1 //===- FunctionImport.cpp - ThinLTO Summary-based Function Import ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Function import based on summaries. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/FunctionImport.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalObject.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/ModuleSummaryIndex.h" 31 #include "llvm/IRReader/IRReader.h" 32 #include "llvm/Linker/IRMover.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/Errc.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/JSON.h" 41 #include "llvm/Support/SourceMgr.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO/Internalize.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 46 #include "llvm/Transforms/Utils/ValueMapper.h" 47 #include <cassert> 48 #include <memory> 49 #include <set> 50 #include <string> 51 #include <system_error> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "function-import" 58 59 STATISTIC(NumImportedFunctionsThinLink, 60 "Number of functions thin link decided to import"); 61 STATISTIC(NumImportedHotFunctionsThinLink, 62 "Number of hot functions thin link decided to import"); 63 STATISTIC(NumImportedCriticalFunctionsThinLink, 64 "Number of critical functions thin link decided to import"); 65 STATISTIC(NumImportedGlobalVarsThinLink, 66 "Number of global variables thin link decided to import"); 67 STATISTIC(NumImportedFunctions, "Number of functions imported in backend"); 68 STATISTIC(NumImportedGlobalVars, 69 "Number of global variables imported in backend"); 70 STATISTIC(NumImportedModules, "Number of modules imported from"); 71 STATISTIC(NumDeadSymbols, "Number of dead stripped symbols in index"); 72 STATISTIC(NumLiveSymbols, "Number of live symbols in index"); 73 74 /// Limit on instruction count of imported functions. 75 static cl::opt<unsigned> ImportInstrLimit( 76 "import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"), 77 cl::desc("Only import functions with less than N instructions")); 78 79 static cl::opt<int> ImportCutoff( 80 "import-cutoff", cl::init(-1), cl::Hidden, cl::value_desc("N"), 81 cl::desc("Only import first N functions if N>=0 (default -1)")); 82 83 static cl::opt<bool> 84 ForceImportAll("force-import-all", cl::init(false), cl::Hidden, 85 cl::desc("Import functions with noinline attribute")); 86 87 static cl::opt<float> 88 ImportInstrFactor("import-instr-evolution-factor", cl::init(0.7), 89 cl::Hidden, cl::value_desc("x"), 90 cl::desc("As we import functions, multiply the " 91 "`import-instr-limit` threshold by this factor " 92 "before processing newly imported functions")); 93 94 static cl::opt<float> ImportHotInstrFactor( 95 "import-hot-evolution-factor", cl::init(1.0), cl::Hidden, 96 cl::value_desc("x"), 97 cl::desc("As we import functions called from hot callsite, multiply the " 98 "`import-instr-limit` threshold by this factor " 99 "before processing newly imported functions")); 100 101 static cl::opt<float> ImportHotMultiplier( 102 "import-hot-multiplier", cl::init(10.0), cl::Hidden, cl::value_desc("x"), 103 cl::desc("Multiply the `import-instr-limit` threshold for hot callsites")); 104 105 static cl::opt<float> ImportCriticalMultiplier( 106 "import-critical-multiplier", cl::init(100.0), cl::Hidden, 107 cl::value_desc("x"), 108 cl::desc( 109 "Multiply the `import-instr-limit` threshold for critical callsites")); 110 111 // FIXME: This multiplier was not really tuned up. 112 static cl::opt<float> ImportColdMultiplier( 113 "import-cold-multiplier", cl::init(0), cl::Hidden, cl::value_desc("N"), 114 cl::desc("Multiply the `import-instr-limit` threshold for cold callsites")); 115 116 static cl::opt<bool> PrintImports("print-imports", cl::init(false), cl::Hidden, 117 cl::desc("Print imported functions")); 118 119 static cl::opt<bool> PrintImportFailures( 120 "print-import-failures", cl::init(false), cl::Hidden, 121 cl::desc("Print information for functions rejected for importing")); 122 123 static cl::opt<bool> ComputeDead("compute-dead", cl::init(true), cl::Hidden, 124 cl::desc("Compute dead symbols")); 125 126 static cl::opt<bool> EnableImportMetadata( 127 "enable-import-metadata", cl::init(false), cl::Hidden, 128 cl::desc("Enable import metadata like 'thinlto_src_module' and " 129 "'thinlto_src_file'")); 130 131 /// Summary file to use for function importing when using -function-import from 132 /// the command line. 133 static cl::opt<std::string> 134 SummaryFile("summary-file", 135 cl::desc("The summary file to use for function importing.")); 136 137 /// Used when testing importing from distributed indexes via opt 138 // -function-import. 139 static cl::opt<bool> 140 ImportAllIndex("import-all-index", 141 cl::desc("Import all external functions in index.")); 142 143 /// This is a test-only option. 144 /// If this option is enabled, the ThinLTO indexing step will import each 145 /// function declaration as a fallback. In a real build this may increase ram 146 /// usage of the indexing step unnecessarily. 147 /// TODO: Implement selective import (based on combined summary analysis) to 148 /// ensure the imported function has a use case in the postlink pipeline. 149 static cl::opt<bool> ImportDeclaration( 150 "import-declaration", cl::init(false), cl::Hidden, 151 cl::desc("If true, import function declaration as fallback if the function " 152 "definition is not imported.")); 153 154 /// Pass a workload description file - an example of workload would be the 155 /// functions executed to satisfy a RPC request. A workload is defined by a root 156 /// function and the list of functions that are (frequently) needed to satisfy 157 /// it. The module that defines the root will have all those functions imported. 158 /// The file contains a JSON dictionary. The keys are root functions, the values 159 /// are lists of functions to import in the module defining the root. It is 160 /// assumed -funique-internal-linkage-names was used, thus ensuring function 161 /// names are unique even for local linkage ones. 162 static cl::opt<std::string> WorkloadDefinitions( 163 "thinlto-workload-def", 164 cl::desc("Pass a workload definition. This is a file containing a JSON " 165 "dictionary. The keys are root functions, the values are lists of " 166 "functions to import in the module defining the root. It is " 167 "assumed -funique-internal-linkage-names was used, to ensure " 168 "local linkage functions have unique names. For example: \n" 169 "{\n" 170 " \"rootFunction_1\": [\"function_to_import_1\", " 171 "\"function_to_import_2\"], \n" 172 " \"rootFunction_2\": [\"function_to_import_3\", " 173 "\"function_to_import_4\"] \n" 174 "}"), 175 cl::Hidden); 176 177 namespace llvm { 178 extern cl::opt<bool> EnableMemProfContextDisambiguation; 179 } 180 181 // Load lazily a module from \p FileName in \p Context. 182 static std::unique_ptr<Module> loadFile(const std::string &FileName, 183 LLVMContext &Context) { 184 SMDiagnostic Err; 185 LLVM_DEBUG(dbgs() << "Loading '" << FileName << "'\n"); 186 // Metadata isn't loaded until functions are imported, to minimize 187 // the memory overhead. 188 std::unique_ptr<Module> Result = 189 getLazyIRFileModule(FileName, Err, Context, 190 /* ShouldLazyLoadMetadata = */ true); 191 if (!Result) { 192 Err.print("function-import", errs()); 193 report_fatal_error("Abort"); 194 } 195 196 return Result; 197 } 198 199 /// Given a list of possible callee implementation for a call site, qualify the 200 /// legality of importing each. The return is a range of pairs. Each pair 201 /// corresponds to a candidate. The first value is the ImportFailureReason for 202 /// that candidate, the second is the candidate. 203 static auto qualifyCalleeCandidates( 204 const ModuleSummaryIndex &Index, 205 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 206 StringRef CallerModulePath) { 207 return llvm::map_range( 208 CalleeSummaryList, 209 [&Index, CalleeSummaryList, 210 CallerModulePath](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) 211 -> std::pair<FunctionImporter::ImportFailureReason, 212 const GlobalValueSummary *> { 213 auto *GVSummary = SummaryPtr.get(); 214 if (!Index.isGlobalValueLive(GVSummary)) 215 return {FunctionImporter::ImportFailureReason::NotLive, GVSummary}; 216 217 if (GlobalValue::isInterposableLinkage(GVSummary->linkage())) 218 return {FunctionImporter::ImportFailureReason::InterposableLinkage, 219 GVSummary}; 220 221 auto *Summary = dyn_cast<FunctionSummary>(GVSummary->getBaseObject()); 222 223 // Ignore any callees that aren't actually functions. This could happen 224 // in the case of GUID hash collisions. It could also happen in theory 225 // for SamplePGO profiles collected on old versions of the code after 226 // renaming, since we synthesize edges to any inlined callees appearing 227 // in the profile. 228 if (!Summary) 229 return {FunctionImporter::ImportFailureReason::GlobalVar, GVSummary}; 230 231 // If this is a local function, make sure we import the copy 232 // in the caller's module. The only time a local function can 233 // share an entry in the index is if there is a local with the same name 234 // in another module that had the same source file name (in a different 235 // directory), where each was compiled in their own directory so there 236 // was not distinguishing path. 237 // However, do the import from another module if there is only one 238 // entry in the list - in that case this must be a reference due 239 // to indirect call profile data, since a function pointer can point to 240 // a local in another module. 241 if (GlobalValue::isLocalLinkage(Summary->linkage()) && 242 CalleeSummaryList.size() > 1 && 243 Summary->modulePath() != CallerModulePath) 244 return { 245 FunctionImporter::ImportFailureReason::LocalLinkageNotInModule, 246 GVSummary}; 247 248 // Skip if it isn't legal to import (e.g. may reference unpromotable 249 // locals). 250 if (Summary->notEligibleToImport()) 251 return {FunctionImporter::ImportFailureReason::NotEligible, 252 GVSummary}; 253 254 return {FunctionImporter::ImportFailureReason::None, GVSummary}; 255 }); 256 } 257 258 /// Given a list of possible callee implementation for a call site, select one 259 /// that fits the \p Threshold for function definition import. If none are 260 /// found, the Reason will give the last reason for the failure (last, in the 261 /// order of CalleeSummaryList entries). While looking for a callee definition, 262 /// sets \p TooLargeOrNoInlineSummary to the last seen too-large or noinline 263 /// candidate; other modules may want to know the function summary or 264 /// declaration even if a definition is not needed. 265 /// 266 /// FIXME: select "best" instead of first that fits. But what is "best"? 267 /// - The smallest: more likely to be inlined. 268 /// - The one with the least outgoing edges (already well optimized). 269 /// - One from a module already being imported from in order to reduce the 270 /// number of source modules parsed/linked. 271 /// - One that has PGO data attached. 272 /// - [insert you fancy metric here] 273 static const GlobalValueSummary * 274 selectCallee(const ModuleSummaryIndex &Index, 275 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 276 unsigned Threshold, StringRef CallerModulePath, 277 const GlobalValueSummary *&TooLargeOrNoInlineSummary, 278 FunctionImporter::ImportFailureReason &Reason) { 279 // Records the last summary with reason noinline or too-large. 280 TooLargeOrNoInlineSummary = nullptr; 281 auto QualifiedCandidates = 282 qualifyCalleeCandidates(Index, CalleeSummaryList, CallerModulePath); 283 for (auto QualifiedValue : QualifiedCandidates) { 284 Reason = QualifiedValue.first; 285 // Skip a summary if its import is not (proved to be) legal. 286 if (Reason != FunctionImporter::ImportFailureReason::None) 287 continue; 288 auto *Summary = 289 cast<FunctionSummary>(QualifiedValue.second->getBaseObject()); 290 291 // Don't bother importing the definition if the chance of inlining it is 292 // not high enough (except under `--force-import-all`). 293 if ((Summary->instCount() > Threshold) && !Summary->fflags().AlwaysInline && 294 !ForceImportAll) { 295 TooLargeOrNoInlineSummary = Summary; 296 Reason = FunctionImporter::ImportFailureReason::TooLarge; 297 continue; 298 } 299 300 // Don't bother importing the definition if we can't inline it anyway. 301 if (Summary->fflags().NoInline && !ForceImportAll) { 302 TooLargeOrNoInlineSummary = Summary; 303 Reason = FunctionImporter::ImportFailureReason::NoInline; 304 continue; 305 } 306 307 return Summary; 308 } 309 return nullptr; 310 } 311 312 namespace { 313 314 using EdgeInfo = std::tuple<const FunctionSummary *, unsigned /* Threshold */>; 315 316 } // anonymous namespace 317 318 /// Import globals referenced by a function or other globals that are being 319 /// imported, if importing such global is possible. 320 class GlobalsImporter final { 321 const ModuleSummaryIndex &Index; 322 const GVSummaryMapTy &DefinedGVSummaries; 323 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 324 IsPrevailing; 325 FunctionImporter::ImportMapTy &ImportList; 326 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 327 328 bool shouldImportGlobal(const ValueInfo &VI) { 329 const auto &GVS = DefinedGVSummaries.find(VI.getGUID()); 330 if (GVS == DefinedGVSummaries.end()) 331 return true; 332 // We should not skip import if the module contains a non-prevailing 333 // definition with interposable linkage type. This is required for 334 // correctness in the situation where there is a prevailing def available 335 // for import and marked read-only. In this case, the non-prevailing def 336 // will be converted to a declaration, while the prevailing one becomes 337 // internal, thus no definitions will be available for linking. In order to 338 // prevent undefined symbol link error, the prevailing definition must be 339 // imported. 340 // FIXME: Consider adding a check that the suitable prevailing definition 341 // exists and marked read-only. 342 if (VI.getSummaryList().size() > 1 && 343 GlobalValue::isInterposableLinkage(GVS->second->linkage()) && 344 !IsPrevailing(VI.getGUID(), GVS->second)) 345 return true; 346 347 return false; 348 } 349 350 void 351 onImportingSummaryImpl(const GlobalValueSummary &Summary, 352 SmallVectorImpl<const GlobalVarSummary *> &Worklist) { 353 for (const auto &VI : Summary.refs()) { 354 if (!shouldImportGlobal(VI)) { 355 LLVM_DEBUG( 356 dbgs() << "Ref ignored! Target already in destination module.\n"); 357 continue; 358 } 359 360 LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n"); 361 362 // If this is a local variable, make sure we import the copy 363 // in the caller's module. The only time a local variable can 364 // share an entry in the index is if there is a local with the same name 365 // in another module that had the same source file name (in a different 366 // directory), where each was compiled in their own directory so there 367 // was not distinguishing path. 368 auto LocalNotInModule = 369 [&](const GlobalValueSummary *RefSummary) -> bool { 370 return GlobalValue::isLocalLinkage(RefSummary->linkage()) && 371 RefSummary->modulePath() != Summary.modulePath(); 372 }; 373 374 for (const auto &RefSummary : VI.getSummaryList()) { 375 const auto *GVS = dyn_cast<GlobalVarSummary>(RefSummary.get()); 376 // Functions could be referenced by global vars - e.g. a vtable; but we 377 // don't currently imagine a reason those would be imported here, rather 378 // than as part of the logic deciding which functions to import (i.e. 379 // based on profile information). Should we decide to handle them here, 380 // we can refactor accordingly at that time. 381 if (!GVS || !Index.canImportGlobalVar(GVS, /* AnalyzeRefs */ true) || 382 LocalNotInModule(GVS)) 383 continue; 384 385 // If there isn't an entry for GUID, insert <GUID, Definition> pair. 386 // Otherwise, definition should take precedence over declaration. 387 auto [Iter, Inserted] = 388 ImportList[RefSummary->modulePath()].try_emplace( 389 VI.getGUID(), GlobalValueSummary::Definition); 390 // Only update stat and exports if we haven't already imported this 391 // variable. 392 if (!Inserted) { 393 // Set the value to 'std::min(existing-value, new-value)' to make 394 // sure a definition takes precedence over a declaration. 395 Iter->second = std::min(GlobalValueSummary::Definition, Iter->second); 396 break; 397 } 398 NumImportedGlobalVarsThinLink++; 399 // Any references made by this variable will be marked exported 400 // later, in ComputeCrossModuleImport, after import decisions are 401 // complete, which is more efficient than adding them here. 402 if (ExportLists) 403 (*ExportLists)[RefSummary->modulePath()].insert(VI); 404 405 // If variable is not writeonly we attempt to recursively analyze 406 // its references in order to import referenced constants. 407 if (!Index.isWriteOnly(GVS)) 408 Worklist.emplace_back(GVS); 409 break; 410 } 411 } 412 } 413 414 public: 415 GlobalsImporter( 416 const ModuleSummaryIndex &Index, const GVSummaryMapTy &DefinedGVSummaries, 417 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 418 IsPrevailing, 419 FunctionImporter::ImportMapTy &ImportList, 420 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 421 : Index(Index), DefinedGVSummaries(DefinedGVSummaries), 422 IsPrevailing(IsPrevailing), ImportList(ImportList), 423 ExportLists(ExportLists) {} 424 425 void onImportingSummary(const GlobalValueSummary &Summary) { 426 SmallVector<const GlobalVarSummary *, 128> Worklist; 427 onImportingSummaryImpl(Summary, Worklist); 428 while (!Worklist.empty()) 429 onImportingSummaryImpl(*Worklist.pop_back_val(), Worklist); 430 } 431 }; 432 433 static const char *getFailureName(FunctionImporter::ImportFailureReason Reason); 434 435 /// Determine the list of imports and exports for each module. 436 class ModuleImportsManager { 437 protected: 438 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 439 IsPrevailing; 440 const ModuleSummaryIndex &Index; 441 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 442 443 ModuleImportsManager( 444 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 445 IsPrevailing, 446 const ModuleSummaryIndex &Index, 447 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = nullptr) 448 : IsPrevailing(IsPrevailing), Index(Index), ExportLists(ExportLists) {} 449 450 public: 451 virtual ~ModuleImportsManager() = default; 452 453 /// Given the list of globals defined in a module, compute the list of imports 454 /// as well as the list of "exports", i.e. the list of symbols referenced from 455 /// another module (that may require promotion). 456 virtual void 457 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 458 StringRef ModName, 459 FunctionImporter::ImportMapTy &ImportList); 460 461 static std::unique_ptr<ModuleImportsManager> 462 create(function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 463 IsPrevailing, 464 const ModuleSummaryIndex &Index, 465 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = 466 nullptr); 467 }; 468 469 /// A ModuleImportsManager that operates based on a workload definition (see 470 /// -thinlto-workload-def). For modules that do not define workload roots, it 471 /// applies the base ModuleImportsManager import policy. 472 class WorkloadImportsManager : public ModuleImportsManager { 473 // Keep a module name -> value infos to import association. We use it to 474 // determine if a module's import list should be done by the base 475 // ModuleImportsManager or by us. 476 StringMap<DenseSet<ValueInfo>> Workloads; 477 478 void 479 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 480 StringRef ModName, 481 FunctionImporter::ImportMapTy &ImportList) override { 482 auto SetIter = Workloads.find(ModName); 483 if (SetIter == Workloads.end()) { 484 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 485 << " does not contain the root of any context.\n"); 486 return ModuleImportsManager::computeImportForModule(DefinedGVSummaries, 487 ModName, ImportList); 488 } 489 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 490 << " contains the root(s) of context(s).\n"); 491 492 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 493 ExportLists); 494 auto &ValueInfos = SetIter->second; 495 SmallVector<EdgeInfo, 128> GlobWorklist; 496 for (auto &VI : llvm::make_early_inc_range(ValueInfos)) { 497 auto It = DefinedGVSummaries.find(VI.getGUID()); 498 if (It != DefinedGVSummaries.end() && 499 IsPrevailing(VI.getGUID(), It->second)) { 500 LLVM_DEBUG( 501 dbgs() << "[Workload] " << VI.name() 502 << " has the prevailing variant already in the module " 503 << ModName << ". No need to import\n"); 504 continue; 505 } 506 auto Candidates = 507 qualifyCalleeCandidates(Index, VI.getSummaryList(), ModName); 508 509 const GlobalValueSummary *GVS = nullptr; 510 auto PotentialCandidates = llvm::map_range( 511 llvm::make_filter_range( 512 Candidates, 513 [&](const auto &Candidate) { 514 LLVM_DEBUG(dbgs() << "[Workflow] Candidate for " << VI.name() 515 << " from " << Candidate.second->modulePath() 516 << " ImportFailureReason: " 517 << getFailureName(Candidate.first) << "\n"); 518 return Candidate.first == 519 FunctionImporter::ImportFailureReason::None; 520 }), 521 [](const auto &Candidate) { return Candidate.second; }); 522 if (PotentialCandidates.empty()) { 523 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 524 << " because can't find eligible Callee. Guid is: " 525 << Function::getGUID(VI.name()) << "\n"); 526 continue; 527 } 528 /// We will prefer importing the prevailing candidate, if not, we'll 529 /// still pick the first available candidate. The reason we want to make 530 /// sure we do import the prevailing candidate is because the goal of 531 /// workload-awareness is to enable optimizations specializing the call 532 /// graph of that workload. Suppose a function is already defined in the 533 /// module, but it's not the prevailing variant. Suppose also we do not 534 /// inline it (in fact, if it were interposable, we can't inline it), 535 /// but we could specialize it to the workload in other ways. However, 536 /// the linker would drop it in the favor of the prevailing copy. 537 /// Instead, by importing the prevailing variant (assuming also the use 538 /// of `-avail-extern-to-local`), we keep the specialization. We could 539 /// alteranatively make the non-prevailing variant local, but the 540 /// prevailing one is also the one for which we would have previously 541 /// collected profiles, making it preferrable. 542 auto PrevailingCandidates = llvm::make_filter_range( 543 PotentialCandidates, [&](const auto *Candidate) { 544 return IsPrevailing(VI.getGUID(), Candidate); 545 }); 546 if (PrevailingCandidates.empty()) { 547 GVS = *PotentialCandidates.begin(); 548 if (!llvm::hasSingleElement(PotentialCandidates) && 549 GlobalValue::isLocalLinkage(GVS->linkage())) 550 LLVM_DEBUG( 551 dbgs() 552 << "[Workload] Found multiple non-prevailing candidates for " 553 << VI.name() 554 << ". This is unexpected. Are module paths passed to the " 555 "compiler unique for the modules passed to the linker?"); 556 // We could in theory have multiple (interposable) copies of a symbol 557 // when there is no prevailing candidate, if say the prevailing copy was 558 // in a native object being linked in. However, we should in theory be 559 // marking all of these non-prevailing IR copies dead in that case, in 560 // which case they won't be candidates. 561 assert(GVS->isLive()); 562 } else { 563 assert(llvm::hasSingleElement(PrevailingCandidates)); 564 GVS = *PrevailingCandidates.begin(); 565 } 566 567 auto ExportingModule = GVS->modulePath(); 568 // We checked that for the prevailing case, but if we happen to have for 569 // example an internal that's defined in this module, it'd have no 570 // PrevailingCandidates. 571 if (ExportingModule == ModName) { 572 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 573 << " because its defining module is the same as the " 574 "current module\n"); 575 continue; 576 } 577 LLVM_DEBUG(dbgs() << "[Workload][Including]" << VI.name() << " from " 578 << ExportingModule << " : " 579 << Function::getGUID(VI.name()) << "\n"); 580 ImportList[ExportingModule][VI.getGUID()] = 581 GlobalValueSummary::Definition; 582 GVI.onImportingSummary(*GVS); 583 if (ExportLists) 584 (*ExportLists)[ExportingModule].insert(VI); 585 } 586 LLVM_DEBUG(dbgs() << "[Workload] Done\n"); 587 } 588 589 public: 590 WorkloadImportsManager( 591 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 592 IsPrevailing, 593 const ModuleSummaryIndex &Index, 594 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 595 : ModuleImportsManager(IsPrevailing, Index, ExportLists) { 596 // Since the workload def uses names, we need a quick lookup 597 // name->ValueInfo. 598 StringMap<ValueInfo> NameToValueInfo; 599 StringSet<> AmbiguousNames; 600 for (auto &I : Index) { 601 ValueInfo VI = Index.getValueInfo(I); 602 if (!NameToValueInfo.insert(std::make_pair(VI.name(), VI)).second) 603 LLVM_DEBUG(AmbiguousNames.insert(VI.name())); 604 } 605 auto DbgReportIfAmbiguous = [&](StringRef Name) { 606 LLVM_DEBUG(if (AmbiguousNames.count(Name) > 0) { 607 dbgs() << "[Workload] Function name " << Name 608 << " present in the workload definition is ambiguous. Consider " 609 "compiling with -funique-internal-linkage-names."; 610 }); 611 }; 612 std::error_code EC; 613 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(WorkloadDefinitions); 614 if (std::error_code EC = BufferOrErr.getError()) { 615 report_fatal_error("Failed to open context file"); 616 return; 617 } 618 auto Buffer = std::move(BufferOrErr.get()); 619 std::map<std::string, std::vector<std::string>> WorkloadDefs; 620 json::Path::Root NullRoot; 621 // The JSON is supposed to contain a dictionary matching the type of 622 // WorkloadDefs. For example: 623 // { 624 // "rootFunction_1": ["function_to_import_1", "function_to_import_2"], 625 // "rootFunction_2": ["function_to_import_3", "function_to_import_4"] 626 // } 627 auto Parsed = json::parse(Buffer->getBuffer()); 628 if (!Parsed) 629 report_fatal_error(Parsed.takeError()); 630 if (!json::fromJSON(*Parsed, WorkloadDefs, NullRoot)) 631 report_fatal_error("Invalid thinlto contextual profile format."); 632 for (const auto &Workload : WorkloadDefs) { 633 const auto &Root = Workload.first; 634 DbgReportIfAmbiguous(Root); 635 LLVM_DEBUG(dbgs() << "[Workload] Root: " << Root << "\n"); 636 const auto &AllCallees = Workload.second; 637 auto RootIt = NameToValueInfo.find(Root); 638 if (RootIt == NameToValueInfo.end()) { 639 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 640 << " not found in this linkage unit.\n"); 641 continue; 642 } 643 auto RootVI = RootIt->second; 644 if (RootVI.getSummaryList().size() != 1) { 645 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 646 << " should have exactly one summary, but has " 647 << RootVI.getSummaryList().size() << ". Skipping.\n"); 648 continue; 649 } 650 StringRef RootDefiningModule = 651 RootVI.getSummaryList().front()->modulePath(); 652 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << Root 653 << " is : " << RootDefiningModule << "\n"); 654 auto &Set = Workloads[RootDefiningModule]; 655 for (const auto &Callee : AllCallees) { 656 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << "\n"); 657 DbgReportIfAmbiguous(Callee); 658 auto ElemIt = NameToValueInfo.find(Callee); 659 if (ElemIt == NameToValueInfo.end()) { 660 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << " not found\n"); 661 continue; 662 } 663 Set.insert(ElemIt->second); 664 } 665 LLVM_DEBUG({ 666 dbgs() << "[Workload] Root: " << Root << " we have " << Set.size() 667 << " distinct callees.\n"; 668 for (const auto &VI : Set) { 669 dbgs() << "[Workload] Root: " << Root 670 << " Would include: " << VI.getGUID() << "\n"; 671 } 672 }); 673 } 674 } 675 }; 676 677 std::unique_ptr<ModuleImportsManager> ModuleImportsManager::create( 678 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 679 IsPrevailing, 680 const ModuleSummaryIndex &Index, 681 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) { 682 if (WorkloadDefinitions.empty()) { 683 LLVM_DEBUG(dbgs() << "[Workload] Using the regular imports manager.\n"); 684 return std::unique_ptr<ModuleImportsManager>( 685 new ModuleImportsManager(IsPrevailing, Index, ExportLists)); 686 } 687 LLVM_DEBUG(dbgs() << "[Workload] Using the contextual imports manager.\n"); 688 return std::make_unique<WorkloadImportsManager>(IsPrevailing, Index, 689 ExportLists); 690 } 691 692 static const char * 693 getFailureName(FunctionImporter::ImportFailureReason Reason) { 694 switch (Reason) { 695 case FunctionImporter::ImportFailureReason::None: 696 return "None"; 697 case FunctionImporter::ImportFailureReason::GlobalVar: 698 return "GlobalVar"; 699 case FunctionImporter::ImportFailureReason::NotLive: 700 return "NotLive"; 701 case FunctionImporter::ImportFailureReason::TooLarge: 702 return "TooLarge"; 703 case FunctionImporter::ImportFailureReason::InterposableLinkage: 704 return "InterposableLinkage"; 705 case FunctionImporter::ImportFailureReason::LocalLinkageNotInModule: 706 return "LocalLinkageNotInModule"; 707 case FunctionImporter::ImportFailureReason::NotEligible: 708 return "NotEligible"; 709 case FunctionImporter::ImportFailureReason::NoInline: 710 return "NoInline"; 711 } 712 llvm_unreachable("invalid reason"); 713 } 714 715 /// Compute the list of functions to import for a given caller. Mark these 716 /// imported functions and the symbols they reference in their source module as 717 /// exported from their source module. 718 static void computeImportForFunction( 719 const FunctionSummary &Summary, const ModuleSummaryIndex &Index, 720 const unsigned Threshold, const GVSummaryMapTy &DefinedGVSummaries, 721 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 722 isPrevailing, 723 SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter, 724 FunctionImporter::ImportMapTy &ImportList, 725 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists, 726 FunctionImporter::ImportThresholdsTy &ImportThresholds) { 727 GVImporter.onImportingSummary(Summary); 728 static int ImportCount = 0; 729 for (const auto &Edge : Summary.calls()) { 730 ValueInfo VI = Edge.first; 731 LLVM_DEBUG(dbgs() << " edge -> " << VI << " Threshold:" << Threshold 732 << "\n"); 733 734 if (ImportCutoff >= 0 && ImportCount >= ImportCutoff) { 735 LLVM_DEBUG(dbgs() << "ignored! import-cutoff value of " << ImportCutoff 736 << " reached.\n"); 737 continue; 738 } 739 740 if (DefinedGVSummaries.count(VI.getGUID())) { 741 // FIXME: Consider not skipping import if the module contains 742 // a non-prevailing def with interposable linkage. The prevailing copy 743 // can safely be imported (see shouldImportGlobal()). 744 LLVM_DEBUG(dbgs() << "ignored! Target already in destination module.\n"); 745 continue; 746 } 747 748 auto GetBonusMultiplier = [](CalleeInfo::HotnessType Hotness) -> float { 749 if (Hotness == CalleeInfo::HotnessType::Hot) 750 return ImportHotMultiplier; 751 if (Hotness == CalleeInfo::HotnessType::Cold) 752 return ImportColdMultiplier; 753 if (Hotness == CalleeInfo::HotnessType::Critical) 754 return ImportCriticalMultiplier; 755 return 1.0; 756 }; 757 758 const auto NewThreshold = 759 Threshold * GetBonusMultiplier(Edge.second.getHotness()); 760 761 auto IT = ImportThresholds.insert(std::make_pair( 762 VI.getGUID(), std::make_tuple(NewThreshold, nullptr, nullptr))); 763 bool PreviouslyVisited = !IT.second; 764 auto &ProcessedThreshold = std::get<0>(IT.first->second); 765 auto &CalleeSummary = std::get<1>(IT.first->second); 766 auto &FailureInfo = std::get<2>(IT.first->second); 767 768 bool IsHotCallsite = 769 Edge.second.getHotness() == CalleeInfo::HotnessType::Hot; 770 bool IsCriticalCallsite = 771 Edge.second.getHotness() == CalleeInfo::HotnessType::Critical; 772 773 const FunctionSummary *ResolvedCalleeSummary = nullptr; 774 if (CalleeSummary) { 775 assert(PreviouslyVisited); 776 // Since the traversal of the call graph is DFS, we can revisit a function 777 // a second time with a higher threshold. In this case, it is added back 778 // to the worklist with the new threshold (so that its own callee chains 779 // can be considered with the higher threshold). 780 if (NewThreshold <= ProcessedThreshold) { 781 LLVM_DEBUG( 782 dbgs() << "ignored! Target was already imported with Threshold " 783 << ProcessedThreshold << "\n"); 784 continue; 785 } 786 // Update with new larger threshold. 787 ProcessedThreshold = NewThreshold; 788 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 789 } else { 790 // If we already rejected importing a callee at the same or higher 791 // threshold, don't waste time calling selectCallee. 792 if (PreviouslyVisited && NewThreshold <= ProcessedThreshold) { 793 LLVM_DEBUG( 794 dbgs() << "ignored! Target was already rejected with Threshold " 795 << ProcessedThreshold << "\n"); 796 if (PrintImportFailures) { 797 assert(FailureInfo && 798 "Expected FailureInfo for previously rejected candidate"); 799 FailureInfo->Attempts++; 800 } 801 continue; 802 } 803 804 FunctionImporter::ImportFailureReason Reason{}; 805 806 // `SummaryForDeclImport` is an summary eligible for declaration import. 807 const GlobalValueSummary *SummaryForDeclImport = nullptr; 808 CalleeSummary = 809 selectCallee(Index, VI.getSummaryList(), NewThreshold, 810 Summary.modulePath(), SummaryForDeclImport, Reason); 811 if (!CalleeSummary) { 812 // There isn't a callee for definition import but one for declaration 813 // import. 814 if (ImportDeclaration && SummaryForDeclImport) { 815 StringRef DeclSourceModule = SummaryForDeclImport->modulePath(); 816 817 // Since definition takes precedence over declaration for the same VI, 818 // try emplace <VI, declaration> pair without checking insert result. 819 // If insert doesn't happen, there must be an existing entry keyed by 820 // VI. Note `ExportLists` only keeps track of exports due to imported 821 // definitions. 822 ImportList[DeclSourceModule].try_emplace( 823 VI.getGUID(), GlobalValueSummary::Declaration); 824 } 825 // Update with new larger threshold if this was a retry (otherwise 826 // we would have already inserted with NewThreshold above). Also 827 // update failure info if requested. 828 if (PreviouslyVisited) { 829 ProcessedThreshold = NewThreshold; 830 if (PrintImportFailures) { 831 assert(FailureInfo && 832 "Expected FailureInfo for previously rejected candidate"); 833 FailureInfo->Reason = Reason; 834 FailureInfo->Attempts++; 835 FailureInfo->MaxHotness = 836 std::max(FailureInfo->MaxHotness, Edge.second.getHotness()); 837 } 838 } else if (PrintImportFailures) { 839 assert(!FailureInfo && 840 "Expected no FailureInfo for newly rejected candidate"); 841 FailureInfo = std::make_unique<FunctionImporter::ImportFailureInfo>( 842 VI, Edge.second.getHotness(), Reason, 1); 843 } 844 if (ForceImportAll) { 845 std::string Msg = std::string("Failed to import function ") + 846 VI.name().str() + " due to " + 847 getFailureName(Reason); 848 auto Error = make_error<StringError>( 849 Msg, make_error_code(errc::not_supported)); 850 logAllUnhandledErrors(std::move(Error), errs(), 851 "Error importing module: "); 852 break; 853 } else { 854 LLVM_DEBUG(dbgs() 855 << "ignored! No qualifying callee with summary found.\n"); 856 continue; 857 } 858 } 859 860 // "Resolve" the summary 861 CalleeSummary = CalleeSummary->getBaseObject(); 862 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 863 864 assert((ResolvedCalleeSummary->fflags().AlwaysInline || ForceImportAll || 865 (ResolvedCalleeSummary->instCount() <= NewThreshold)) && 866 "selectCallee() didn't honor the threshold"); 867 868 auto ExportModulePath = ResolvedCalleeSummary->modulePath(); 869 870 // Try emplace the definition entry, and update stats based on insertion 871 // status. 872 auto [Iter, Inserted] = ImportList[ExportModulePath].try_emplace( 873 VI.getGUID(), GlobalValueSummary::Definition); 874 875 // We previously decided to import this GUID definition if it was already 876 // inserted in the set of imports from the exporting module. 877 if (Inserted || Iter->second == GlobalValueSummary::Declaration) { 878 NumImportedFunctionsThinLink++; 879 if (IsHotCallsite) 880 NumImportedHotFunctionsThinLink++; 881 if (IsCriticalCallsite) 882 NumImportedCriticalFunctionsThinLink++; 883 } 884 885 if (Iter->second == GlobalValueSummary::Declaration) 886 Iter->second = GlobalValueSummary::Definition; 887 888 // Any calls/references made by this function will be marked exported 889 // later, in ComputeCrossModuleImport, after import decisions are 890 // complete, which is more efficient than adding them here. 891 if (ExportLists) 892 (*ExportLists)[ExportModulePath].insert(VI); 893 } 894 895 auto GetAdjustedThreshold = [](unsigned Threshold, bool IsHotCallsite) { 896 // Adjust the threshold for next level of imported functions. 897 // The threshold is different for hot callsites because we can then 898 // inline chains of hot calls. 899 if (IsHotCallsite) 900 return Threshold * ImportHotInstrFactor; 901 return Threshold * ImportInstrFactor; 902 }; 903 904 const auto AdjThreshold = GetAdjustedThreshold(Threshold, IsHotCallsite); 905 906 ImportCount++; 907 908 // Insert the newly imported function to the worklist. 909 Worklist.emplace_back(ResolvedCalleeSummary, AdjThreshold); 910 } 911 } 912 913 void ModuleImportsManager::computeImportForModule( 914 const GVSummaryMapTy &DefinedGVSummaries, StringRef ModName, 915 FunctionImporter::ImportMapTy &ImportList) { 916 // Worklist contains the list of function imported in this module, for which 917 // we will analyse the callees and may import further down the callgraph. 918 SmallVector<EdgeInfo, 128> Worklist; 919 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 920 ExportLists); 921 FunctionImporter::ImportThresholdsTy ImportThresholds; 922 923 // Populate the worklist with the import for the functions in the current 924 // module 925 for (const auto &GVSummary : DefinedGVSummaries) { 926 #ifndef NDEBUG 927 // FIXME: Change the GVSummaryMapTy to hold ValueInfo instead of GUID 928 // so this map look up (and possibly others) can be avoided. 929 auto VI = Index.getValueInfo(GVSummary.first); 930 #endif 931 if (!Index.isGlobalValueLive(GVSummary.second)) { 932 LLVM_DEBUG(dbgs() << "Ignores Dead GUID: " << VI << "\n"); 933 continue; 934 } 935 auto *FuncSummary = 936 dyn_cast<FunctionSummary>(GVSummary.second->getBaseObject()); 937 if (!FuncSummary) 938 // Skip import for global variables 939 continue; 940 LLVM_DEBUG(dbgs() << "Initialize import for " << VI << "\n"); 941 computeImportForFunction(*FuncSummary, Index, ImportInstrLimit, 942 DefinedGVSummaries, IsPrevailing, Worklist, GVI, 943 ImportList, ExportLists, ImportThresholds); 944 } 945 946 // Process the newly imported functions and add callees to the worklist. 947 while (!Worklist.empty()) { 948 auto GVInfo = Worklist.pop_back_val(); 949 auto *Summary = std::get<0>(GVInfo); 950 auto Threshold = std::get<1>(GVInfo); 951 952 if (auto *FS = dyn_cast<FunctionSummary>(Summary)) 953 computeImportForFunction(*FS, Index, Threshold, DefinedGVSummaries, 954 IsPrevailing, Worklist, GVI, ImportList, 955 ExportLists, ImportThresholds); 956 } 957 958 // Print stats about functions considered but rejected for importing 959 // when requested. 960 if (PrintImportFailures) { 961 dbgs() << "Missed imports into module " << ModName << "\n"; 962 for (auto &I : ImportThresholds) { 963 auto &ProcessedThreshold = std::get<0>(I.second); 964 auto &CalleeSummary = std::get<1>(I.second); 965 auto &FailureInfo = std::get<2>(I.second); 966 if (CalleeSummary) 967 continue; // We are going to import. 968 assert(FailureInfo); 969 FunctionSummary *FS = nullptr; 970 if (!FailureInfo->VI.getSummaryList().empty()) 971 FS = dyn_cast<FunctionSummary>( 972 FailureInfo->VI.getSummaryList()[0]->getBaseObject()); 973 dbgs() << FailureInfo->VI 974 << ": Reason = " << getFailureName(FailureInfo->Reason) 975 << ", Threshold = " << ProcessedThreshold 976 << ", Size = " << (FS ? (int)FS->instCount() : -1) 977 << ", MaxHotness = " << getHotnessName(FailureInfo->MaxHotness) 978 << ", Attempts = " << FailureInfo->Attempts << "\n"; 979 } 980 } 981 } 982 983 #ifndef NDEBUG 984 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, ValueInfo VI) { 985 auto SL = VI.getSummaryList(); 986 return SL.empty() 987 ? false 988 : SL[0]->getSummaryKind() == GlobalValueSummary::GlobalVarKind; 989 } 990 991 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, 992 GlobalValue::GUID G) { 993 if (const auto &VI = Index.getValueInfo(G)) 994 return isGlobalVarSummary(Index, VI); 995 return false; 996 } 997 998 // Return the number of global variable summaries in ExportSet. 999 static unsigned 1000 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1001 FunctionImporter::ExportSetTy &ExportSet) { 1002 unsigned NumGVS = 0; 1003 for (auto &VI : ExportSet) 1004 if (isGlobalVarSummary(Index, VI.getGUID())) 1005 ++NumGVS; 1006 return NumGVS; 1007 } 1008 1009 // Given ImportMap, return the number of global variable summaries and record 1010 // the number of defined function summaries as output parameter. 1011 static unsigned 1012 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1013 FunctionImporter::FunctionsToImportTy &ImportMap, 1014 unsigned &DefinedFS) { 1015 unsigned NumGVS = 0; 1016 DefinedFS = 0; 1017 for (auto &[GUID, Type] : ImportMap) { 1018 if (isGlobalVarSummary(Index, GUID)) 1019 ++NumGVS; 1020 else if (Type == GlobalValueSummary::Definition) 1021 ++DefinedFS; 1022 } 1023 return NumGVS; 1024 } 1025 #endif 1026 1027 #ifndef NDEBUG 1028 static bool checkVariableImport( 1029 const ModuleSummaryIndex &Index, 1030 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1031 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1032 DenseSet<GlobalValue::GUID> FlattenedImports; 1033 1034 for (auto &ImportPerModule : ImportLists) 1035 for (auto &ExportPerModule : ImportPerModule.second) 1036 for (auto &[GUID, Type] : ExportPerModule.second) 1037 FlattenedImports.insert(GUID); 1038 1039 // Checks that all GUIDs of read/writeonly vars we see in export lists 1040 // are also in the import lists. Otherwise we my face linker undefs, 1041 // because readonly and writeonly vars are internalized in their 1042 // source modules. The exception would be if it has a linkage type indicating 1043 // that there may have been a copy existing in the importing module (e.g. 1044 // linkonce_odr). In that case we cannot accurately do this checking. 1045 auto IsReadOrWriteOnlyVarNeedingImporting = [&](StringRef ModulePath, 1046 const ValueInfo &VI) { 1047 auto *GVS = dyn_cast_or_null<GlobalVarSummary>( 1048 Index.findSummaryInModule(VI, ModulePath)); 1049 return GVS && (Index.isReadOnly(GVS) || Index.isWriteOnly(GVS)) && 1050 !(GVS->linkage() == GlobalValue::AvailableExternallyLinkage || 1051 GVS->linkage() == GlobalValue::WeakODRLinkage || 1052 GVS->linkage() == GlobalValue::LinkOnceODRLinkage); 1053 }; 1054 1055 for (auto &ExportPerModule : ExportLists) 1056 for (auto &VI : ExportPerModule.second) 1057 if (!FlattenedImports.count(VI.getGUID()) && 1058 IsReadOrWriteOnlyVarNeedingImporting(ExportPerModule.first, VI)) 1059 return false; 1060 1061 return true; 1062 } 1063 #endif 1064 1065 /// Compute all the import and export for every module using the Index. 1066 void llvm::ComputeCrossModuleImport( 1067 const ModuleSummaryIndex &Index, 1068 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1069 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1070 isPrevailing, 1071 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1072 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1073 auto MIS = ModuleImportsManager::create(isPrevailing, Index, &ExportLists); 1074 // For each module that has function defined, compute the import/export lists. 1075 for (const auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { 1076 auto &ImportList = ImportLists[DefinedGVSummaries.first]; 1077 LLVM_DEBUG(dbgs() << "Computing import for Module '" 1078 << DefinedGVSummaries.first << "'\n"); 1079 MIS->computeImportForModule(DefinedGVSummaries.second, 1080 DefinedGVSummaries.first, ImportList); 1081 } 1082 1083 // When computing imports we only added the variables and functions being 1084 // imported to the export list. We also need to mark any references and calls 1085 // they make as exported as well. We do this here, as it is more efficient 1086 // since we may import the same values multiple times into different modules 1087 // during the import computation. 1088 for (auto &ELI : ExportLists) { 1089 // `NewExports` tracks the VI that gets exported because the full definition 1090 // of its user/referencer gets exported. 1091 FunctionImporter::ExportSetTy NewExports; 1092 const auto &DefinedGVSummaries = 1093 ModuleToDefinedGVSummaries.lookup(ELI.first); 1094 for (auto &EI : ELI.second) { 1095 // Find the copy defined in the exporting module so that we can mark the 1096 // values it references in that specific definition as exported. 1097 // Below we will add all references and called values, without regard to 1098 // whether they are also defined in this module. We subsequently prune the 1099 // list to only include those defined in the exporting module, see comment 1100 // there as to why. 1101 auto DS = DefinedGVSummaries.find(EI.getGUID()); 1102 // Anything marked exported during the import computation must have been 1103 // defined in the exporting module. 1104 assert(DS != DefinedGVSummaries.end()); 1105 auto *S = DS->getSecond(); 1106 S = S->getBaseObject(); 1107 if (auto *GVS = dyn_cast<GlobalVarSummary>(S)) { 1108 // Export referenced functions and variables. We don't export/promote 1109 // objects referenced by writeonly variable initializer, because 1110 // we convert such variables initializers to "zeroinitializer". 1111 // See processGlobalForThinLTO. 1112 if (!Index.isWriteOnly(GVS)) 1113 for (const auto &VI : GVS->refs()) 1114 NewExports.insert(VI); 1115 } else { 1116 auto *FS = cast<FunctionSummary>(S); 1117 for (const auto &Edge : FS->calls()) 1118 NewExports.insert(Edge.first); 1119 for (const auto &Ref : FS->refs()) 1120 NewExports.insert(Ref); 1121 } 1122 } 1123 // Prune list computed above to only include values defined in the 1124 // exporting module. We do this after the above insertion since we may hit 1125 // the same ref/call target multiple times in above loop, and it is more 1126 // efficient to avoid a set lookup each time. 1127 for (auto EI = NewExports.begin(); EI != NewExports.end();) { 1128 if (!DefinedGVSummaries.count(EI->getGUID())) 1129 NewExports.erase(EI++); 1130 else 1131 ++EI; 1132 } 1133 ELI.second.insert(NewExports.begin(), NewExports.end()); 1134 } 1135 1136 assert(checkVariableImport(Index, ImportLists, ExportLists)); 1137 #ifndef NDEBUG 1138 LLVM_DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size() 1139 << " modules:\n"); 1140 for (auto &ModuleImports : ImportLists) { 1141 auto ModName = ModuleImports.first; 1142 auto &Exports = ExportLists[ModName]; 1143 unsigned NumGVS = numGlobalVarSummaries(Index, Exports); 1144 LLVM_DEBUG(dbgs() << "* Module " << ModName << " exports " 1145 << Exports.size() - NumGVS << " functions and " << NumGVS 1146 << " vars. Imports from " << ModuleImports.second.size() 1147 << " modules.\n"); 1148 for (auto &Src : ModuleImports.second) { 1149 auto SrcModName = Src.first; 1150 unsigned DefinedFS = 0; 1151 unsigned NumGVSPerMod = 1152 numGlobalVarSummaries(Index, Src.second, DefinedFS); 1153 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1154 << Src.second.size() - NumGVSPerMod - DefinedFS 1155 << " function declarations imported from " << SrcModName 1156 << "\n"); 1157 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod 1158 << " global vars imported from " << SrcModName << "\n"); 1159 } 1160 } 1161 #endif 1162 } 1163 1164 #ifndef NDEBUG 1165 static void dumpImportListForModule(const ModuleSummaryIndex &Index, 1166 StringRef ModulePath, 1167 FunctionImporter::ImportMapTy &ImportList) { 1168 LLVM_DEBUG(dbgs() << "* Module " << ModulePath << " imports from " 1169 << ImportList.size() << " modules.\n"); 1170 for (auto &Src : ImportList) { 1171 auto SrcModName = Src.first; 1172 unsigned DefinedFS = 0; 1173 unsigned NumGVSPerMod = numGlobalVarSummaries(Index, Src.second, DefinedFS); 1174 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1175 << Src.second.size() - DefinedFS - NumGVSPerMod 1176 << " function declarations imported from " << SrcModName 1177 << "\n"); 1178 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod << " vars imported from " 1179 << SrcModName << "\n"); 1180 } 1181 } 1182 #endif 1183 1184 /// Compute all the imports for the given module using the Index. 1185 /// 1186 /// \p isPrevailing is a callback that will be called with a global value's GUID 1187 /// and summary and should return whether the module corresponding to the 1188 /// summary contains the linker-prevailing copy of that value. 1189 /// 1190 /// \p ImportList will be populated with a map that can be passed to 1191 /// FunctionImporter::importFunctions() above (see description there). 1192 static void ComputeCrossModuleImportForModuleForTest( 1193 StringRef ModulePath, 1194 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1195 isPrevailing, 1196 const ModuleSummaryIndex &Index, 1197 FunctionImporter::ImportMapTy &ImportList) { 1198 // Collect the list of functions this module defines. 1199 // GUID -> Summary 1200 GVSummaryMapTy FunctionSummaryMap; 1201 Index.collectDefinedFunctionsForModule(ModulePath, FunctionSummaryMap); 1202 1203 // Compute the import list for this module. 1204 LLVM_DEBUG(dbgs() << "Computing import for Module '" << ModulePath << "'\n"); 1205 auto MIS = ModuleImportsManager::create(isPrevailing, Index); 1206 MIS->computeImportForModule(FunctionSummaryMap, ModulePath, ImportList); 1207 1208 #ifndef NDEBUG 1209 dumpImportListForModule(Index, ModulePath, ImportList); 1210 #endif 1211 } 1212 1213 /// Mark all external summaries in \p Index for import into the given module. 1214 /// Used for testing the case of distributed builds using a distributed index. 1215 /// 1216 /// \p ImportList will be populated with a map that can be passed to 1217 /// FunctionImporter::importFunctions() above (see description there). 1218 static void ComputeCrossModuleImportForModuleFromIndexForTest( 1219 StringRef ModulePath, const ModuleSummaryIndex &Index, 1220 FunctionImporter::ImportMapTy &ImportList) { 1221 for (const auto &GlobalList : Index) { 1222 // Ignore entries for undefined references. 1223 if (GlobalList.second.SummaryList.empty()) 1224 continue; 1225 1226 auto GUID = GlobalList.first; 1227 assert(GlobalList.second.SummaryList.size() == 1 && 1228 "Expected individual combined index to have one summary per GUID"); 1229 auto &Summary = GlobalList.second.SummaryList[0]; 1230 // Skip the summaries for the importing module. These are included to 1231 // e.g. record required linkage changes. 1232 if (Summary->modulePath() == ModulePath) 1233 continue; 1234 // Add an entry to provoke importing by thinBackend. 1235 auto [Iter, Inserted] = ImportList[Summary->modulePath()].try_emplace( 1236 GUID, Summary->importType()); 1237 if (!Inserted) { 1238 // Use 'std::min' to make sure definition (with enum value 0) takes 1239 // precedence over declaration (with enum value 1). 1240 Iter->second = std::min(Iter->second, Summary->importType()); 1241 } 1242 } 1243 #ifndef NDEBUG 1244 dumpImportListForModule(Index, ModulePath, ImportList); 1245 #endif 1246 } 1247 1248 // For SamplePGO, the indirect call targets for local functions will 1249 // have its original name annotated in profile. We try to find the 1250 // corresponding PGOFuncName as the GUID, and fix up the edges 1251 // accordingly. 1252 void updateValueInfoForIndirectCalls(ModuleSummaryIndex &Index, 1253 FunctionSummary *FS) { 1254 for (auto &EI : FS->mutableCalls()) { 1255 if (!EI.first.getSummaryList().empty()) 1256 continue; 1257 auto GUID = Index.getGUIDFromOriginalID(EI.first.getGUID()); 1258 if (GUID == 0) 1259 continue; 1260 // Update the edge to point directly to the correct GUID. 1261 auto VI = Index.getValueInfo(GUID); 1262 if (llvm::any_of( 1263 VI.getSummaryList(), 1264 [&](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) { 1265 // The mapping from OriginalId to GUID may return a GUID 1266 // that corresponds to a static variable. Filter it out here. 1267 // This can happen when 1268 // 1) There is a call to a library function which is not defined 1269 // in the index. 1270 // 2) There is a static variable with the OriginalGUID identical 1271 // to the GUID of the library function in 1); 1272 // When this happens the static variable in 2) will be found, 1273 // which needs to be filtered out. 1274 return SummaryPtr->getSummaryKind() == 1275 GlobalValueSummary::GlobalVarKind; 1276 })) 1277 continue; 1278 EI.first = VI; 1279 } 1280 } 1281 1282 void llvm::updateIndirectCalls(ModuleSummaryIndex &Index) { 1283 for (const auto &Entry : Index) { 1284 for (const auto &S : Entry.second.SummaryList) { 1285 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1286 updateValueInfoForIndirectCalls(Index, FS); 1287 } 1288 } 1289 } 1290 1291 void llvm::computeDeadSymbolsAndUpdateIndirectCalls( 1292 ModuleSummaryIndex &Index, 1293 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1294 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing) { 1295 assert(!Index.withGlobalValueDeadStripping()); 1296 if (!ComputeDead || 1297 // Don't do anything when nothing is live, this is friendly with tests. 1298 GUIDPreservedSymbols.empty()) { 1299 // Still need to update indirect calls. 1300 updateIndirectCalls(Index); 1301 return; 1302 } 1303 unsigned LiveSymbols = 0; 1304 SmallVector<ValueInfo, 128> Worklist; 1305 Worklist.reserve(GUIDPreservedSymbols.size() * 2); 1306 for (auto GUID : GUIDPreservedSymbols) { 1307 ValueInfo VI = Index.getValueInfo(GUID); 1308 if (!VI) 1309 continue; 1310 for (const auto &S : VI.getSummaryList()) 1311 S->setLive(true); 1312 } 1313 1314 // Add values flagged in the index as live roots to the worklist. 1315 for (const auto &Entry : Index) { 1316 auto VI = Index.getValueInfo(Entry); 1317 for (const auto &S : Entry.second.SummaryList) { 1318 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1319 updateValueInfoForIndirectCalls(Index, FS); 1320 if (S->isLive()) { 1321 LLVM_DEBUG(dbgs() << "Live root: " << VI << "\n"); 1322 Worklist.push_back(VI); 1323 ++LiveSymbols; 1324 break; 1325 } 1326 } 1327 } 1328 1329 // Make value live and add it to the worklist if it was not live before. 1330 auto visit = [&](ValueInfo VI, bool IsAliasee) { 1331 // FIXME: If we knew which edges were created for indirect call profiles, 1332 // we could skip them here. Any that are live should be reached via 1333 // other edges, e.g. reference edges. Otherwise, using a profile collected 1334 // on a slightly different binary might provoke preserving, importing 1335 // and ultimately promoting calls to functions not linked into this 1336 // binary, which increases the binary size unnecessarily. Note that 1337 // if this code changes, the importer needs to change so that edges 1338 // to functions marked dead are skipped. 1339 1340 if (llvm::any_of(VI.getSummaryList(), 1341 [](const std::unique_ptr<llvm::GlobalValueSummary> &S) { 1342 return S->isLive(); 1343 })) 1344 return; 1345 1346 // We only keep live symbols that are known to be non-prevailing if any are 1347 // available_externally, linkonceodr, weakodr. Those symbols are discarded 1348 // later in the EliminateAvailableExternally pass and setting them to 1349 // not-live could break downstreams users of liveness information (PR36483) 1350 // or limit optimization opportunities. 1351 if (isPrevailing(VI.getGUID()) == PrevailingType::No) { 1352 bool KeepAliveLinkage = false; 1353 bool Interposable = false; 1354 for (const auto &S : VI.getSummaryList()) { 1355 if (S->linkage() == GlobalValue::AvailableExternallyLinkage || 1356 S->linkage() == GlobalValue::WeakODRLinkage || 1357 S->linkage() == GlobalValue::LinkOnceODRLinkage) 1358 KeepAliveLinkage = true; 1359 else if (GlobalValue::isInterposableLinkage(S->linkage())) 1360 Interposable = true; 1361 } 1362 1363 if (!IsAliasee) { 1364 if (!KeepAliveLinkage) 1365 return; 1366 1367 if (Interposable) 1368 report_fatal_error( 1369 "Interposable and available_externally/linkonce_odr/weak_odr " 1370 "symbol"); 1371 } 1372 } 1373 1374 for (const auto &S : VI.getSummaryList()) 1375 S->setLive(true); 1376 ++LiveSymbols; 1377 Worklist.push_back(VI); 1378 }; 1379 1380 while (!Worklist.empty()) { 1381 auto VI = Worklist.pop_back_val(); 1382 for (const auto &Summary : VI.getSummaryList()) { 1383 if (auto *AS = dyn_cast<AliasSummary>(Summary.get())) { 1384 // If this is an alias, visit the aliasee VI to ensure that all copies 1385 // are marked live and it is added to the worklist for further 1386 // processing of its references. 1387 visit(AS->getAliaseeVI(), true); 1388 continue; 1389 } 1390 for (auto Ref : Summary->refs()) 1391 visit(Ref, false); 1392 if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) 1393 for (auto Call : FS->calls()) 1394 visit(Call.first, false); 1395 } 1396 } 1397 Index.setWithGlobalValueDeadStripping(); 1398 1399 unsigned DeadSymbols = Index.size() - LiveSymbols; 1400 LLVM_DEBUG(dbgs() << LiveSymbols << " symbols Live, and " << DeadSymbols 1401 << " symbols Dead \n"); 1402 NumDeadSymbols += DeadSymbols; 1403 NumLiveSymbols += LiveSymbols; 1404 } 1405 1406 // Compute dead symbols and propagate constants in combined index. 1407 void llvm::computeDeadSymbolsWithConstProp( 1408 ModuleSummaryIndex &Index, 1409 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1410 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing, 1411 bool ImportEnabled) { 1412 computeDeadSymbolsAndUpdateIndirectCalls(Index, GUIDPreservedSymbols, 1413 isPrevailing); 1414 if (ImportEnabled) 1415 Index.propagateAttributes(GUIDPreservedSymbols); 1416 } 1417 1418 /// Compute the set of summaries needed for a ThinLTO backend compilation of 1419 /// \p ModulePath. 1420 void llvm::gatherImportedSummariesForModule( 1421 StringRef ModulePath, 1422 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1423 const FunctionImporter::ImportMapTy &ImportList, 1424 std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex, 1425 GVSummaryPtrSet &DecSummaries) { 1426 // Include all summaries from the importing module. 1427 ModuleToSummariesForIndex[std::string(ModulePath)] = 1428 ModuleToDefinedGVSummaries.lookup(ModulePath); 1429 // Include summaries for imports. 1430 for (const auto &ILI : ImportList) { 1431 auto &SummariesForIndex = ModuleToSummariesForIndex[std::string(ILI.first)]; 1432 1433 const auto &DefinedGVSummaries = 1434 ModuleToDefinedGVSummaries.lookup(ILI.first); 1435 for (const auto &[GUID, Type] : ILI.second) { 1436 const auto &DS = DefinedGVSummaries.find(GUID); 1437 assert(DS != DefinedGVSummaries.end() && 1438 "Expected a defined summary for imported global value"); 1439 if (Type == GlobalValueSummary::Declaration) 1440 DecSummaries.insert(DS->second); 1441 1442 SummariesForIndex[GUID] = DS->second; 1443 } 1444 } 1445 } 1446 1447 /// Emit the files \p ModulePath will import from into \p OutputFilename. 1448 std::error_code llvm::EmitImportsFiles( 1449 StringRef ModulePath, StringRef OutputFilename, 1450 const std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) { 1451 std::error_code EC; 1452 raw_fd_ostream ImportsOS(OutputFilename, EC, sys::fs::OpenFlags::OF_Text); 1453 if (EC) 1454 return EC; 1455 for (const auto &ILI : ModuleToSummariesForIndex) 1456 // The ModuleToSummariesForIndex map includes an entry for the current 1457 // Module (needed for writing out the index files). We don't want to 1458 // include it in the imports file, however, so filter it out. 1459 if (ILI.first != ModulePath) 1460 ImportsOS << ILI.first << "\n"; 1461 return std::error_code(); 1462 } 1463 1464 bool llvm::convertToDeclaration(GlobalValue &GV) { 1465 LLVM_DEBUG(dbgs() << "Converting to a declaration: `" << GV.getName() 1466 << "\n"); 1467 if (Function *F = dyn_cast<Function>(&GV)) { 1468 F->deleteBody(); 1469 F->clearMetadata(); 1470 F->setComdat(nullptr); 1471 } else if (GlobalVariable *V = dyn_cast<GlobalVariable>(&GV)) { 1472 V->setInitializer(nullptr); 1473 V->setLinkage(GlobalValue::ExternalLinkage); 1474 V->clearMetadata(); 1475 V->setComdat(nullptr); 1476 } else { 1477 GlobalValue *NewGV; 1478 if (GV.getValueType()->isFunctionTy()) 1479 NewGV = 1480 Function::Create(cast<FunctionType>(GV.getValueType()), 1481 GlobalValue::ExternalLinkage, GV.getAddressSpace(), 1482 "", GV.getParent()); 1483 else 1484 NewGV = 1485 new GlobalVariable(*GV.getParent(), GV.getValueType(), 1486 /*isConstant*/ false, GlobalValue::ExternalLinkage, 1487 /*init*/ nullptr, "", 1488 /*insertbefore*/ nullptr, GV.getThreadLocalMode(), 1489 GV.getType()->getAddressSpace()); 1490 NewGV->takeName(&GV); 1491 GV.replaceAllUsesWith(NewGV); 1492 return false; 1493 } 1494 if (!GV.isImplicitDSOLocal()) 1495 GV.setDSOLocal(false); 1496 return true; 1497 } 1498 1499 void llvm::thinLTOFinalizeInModule(Module &TheModule, 1500 const GVSummaryMapTy &DefinedGlobals, 1501 bool PropagateAttrs) { 1502 DenseSet<Comdat *> NonPrevailingComdats; 1503 auto FinalizeInModule = [&](GlobalValue &GV, bool Propagate = false) { 1504 // See if the global summary analysis computed a new resolved linkage. 1505 const auto &GS = DefinedGlobals.find(GV.getGUID()); 1506 if (GS == DefinedGlobals.end()) 1507 return; 1508 1509 if (Propagate) 1510 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GS->second)) { 1511 if (Function *F = dyn_cast<Function>(&GV)) { 1512 // TODO: propagate ReadNone and ReadOnly. 1513 if (FS->fflags().ReadNone && !F->doesNotAccessMemory()) 1514 F->setDoesNotAccessMemory(); 1515 1516 if (FS->fflags().ReadOnly && !F->onlyReadsMemory()) 1517 F->setOnlyReadsMemory(); 1518 1519 if (FS->fflags().NoRecurse && !F->doesNotRecurse()) 1520 F->setDoesNotRecurse(); 1521 1522 if (FS->fflags().NoUnwind && !F->doesNotThrow()) 1523 F->setDoesNotThrow(); 1524 } 1525 } 1526 1527 auto NewLinkage = GS->second->linkage(); 1528 if (GlobalValue::isLocalLinkage(GV.getLinkage()) || 1529 // Don't internalize anything here, because the code below 1530 // lacks necessary correctness checks. Leave this job to 1531 // LLVM 'internalize' pass. 1532 GlobalValue::isLocalLinkage(NewLinkage) || 1533 // In case it was dead and already converted to declaration. 1534 GV.isDeclaration()) 1535 return; 1536 1537 // Set the potentially more constraining visibility computed from summaries. 1538 // The DefaultVisibility condition is because older GlobalValueSummary does 1539 // not record DefaultVisibility and we don't want to change protected/hidden 1540 // to default. 1541 if (GS->second->getVisibility() != GlobalValue::DefaultVisibility) 1542 GV.setVisibility(GS->second->getVisibility()); 1543 1544 if (NewLinkage == GV.getLinkage()) 1545 return; 1546 1547 // Check for a non-prevailing def that has interposable linkage 1548 // (e.g. non-odr weak or linkonce). In that case we can't simply 1549 // convert to available_externally, since it would lose the 1550 // interposable property and possibly get inlined. Simply drop 1551 // the definition in that case. 1552 if (GlobalValue::isAvailableExternallyLinkage(NewLinkage) && 1553 GlobalValue::isInterposableLinkage(GV.getLinkage())) { 1554 if (!convertToDeclaration(GV)) 1555 // FIXME: Change this to collect replaced GVs and later erase 1556 // them from the parent module once thinLTOResolvePrevailingGUID is 1557 // changed to enable this for aliases. 1558 llvm_unreachable("Expected GV to be converted"); 1559 } else { 1560 // If all copies of the original symbol had global unnamed addr and 1561 // linkonce_odr linkage, or if all of them had local unnamed addr linkage 1562 // and are constants, then it should be an auto hide symbol. In that case 1563 // the thin link would have marked it as CanAutoHide. Add hidden 1564 // visibility to the symbol to preserve the property. 1565 if (NewLinkage == GlobalValue::WeakODRLinkage && 1566 GS->second->canAutoHide()) { 1567 assert(GV.canBeOmittedFromSymbolTable()); 1568 GV.setVisibility(GlobalValue::HiddenVisibility); 1569 } 1570 1571 LLVM_DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName() 1572 << "` from " << GV.getLinkage() << " to " << NewLinkage 1573 << "\n"); 1574 GV.setLinkage(NewLinkage); 1575 } 1576 // Remove declarations from comdats, including available_externally 1577 // as this is a declaration for the linker, and will be dropped eventually. 1578 // It is illegal for comdats to contain declarations. 1579 auto *GO = dyn_cast_or_null<GlobalObject>(&GV); 1580 if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) { 1581 if (GO->getComdat()->getName() == GO->getName()) 1582 NonPrevailingComdats.insert(GO->getComdat()); 1583 GO->setComdat(nullptr); 1584 } 1585 }; 1586 1587 // Process functions and global now 1588 for (auto &GV : TheModule) 1589 FinalizeInModule(GV, PropagateAttrs); 1590 for (auto &GV : TheModule.globals()) 1591 FinalizeInModule(GV); 1592 for (auto &GV : TheModule.aliases()) 1593 FinalizeInModule(GV); 1594 1595 // For a non-prevailing comdat, all its members must be available_externally. 1596 // FinalizeInModule has handled non-local-linkage GlobalValues. Here we handle 1597 // local linkage GlobalValues. 1598 if (NonPrevailingComdats.empty()) 1599 return; 1600 for (auto &GO : TheModule.global_objects()) { 1601 if (auto *C = GO.getComdat(); C && NonPrevailingComdats.count(C)) { 1602 GO.setComdat(nullptr); 1603 GO.setLinkage(GlobalValue::AvailableExternallyLinkage); 1604 } 1605 } 1606 bool Changed; 1607 do { 1608 Changed = false; 1609 // If an alias references a GlobalValue in a non-prevailing comdat, change 1610 // it to available_externally. For simplicity we only handle GlobalValue and 1611 // ConstantExpr with a base object. ConstantExpr without a base object is 1612 // unlikely used in a COMDAT. 1613 for (auto &GA : TheModule.aliases()) { 1614 if (GA.hasAvailableExternallyLinkage()) 1615 continue; 1616 GlobalObject *Obj = GA.getAliaseeObject(); 1617 assert(Obj && "aliasee without an base object is unimplemented"); 1618 if (Obj->hasAvailableExternallyLinkage()) { 1619 GA.setLinkage(GlobalValue::AvailableExternallyLinkage); 1620 Changed = true; 1621 } 1622 } 1623 } while (Changed); 1624 } 1625 1626 /// Run internalization on \p TheModule based on symmary analysis. 1627 void llvm::thinLTOInternalizeModule(Module &TheModule, 1628 const GVSummaryMapTy &DefinedGlobals) { 1629 // Declare a callback for the internalize pass that will ask for every 1630 // candidate GlobalValue if it can be internalized or not. 1631 auto MustPreserveGV = [&](const GlobalValue &GV) -> bool { 1632 // It may be the case that GV is on a chain of an ifunc, its alias and 1633 // subsequent aliases. In this case, the summary for the value is not 1634 // available. 1635 if (isa<GlobalIFunc>(&GV) || 1636 (isa<GlobalAlias>(&GV) && 1637 isa<GlobalIFunc>(cast<GlobalAlias>(&GV)->getAliaseeObject()))) 1638 return true; 1639 1640 // Lookup the linkage recorded in the summaries during global analysis. 1641 auto GS = DefinedGlobals.find(GV.getGUID()); 1642 if (GS == DefinedGlobals.end()) { 1643 // Must have been promoted (possibly conservatively). Find original 1644 // name so that we can access the correct summary and see if it can 1645 // be internalized again. 1646 // FIXME: Eventually we should control promotion instead of promoting 1647 // and internalizing again. 1648 StringRef OrigName = 1649 ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName()); 1650 std::string OrigId = GlobalValue::getGlobalIdentifier( 1651 OrigName, GlobalValue::InternalLinkage, 1652 TheModule.getSourceFileName()); 1653 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId)); 1654 if (GS == DefinedGlobals.end()) { 1655 // Also check the original non-promoted non-globalized name. In some 1656 // cases a preempted weak value is linked in as a local copy because 1657 // it is referenced by an alias (IRLinker::linkGlobalValueProto). 1658 // In that case, since it was originally not a local value, it was 1659 // recorded in the index using the original name. 1660 // FIXME: This may not be needed once PR27866 is fixed. 1661 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigName)); 1662 assert(GS != DefinedGlobals.end()); 1663 } 1664 } 1665 return !GlobalValue::isLocalLinkage(GS->second->linkage()); 1666 }; 1667 1668 // FIXME: See if we can just internalize directly here via linkage changes 1669 // based on the index, rather than invoking internalizeModule. 1670 internalizeModule(TheModule, MustPreserveGV); 1671 } 1672 1673 /// Make alias a clone of its aliasee. 1674 static Function *replaceAliasWithAliasee(Module *SrcModule, GlobalAlias *GA) { 1675 Function *Fn = cast<Function>(GA->getAliaseeObject()); 1676 1677 ValueToValueMapTy VMap; 1678 Function *NewFn = CloneFunction(Fn, VMap); 1679 // Clone should use the original alias's linkage, visibility and name, and we 1680 // ensure all uses of alias instead use the new clone (casted if necessary). 1681 NewFn->setLinkage(GA->getLinkage()); 1682 NewFn->setVisibility(GA->getVisibility()); 1683 GA->replaceAllUsesWith(NewFn); 1684 NewFn->takeName(GA); 1685 return NewFn; 1686 } 1687 1688 // Internalize values that we marked with specific attribute 1689 // in processGlobalForThinLTO. 1690 static void internalizeGVsAfterImport(Module &M) { 1691 for (auto &GV : M.globals()) 1692 // Skip GVs which have been converted to declarations 1693 // by dropDeadSymbols. 1694 if (!GV.isDeclaration() && GV.hasAttribute("thinlto-internalize")) { 1695 GV.setLinkage(GlobalValue::InternalLinkage); 1696 GV.setVisibility(GlobalValue::DefaultVisibility); 1697 } 1698 } 1699 1700 // Automatically import functions in Module \p DestModule based on the summaries 1701 // index. 1702 Expected<bool> FunctionImporter::importFunctions( 1703 Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) { 1704 LLVM_DEBUG(dbgs() << "Starting import for Module " 1705 << DestModule.getModuleIdentifier() << "\n"); 1706 unsigned ImportedCount = 0, ImportedGVCount = 0; 1707 1708 IRMover Mover(DestModule); 1709 // Do the actual import of functions now, one Module at a time 1710 std::set<StringRef> ModuleNameOrderedList; 1711 for (const auto &FunctionsToImportPerModule : ImportList) { 1712 ModuleNameOrderedList.insert(FunctionsToImportPerModule.first); 1713 } 1714 1715 auto getImportType = [&](const FunctionsToImportTy &GUIDToImportType, 1716 GlobalValue::GUID GUID) 1717 -> std::optional<GlobalValueSummary::ImportKind> { 1718 auto Iter = GUIDToImportType.find(GUID); 1719 if (Iter == GUIDToImportType.end()) 1720 return std::nullopt; 1721 return Iter->second; 1722 }; 1723 1724 for (const auto &Name : ModuleNameOrderedList) { 1725 // Get the module for the import 1726 const auto &FunctionsToImportPerModule = ImportList.find(Name); 1727 assert(FunctionsToImportPerModule != ImportList.end()); 1728 Expected<std::unique_ptr<Module>> SrcModuleOrErr = ModuleLoader(Name); 1729 if (!SrcModuleOrErr) 1730 return SrcModuleOrErr.takeError(); 1731 std::unique_ptr<Module> SrcModule = std::move(*SrcModuleOrErr); 1732 assert(&DestModule.getContext() == &SrcModule->getContext() && 1733 "Context mismatch"); 1734 1735 // If modules were created with lazy metadata loading, materialize it 1736 // now, before linking it (otherwise this will be a noop). 1737 if (Error Err = SrcModule->materializeMetadata()) 1738 return std::move(Err); 1739 1740 auto &ImportGUIDs = FunctionsToImportPerModule->second; 1741 1742 // Find the globals to import 1743 SetVector<GlobalValue *> GlobalsToImport; 1744 for (Function &F : *SrcModule) { 1745 if (!F.hasName()) 1746 continue; 1747 auto GUID = F.getGUID(); 1748 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1749 1750 bool ImportDefinition = 1751 (MaybeImportType && 1752 (*MaybeImportType == GlobalValueSummary::Definition)); 1753 1754 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1755 << " importing function" 1756 << (ImportDefinition 1757 ? " definition " 1758 : (MaybeImportType ? " declaration " : " ")) 1759 << GUID << " " << F.getName() << " from " 1760 << SrcModule->getSourceFileName() << "\n"); 1761 if (ImportDefinition) { 1762 if (Error Err = F.materialize()) 1763 return std::move(Err); 1764 // MemProf should match function's definition and summary, 1765 // 'thinlto_src_module' is needed. 1766 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1767 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1768 // statistics and debugging. 1769 F.setMetadata( 1770 "thinlto_src_module", 1771 MDNode::get(DestModule.getContext(), 1772 {MDString::get(DestModule.getContext(), 1773 SrcModule->getModuleIdentifier())})); 1774 F.setMetadata( 1775 "thinlto_src_file", 1776 MDNode::get(DestModule.getContext(), 1777 {MDString::get(DestModule.getContext(), 1778 SrcModule->getSourceFileName())})); 1779 } 1780 GlobalsToImport.insert(&F); 1781 } 1782 } 1783 for (GlobalVariable &GV : SrcModule->globals()) { 1784 if (!GV.hasName()) 1785 continue; 1786 auto GUID = GV.getGUID(); 1787 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1788 1789 bool ImportDefinition = 1790 (MaybeImportType && 1791 (*MaybeImportType == GlobalValueSummary::Definition)); 1792 1793 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1794 << " importing global" 1795 << (ImportDefinition 1796 ? " definition " 1797 : (MaybeImportType ? " declaration " : " ")) 1798 << GUID << " " << GV.getName() << " from " 1799 << SrcModule->getSourceFileName() << "\n"); 1800 if (ImportDefinition) { 1801 if (Error Err = GV.materialize()) 1802 return std::move(Err); 1803 ImportedGVCount += GlobalsToImport.insert(&GV); 1804 } 1805 } 1806 for (GlobalAlias &GA : SrcModule->aliases()) { 1807 if (!GA.hasName() || isa<GlobalIFunc>(GA.getAliaseeObject())) 1808 continue; 1809 auto GUID = GA.getGUID(); 1810 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1811 1812 bool ImportDefinition = 1813 (MaybeImportType && 1814 (*MaybeImportType == GlobalValueSummary::Definition)); 1815 1816 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1817 << " importing alias" 1818 << (ImportDefinition 1819 ? " definition " 1820 : (MaybeImportType ? " declaration " : " ")) 1821 << GUID << " " << GA.getName() << " from " 1822 << SrcModule->getSourceFileName() << "\n"); 1823 if (ImportDefinition) { 1824 if (Error Err = GA.materialize()) 1825 return std::move(Err); 1826 // Import alias as a copy of its aliasee. 1827 GlobalObject *GO = GA.getAliaseeObject(); 1828 if (Error Err = GO->materialize()) 1829 return std::move(Err); 1830 auto *Fn = replaceAliasWithAliasee(SrcModule.get(), &GA); 1831 LLVM_DEBUG(dbgs() << "Is importing aliasee fn " << GO->getGUID() << " " 1832 << GO->getName() << " from " 1833 << SrcModule->getSourceFileName() << "\n"); 1834 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1835 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1836 // statistics and debugging. 1837 Fn->setMetadata( 1838 "thinlto_src_module", 1839 MDNode::get(DestModule.getContext(), 1840 {MDString::get(DestModule.getContext(), 1841 SrcModule->getModuleIdentifier())})); 1842 Fn->setMetadata( 1843 "thinlto_src_file", 1844 MDNode::get(DestModule.getContext(), 1845 {MDString::get(DestModule.getContext(), 1846 SrcModule->getSourceFileName())})); 1847 } 1848 GlobalsToImport.insert(Fn); 1849 } 1850 } 1851 1852 // Upgrade debug info after we're done materializing all the globals and we 1853 // have loaded all the required metadata! 1854 UpgradeDebugInfo(*SrcModule); 1855 1856 // Set the partial sample profile ratio in the profile summary module flag 1857 // of the imported source module, if applicable, so that the profile summary 1858 // module flag will match with that of the destination module when it's 1859 // imported. 1860 SrcModule->setPartialSampleProfileRatio(Index); 1861 1862 // Link in the specified functions. 1863 if (renameModuleForThinLTO(*SrcModule, Index, ClearDSOLocalOnDeclarations, 1864 &GlobalsToImport)) 1865 return true; 1866 1867 if (PrintImports) { 1868 for (const auto *GV : GlobalsToImport) 1869 dbgs() << DestModule.getSourceFileName() << ": Import " << GV->getName() 1870 << " from " << SrcModule->getSourceFileName() << "\n"; 1871 } 1872 1873 if (Error Err = Mover.move(std::move(SrcModule), 1874 GlobalsToImport.getArrayRef(), nullptr, 1875 /*IsPerformingImport=*/true)) 1876 return createStringError(errc::invalid_argument, 1877 Twine("Function Import: link error: ") + 1878 toString(std::move(Err))); 1879 1880 ImportedCount += GlobalsToImport.size(); 1881 NumImportedModules++; 1882 } 1883 1884 internalizeGVsAfterImport(DestModule); 1885 1886 NumImportedFunctions += (ImportedCount - ImportedGVCount); 1887 NumImportedGlobalVars += ImportedGVCount; 1888 1889 // TODO: Print counters for definitions and declarations in the debugging log. 1890 LLVM_DEBUG(dbgs() << "Imported " << ImportedCount - ImportedGVCount 1891 << " functions for Module " 1892 << DestModule.getModuleIdentifier() << "\n"); 1893 LLVM_DEBUG(dbgs() << "Imported " << ImportedGVCount 1894 << " global variables for Module " 1895 << DestModule.getModuleIdentifier() << "\n"); 1896 return ImportedCount; 1897 } 1898 1899 static bool doImportingForModuleForTest( 1900 Module &M, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1901 isPrevailing) { 1902 if (SummaryFile.empty()) 1903 report_fatal_error("error: -function-import requires -summary-file\n"); 1904 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr = 1905 getModuleSummaryIndexForFile(SummaryFile); 1906 if (!IndexPtrOrErr) { 1907 logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(), 1908 "Error loading file '" + SummaryFile + "': "); 1909 return false; 1910 } 1911 std::unique_ptr<ModuleSummaryIndex> Index = std::move(*IndexPtrOrErr); 1912 1913 // First step is collecting the import list. 1914 FunctionImporter::ImportMapTy ImportList; 1915 // If requested, simply import all functions in the index. This is used 1916 // when testing distributed backend handling via the opt tool, when 1917 // we have distributed indexes containing exactly the summaries to import. 1918 if (ImportAllIndex) 1919 ComputeCrossModuleImportForModuleFromIndexForTest(M.getModuleIdentifier(), 1920 *Index, ImportList); 1921 else 1922 ComputeCrossModuleImportForModuleForTest(M.getModuleIdentifier(), 1923 isPrevailing, *Index, ImportList); 1924 1925 // Conservatively mark all internal values as promoted. This interface is 1926 // only used when doing importing via the function importing pass. The pass 1927 // is only enabled when testing importing via the 'opt' tool, which does 1928 // not do the ThinLink that would normally determine what values to promote. 1929 for (auto &I : *Index) { 1930 for (auto &S : I.second.SummaryList) { 1931 if (GlobalValue::isLocalLinkage(S->linkage())) 1932 S->setLinkage(GlobalValue::ExternalLinkage); 1933 } 1934 } 1935 1936 // Next we need to promote to global scope and rename any local values that 1937 // are potentially exported to other modules. 1938 if (renameModuleForThinLTO(M, *Index, /*ClearDSOLocalOnDeclarations=*/false, 1939 /*GlobalsToImport=*/nullptr)) { 1940 errs() << "Error renaming module\n"; 1941 return true; 1942 } 1943 1944 // Perform the import now. 1945 auto ModuleLoader = [&M](StringRef Identifier) { 1946 return loadFile(std::string(Identifier), M.getContext()); 1947 }; 1948 FunctionImporter Importer(*Index, ModuleLoader, 1949 /*ClearDSOLocalOnDeclarations=*/false); 1950 Expected<bool> Result = Importer.importFunctions(M, ImportList); 1951 1952 // FIXME: Probably need to propagate Errors through the pass manager. 1953 if (!Result) { 1954 logAllUnhandledErrors(Result.takeError(), errs(), 1955 "Error importing module: "); 1956 return true; 1957 } 1958 1959 return true; 1960 } 1961 1962 PreservedAnalyses FunctionImportPass::run(Module &M, 1963 ModuleAnalysisManager &AM) { 1964 // This is only used for testing the function import pass via opt, where we 1965 // don't have prevailing information from the LTO context available, so just 1966 // conservatively assume everything is prevailing (which is fine for the very 1967 // limited use of prevailing checking in this pass). 1968 auto isPrevailing = [](GlobalValue::GUID, const GlobalValueSummary *) { 1969 return true; 1970 }; 1971 if (!doImportingForModuleForTest(M, isPrevailing)) 1972 return PreservedAnalyses::all(); 1973 1974 return PreservedAnalyses::none(); 1975 } 1976