1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/FunctionSpecialization.h" 10 #include "llvm/ADT/Statistic.h" 11 #include "llvm/Analysis/CodeMetrics.h" 12 #include "llvm/Analysis/ConstantFolding.h" 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueLattice.h" 17 #include "llvm/Analysis/ValueLatticeUtils.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/Transforms/Scalar/SCCP.h" 21 #include "llvm/Transforms/Utils/Cloning.h" 22 #include "llvm/Transforms/Utils/SCCPSolver.h" 23 #include "llvm/Transforms/Utils/SizeOpts.h" 24 #include <cmath> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "function-specialization" 29 30 STATISTIC(NumSpecsCreated, "Number of specializations created"); 31 32 static cl::opt<bool> ForceSpecialization( 33 "force-specialization", cl::init(false), cl::Hidden, cl::desc( 34 "Force function specialization for every call site with a constant " 35 "argument")); 36 37 static cl::opt<unsigned> MaxClones( 38 "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( 39 "The maximum number of clones allowed for a single function " 40 "specialization")); 41 42 static cl::opt<unsigned> 43 MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100), 44 cl::Hidden, 45 cl::desc("The maximum number of iterations allowed " 46 "when searching for transitive " 47 "phis")); 48 49 static cl::opt<unsigned> MaxIncomingPhiValues( 50 "funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden, 51 cl::desc("The maximum number of incoming values a PHI node can have to be " 52 "considered during the specialization bonus estimation")); 53 54 static cl::opt<unsigned> MaxBlockPredecessors( 55 "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc( 56 "The maximum number of predecessors a basic block can have to be " 57 "considered during the estimation of dead code")); 58 59 static cl::opt<unsigned> MinFunctionSize( 60 "funcspec-min-function-size", cl::init(300), cl::Hidden, cl::desc( 61 "Don't specialize functions that have less than this number of " 62 "instructions")); 63 64 static cl::opt<unsigned> MaxCodeSizeGrowth( 65 "funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc( 66 "Maximum codesize growth allowed per function")); 67 68 static cl::opt<unsigned> MinCodeSizeSavings( 69 "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, cl::desc( 70 "Reject specializations whose codesize savings are less than this" 71 "much percent of the original function size")); 72 73 static cl::opt<unsigned> MinLatencySavings( 74 "funcspec-min-latency-savings", cl::init(40), cl::Hidden, 75 cl::desc("Reject specializations whose latency savings are less than this" 76 "much percent of the original function size")); 77 78 static cl::opt<unsigned> MinInliningBonus( 79 "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, cl::desc( 80 "Reject specializations whose inlining bonus is less than this" 81 "much percent of the original function size")); 82 83 static cl::opt<bool> SpecializeOnAddress( 84 "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( 85 "Enable function specialization on the address of global values")); 86 87 // Disabled by default as it can significantly increase compilation times. 88 // 89 // https://llvm-compile-time-tracker.com 90 // https://github.com/nikic/llvm-compile-time-tracker 91 static cl::opt<bool> SpecializeLiteralConstant( 92 "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc( 93 "Enable specialization of functions that take a literal constant as an " 94 "argument")); 95 96 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, BasicBlock *Succ, 97 DenseSet<BasicBlock *> &DeadBlocks) { 98 unsigned I = 0; 99 return all_of(predecessors(Succ), 100 [&I, BB, Succ, &DeadBlocks] (BasicBlock *Pred) { 101 return I++ < MaxBlockPredecessors && 102 (Pred == BB || Pred == Succ || DeadBlocks.contains(Pred)); 103 }); 104 } 105 106 // Estimates the codesize savings due to dead code after constant propagation. 107 // \p WorkList represents the basic blocks of a specialization which will 108 // eventually become dead once we replace instructions that are known to be 109 // constants. The successors of such blocks are added to the list as long as 110 // the \p Solver found they were executable prior to specialization, and only 111 // if all their predecessors are dead. 112 Cost InstCostVisitor::estimateBasicBlocks( 113 SmallVectorImpl<BasicBlock *> &WorkList) { 114 Cost CodeSize = 0; 115 // Accumulate the instruction cost of each basic block weighted by frequency. 116 while (!WorkList.empty()) { 117 BasicBlock *BB = WorkList.pop_back_val(); 118 119 // These blocks are considered dead as far as the InstCostVisitor 120 // is concerned. They haven't been proven dead yet by the Solver, 121 // but may become if we propagate the specialization arguments. 122 if (!DeadBlocks.insert(BB).second) 123 continue; 124 125 for (Instruction &I : *BB) { 126 // Disregard SSA copies. 127 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 128 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 129 continue; 130 // If it's a known constant we have already accounted for it. 131 if (KnownConstants.contains(&I)) 132 continue; 133 134 Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 135 136 LLVM_DEBUG(dbgs() << "FnSpecialization: CodeSize " << C 137 << " for user " << I << "\n"); 138 CodeSize += C; 139 } 140 141 // Keep adding dead successors to the list as long as they are 142 // executable and only reachable from dead blocks. 143 for (BasicBlock *SuccBB : successors(BB)) 144 if (isBlockExecutable(SuccBB) && 145 canEliminateSuccessor(BB, SuccBB, DeadBlocks)) 146 WorkList.push_back(SuccBB); 147 } 148 return CodeSize; 149 } 150 151 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) { 152 if (auto *C = dyn_cast<Constant>(V)) 153 return C; 154 return KnownConstants.lookup(V); 155 } 156 157 Bonus InstCostVisitor::getBonusFromPendingPHIs() { 158 Bonus B; 159 while (!PendingPHIs.empty()) { 160 Instruction *Phi = PendingPHIs.pop_back_val(); 161 // The pending PHIs could have been proven dead by now. 162 if (isBlockExecutable(Phi->getParent())) 163 B += getUserBonus(Phi); 164 } 165 return B; 166 } 167 168 /// Compute a bonus for replacing argument \p A with constant \p C. 169 Bonus InstCostVisitor::getSpecializationBonus(Argument *A, Constant *C) { 170 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " 171 << C->getNameOrAsOperand() << "\n"); 172 Bonus B; 173 for (auto *U : A->users()) 174 if (auto *UI = dyn_cast<Instruction>(U)) 175 if (isBlockExecutable(UI->getParent())) 176 B += getUserBonus(UI, A, C); 177 178 LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated bonus {CodeSize = " 179 << B.CodeSize << ", Latency = " << B.Latency 180 << "} for argument " << *A << "\n"); 181 return B; 182 } 183 184 Bonus InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) { 185 // We have already propagated a constant for this user. 186 if (KnownConstants.contains(User)) 187 return {0, 0}; 188 189 // Cache the iterator before visiting. 190 LastVisited = Use ? KnownConstants.insert({Use, C}).first 191 : KnownConstants.end(); 192 193 Cost CodeSize = 0; 194 if (auto *I = dyn_cast<SwitchInst>(User)) { 195 CodeSize = estimateSwitchInst(*I); 196 } else if (auto *I = dyn_cast<BranchInst>(User)) { 197 CodeSize = estimateBranchInst(*I); 198 } else { 199 C = visit(*User); 200 if (!C) 201 return {0, 0}; 202 } 203 204 // Even though it doesn't make sense to bind switch and branch instructions 205 // with a constant, unlike any other instruction type, it prevents estimating 206 // their bonus multiple times. 207 KnownConstants.insert({User, C}); 208 209 CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize); 210 211 uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() / 212 BFI.getEntryFreq().getFrequency(); 213 214 Cost Latency = Weight * 215 TTI.getInstructionCost(User, TargetTransformInfo::TCK_Latency); 216 217 LLVM_DEBUG(dbgs() << "FnSpecialization: {CodeSize = " << CodeSize 218 << ", Latency = " << Latency << "} for user " 219 << *User << "\n"); 220 221 Bonus B(CodeSize, Latency); 222 for (auto *U : User->users()) 223 if (auto *UI = dyn_cast<Instruction>(U)) 224 if (UI != User && isBlockExecutable(UI->getParent())) 225 B += getUserBonus(UI, User, C); 226 227 return B; 228 } 229 230 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { 231 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 232 233 if (I.getCondition() != LastVisited->first) 234 return 0; 235 236 auto *C = dyn_cast<ConstantInt>(LastVisited->second); 237 if (!C) 238 return 0; 239 240 BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); 241 // Initialize the worklist with the dead basic blocks. These are the 242 // destination labels which are different from the one corresponding 243 // to \p C. They should be executable and have a unique predecessor. 244 SmallVector<BasicBlock *> WorkList; 245 for (const auto &Case : I.cases()) { 246 BasicBlock *BB = Case.getCaseSuccessor(); 247 if (BB != Succ && isBlockExecutable(BB) && 248 canEliminateSuccessor(I.getParent(), BB, DeadBlocks)) 249 WorkList.push_back(BB); 250 } 251 252 return estimateBasicBlocks(WorkList); 253 } 254 255 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { 256 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 257 258 if (I.getCondition() != LastVisited->first) 259 return 0; 260 261 BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); 262 // Initialize the worklist with the dead successor as long as 263 // it is executable and has a unique predecessor. 264 SmallVector<BasicBlock *> WorkList; 265 if (isBlockExecutable(Succ) && 266 canEliminateSuccessor(I.getParent(), Succ, DeadBlocks)) 267 WorkList.push_back(Succ); 268 269 return estimateBasicBlocks(WorkList); 270 } 271 272 bool InstCostVisitor::discoverTransitivelyIncomingValues( 273 Constant *Const, PHINode *Root, DenseSet<PHINode *> &TransitivePHIs) { 274 275 SmallVector<PHINode *, 64> WorkList; 276 WorkList.push_back(Root); 277 unsigned Iter = 0; 278 279 while (!WorkList.empty()) { 280 PHINode *PN = WorkList.pop_back_val(); 281 282 if (++Iter > MaxDiscoveryIterations || 283 PN->getNumIncomingValues() > MaxIncomingPhiValues) 284 return false; 285 286 if (!TransitivePHIs.insert(PN).second) 287 continue; 288 289 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 290 Value *V = PN->getIncomingValue(I); 291 292 // Disregard self-references and dead incoming values. 293 if (auto *Inst = dyn_cast<Instruction>(V)) 294 if (Inst == PN || DeadBlocks.contains(PN->getIncomingBlock(I))) 295 continue; 296 297 if (Constant *C = findConstantFor(V, KnownConstants)) { 298 // Not all incoming values are the same constant. Bail immediately. 299 if (C != Const) 300 return false; 301 continue; 302 } 303 304 if (auto *Phi = dyn_cast<PHINode>(V)) { 305 WorkList.push_back(Phi); 306 continue; 307 } 308 309 // We can't reason about anything else. 310 return false; 311 } 312 } 313 return true; 314 } 315 316 Constant *InstCostVisitor::visitPHINode(PHINode &I) { 317 if (I.getNumIncomingValues() > MaxIncomingPhiValues) 318 return nullptr; 319 320 bool Inserted = VisitedPHIs.insert(&I).second; 321 Constant *Const = nullptr; 322 bool HaveSeenIncomingPHI = false; 323 324 for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) { 325 Value *V = I.getIncomingValue(Idx); 326 327 // Disregard self-references and dead incoming values. 328 if (auto *Inst = dyn_cast<Instruction>(V)) 329 if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx))) 330 continue; 331 332 if (Constant *C = findConstantFor(V, KnownConstants)) { 333 if (!Const) 334 Const = C; 335 // Not all incoming values are the same constant. Bail immediately. 336 if (C != Const) 337 return nullptr; 338 continue; 339 } 340 341 if (Inserted) { 342 // First time we are seeing this phi. We will retry later, after 343 // all the constant arguments have been propagated. Bail for now. 344 PendingPHIs.push_back(&I); 345 return nullptr; 346 } 347 348 if (isa<PHINode>(V)) { 349 // Perhaps it is a Transitive Phi. We will confirm later. 350 HaveSeenIncomingPHI = true; 351 continue; 352 } 353 354 // We can't reason about anything else. 355 return nullptr; 356 } 357 358 if (!Const) 359 return nullptr; 360 361 if (!HaveSeenIncomingPHI) 362 return Const; 363 364 DenseSet<PHINode *> TransitivePHIs; 365 if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs)) 366 return nullptr; 367 368 return Const; 369 } 370 371 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { 372 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 373 374 if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) 375 return LastVisited->second; 376 return nullptr; 377 } 378 379 Constant *InstCostVisitor::visitCallBase(CallBase &I) { 380 Function *F = I.getCalledFunction(); 381 if (!F || !canConstantFoldCallTo(&I, F)) 382 return nullptr; 383 384 SmallVector<Constant *, 8> Operands; 385 Operands.reserve(I.getNumOperands()); 386 387 for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { 388 Value *V = I.getOperand(Idx); 389 Constant *C = findConstantFor(V, KnownConstants); 390 if (!C) 391 return nullptr; 392 Operands.push_back(C); 393 } 394 395 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 396 return ConstantFoldCall(&I, F, Ops); 397 } 398 399 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { 400 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 401 402 if (isa<ConstantPointerNull>(LastVisited->second)) 403 return nullptr; 404 return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); 405 } 406 407 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 408 SmallVector<Constant *, 8> Operands; 409 Operands.reserve(I.getNumOperands()); 410 411 for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { 412 Value *V = I.getOperand(Idx); 413 Constant *C = findConstantFor(V, KnownConstants); 414 if (!C) 415 return nullptr; 416 Operands.push_back(C); 417 } 418 419 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 420 return ConstantFoldInstOperands(&I, Ops, DL); 421 } 422 423 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { 424 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 425 426 if (I.getCondition() != LastVisited->first) 427 return nullptr; 428 429 Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() 430 : I.getTrueValue(); 431 Constant *C = findConstantFor(V, KnownConstants); 432 return C; 433 } 434 435 Constant *InstCostVisitor::visitCastInst(CastInst &I) { 436 return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, 437 I.getType(), DL); 438 } 439 440 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { 441 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 442 443 bool Swap = I.getOperand(1) == LastVisited->first; 444 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 445 Constant *Other = findConstantFor(V, KnownConstants); 446 if (!Other) 447 return nullptr; 448 449 Constant *Const = LastVisited->second; 450 return Swap ? 451 ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL) 452 : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); 453 } 454 455 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { 456 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 457 458 return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); 459 } 460 461 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { 462 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 463 464 bool Swap = I.getOperand(1) == LastVisited->first; 465 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 466 Constant *Other = findConstantFor(V, KnownConstants); 467 if (!Other) 468 return nullptr; 469 470 Constant *Const = LastVisited->second; 471 return dyn_cast_or_null<Constant>(Swap ? 472 simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL)) 473 : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL))); 474 } 475 476 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, 477 CallInst *Call) { 478 Value *StoreValue = nullptr; 479 for (auto *User : Alloca->users()) { 480 // We can't use llvm::isAllocaPromotable() as that would fail because of 481 // the usage in the CallInst, which is what we check here. 482 if (User == Call) 483 continue; 484 if (auto *Bitcast = dyn_cast<BitCastInst>(User)) { 485 if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) 486 return nullptr; 487 continue; 488 } 489 490 if (auto *Store = dyn_cast<StoreInst>(User)) { 491 // This is a duplicate store, bail out. 492 if (StoreValue || Store->isVolatile()) 493 return nullptr; 494 StoreValue = Store->getValueOperand(); 495 continue; 496 } 497 // Bail if there is any other unknown usage. 498 return nullptr; 499 } 500 501 if (!StoreValue) 502 return nullptr; 503 504 return getCandidateConstant(StoreValue); 505 } 506 507 // A constant stack value is an AllocaInst that has a single constant 508 // value stored to it. Return this constant if such an alloca stack value 509 // is a function argument. 510 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, 511 Value *Val) { 512 if (!Val) 513 return nullptr; 514 Val = Val->stripPointerCasts(); 515 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 516 return ConstVal; 517 auto *Alloca = dyn_cast<AllocaInst>(Val); 518 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 519 return nullptr; 520 return getPromotableAlloca(Alloca, Call); 521 } 522 523 // To support specializing recursive functions, it is important to propagate 524 // constant arguments because after a first iteration of specialisation, a 525 // reduced example may look like this: 526 // 527 // define internal void @RecursiveFn(i32* arg1) { 528 // %temp = alloca i32, align 4 529 // store i32 2 i32* %temp, align 4 530 // call void @RecursiveFn.1(i32* nonnull %temp) 531 // ret void 532 // } 533 // 534 // Before a next iteration, we need to propagate the constant like so 535 // which allows further specialization in next iterations. 536 // 537 // @funcspec.arg = internal constant i32 2 538 // 539 // define internal void @someFunc(i32* arg1) { 540 // call void @otherFunc(i32* nonnull @funcspec.arg) 541 // ret void 542 // } 543 // 544 // See if there are any new constant values for the callers of \p F via 545 // stack variables and promote them to global variables. 546 void FunctionSpecializer::promoteConstantStackValues(Function *F) { 547 for (User *U : F->users()) { 548 549 auto *Call = dyn_cast<CallInst>(U); 550 if (!Call) 551 continue; 552 553 if (!Solver.isBlockExecutable(Call->getParent())) 554 continue; 555 556 for (const Use &U : Call->args()) { 557 unsigned Idx = Call->getArgOperandNo(&U); 558 Value *ArgOp = Call->getArgOperand(Idx); 559 Type *ArgOpType = ArgOp->getType(); 560 561 if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) 562 continue; 563 564 auto *ConstVal = getConstantStackValue(Call, ArgOp); 565 if (!ConstVal) 566 continue; 567 568 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 569 GlobalValue::InternalLinkage, ConstVal, 570 "specialized.arg." + Twine(++NGlobals)); 571 Call->setArgOperand(Idx, GV); 572 } 573 } 574 } 575 576 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 577 // interfere with the promoteConstantStackValues() optimization. 578 static void removeSSACopy(Function &F) { 579 for (BasicBlock &BB : F) { 580 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 581 auto *II = dyn_cast<IntrinsicInst>(&Inst); 582 if (!II) 583 continue; 584 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 585 continue; 586 Inst.replaceAllUsesWith(II->getOperand(0)); 587 Inst.eraseFromParent(); 588 } 589 } 590 } 591 592 /// Remove any ssa_copy intrinsics that may have been introduced. 593 void FunctionSpecializer::cleanUpSSA() { 594 for (Function *F : Specializations) 595 removeSSACopy(*F); 596 } 597 598 599 template <> struct llvm::DenseMapInfo<SpecSig> { 600 static inline SpecSig getEmptyKey() { return {~0U, {}}; } 601 602 static inline SpecSig getTombstoneKey() { return {~1U, {}}; } 603 604 static unsigned getHashValue(const SpecSig &S) { 605 return static_cast<unsigned>(hash_value(S)); 606 } 607 608 static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { 609 return LHS == RHS; 610 } 611 }; 612 613 FunctionSpecializer::~FunctionSpecializer() { 614 LLVM_DEBUG( 615 if (NumSpecsCreated > 0) 616 dbgs() << "FnSpecialization: Created " << NumSpecsCreated 617 << " specializations in module " << M.getName() << "\n"); 618 // Eliminate dead code. 619 removeDeadFunctions(); 620 cleanUpSSA(); 621 } 622 623 /// Attempt to specialize functions in the module to enable constant 624 /// propagation across function boundaries. 625 /// 626 /// \returns true if at least one function is specialized. 627 bool FunctionSpecializer::run() { 628 // Find possible specializations for each function. 629 SpecMap SM; 630 SmallVector<Spec, 32> AllSpecs; 631 unsigned NumCandidates = 0; 632 for (Function &F : M) { 633 if (!isCandidateFunction(&F)) 634 continue; 635 636 auto [It, Inserted] = FunctionMetrics.try_emplace(&F); 637 CodeMetrics &Metrics = It->second; 638 //Analyze the function. 639 if (Inserted) { 640 SmallPtrSet<const Value *, 32> EphValues; 641 CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); 642 for (BasicBlock &BB : F) 643 Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); 644 } 645 646 // If the code metrics reveal that we shouldn't duplicate the function, 647 // or if the code size implies that this function is easy to get inlined, 648 // then we shouldn't specialize it. 649 if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || 650 (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) && 651 Metrics.NumInsts < MinFunctionSize)) 652 continue; 653 654 // TODO: For now only consider recursive functions when running multiple 655 // times. This should change if specialization on literal constants gets 656 // enabled. 657 if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant) 658 continue; 659 660 int64_t Sz = *Metrics.NumInsts.getValue(); 661 assert(Sz > 0 && "CodeSize should be positive"); 662 // It is safe to down cast from int64_t, NumInsts is always positive. 663 unsigned FuncSize = static_cast<unsigned>(Sz); 664 665 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " 666 << F.getName() << " is " << FuncSize << "\n"); 667 668 if (Inserted && Metrics.isRecursive) 669 promoteConstantStackValues(&F); 670 671 if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) { 672 LLVM_DEBUG( 673 dbgs() << "FnSpecialization: No possible specializations found for " 674 << F.getName() << "\n"); 675 continue; 676 } 677 678 ++NumCandidates; 679 } 680 681 if (!NumCandidates) { 682 LLVM_DEBUG( 683 dbgs() 684 << "FnSpecialization: No possible specializations found in module\n"); 685 return false; 686 } 687 688 // Choose the most profitable specialisations, which fit in the module 689 // specialization budget, which is derived from maximum number of 690 // specializations per specialization candidate function. 691 auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { 692 return AllSpecs[I].Score > AllSpecs[J].Score; 693 }; 694 const unsigned NSpecs = 695 std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); 696 SmallVector<unsigned> BestSpecs(NSpecs + 1); 697 std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); 698 if (AllSpecs.size() > NSpecs) { 699 LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " 700 << "the maximum number of clones threshold.\n" 701 << "FnSpecialization: Specializing the " 702 << NSpecs 703 << " most profitable candidates.\n"); 704 std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); 705 for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { 706 BestSpecs[NSpecs] = I; 707 std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 708 std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 709 } 710 } 711 712 LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; 713 for (unsigned I = 0; I < NSpecs; ++I) { 714 const Spec &S = AllSpecs[BestSpecs[I]]; 715 dbgs() << "FnSpecialization: Function " << S.F->getName() 716 << " , score " << S.Score << "\n"; 717 for (const ArgInfo &Arg : S.Sig.Args) 718 dbgs() << "FnSpecialization: FormalArg = " 719 << Arg.Formal->getNameOrAsOperand() 720 << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() 721 << "\n"; 722 }); 723 724 // Create the chosen specializations. 725 SmallPtrSet<Function *, 8> OriginalFuncs; 726 SmallVector<Function *> Clones; 727 for (unsigned I = 0; I < NSpecs; ++I) { 728 Spec &S = AllSpecs[BestSpecs[I]]; 729 S.Clone = createSpecialization(S.F, S.Sig); 730 731 // Update the known call sites to call the clone. 732 for (CallBase *Call : S.CallSites) { 733 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call 734 << " to call " << S.Clone->getName() << "\n"); 735 Call->setCalledFunction(S.Clone); 736 } 737 738 Clones.push_back(S.Clone); 739 OriginalFuncs.insert(S.F); 740 } 741 742 Solver.solveWhileResolvedUndefsIn(Clones); 743 744 // Update the rest of the call sites - these are the recursive calls, calls 745 // to discarded specialisations and calls that may match a specialisation 746 // after the solver runs. 747 for (Function *F : OriginalFuncs) { 748 auto [Begin, End] = SM[F]; 749 updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); 750 } 751 752 for (Function *F : Clones) { 753 if (F->getReturnType()->isVoidTy()) 754 continue; 755 if (F->getReturnType()->isStructTy()) { 756 auto *STy = cast<StructType>(F->getReturnType()); 757 if (!Solver.isStructLatticeConstant(F, STy)) 758 continue; 759 } else { 760 auto It = Solver.getTrackedRetVals().find(F); 761 assert(It != Solver.getTrackedRetVals().end() && 762 "Return value ought to be tracked"); 763 if (SCCPSolver::isOverdefined(It->second)) 764 continue; 765 } 766 for (User *U : F->users()) { 767 if (auto *CS = dyn_cast<CallBase>(U)) { 768 //The user instruction does not call our function. 769 if (CS->getCalledFunction() != F) 770 continue; 771 Solver.resetLatticeValueFor(CS); 772 } 773 } 774 } 775 776 // Rerun the solver to notify the users of the modified callsites. 777 Solver.solveWhileResolvedUndefs(); 778 779 for (Function *F : OriginalFuncs) 780 if (FunctionMetrics[F].isRecursive) 781 promoteConstantStackValues(F); 782 783 return true; 784 } 785 786 void FunctionSpecializer::removeDeadFunctions() { 787 for (Function *F : FullySpecialized) { 788 LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " 789 << F->getName() << "\n"); 790 if (FAM) 791 FAM->clear(*F, F->getName()); 792 F->eraseFromParent(); 793 } 794 FullySpecialized.clear(); 795 } 796 797 /// Clone the function \p F and remove the ssa_copy intrinsics added by 798 /// the SCCPSolver in the cloned version. 799 static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) { 800 ValueToValueMapTy Mappings; 801 Function *Clone = CloneFunction(F, Mappings); 802 Clone->setName(F->getName() + ".specialized." + Twine(NSpecs)); 803 removeSSACopy(*Clone); 804 return Clone; 805 } 806 807 bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize, 808 SmallVectorImpl<Spec> &AllSpecs, 809 SpecMap &SM) { 810 // A mapping from a specialisation signature to the index of the respective 811 // entry in the all specialisation array. Used to ensure uniqueness of 812 // specialisations. 813 DenseMap<SpecSig, unsigned> UniqueSpecs; 814 815 // Get a list of interesting arguments. 816 SmallVector<Argument *> Args; 817 for (Argument &Arg : F->args()) 818 if (isArgumentInteresting(&Arg)) 819 Args.push_back(&Arg); 820 821 if (Args.empty()) 822 return false; 823 824 for (User *U : F->users()) { 825 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 826 continue; 827 auto &CS = *cast<CallBase>(U); 828 829 // The user instruction does not call our function. 830 if (CS.getCalledFunction() != F) 831 continue; 832 833 // If the call site has attribute minsize set, that callsite won't be 834 // specialized. 835 if (CS.hasFnAttr(Attribute::MinSize)) 836 continue; 837 838 // If the parent of the call site will never be executed, we don't need 839 // to worry about the passed value. 840 if (!Solver.isBlockExecutable(CS.getParent())) 841 continue; 842 843 // Examine arguments and create a specialisation candidate from the 844 // constant operands of this call site. 845 SpecSig S; 846 for (Argument *A : Args) { 847 Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); 848 if (!C) 849 continue; 850 LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " 851 << A->getName() << " : " << C->getNameOrAsOperand() 852 << "\n"); 853 S.Args.push_back({A, C}); 854 } 855 856 if (S.Args.empty()) 857 continue; 858 859 // Check if we have encountered the same specialisation already. 860 if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { 861 // Existing specialisation. Add the call to the list to rewrite, unless 862 // it's a recursive call. A specialisation, generated because of a 863 // recursive call may end up as not the best specialisation for all 864 // the cloned instances of this call, which result from specialising 865 // functions. Hence we don't rewrite the call directly, but match it with 866 // the best specialisation once all specialisations are known. 867 if (CS.getFunction() == F) 868 continue; 869 const unsigned Index = It->second; 870 AllSpecs[Index].CallSites.push_back(&CS); 871 } else { 872 // Calculate the specialisation gain. 873 Bonus B; 874 unsigned Score = 0; 875 InstCostVisitor Visitor = getInstCostVisitorFor(F); 876 for (ArgInfo &A : S.Args) { 877 B += Visitor.getSpecializationBonus(A.Formal, A.Actual); 878 Score += getInliningBonus(A.Formal, A.Actual); 879 } 880 B += Visitor.getBonusFromPendingPHIs(); 881 882 883 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization bonus {CodeSize = " 884 << B.CodeSize << ", Latency = " << B.Latency 885 << ", Inlining = " << Score << "}\n"); 886 887 FunctionGrowth[F] += FuncSize - B.CodeSize; 888 889 auto IsProfitable = [](Bonus &B, unsigned Score, unsigned FuncSize, 890 unsigned FuncGrowth) -> bool { 891 // No check required. 892 if (ForceSpecialization) 893 return true; 894 // Minimum inlining bonus. 895 if (Score > MinInliningBonus * FuncSize / 100) 896 return true; 897 // Minimum codesize savings. 898 if (B.CodeSize < MinCodeSizeSavings * FuncSize / 100) 899 return false; 900 // Minimum latency savings. 901 if (B.Latency < MinLatencySavings * FuncSize / 100) 902 return false; 903 // Maximum codesize growth. 904 if (FuncGrowth / FuncSize > MaxCodeSizeGrowth) 905 return false; 906 return true; 907 }; 908 909 // Discard unprofitable specialisations. 910 if (!IsProfitable(B, Score, FuncSize, FunctionGrowth[F])) 911 continue; 912 913 // Create a new specialisation entry. 914 Score += std::max(B.CodeSize, B.Latency); 915 auto &Spec = AllSpecs.emplace_back(F, S, Score); 916 if (CS.getFunction() != F) 917 Spec.CallSites.push_back(&CS); 918 const unsigned Index = AllSpecs.size() - 1; 919 UniqueSpecs[S] = Index; 920 if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) 921 It->second.second = Index + 1; 922 } 923 } 924 925 return !UniqueSpecs.empty(); 926 } 927 928 bool FunctionSpecializer::isCandidateFunction(Function *F) { 929 if (F->isDeclaration() || F->arg_empty()) 930 return false; 931 932 if (F->hasFnAttribute(Attribute::NoDuplicate)) 933 return false; 934 935 // Do not specialize the cloned function again. 936 if (Specializations.contains(F)) 937 return false; 938 939 // If we're optimizing the function for size, we shouldn't specialize it. 940 if (F->hasOptSize() || 941 shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 942 return false; 943 944 // Exit if the function is not executable. There's no point in specializing 945 // a dead function. 946 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 947 return false; 948 949 // It wastes time to specialize a function which would get inlined finally. 950 if (F->hasFnAttribute(Attribute::AlwaysInline)) 951 return false; 952 953 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 954 << "\n"); 955 return true; 956 } 957 958 Function *FunctionSpecializer::createSpecialization(Function *F, 959 const SpecSig &S) { 960 Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1); 961 962 // The original function does not neccessarily have internal linkage, but the 963 // clone must. 964 Clone->setLinkage(GlobalValue::InternalLinkage); 965 966 // Initialize the lattice state of the arguments of the function clone, 967 // marking the argument on which we specialized the function constant 968 // with the given value. 969 Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); 970 Solver.markBlockExecutable(&Clone->front()); 971 Solver.addArgumentTrackedFunction(Clone); 972 Solver.addTrackedFunction(Clone); 973 974 // Mark all the specialized functions 975 Specializations.insert(Clone); 976 ++NumSpecsCreated; 977 978 return Clone; 979 } 980 981 /// Compute the inlining bonus for replacing argument \p A with constant \p C. 982 /// The below heuristic is only concerned with exposing inlining 983 /// opportunities via indirect call promotion. If the argument is not a 984 /// (potentially casted) function pointer, give up. 985 unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) { 986 Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); 987 if (!CalledFunction) 988 return 0; 989 990 // Get TTI for the called function (used for the inline cost). 991 auto &CalleeTTI = (GetTTI)(*CalledFunction); 992 993 // Look at all the call sites whose called value is the argument. 994 // Specializing the function on the argument would allow these indirect 995 // calls to be promoted to direct calls. If the indirect call promotion 996 // would likely enable the called function to be inlined, specializing is a 997 // good idea. 998 int InliningBonus = 0; 999 for (User *U : A->users()) { 1000 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 1001 continue; 1002 auto *CS = cast<CallBase>(U); 1003 if (CS->getCalledOperand() != A) 1004 continue; 1005 if (CS->getFunctionType() != CalledFunction->getFunctionType()) 1006 continue; 1007 1008 // Get the cost of inlining the called function at this call site. Note 1009 // that this is only an estimate. The called function may eventually 1010 // change in a way that leads to it not being inlined here, even though 1011 // inlining looks profitable now. For example, one of its called 1012 // functions may be inlined into it, making the called function too large 1013 // to be inlined into this call site. 1014 // 1015 // We apply a boost for performing indirect call promotion by increasing 1016 // the default threshold by the threshold for indirect calls. 1017 auto Params = getInlineParams(); 1018 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 1019 InlineCost IC = 1020 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 1021 1022 // We clamp the bonus for this call to be between zero and the default 1023 // threshold. 1024 if (IC.isAlways()) 1025 InliningBonus += Params.DefaultThreshold; 1026 else if (IC.isVariable() && IC.getCostDelta() > 0) 1027 InliningBonus += IC.getCostDelta(); 1028 1029 LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << InliningBonus 1030 << " for user " << *U << "\n"); 1031 } 1032 1033 return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0; 1034 } 1035 1036 /// Determine if it is possible to specialise the function for constant values 1037 /// of the formal parameter \p A. 1038 bool FunctionSpecializer::isArgumentInteresting(Argument *A) { 1039 // No point in specialization if the argument is unused. 1040 if (A->user_empty()) 1041 return false; 1042 1043 Type *Ty = A->getType(); 1044 if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || 1045 (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) 1046 return false; 1047 1048 // SCCP solver does not record an argument that will be constructed on 1049 // stack. 1050 if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) 1051 return false; 1052 1053 // For non-argument-tracked functions every argument is overdefined. 1054 if (!Solver.isArgumentTrackedFunction(A->getParent())) 1055 return true; 1056 1057 // Check the lattice value and decide if we should attemt to specialize, 1058 // based on this argument. No point in specialization, if the lattice value 1059 // is already a constant. 1060 bool IsOverdefined = Ty->isStructTy() 1061 ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) 1062 : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); 1063 1064 LLVM_DEBUG( 1065 if (IsOverdefined) 1066 dbgs() << "FnSpecialization: Found interesting parameter " 1067 << A->getNameOrAsOperand() << "\n"; 1068 else 1069 dbgs() << "FnSpecialization: Nothing to do, parameter " 1070 << A->getNameOrAsOperand() << " is already constant\n"; 1071 ); 1072 return IsOverdefined; 1073 } 1074 1075 /// Check if the value \p V (an actual argument) is a constant or can only 1076 /// have a constant value. Return that constant. 1077 Constant *FunctionSpecializer::getCandidateConstant(Value *V) { 1078 if (isa<PoisonValue>(V)) 1079 return nullptr; 1080 1081 // Select for possible specialisation values that are constants or 1082 // are deduced to be constants or constant ranges with a single element. 1083 Constant *C = dyn_cast<Constant>(V); 1084 if (!C) 1085 C = Solver.getConstantOrNull(V); 1086 1087 // Don't specialize on (anything derived from) the address of a non-constant 1088 // global variable, unless explicitly enabled. 1089 if (C && C->getType()->isPointerTy() && !C->isNullValue()) 1090 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 1091 GV && !(GV->isConstant() || SpecializeOnAddress)) 1092 return nullptr; 1093 1094 return C; 1095 } 1096 1097 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, 1098 const Spec *End) { 1099 // Collect the call sites that need updating. 1100 SmallVector<CallBase *> ToUpdate; 1101 for (User *U : F->users()) 1102 if (auto *CS = dyn_cast<CallBase>(U); 1103 CS && CS->getCalledFunction() == F && 1104 Solver.isBlockExecutable(CS->getParent())) 1105 ToUpdate.push_back(CS); 1106 1107 unsigned NCallsLeft = ToUpdate.size(); 1108 for (CallBase *CS : ToUpdate) { 1109 bool ShouldDecrementCount = CS->getFunction() == F; 1110 1111 // Find the best matching specialisation. 1112 const Spec *BestSpec = nullptr; 1113 for (const Spec &S : make_range(Begin, End)) { 1114 if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) 1115 continue; 1116 1117 if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { 1118 unsigned ArgNo = Arg.Formal->getArgNo(); 1119 return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; 1120 })) 1121 continue; 1122 1123 BestSpec = &S; 1124 } 1125 1126 if (BestSpec) { 1127 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS 1128 << " to call " << BestSpec->Clone->getName() << "\n"); 1129 CS->setCalledFunction(BestSpec->Clone); 1130 ShouldDecrementCount = true; 1131 } 1132 1133 if (ShouldDecrementCount) 1134 --NCallsLeft; 1135 } 1136 1137 // If the function has been completely specialized, the original function 1138 // is no longer needed. Mark it unreachable. 1139 if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { 1140 Solver.markFunctionUnreachable(F); 1141 FullySpecialized.insert(F); 1142 } 1143 } 1144