xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp (revision 73ff7384e025033abc98fd5437a48beb8077a90b)
1  //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This specialises functions with constant parameters. Constant parameters
10  // like function pointers and constant globals are propagated to the callee by
11  // specializing the function. The main benefit of this pass at the moment is
12  // that indirect calls are transformed into direct calls, which provides inline
13  // opportunities that the inliner would not have been able to achieve. That's
14  // why function specialisation is run before the inliner in the optimisation
15  // pipeline; that is by design. Otherwise, we would only benefit from constant
16  // passing, which is a valid use-case too, but hasn't been explored much in
17  // terms of performance uplifts, cost-model and compile-time impact.
18  //
19  // Current limitations:
20  // - It does not yet handle integer ranges. We do support "literal constants",
21  //   but that's off by default under an option.
22  // - The cost-model could be further looked into (it mainly focuses on inlining
23  //   benefits),
24  //
25  // Ideas:
26  // - With a function specialization attribute for arguments, we could have
27  //   a direct way to steer function specialization, avoiding the cost-model,
28  //   and thus control compile-times / code-size.
29  //
30  // Todos:
31  // - Specializing recursive functions relies on running the transformation a
32  //   number of times, which is controlled by option
33  //   `func-specialization-max-iters`. Thus, increasing this value and the
34  //   number of iterations, will linearly increase the number of times recursive
35  //   functions get specialized, see also the discussion in
36  //   https://reviews.llvm.org/D106426 for details. Perhaps there is a
37  //   compile-time friendlier way to control/limit the number of specialisations
38  //   for recursive functions.
39  // - Don't transform the function if function specialization does not trigger;
40  //   the SCCPSolver may make IR changes.
41  //
42  // References:
43  // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
44  //   it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
45  //
46  //===----------------------------------------------------------------------===//
47  
48  #include "llvm/Transforms/IPO/FunctionSpecialization.h"
49  #include "llvm/ADT/Statistic.h"
50  #include "llvm/Analysis/CodeMetrics.h"
51  #include "llvm/Analysis/ConstantFolding.h"
52  #include "llvm/Analysis/InlineCost.h"
53  #include "llvm/Analysis/InstructionSimplify.h"
54  #include "llvm/Analysis/TargetTransformInfo.h"
55  #include "llvm/Analysis/ValueLattice.h"
56  #include "llvm/Analysis/ValueLatticeUtils.h"
57  #include "llvm/Analysis/ValueTracking.h"
58  #include "llvm/IR/IntrinsicInst.h"
59  #include "llvm/Transforms/Scalar/SCCP.h"
60  #include "llvm/Transforms/Utils/Cloning.h"
61  #include "llvm/Transforms/Utils/SCCPSolver.h"
62  #include "llvm/Transforms/Utils/SizeOpts.h"
63  #include <cmath>
64  
65  using namespace llvm;
66  
67  #define DEBUG_TYPE "function-specialization"
68  
69  STATISTIC(NumSpecsCreated, "Number of specializations created");
70  
71  static cl::opt<bool> ForceSpecialization(
72      "force-specialization", cl::init(false), cl::Hidden, cl::desc(
73      "Force function specialization for every call site with a constant "
74      "argument"));
75  
76  static cl::opt<unsigned> MaxClones(
77      "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc(
78      "The maximum number of clones allowed for a single function "
79      "specialization"));
80  
81  static cl::opt<unsigned> MinFunctionSize(
82      "funcspec-min-function-size", cl::init(100), cl::Hidden, cl::desc(
83      "Don't specialize functions that have less than this number of "
84      "instructions"));
85  
86  static cl::opt<bool> SpecializeOnAddress(
87      "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc(
88      "Enable function specialization on the address of global values"));
89  
90  // Disabled by default as it can significantly increase compilation times.
91  //
92  // https://llvm-compile-time-tracker.com
93  // https://github.com/nikic/llvm-compile-time-tracker
94  static cl::opt<bool> SpecializeLiteralConstant(
95      "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc(
96      "Enable specialization of functions that take a literal constant as an "
97      "argument"));
98  
99  // Estimates the instruction cost of all the basic blocks in \p WorkList.
100  // The successors of such blocks are added to the list as long as they are
101  // executable and they have a unique predecessor. \p WorkList represents
102  // the basic blocks of a specialization which become dead once we replace
103  // instructions that are known to be constants. The aim here is to estimate
104  // the combination of size and latency savings in comparison to the non
105  // specialized version of the function.
106  static Cost estimateBasicBlocks(SmallVectorImpl<BasicBlock *> &WorkList,
107                                  ConstMap &KnownConstants, SCCPSolver &Solver,
108                                  BlockFrequencyInfo &BFI,
109                                  TargetTransformInfo &TTI) {
110    Cost Bonus = 0;
111  
112    // Accumulate the instruction cost of each basic block weighted by frequency.
113    while (!WorkList.empty()) {
114      BasicBlock *BB = WorkList.pop_back_val();
115  
116      uint64_t Weight = BFI.getBlockFreq(BB).getFrequency() /
117                        BFI.getEntryFreq();
118      if (!Weight)
119        continue;
120  
121      for (Instruction &I : *BB) {
122        // Disregard SSA copies.
123        if (auto *II = dyn_cast<IntrinsicInst>(&I))
124          if (II->getIntrinsicID() == Intrinsic::ssa_copy)
125            continue;
126        // If it's a known constant we have already accounted for it.
127        if (KnownConstants.contains(&I))
128          continue;
129  
130        Bonus += Weight *
131            TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
132  
133        LLVM_DEBUG(dbgs() << "FnSpecialization:     Bonus " << Bonus
134                          << " after user " << I << "\n");
135      }
136  
137      // Keep adding dead successors to the list as long as they are
138      // executable and they have a unique predecessor.
139      for (BasicBlock *SuccBB : successors(BB))
140        if (Solver.isBlockExecutable(SuccBB) &&
141            SuccBB->getUniquePredecessor() == BB)
142          WorkList.push_back(SuccBB);
143    }
144    return Bonus;
145  }
146  
147  static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) {
148    if (auto *C = dyn_cast<Constant>(V))
149      return C;
150    if (auto It = KnownConstants.find(V); It != KnownConstants.end())
151      return It->second;
152    return nullptr;
153  }
154  
155  Cost InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) {
156    // Cache the iterator before visiting.
157    LastVisited = KnownConstants.insert({Use, C}).first;
158  
159    if (auto *I = dyn_cast<SwitchInst>(User))
160      return estimateSwitchInst(*I);
161  
162    if (auto *I = dyn_cast<BranchInst>(User))
163      return estimateBranchInst(*I);
164  
165    C = visit(*User);
166    if (!C)
167      return 0;
168  
169    KnownConstants.insert({User, C});
170  
171    uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() /
172                      BFI.getEntryFreq();
173    if (!Weight)
174      return 0;
175  
176    Cost Bonus = Weight *
177        TTI.getInstructionCost(User, TargetTransformInfo::TCK_SizeAndLatency);
178  
179    LLVM_DEBUG(dbgs() << "FnSpecialization:     Bonus " << Bonus
180                      << " for user " << *User << "\n");
181  
182    for (auto *U : User->users())
183      if (auto *UI = dyn_cast<Instruction>(U))
184        if (Solver.isBlockExecutable(UI->getParent()))
185          Bonus += getUserBonus(UI, User, C);
186  
187    return Bonus;
188  }
189  
190  Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) {
191    if (I.getCondition() != LastVisited->first)
192      return 0;
193  
194    auto *C = dyn_cast<ConstantInt>(LastVisited->second);
195    if (!C)
196      return 0;
197  
198    BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor();
199    // Initialize the worklist with the dead basic blocks. These are the
200    // destination labels which are different from the one corresponding
201    // to \p C. They should be executable and have a unique predecessor.
202    SmallVector<BasicBlock *> WorkList;
203    for (const auto &Case : I.cases()) {
204      BasicBlock *BB = Case.getCaseSuccessor();
205      if (BB == Succ || !Solver.isBlockExecutable(BB) ||
206          BB->getUniquePredecessor() != I.getParent())
207        continue;
208      WorkList.push_back(BB);
209    }
210  
211    return estimateBasicBlocks(WorkList, KnownConstants, Solver, BFI, TTI);
212  }
213  
214  Cost InstCostVisitor::estimateBranchInst(BranchInst &I) {
215    if (I.getCondition() != LastVisited->first)
216      return 0;
217  
218    BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue());
219    // Initialize the worklist with the dead successor as long as
220    // it is executable and has a unique predecessor.
221    SmallVector<BasicBlock *> WorkList;
222    if (Solver.isBlockExecutable(Succ) &&
223        Succ->getUniquePredecessor() == I.getParent())
224      WorkList.push_back(Succ);
225  
226    return estimateBasicBlocks(WorkList, KnownConstants, Solver, BFI, TTI);
227  }
228  
229  Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) {
230    if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second))
231      return LastVisited->second;
232    return nullptr;
233  }
234  
235  Constant *InstCostVisitor::visitCallBase(CallBase &I) {
236    Function *F = I.getCalledFunction();
237    if (!F || !canConstantFoldCallTo(&I, F))
238      return nullptr;
239  
240    SmallVector<Constant *, 8> Operands;
241    Operands.reserve(I.getNumOperands());
242  
243    for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) {
244      Value *V = I.getOperand(Idx);
245      Constant *C = findConstantFor(V, KnownConstants);
246      if (!C)
247        return nullptr;
248      Operands.push_back(C);
249    }
250  
251    auto Ops = ArrayRef(Operands.begin(), Operands.end());
252    return ConstantFoldCall(&I, F, Ops);
253  }
254  
255  Constant *InstCostVisitor::visitLoadInst(LoadInst &I) {
256    if (isa<ConstantPointerNull>(LastVisited->second))
257      return nullptr;
258    return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL);
259  }
260  
261  Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
262    SmallVector<Constant *, 8> Operands;
263    Operands.reserve(I.getNumOperands());
264  
265    for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) {
266      Value *V = I.getOperand(Idx);
267      Constant *C = findConstantFor(V, KnownConstants);
268      if (!C)
269        return nullptr;
270      Operands.push_back(C);
271    }
272  
273    auto Ops = ArrayRef(Operands.begin(), Operands.end());
274    return ConstantFoldInstOperands(&I, Ops, DL);
275  }
276  
277  Constant *InstCostVisitor::visitSelectInst(SelectInst &I) {
278    if (I.getCondition() != LastVisited->first)
279      return nullptr;
280  
281    Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue()
282                                                  : I.getTrueValue();
283    Constant *C = findConstantFor(V, KnownConstants);
284    return C;
285  }
286  
287  Constant *InstCostVisitor::visitCastInst(CastInst &I) {
288    return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second,
289                                   I.getType(), DL);
290  }
291  
292  Constant *InstCostVisitor::visitCmpInst(CmpInst &I) {
293    bool Swap = I.getOperand(1) == LastVisited->first;
294    Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
295    Constant *Other = findConstantFor(V, KnownConstants);
296    if (!Other)
297      return nullptr;
298  
299    Constant *Const = LastVisited->second;
300    return Swap ?
301          ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL)
302        : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL);
303  }
304  
305  Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) {
306    return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL);
307  }
308  
309  Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) {
310    bool Swap = I.getOperand(1) == LastVisited->first;
311    Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
312    Constant *Other = findConstantFor(V, KnownConstants);
313    if (!Other)
314      return nullptr;
315  
316    Constant *Const = LastVisited->second;
317    return dyn_cast_or_null<Constant>(Swap ?
318          simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL))
319        : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL)));
320  }
321  
322  Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
323                                                     CallInst *Call) {
324    Value *StoreValue = nullptr;
325    for (auto *User : Alloca->users()) {
326      // We can't use llvm::isAllocaPromotable() as that would fail because of
327      // the usage in the CallInst, which is what we check here.
328      if (User == Call)
329        continue;
330      if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
331        if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
332          return nullptr;
333        continue;
334      }
335  
336      if (auto *Store = dyn_cast<StoreInst>(User)) {
337        // This is a duplicate store, bail out.
338        if (StoreValue || Store->isVolatile())
339          return nullptr;
340        StoreValue = Store->getValueOperand();
341        continue;
342      }
343      // Bail if there is any other unknown usage.
344      return nullptr;
345    }
346  
347    if (!StoreValue)
348      return nullptr;
349  
350    return getCandidateConstant(StoreValue);
351  }
352  
353  // A constant stack value is an AllocaInst that has a single constant
354  // value stored to it. Return this constant if such an alloca stack value
355  // is a function argument.
356  Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
357                                                       Value *Val) {
358    if (!Val)
359      return nullptr;
360    Val = Val->stripPointerCasts();
361    if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
362      return ConstVal;
363    auto *Alloca = dyn_cast<AllocaInst>(Val);
364    if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
365      return nullptr;
366    return getPromotableAlloca(Alloca, Call);
367  }
368  
369  // To support specializing recursive functions, it is important to propagate
370  // constant arguments because after a first iteration of specialisation, a
371  // reduced example may look like this:
372  //
373  //     define internal void @RecursiveFn(i32* arg1) {
374  //       %temp = alloca i32, align 4
375  //       store i32 2 i32* %temp, align 4
376  //       call void @RecursiveFn.1(i32* nonnull %temp)
377  //       ret void
378  //     }
379  //
380  // Before a next iteration, we need to propagate the constant like so
381  // which allows further specialization in next iterations.
382  //
383  //     @funcspec.arg = internal constant i32 2
384  //
385  //     define internal void @someFunc(i32* arg1) {
386  //       call void @otherFunc(i32* nonnull @funcspec.arg)
387  //       ret void
388  //     }
389  //
390  // See if there are any new constant values for the callers of \p F via
391  // stack variables and promote them to global variables.
392  void FunctionSpecializer::promoteConstantStackValues(Function *F) {
393    for (User *U : F->users()) {
394  
395      auto *Call = dyn_cast<CallInst>(U);
396      if (!Call)
397        continue;
398  
399      if (!Solver.isBlockExecutable(Call->getParent()))
400        continue;
401  
402      for (const Use &U : Call->args()) {
403        unsigned Idx = Call->getArgOperandNo(&U);
404        Value *ArgOp = Call->getArgOperand(Idx);
405        Type *ArgOpType = ArgOp->getType();
406  
407        if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
408          continue;
409  
410        auto *ConstVal = getConstantStackValue(Call, ArgOp);
411        if (!ConstVal)
412          continue;
413  
414        Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
415                                       GlobalValue::InternalLinkage, ConstVal,
416                                       "funcspec.arg");
417        if (ArgOpType != ConstVal->getType())
418          GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
419  
420        Call->setArgOperand(Idx, GV);
421      }
422    }
423  }
424  
425  // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
426  // interfere with the promoteConstantStackValues() optimization.
427  static void removeSSACopy(Function &F) {
428    for (BasicBlock &BB : F) {
429      for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
430        auto *II = dyn_cast<IntrinsicInst>(&Inst);
431        if (!II)
432          continue;
433        if (II->getIntrinsicID() != Intrinsic::ssa_copy)
434          continue;
435        Inst.replaceAllUsesWith(II->getOperand(0));
436        Inst.eraseFromParent();
437      }
438    }
439  }
440  
441  /// Remove any ssa_copy intrinsics that may have been introduced.
442  void FunctionSpecializer::cleanUpSSA() {
443    for (Function *F : Specializations)
444      removeSSACopy(*F);
445  }
446  
447  
448  template <> struct llvm::DenseMapInfo<SpecSig> {
449    static inline SpecSig getEmptyKey() { return {~0U, {}}; }
450  
451    static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
452  
453    static unsigned getHashValue(const SpecSig &S) {
454      return static_cast<unsigned>(hash_value(S));
455    }
456  
457    static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
458      return LHS == RHS;
459    }
460  };
461  
462  FunctionSpecializer::~FunctionSpecializer() {
463    LLVM_DEBUG(
464      if (NumSpecsCreated > 0)
465        dbgs() << "FnSpecialization: Created " << NumSpecsCreated
466               << " specializations in module " << M.getName() << "\n");
467    // Eliminate dead code.
468    removeDeadFunctions();
469    cleanUpSSA();
470  }
471  
472  /// Attempt to specialize functions in the module to enable constant
473  /// propagation across function boundaries.
474  ///
475  /// \returns true if at least one function is specialized.
476  bool FunctionSpecializer::run() {
477    // Find possible specializations for each function.
478    SpecMap SM;
479    SmallVector<Spec, 32> AllSpecs;
480    unsigned NumCandidates = 0;
481    for (Function &F : M) {
482      if (!isCandidateFunction(&F))
483        continue;
484  
485      auto [It, Inserted] = FunctionMetrics.try_emplace(&F);
486      CodeMetrics &Metrics = It->second;
487      //Analyze the function.
488      if (Inserted) {
489        SmallPtrSet<const Value *, 32> EphValues;
490        CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues);
491        for (BasicBlock &BB : F)
492          Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues);
493      }
494  
495      // If the code metrics reveal that we shouldn't duplicate the function,
496      // or if the code size implies that this function is easy to get inlined,
497      // then we shouldn't specialize it.
498      if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
499          (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) &&
500           Metrics.NumInsts < MinFunctionSize))
501        continue;
502  
503      // TODO: For now only consider recursive functions when running multiple
504      // times. This should change if specialization on literal constants gets
505      // enabled.
506      if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant)
507        continue;
508  
509      LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
510                        << F.getName() << " is " << Metrics.NumInsts << "\n");
511  
512      if (Inserted && Metrics.isRecursive)
513        promoteConstantStackValues(&F);
514  
515      if (!findSpecializations(&F, Metrics.NumInsts, AllSpecs, SM)) {
516        LLVM_DEBUG(
517            dbgs() << "FnSpecialization: No possible specializations found for "
518                   << F.getName() << "\n");
519        continue;
520      }
521  
522      ++NumCandidates;
523    }
524  
525    if (!NumCandidates) {
526      LLVM_DEBUG(
527          dbgs()
528          << "FnSpecialization: No possible specializations found in module\n");
529      return false;
530    }
531  
532    // Choose the most profitable specialisations, which fit in the module
533    // specialization budget, which is derived from maximum number of
534    // specializations per specialization candidate function.
535    auto CompareScore = [&AllSpecs](unsigned I, unsigned J) {
536      return AllSpecs[I].Score > AllSpecs[J].Score;
537    };
538    const unsigned NSpecs =
539        std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size()));
540    SmallVector<unsigned> BestSpecs(NSpecs + 1);
541    std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
542    if (AllSpecs.size() > NSpecs) {
543      LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
544                        << "the maximum number of clones threshold.\n"
545                        << "FnSpecialization: Specializing the "
546                        << NSpecs
547                        << " most profitable candidates.\n");
548      std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore);
549      for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
550        BestSpecs[NSpecs] = I;
551        std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
552        std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
553      }
554    }
555  
556    LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
557               for (unsigned I = 0; I < NSpecs; ++I) {
558                 const Spec &S = AllSpecs[BestSpecs[I]];
559                 dbgs() << "FnSpecialization: Function " << S.F->getName()
560                        << " , score " << S.Score << "\n";
561                 for (const ArgInfo &Arg : S.Sig.Args)
562                   dbgs() << "FnSpecialization:   FormalArg = "
563                          << Arg.Formal->getNameOrAsOperand()
564                          << ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
565                          << "\n";
566               });
567  
568    // Create the chosen specializations.
569    SmallPtrSet<Function *, 8> OriginalFuncs;
570    SmallVector<Function *> Clones;
571    for (unsigned I = 0; I < NSpecs; ++I) {
572      Spec &S = AllSpecs[BestSpecs[I]];
573      S.Clone = createSpecialization(S.F, S.Sig);
574  
575      // Update the known call sites to call the clone.
576      for (CallBase *Call : S.CallSites) {
577        LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
578                          << " to call " << S.Clone->getName() << "\n");
579        Call->setCalledFunction(S.Clone);
580      }
581  
582      Clones.push_back(S.Clone);
583      OriginalFuncs.insert(S.F);
584    }
585  
586    Solver.solveWhileResolvedUndefsIn(Clones);
587  
588    // Update the rest of the call sites - these are the recursive calls, calls
589    // to discarded specialisations and calls that may match a specialisation
590    // after the solver runs.
591    for (Function *F : OriginalFuncs) {
592      auto [Begin, End] = SM[F];
593      updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
594    }
595  
596    for (Function *F : Clones) {
597      if (F->getReturnType()->isVoidTy())
598        continue;
599      if (F->getReturnType()->isStructTy()) {
600        auto *STy = cast<StructType>(F->getReturnType());
601        if (!Solver.isStructLatticeConstant(F, STy))
602          continue;
603      } else {
604        auto It = Solver.getTrackedRetVals().find(F);
605        assert(It != Solver.getTrackedRetVals().end() &&
606               "Return value ought to be tracked");
607        if (SCCPSolver::isOverdefined(It->second))
608          continue;
609      }
610      for (User *U : F->users()) {
611        if (auto *CS = dyn_cast<CallBase>(U)) {
612          //The user instruction does not call our function.
613          if (CS->getCalledFunction() != F)
614            continue;
615          Solver.resetLatticeValueFor(CS);
616        }
617      }
618    }
619  
620    // Rerun the solver to notify the users of the modified callsites.
621    Solver.solveWhileResolvedUndefs();
622  
623    for (Function *F : OriginalFuncs)
624      if (FunctionMetrics[F].isRecursive)
625        promoteConstantStackValues(F);
626  
627    return true;
628  }
629  
630  void FunctionSpecializer::removeDeadFunctions() {
631    for (Function *F : FullySpecialized) {
632      LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
633                        << F->getName() << "\n");
634      if (FAM)
635        FAM->clear(*F, F->getName());
636      F->eraseFromParent();
637    }
638    FullySpecialized.clear();
639  }
640  
641  /// Clone the function \p F and remove the ssa_copy intrinsics added by
642  /// the SCCPSolver in the cloned version.
643  static Function *cloneCandidateFunction(Function *F) {
644    ValueToValueMapTy Mappings;
645    Function *Clone = CloneFunction(F, Mappings);
646    removeSSACopy(*Clone);
647    return Clone;
648  }
649  
650  bool FunctionSpecializer::findSpecializations(Function *F, Cost SpecCost,
651                                                SmallVectorImpl<Spec> &AllSpecs,
652                                                SpecMap &SM) {
653    // A mapping from a specialisation signature to the index of the respective
654    // entry in the all specialisation array. Used to ensure uniqueness of
655    // specialisations.
656    DenseMap<SpecSig, unsigned> UniqueSpecs;
657  
658    // Get a list of interesting arguments.
659    SmallVector<Argument *> Args;
660    for (Argument &Arg : F->args())
661      if (isArgumentInteresting(&Arg))
662        Args.push_back(&Arg);
663  
664    if (Args.empty())
665      return false;
666  
667    for (User *U : F->users()) {
668      if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
669        continue;
670      auto &CS = *cast<CallBase>(U);
671  
672      // The user instruction does not call our function.
673      if (CS.getCalledFunction() != F)
674        continue;
675  
676      // If the call site has attribute minsize set, that callsite won't be
677      // specialized.
678      if (CS.hasFnAttr(Attribute::MinSize))
679        continue;
680  
681      // If the parent of the call site will never be executed, we don't need
682      // to worry about the passed value.
683      if (!Solver.isBlockExecutable(CS.getParent()))
684        continue;
685  
686      // Examine arguments and create a specialisation candidate from the
687      // constant operands of this call site.
688      SpecSig S;
689      for (Argument *A : Args) {
690        Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
691        if (!C)
692          continue;
693        LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
694                          << A->getName() << " : " << C->getNameOrAsOperand()
695                          << "\n");
696        S.Args.push_back({A, C});
697      }
698  
699      if (S.Args.empty())
700        continue;
701  
702      // Check if we have encountered the same specialisation already.
703      if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) {
704        // Existing specialisation. Add the call to the list to rewrite, unless
705        // it's a recursive call. A specialisation, generated because of a
706        // recursive call may end up as not the best specialisation for all
707        // the cloned instances of this call, which result from specialising
708        // functions. Hence we don't rewrite the call directly, but match it with
709        // the best specialisation once all specialisations are known.
710        if (CS.getFunction() == F)
711          continue;
712        const unsigned Index = It->second;
713        AllSpecs[Index].CallSites.push_back(&CS);
714      } else {
715        // Calculate the specialisation gain.
716        Cost Score = 0 - SpecCost;
717        InstCostVisitor Visitor = getInstCostVisitorFor(F);
718        for (ArgInfo &A : S.Args)
719          Score += getSpecializationBonus(A.Formal, A.Actual, Visitor);
720  
721        // Discard unprofitable specialisations.
722        if (!ForceSpecialization && Score <= 0)
723          continue;
724  
725        // Create a new specialisation entry.
726        auto &Spec = AllSpecs.emplace_back(F, S, Score);
727        if (CS.getFunction() != F)
728          Spec.CallSites.push_back(&CS);
729        const unsigned Index = AllSpecs.size() - 1;
730        UniqueSpecs[S] = Index;
731        if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
732          It->second.second = Index + 1;
733      }
734    }
735  
736    return !UniqueSpecs.empty();
737  }
738  
739  bool FunctionSpecializer::isCandidateFunction(Function *F) {
740    if (F->isDeclaration() || F->arg_empty())
741      return false;
742  
743    if (F->hasFnAttribute(Attribute::NoDuplicate))
744      return false;
745  
746    // Do not specialize the cloned function again.
747    if (Specializations.contains(F))
748      return false;
749  
750    // If we're optimizing the function for size, we shouldn't specialize it.
751    if (F->hasOptSize() ||
752        shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
753      return false;
754  
755    // Exit if the function is not executable. There's no point in specializing
756    // a dead function.
757    if (!Solver.isBlockExecutable(&F->getEntryBlock()))
758      return false;
759  
760    // It wastes time to specialize a function which would get inlined finally.
761    if (F->hasFnAttribute(Attribute::AlwaysInline))
762      return false;
763  
764    LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
765                      << "\n");
766    return true;
767  }
768  
769  Function *FunctionSpecializer::createSpecialization(Function *F,
770                                                      const SpecSig &S) {
771    Function *Clone = cloneCandidateFunction(F);
772  
773    // The original function does not neccessarily have internal linkage, but the
774    // clone must.
775    Clone->setLinkage(GlobalValue::InternalLinkage);
776  
777    // Initialize the lattice state of the arguments of the function clone,
778    // marking the argument on which we specialized the function constant
779    // with the given value.
780    Solver.setLatticeValueForSpecializationArguments(Clone, S.Args);
781    Solver.markBlockExecutable(&Clone->front());
782    Solver.addArgumentTrackedFunction(Clone);
783    Solver.addTrackedFunction(Clone);
784  
785    // Mark all the specialized functions
786    Specializations.insert(Clone);
787    ++NumSpecsCreated;
788  
789    return Clone;
790  }
791  
792  /// Compute a bonus for replacing argument \p A with constant \p C.
793  Cost FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C,
794                                                   InstCostVisitor &Visitor) {
795    LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
796                      << C->getNameOrAsOperand() << "\n");
797  
798    Cost TotalCost = 0;
799    for (auto *U : A->users())
800      if (auto *UI = dyn_cast<Instruction>(U))
801        if (Solver.isBlockExecutable(UI->getParent()))
802          TotalCost += Visitor.getUserBonus(UI, A, C);
803  
804    LLVM_DEBUG(dbgs() << "FnSpecialization:   Accumulated user bonus "
805                      << TotalCost << " for argument " << *A << "\n");
806  
807    // The below heuristic is only concerned with exposing inlining
808    // opportunities via indirect call promotion. If the argument is not a
809    // (potentially casted) function pointer, give up.
810    //
811    // TODO: Perhaps we should consider checking such inlining opportunities
812    // while traversing the users of the specialization arguments ?
813    Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
814    if (!CalledFunction)
815      return TotalCost;
816  
817    // Get TTI for the called function (used for the inline cost).
818    auto &CalleeTTI = (GetTTI)(*CalledFunction);
819  
820    // Look at all the call sites whose called value is the argument.
821    // Specializing the function on the argument would allow these indirect
822    // calls to be promoted to direct calls. If the indirect call promotion
823    // would likely enable the called function to be inlined, specializing is a
824    // good idea.
825    int Bonus = 0;
826    for (User *U : A->users()) {
827      if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
828        continue;
829      auto *CS = cast<CallBase>(U);
830      if (CS->getCalledOperand() != A)
831        continue;
832      if (CS->getFunctionType() != CalledFunction->getFunctionType())
833        continue;
834  
835      // Get the cost of inlining the called function at this call site. Note
836      // that this is only an estimate. The called function may eventually
837      // change in a way that leads to it not being inlined here, even though
838      // inlining looks profitable now. For example, one of its called
839      // functions may be inlined into it, making the called function too large
840      // to be inlined into this call site.
841      //
842      // We apply a boost for performing indirect call promotion by increasing
843      // the default threshold by the threshold for indirect calls.
844      auto Params = getInlineParams();
845      Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
846      InlineCost IC =
847          getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
848  
849      // We clamp the bonus for this call to be between zero and the default
850      // threshold.
851      if (IC.isAlways())
852        Bonus += Params.DefaultThreshold;
853      else if (IC.isVariable() && IC.getCostDelta() > 0)
854        Bonus += IC.getCostDelta();
855  
856      LLVM_DEBUG(dbgs() << "FnSpecialization:   Inlining bonus " << Bonus
857                        << " for user " << *U << "\n");
858    }
859  
860    return TotalCost + Bonus;
861  }
862  
863  /// Determine if it is possible to specialise the function for constant values
864  /// of the formal parameter \p A.
865  bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
866    // No point in specialization if the argument is unused.
867    if (A->user_empty())
868      return false;
869  
870    Type *Ty = A->getType();
871    if (!Ty->isPointerTy() && (!SpecializeLiteralConstant ||
872        (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy())))
873      return false;
874  
875    // SCCP solver does not record an argument that will be constructed on
876    // stack.
877    if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
878      return false;
879  
880    // For non-argument-tracked functions every argument is overdefined.
881    if (!Solver.isArgumentTrackedFunction(A->getParent()))
882      return true;
883  
884    // Check the lattice value and decide if we should attemt to specialize,
885    // based on this argument. No point in specialization, if the lattice value
886    // is already a constant.
887    bool IsOverdefined = Ty->isStructTy()
888      ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined)
889      : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A));
890  
891    LLVM_DEBUG(
892      if (IsOverdefined)
893        dbgs() << "FnSpecialization: Found interesting parameter "
894               << A->getNameOrAsOperand() << "\n";
895      else
896        dbgs() << "FnSpecialization: Nothing to do, parameter "
897               << A->getNameOrAsOperand() << " is already constant\n";
898    );
899    return IsOverdefined;
900  }
901  
902  /// Check if the value \p V  (an actual argument) is a constant or can only
903  /// have a constant value. Return that constant.
904  Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
905    if (isa<PoisonValue>(V))
906      return nullptr;
907  
908    // Select for possible specialisation values that are constants or
909    // are deduced to be constants or constant ranges with a single element.
910    Constant *C = dyn_cast<Constant>(V);
911    if (!C)
912      C = Solver.getConstantOrNull(V);
913  
914    // Don't specialize on (anything derived from) the address of a non-constant
915    // global variable, unless explicitly enabled.
916    if (C && C->getType()->isPointerTy() && !C->isNullValue())
917      if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
918          GV && !(GV->isConstant() || SpecializeOnAddress))
919        return nullptr;
920  
921    return C;
922  }
923  
924  void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
925                                            const Spec *End) {
926    // Collect the call sites that need updating.
927    SmallVector<CallBase *> ToUpdate;
928    for (User *U : F->users())
929      if (auto *CS = dyn_cast<CallBase>(U);
930          CS && CS->getCalledFunction() == F &&
931          Solver.isBlockExecutable(CS->getParent()))
932        ToUpdate.push_back(CS);
933  
934    unsigned NCallsLeft = ToUpdate.size();
935    for (CallBase *CS : ToUpdate) {
936      bool ShouldDecrementCount = CS->getFunction() == F;
937  
938      // Find the best matching specialisation.
939      const Spec *BestSpec = nullptr;
940      for (const Spec &S : make_range(Begin, End)) {
941        if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score))
942          continue;
943  
944        if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
945              unsigned ArgNo = Arg.Formal->getArgNo();
946              return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
947            }))
948          continue;
949  
950        BestSpec = &S;
951      }
952  
953      if (BestSpec) {
954        LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
955                          << " to call " << BestSpec->Clone->getName() << "\n");
956        CS->setCalledFunction(BestSpec->Clone);
957        ShouldDecrementCount = true;
958      }
959  
960      if (ShouldDecrementCount)
961        --NCallsLeft;
962    }
963  
964    // If the function has been completely specialized, the original function
965    // is no longer needed. Mark it unreachable.
966    if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) {
967      Solver.markFunctionUnreachable(F);
968      FullySpecialized.insert(F);
969    }
970  }
971