() + MaxClonesThreshold, 418 Worklist.end()); 419 } 420 421 if (IsPartial || Worklist.size() < ActualConstArg.size()) 422 for (auto &ActualArg : Worklist) 423 ActualArg.Partial = true; 424 425 LLVM_DEBUG(dbgs() << "Sorted list of candidates by gain:\n"; 426 for (auto &C 427 : Worklist) { 428 dbgs() << "- Function = " << C.Fn->getName() << ", "; 429 dbgs() << "FormalArg = " << C.Arg->getName() << ", "; 430 dbgs() << "ActualArg = " << C.Const->getName() << ", "; 431 dbgs() << "Gain = " << C.Gain << "\n"; 432 }); 433 434 // FIXME: Only one argument per function. 435 break; 436 } 437 return Worklist; 438 } 439 440 bool isCandidateFunction(Function *F, FuncList &Specializations) { 441 // Do not specialize the cloned function again. 442 if (SpecializedFuncs.contains(F)) 443 return false; 444 445 // If we're optimizing the function for size, we shouldn't specialize it. 446 if (F->hasOptSize() || 447 shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 448 return false; 449 450 // Exit if the function is not executable. There's no point in specializing 451 // a dead function. 452 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 453 return false; 454 455 // It wastes time to specialize a function which would get inlined finally. 456 if (F->hasFnAttribute(Attribute::AlwaysInline)) 457 return false; 458 459 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 460 << "\n"); 461 return true; 462 } 463 464 void specializeFunction(ArgInfo &AI, FuncList &Specializations) { 465 Function *Clone = cloneCandidateFunction(AI.Fn); 466 Argument *ClonedArg = Clone->getArg(AI.Arg->getArgNo()); 467 468 // Rewrite calls to the function so that they call the clone instead. 469 rewriteCallSites(AI.Fn, Clone, *ClonedArg, AI.Const); 470 471 // Initialize the lattice state of the arguments of the function clone, 472 // marking the argument on which we specialized the function constant 473 // with the given value. 474 Solver.markArgInFuncSpecialization(AI.Fn, ClonedArg, AI.Const); 475 476 // Mark all the specialized functions 477 Specializations.push_back(Clone); 478 NbFunctionsSpecialized++; 479 480 // If the function has been completely specialized, the original function 481 // is no longer needed. Mark it unreachable. 482 if (!AI.Partial) 483 Solver.markFunctionUnreachable(AI.Fn); 484 } 485 486 /// Compute and return the cost of specializing function \p F. 487 InstructionCost getSpecializationCost(Function *F) { 488 // Compute the code metrics for the function. 489 SmallPtrSet<const Value *, 32> EphValues; 490 CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues); 491 CodeMetrics Metrics; 492 for (BasicBlock &BB : *F) 493 Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues); 494 495 // If the code metrics reveal that we shouldn't duplicate the function, we 496 // shouldn't specialize it. Set the specialization cost to Invalid. 497 // Or if the lines of codes implies that this function is easy to get 498 // inlined so that we shouldn't specialize it. 499 if (Metrics.notDuplicatable || 500 (!ForceFunctionSpecialization && 501 Metrics.NumInsts < SmallFunctionThreshold)) { 502 InstructionCost C{}; 503 C.setInvalid(); 504 return C; 505 } 506 507 // Otherwise, set the specialization cost to be the cost of all the 508 // instructions in the function and penalty for specializing more functions. 509 unsigned Penalty = NbFunctionsSpecialized + 1; 510 return Metrics.NumInsts * InlineConstants::InstrCost * Penalty; 511 } 512 513 InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI, 514 LoopInfo &LI) { 515 auto *I = dyn_cast_or_null<Instruction>(U); 516 // If not an instruction we do not know how to evaluate. 517 // Keep minimum possible cost for now so that it doesnt affect 518 // specialization. 519 if (!I) 520 return std::numeric_limits<unsigned>::min(); 521 522 auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency); 523 524 // Traverse recursively if there are more uses. 525 // TODO: Any other instructions to be added here? 526 if (I->mayReadFromMemory() || I->isCast()) 527 for (auto *User : I->users()) 528 Cost += getUserBonus(User, TTI, LI); 529 530 // Increase the cost if it is inside the loop. 531 auto LoopDepth = LI.getLoopDepth(I->getParent()); 532 Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth); 533 return Cost; 534 } 535 536 /// Compute a bonus for replacing argument \p A with constant \p C. 537 InstructionCost getSpecializationBonus(Argument *A, Constant *C) { 538 Function *F = A->getParent(); 539 DominatorTree DT(*F); 540 LoopInfo LI(DT); 541 auto &TTI = (GetTTI)(*F); 542 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A 543 << "\n"); 544 545 InstructionCost TotalCost = 0; 546 for (auto *U : A->users()) { 547 TotalCost += getUserBonus(U, TTI, LI); 548 LLVM_DEBUG(dbgs() << "FnSpecialization: User cost "; 549 TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n"); 550 } 551 552 // The below heuristic is only concerned with exposing inlining 553 // opportunities via indirect call promotion. If the argument is not a 554 // function pointer, give up. 555 if (!isa<PointerType>(A->getType()) || 556 !isa<FunctionType>(A->getType()->getPointerElementType())) 557 return TotalCost; 558 559 // Since the argument is a function pointer, its incoming constant values 560 // should be functions or constant expressions. The code below attempts to 561 // look through cast expressions to find the function that will be called. 562 Value *CalledValue = C; 563 while (isa<ConstantExpr>(CalledValue) && 564 cast<ConstantExpr>(CalledValue)->isCast()) 565 CalledValue = cast<User>(CalledValue)->getOperand(0); 566 Function *CalledFunction = dyn_cast<Function>(CalledValue); 567 if (!CalledFunction) 568 return TotalCost; 569 570 // Get TTI for the called function (used for the inline cost). 571 auto &CalleeTTI = (GetTTI)(*CalledFunction); 572 573 // Look at all the call sites whose called value is the argument. 574 // Specializing the function on the argument would allow these indirect 575 // calls to be promoted to direct calls. If the indirect call promotion 576 // would likely enable the called function to be inlined, specializing is a 577 // good idea. 578 int Bonus = 0; 579 for (User *U : A->users()) { 580 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 581 continue; 582 auto *CS = cast<CallBase>(U); 583 if (CS->getCalledOperand() != A) 584 continue; 585 586 // Get the cost of inlining the called function at this call site. Note 587 // that this is only an estimate. The called function may eventually 588 // change in a way that leads to it not being inlined here, even though 589 // inlining looks profitable now. For example, one of its called 590 // functions may be inlined into it, making the called function too large 591 // to be inlined into this call site. 592 // 593 // We apply a boost for performing indirect call promotion by increasing 594 // the default threshold by the threshold for indirect calls. 595 auto Params = getInlineParams(); 596 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 597 InlineCost IC = 598 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 599 600 // We clamp the bonus for this call to be between zero and the default 601 // threshold. 602 if (IC.isAlways()) 603 Bonus += Params.DefaultThreshold; 604 else if (IC.isVariable() && IC.getCostDelta() > 0) 605 Bonus += IC.getCostDelta(); 606 } 607 608 return TotalCost + Bonus; 609 } 610 611 /// Determine if we should specialize a function based on the incoming values 612 /// of the given argument. 613 /// 614 /// This function implements the goal-directed heuristic. It determines if 615 /// specializing the function based on the incoming values of argument \p A 616 /// would result in any significant optimization opportunities. If 617 /// optimization opportunities exist, the constant values of \p A on which to 618 /// specialize the function are collected in \p Constants. If the values in 619 /// \p Constants represent the complete set of values that \p A can take on, 620 /// the function will be completely specialized, and the \p IsPartial flag is 621 /// set to false. 622 /// 623 /// \returns true if the function should be specialized on the given 624 /// argument. 625 bool isArgumentInteresting(Argument *A, ConstList &Constants, 626 bool &IsPartial) { 627 // For now, don't attempt to specialize functions based on the values of 628 // composite types. 629 if (!A->getType()->isSingleValueType() || A->user_empty()) 630 return false; 631 632 // If the argument isn't overdefined, there's nothing to do. It should 633 // already be constant. 634 if (!Solver.getLatticeValueFor(A).isOverdefined()) { 635 LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already " 636 << "constant?\n"); 637 return false; 638 } 639 640 // Collect the constant values that the argument can take on. If the 641 // argument can't take on any constant values, we aren't going to 642 // specialize the function. While it's possible to specialize the function 643 // based on non-constant arguments, there's likely not much benefit to 644 // constant propagation in doing so. 645 // 646 // TODO 1: currently it won't specialize if there are over the threshold of 647 // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it 648 // might be beneficial to take the occurrences into account in the cost 649 // model, so we would need to find the unique constants. 650 // 651 // TODO 2: this currently does not support constants, i.e. integer ranges. 652 // 653 IsPartial = !getPossibleConstants(A, Constants); 654 LLVM_DEBUG(dbgs() << "FnSpecialization: interesting arg: " << *A << "\n"); 655 return true; 656 } 657 658 /// Collect in \p Constants all the constant values that argument \p A can 659 /// take on. 660 /// 661 /// \returns true if all of the values the argument can take on are constant 662 /// (e.g., the argument's parent function cannot be called with an 663 /// overdefined value). 664 bool getPossibleConstants(Argument *A, ConstList &Constants) { 665 Function *F = A->getParent(); 666 bool AllConstant = true; 667 668 // Iterate over all the call sites of the argument's parent function. 669 for (User *U : F->users()) { 670 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 671 continue; 672 auto &CS = *cast<CallBase>(U); 673 // If the call site has attribute minsize set, that callsite won't be 674 // specialized. 675 if (CS.hasFnAttr(Attribute::MinSize)) { 676 AllConstant = false; 677 continue; 678 } 679 680 // If the parent of the call site will never be executed, we don't need 681 // to worry about the passed value. 682 if (!Solver.isBlockExecutable(CS.getParent())) 683 continue; 684 685 auto *V = CS.getArgOperand(A->getArgNo()); 686 if (isa<PoisonValue>(V)) 687 return false; 688 689 // For now, constant expressions are fine but only if they are function 690 // calls. 691 if (auto *CE = dyn_cast<ConstantExpr>(V)) 692 if (!isa<Function>(CE->getOperand(0))) 693 return false; 694 695 // TrackValueOfGlobalVariable only tracks scalar global variables. 696 if (auto *GV = dyn_cast<GlobalVariable>(V)) { 697 // Check if we want to specialize on the address of non-constant 698 // global values. 699 if (!GV->isConstant()) 700 if (!SpecializeOnAddresses) 701 return false; 702 703 if (!GV->getValueType()->isSingleValueType()) 704 return false; 705 } 706 707 if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() || 708 EnableSpecializationForLiteralConstant)) 709 Constants.push_back(cast<Constant>(V)); 710 else 711 AllConstant = false; 712 } 713 714 // If the argument can only take on constant values, AllConstant will be 715 // true. 716 return AllConstant; 717 } 718 719 /// Rewrite calls to function \p F to call function \p Clone instead. 720 /// 721 /// This function modifies calls to function \p F whose argument at index \p 722 /// ArgNo is equal to constant \p C. The calls are rewritten to call function 723 /// \p Clone instead. 724 /// 725 /// Callsites that have been marked with the MinSize function attribute won't 726 /// be specialized and rewritten. 727 void rewriteCallSites(Function *F, Function *Clone, Argument &Arg, 728 Constant *C) { 729 unsigned ArgNo = Arg.getArgNo(); 730 SmallVector<CallBase *, 4> CallSitesToRewrite; 731 for (auto *U : F->users()) { 732 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 733 continue; 734 auto &CS = *cast<CallBase>(U); 735 if (!CS.getCalledFunction() || CS.getCalledFunction() != F) 736 continue; 737 CallSitesToRewrite.push_back(&CS); 738 } 739 for (auto *CS : CallSitesToRewrite) { 740 if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) || 741 CS->getArgOperand(ArgNo) == C) { 742 CS->setCalledFunction(Clone); 743 Solver.markOverdefined(CS); 744 } 745 } 746 } 747 748 void updateSpecializedFuncs(FuncList &FuncDecls, 749 FuncList &CurrentSpecializations) { 750 for (auto *SpecializedFunc : CurrentSpecializations) { 751 SpecializedFuncs.insert(SpecializedFunc); 752 753 // Initialize the state of the newly created functions, marking them 754 // argument-tracked and executable. 755 if (SpecializedFunc->hasExactDefinition() && 756 !SpecializedFunc->hasFnAttribute(Attribute::Naked)) 757 Solver.addTrackedFunction(SpecializedFunc); 758 759 Solver.addArgumentTrackedFunction(SpecializedFunc); 760 FuncDecls.push_back(SpecializedFunc); 761 Solver.markBlockExecutable(&SpecializedFunc->front()); 762 763 // Replace the function arguments for the specialized functions. 764 for (Argument &Arg : SpecializedFunc->args()) 765 if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg)) 766 LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: " 767 << Arg.getName() << "\n"); 768 } 769 } 770 }; 771 } // namespace 772 773 bool llvm::runFunctionSpecialization( 774 Module &M, const DataLayout &DL, 775 std::function<TargetLibraryInfo &(Function &)> GetTLI, 776 std::function<TargetTransformInfo &(Function &)> GetTTI, 777 std::function<AssumptionCache &(Function &)> GetAC, 778 function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) { 779 SCCPSolver Solver(DL, GetTLI, M.getContext()); 780 FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI); 781 bool Changed = false; 782 783 // Loop over all functions, marking arguments to those with their addresses 784 // taken or that are external as overdefined. 785 for (Function &F : M) { 786 if (F.isDeclaration()) 787 continue; 788 if (F.hasFnAttribute(Attribute::NoDuplicate)) 789 continue; 790 791 LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName() 792 << "\n"); 793 Solver.addAnalysis(F, GetAnalysis(F)); 794 795 // Determine if we can track the function's arguments. If so, add the 796 // function to the solver's set of argument-tracked functions. 797 if (canTrackArgumentsInterprocedurally(&F)) { 798 LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n"); 799 Solver.addArgumentTrackedFunction(&F); 800 continue; 801 } else { 802 LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n" 803 << "FnSpecialization: Doesn't have local linkage, or " 804 << "has its address taken\n"); 805 } 806 807 // Assume the function is called. 808 Solver.markBlockExecutable(&F.front()); 809 810 // Assume nothing about the incoming arguments. 811 for (Argument &AI : F.args()) 812 Solver.markOverdefined(&AI); 813 } 814 815 // Determine if we can track any of the module's global variables. If so, add 816 // the global variables we can track to the solver's set of tracked global 817 // variables. 818 for (GlobalVariable &G : M.globals()) { 819 G.removeDeadConstantUsers(); 820 if (canTrackGlobalVariableInterprocedurally(&G)) 821 Solver.trackValueOfGlobalVariable(&G); 822 } 823 824 auto &TrackedFuncs = Solver.getArgumentTrackedFunctions(); 825 SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(), 826 TrackedFuncs.end()); 827 828 // No tracked functions, so nothing to do: don't run the solver and remove 829 // the ssa_copy intrinsics that may have been introduced. 830 if (TrackedFuncs.empty()) { 831 removeSSACopy(M); 832 return false; 833 } 834 835 // Solve for constants. 836 auto RunSCCPSolver = [&](auto &WorkList) { 837 bool ResolvedUndefs = true; 838 839 while (ResolvedUndefs) { 840 // Not running the solver unnecessary is checked in regression test 841 // nothing-to-do.ll, so if this debug message is changed, this regression 842 // test needs updating too. 843 LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n"); 844 845 Solver.solve(); 846 LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n"); 847 ResolvedUndefs = false; 848 for (Function *F : WorkList) 849 if (Solver.resolvedUndefsIn(*F)) 850 ResolvedUndefs = true; 851 } 852 853 for (auto *F : WorkList) { 854 for (BasicBlock &BB : *F) { 855 if (!Solver.isBlockExecutable(&BB)) 856 continue; 857 // FIXME: The solver may make changes to the function here, so set 858 // Changed, even if later function specialization does not trigger. 859 for (auto &I : make_early_inc_range(BB)) 860 Changed |= FS.tryToReplaceWithConstant(&I); 861 } 862 } 863 }; 864 865 #ifndef NDEBUG 866 LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n"); 867 for (auto *F : FuncDecls) 868 LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n"); 869 #endif 870 871 // Initially resolve the constants in all the argument tracked functions. 872 RunSCCPSolver(FuncDecls); 873 874 SmallVector<Function *, 2> CurrentSpecializations; 875 unsigned I = 0; 876 while (FuncSpecializationMaxIters != I++ && 877 FS.specializeFunctions(FuncDecls, CurrentSpecializations)) { 878 879 // Run the solver for the specialized functions. 880 RunSCCPSolver(CurrentSpecializations); 881 882 // Replace some unresolved constant arguments. 883 constantArgPropagation(FuncDecls, M, Solver); 884 885 CurrentSpecializations.clear(); 886 Changed = true; 887 } 888 889 // Clean up the IR by removing ssa_copy intrinsics. 890 removeSSACopy(M); 891 return Changed; 892 } 893