1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/ModuleSummaryIndex.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <optional> 67 #include <vector> 68 69 using namespace llvm; 70 71 #define DEBUG_TYPE "function-attrs" 72 73 STATISTIC(NumMemoryAttr, "Number of functions with improved memory attribute"); 74 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 75 STATISTIC(NumReturned, "Number of arguments marked returned"); 76 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 77 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 78 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 79 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 80 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 81 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 82 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 83 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 84 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 85 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 86 87 STATISTIC(NumThinLinkNoRecurse, 88 "Number of functions marked as norecurse during thinlink"); 89 STATISTIC(NumThinLinkNoUnwind, 90 "Number of functions marked as nounwind during thinlink"); 91 92 static cl::opt<bool> EnableNonnullArgPropagation( 93 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 94 cl::desc("Try to propagate nonnull argument attributes from callsites to " 95 "caller functions.")); 96 97 static cl::opt<bool> DisableNoUnwindInference( 98 "disable-nounwind-inference", cl::Hidden, 99 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 100 101 static cl::opt<bool> DisableNoFreeInference( 102 "disable-nofree-inference", cl::Hidden, 103 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 104 105 static cl::opt<bool> DisableThinLTOPropagation( 106 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 107 cl::desc("Don't propagate function-attrs in thinLTO")); 108 109 namespace { 110 111 using SCCNodeSet = SmallSetVector<Function *, 8>; 112 113 } // end anonymous namespace 114 115 /// Returns the memory access attribute for function F using AAR for AA results, 116 /// where SCCNodes is the current SCC. 117 /// 118 /// If ThisBody is true, this function may examine the function body and will 119 /// return a result pertaining to this copy of the function. If it is false, the 120 /// result will be based only on AA results for the function declaration; it 121 /// will be assumed that some other (perhaps less optimized) version of the 122 /// function may be selected at link time. 123 static MemoryEffects checkFunctionMemoryAccess(Function &F, bool ThisBody, 124 AAResults &AAR, 125 const SCCNodeSet &SCCNodes) { 126 MemoryEffects OrigME = AAR.getMemoryEffects(&F); 127 if (OrigME.doesNotAccessMemory()) 128 // Already perfect! 129 return OrigME; 130 131 if (!ThisBody) 132 return OrigME; 133 134 MemoryEffects ME = MemoryEffects::none(); 135 // Inalloca and preallocated arguments are always clobbered by the call. 136 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 137 F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) 138 ME |= MemoryEffects::argMemOnly(ModRefInfo::ModRef); 139 140 auto AddLocAccess = [&](const MemoryLocation &Loc, ModRefInfo MR) { 141 // Ignore accesses to known-invariant or local memory. 142 MR &= AAR.getModRefInfoMask(Loc, /*IgnoreLocal=*/true); 143 if (isNoModRef(MR)) 144 return; 145 146 const Value *UO = getUnderlyingObject(Loc.Ptr); 147 assert(!isa<AllocaInst>(UO) && 148 "Should have been handled by getModRefInfoMask()"); 149 if (isa<Argument>(UO)) { 150 ME |= MemoryEffects::argMemOnly(MR); 151 return; 152 } 153 154 // If it's not an identified object, it might be an argument. 155 if (!isIdentifiedObject(UO)) 156 ME |= MemoryEffects::argMemOnly(MR); 157 ME |= MemoryEffects(MemoryEffects::Other, MR); 158 }; 159 // Scan the function body for instructions that may read or write memory. 160 for (Instruction &I : instructions(F)) { 161 // Some instructions can be ignored even if they read or write memory. 162 // Detect these now, skipping to the next instruction if one is found. 163 if (auto *Call = dyn_cast<CallBase>(&I)) { 164 // Ignore calls to functions in the same SCC, as long as the call sites 165 // don't have operand bundles. Calls with operand bundles are allowed to 166 // have memory effects not described by the memory effects of the call 167 // target. 168 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 169 SCCNodes.count(Call->getCalledFunction())) 170 continue; 171 MemoryEffects CallME = AAR.getMemoryEffects(Call); 172 173 // If the call doesn't access memory, we're done. 174 if (CallME.doesNotAccessMemory()) 175 continue; 176 177 // A pseudo probe call shouldn't change any function attribute since it 178 // doesn't translate to a real instruction. It comes with a memory access 179 // tag to prevent itself being removed by optimizations and not block 180 // other instructions being optimized. 181 if (isa<PseudoProbeInst>(I)) 182 continue; 183 184 ME |= CallME.getWithoutLoc(MemoryEffects::ArgMem); 185 186 // If the call accesses captured memory (currently part of "other") and 187 // an argument is captured (currently not tracked), then it may also 188 // access argument memory. 189 ModRefInfo OtherMR = CallME.getModRef(MemoryEffects::Other); 190 ME |= MemoryEffects::argMemOnly(OtherMR); 191 192 // Check whether all pointer arguments point to local memory, and 193 // ignore calls that only access local memory. 194 ModRefInfo ArgMR = CallME.getModRef(MemoryEffects::ArgMem); 195 if (ArgMR != ModRefInfo::NoModRef) { 196 for (const Use &U : Call->args()) { 197 const Value *Arg = U; 198 if (!Arg->getType()->isPtrOrPtrVectorTy()) 199 continue; 200 201 AddLocAccess(MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()), ArgMR); 202 } 203 } 204 continue; 205 } 206 207 ModRefInfo MR = ModRefInfo::NoModRef; 208 if (I.mayWriteToMemory()) 209 MR |= ModRefInfo::Mod; 210 if (I.mayReadFromMemory()) 211 MR |= ModRefInfo::Ref; 212 if (MR == ModRefInfo::NoModRef) 213 continue; 214 215 std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(&I); 216 if (!Loc) { 217 // If no location is known, conservatively assume anything can be 218 // accessed. 219 ME |= MemoryEffects(MR); 220 continue; 221 } 222 223 // Volatile operations may access inaccessible memory. 224 if (I.isVolatile()) 225 ME |= MemoryEffects::inaccessibleMemOnly(MR); 226 227 AddLocAccess(*Loc, MR); 228 } 229 230 return OrigME & ME; 231 } 232 233 MemoryEffects llvm::computeFunctionBodyMemoryAccess(Function &F, 234 AAResults &AAR) { 235 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 236 } 237 238 /// Deduce readonly/readnone/writeonly attributes for the SCC. 239 template <typename AARGetterT> 240 static void addMemoryAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 241 SmallSet<Function *, 8> &Changed) { 242 MemoryEffects ME = MemoryEffects::none(); 243 for (Function *F : SCCNodes) { 244 // Call the callable parameter to look up AA results for this function. 245 AAResults &AAR = AARGetter(*F); 246 // Non-exact function definitions may not be selected at link time, and an 247 // alternative version that writes to memory may be selected. See the 248 // comment on GlobalValue::isDefinitionExact for more details. 249 ME |= checkFunctionMemoryAccess(*F, F->hasExactDefinition(), AAR, SCCNodes); 250 // Reached bottom of the lattice, we will not be able to improve the result. 251 if (ME == MemoryEffects::unknown()) 252 return; 253 } 254 255 for (Function *F : SCCNodes) { 256 MemoryEffects OldME = F->getMemoryEffects(); 257 MemoryEffects NewME = ME & OldME; 258 if (NewME != OldME) { 259 ++NumMemoryAttr; 260 F->setMemoryEffects(NewME); 261 Changed.insert(F); 262 } 263 } 264 } 265 266 // Compute definitive function attributes for a function taking into account 267 // prevailing definitions and linkage types 268 static FunctionSummary *calculatePrevailingSummary( 269 ValueInfo VI, 270 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 271 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 272 IsPrevailing) { 273 274 if (CachedPrevailingSummary.count(VI)) 275 return CachedPrevailingSummary[VI]; 276 277 /// At this point, prevailing symbols have been resolved. The following leads 278 /// to returning a conservative result: 279 /// - Multiple instances with local linkage. Normally local linkage would be 280 /// unique per module 281 /// as the GUID includes the module path. We could have a guid alias if 282 /// there wasn't any distinguishing path when each file was compiled, but 283 /// that should be rare so we'll punt on those. 284 285 /// These next 2 cases should not happen and will assert: 286 /// - Multiple instances with external linkage. This should be caught in 287 /// symbol resolution 288 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 289 /// knowledge meaning we have to go conservative. 290 291 /// Otherwise, we calculate attributes for a function as: 292 /// 1. If we have a local linkage, take its attributes. If there's somehow 293 /// multiple, bail and go conservative. 294 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 295 /// prevailing, take its attributes. 296 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 297 /// differences. However, if the prevailing copy is known it will be used 298 /// so take its attributes. If the prevailing copy is in a native file 299 /// all IR copies will be dead and propagation will go conservative. 300 /// 4. AvailableExternally summaries without a prevailing copy are known to 301 /// occur in a couple of circumstances: 302 /// a. An internal function gets imported due to its caller getting 303 /// imported, it becomes AvailableExternally but no prevailing 304 /// definition exists. Because it has to get imported along with its 305 /// caller the attributes will be captured by propagating on its 306 /// caller. 307 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 308 /// definitions of explicitly instanced template declarations 309 /// for inlining which are ultimately dropped from the TU. Since this 310 /// is localized to the TU the attributes will have already made it to 311 /// the callers. 312 /// These are edge cases and already captured by their callers so we 313 /// ignore these for now. If they become relevant to optimize in the 314 /// future this can be revisited. 315 /// 5. Otherwise, go conservative. 316 317 CachedPrevailingSummary[VI] = nullptr; 318 FunctionSummary *Local = nullptr; 319 FunctionSummary *Prevailing = nullptr; 320 321 for (const auto &GVS : VI.getSummaryList()) { 322 if (!GVS->isLive()) 323 continue; 324 325 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 326 // Virtual and Unknown (e.g. indirect) calls require going conservative 327 if (!FS || FS->fflags().HasUnknownCall) 328 return nullptr; 329 330 const auto &Linkage = GVS->linkage(); 331 if (GlobalValue::isLocalLinkage(Linkage)) { 332 if (Local) { 333 LLVM_DEBUG( 334 dbgs() 335 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 336 "function " 337 << VI.name() << " from " << FS->modulePath() << ". Previous module " 338 << Local->modulePath() << "\n"); 339 return nullptr; 340 } 341 Local = FS; 342 } else if (GlobalValue::isExternalLinkage(Linkage)) { 343 assert(IsPrevailing(VI.getGUID(), GVS.get())); 344 Prevailing = FS; 345 break; 346 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 347 GlobalValue::isLinkOnceODRLinkage(Linkage) || 348 GlobalValue::isWeakAnyLinkage(Linkage) || 349 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 350 if (IsPrevailing(VI.getGUID(), GVS.get())) { 351 Prevailing = FS; 352 break; 353 } 354 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 355 // TODO: Handle these cases if they become meaningful 356 continue; 357 } 358 } 359 360 if (Local) { 361 assert(!Prevailing); 362 CachedPrevailingSummary[VI] = Local; 363 } else if (Prevailing) { 364 assert(!Local); 365 CachedPrevailingSummary[VI] = Prevailing; 366 } 367 368 return CachedPrevailingSummary[VI]; 369 } 370 371 bool llvm::thinLTOPropagateFunctionAttrs( 372 ModuleSummaryIndex &Index, 373 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 374 IsPrevailing) { 375 // TODO: implement addNoAliasAttrs once 376 // there's more information about the return type in the summary 377 if (DisableThinLTOPropagation) 378 return false; 379 380 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 381 bool Changed = false; 382 383 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 384 // Assume we can propagate unless we discover otherwise 385 FunctionSummary::FFlags InferredFlags; 386 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 387 InferredFlags.NoUnwind = true; 388 389 for (auto &V : SCCNodes) { 390 FunctionSummary *CallerSummary = 391 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 392 393 // Function summaries can fail to contain information such as declarations 394 if (!CallerSummary) 395 return; 396 397 if (CallerSummary->fflags().MayThrow) 398 InferredFlags.NoUnwind = false; 399 400 for (const auto &Callee : CallerSummary->calls()) { 401 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 402 Callee.first, CachedPrevailingSummary, IsPrevailing); 403 404 if (!CalleeSummary) 405 return; 406 407 if (!CalleeSummary->fflags().NoRecurse) 408 InferredFlags.NoRecurse = false; 409 410 if (!CalleeSummary->fflags().NoUnwind) 411 InferredFlags.NoUnwind = false; 412 413 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 414 break; 415 } 416 } 417 418 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 419 Changed = true; 420 for (auto &V : SCCNodes) { 421 if (InferredFlags.NoRecurse) { 422 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 423 << V.name() << "\n"); 424 ++NumThinLinkNoRecurse; 425 } 426 427 if (InferredFlags.NoUnwind) { 428 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 429 << V.name() << "\n"); 430 ++NumThinLinkNoUnwind; 431 } 432 433 for (const auto &S : V.getSummaryList()) { 434 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 435 if (InferredFlags.NoRecurse) 436 FS->setNoRecurse(); 437 438 if (InferredFlags.NoUnwind) 439 FS->setNoUnwind(); 440 } 441 } 442 } 443 } 444 }; 445 446 // Call propagation functions on each SCC in the Index 447 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 448 ++I) { 449 std::vector<ValueInfo> Nodes(*I); 450 PropagateAttributes(Nodes); 451 } 452 return Changed; 453 } 454 455 namespace { 456 457 /// For a given pointer Argument, this retains a list of Arguments of functions 458 /// in the same SCC that the pointer data flows into. We use this to build an 459 /// SCC of the arguments. 460 struct ArgumentGraphNode { 461 Argument *Definition; 462 SmallVector<ArgumentGraphNode *, 4> Uses; 463 }; 464 465 class ArgumentGraph { 466 // We store pointers to ArgumentGraphNode objects, so it's important that 467 // that they not move around upon insert. 468 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 469 470 ArgumentMapTy ArgumentMap; 471 472 // There is no root node for the argument graph, in fact: 473 // void f(int *x, int *y) { if (...) f(x, y); } 474 // is an example where the graph is disconnected. The SCCIterator requires a 475 // single entry point, so we maintain a fake ("synthetic") root node that 476 // uses every node. Because the graph is directed and nothing points into 477 // the root, it will not participate in any SCCs (except for its own). 478 ArgumentGraphNode SyntheticRoot; 479 480 public: 481 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 482 483 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 484 485 iterator begin() { return SyntheticRoot.Uses.begin(); } 486 iterator end() { return SyntheticRoot.Uses.end(); } 487 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 488 489 ArgumentGraphNode *operator[](Argument *A) { 490 ArgumentGraphNode &Node = ArgumentMap[A]; 491 Node.Definition = A; 492 SyntheticRoot.Uses.push_back(&Node); 493 return &Node; 494 } 495 }; 496 497 /// This tracker checks whether callees are in the SCC, and if so it does not 498 /// consider that a capture, instead adding it to the "Uses" list and 499 /// continuing with the analysis. 500 struct ArgumentUsesTracker : public CaptureTracker { 501 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 502 503 void tooManyUses() override { Captured = true; } 504 505 bool captured(const Use *U) override { 506 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 507 if (!CB) { 508 Captured = true; 509 return true; 510 } 511 512 Function *F = CB->getCalledFunction(); 513 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 514 Captured = true; 515 return true; 516 } 517 518 assert(!CB->isCallee(U) && "callee operand reported captured?"); 519 const unsigned UseIndex = CB->getDataOperandNo(U); 520 if (UseIndex >= CB->arg_size()) { 521 // Data operand, but not a argument operand -- must be a bundle operand 522 assert(CB->hasOperandBundles() && "Must be!"); 523 524 // CaptureTracking told us that we're being captured by an operand bundle 525 // use. In this case it does not matter if the callee is within our SCC 526 // or not -- we've been captured in some unknown way, and we have to be 527 // conservative. 528 Captured = true; 529 return true; 530 } 531 532 if (UseIndex >= F->arg_size()) { 533 assert(F->isVarArg() && "More params than args in non-varargs call"); 534 Captured = true; 535 return true; 536 } 537 538 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 539 return false; 540 } 541 542 // True only if certainly captured (used outside our SCC). 543 bool Captured = false; 544 545 // Uses within our SCC. 546 SmallVector<Argument *, 4> Uses; 547 548 const SCCNodeSet &SCCNodes; 549 }; 550 551 } // end anonymous namespace 552 553 namespace llvm { 554 555 template <> struct GraphTraits<ArgumentGraphNode *> { 556 using NodeRef = ArgumentGraphNode *; 557 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 558 559 static NodeRef getEntryNode(NodeRef A) { return A; } 560 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 561 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 562 }; 563 564 template <> 565 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 566 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 567 568 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 569 return AG->begin(); 570 } 571 572 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 573 }; 574 575 } // end namespace llvm 576 577 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 578 static Attribute::AttrKind 579 determinePointerAccessAttrs(Argument *A, 580 const SmallPtrSet<Argument *, 8> &SCCNodes) { 581 SmallVector<Use *, 32> Worklist; 582 SmallPtrSet<Use *, 32> Visited; 583 584 // inalloca arguments are always clobbered by the call. 585 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 586 return Attribute::None; 587 588 bool IsRead = false; 589 bool IsWrite = false; 590 591 for (Use &U : A->uses()) { 592 Visited.insert(&U); 593 Worklist.push_back(&U); 594 } 595 596 while (!Worklist.empty()) { 597 if (IsWrite && IsRead) 598 // No point in searching further.. 599 return Attribute::None; 600 601 Use *U = Worklist.pop_back_val(); 602 Instruction *I = cast<Instruction>(U->getUser()); 603 604 switch (I->getOpcode()) { 605 case Instruction::BitCast: 606 case Instruction::GetElementPtr: 607 case Instruction::PHI: 608 case Instruction::Select: 609 case Instruction::AddrSpaceCast: 610 // The original value is not read/written via this if the new value isn't. 611 for (Use &UU : I->uses()) 612 if (Visited.insert(&UU).second) 613 Worklist.push_back(&UU); 614 break; 615 616 case Instruction::Call: 617 case Instruction::Invoke: { 618 CallBase &CB = cast<CallBase>(*I); 619 if (CB.isCallee(U)) { 620 IsRead = true; 621 // Note that indirect calls do not capture, see comment in 622 // CaptureTracking for context 623 continue; 624 } 625 626 // Given we've explictily handled the callee operand above, what's left 627 // must be a data operand (e.g. argument or operand bundle) 628 const unsigned UseIndex = CB.getDataOperandNo(U); 629 630 if (!CB.doesNotCapture(UseIndex)) { 631 if (!CB.onlyReadsMemory()) 632 // If the callee can save a copy into other memory, then simply 633 // scanning uses of the call is insufficient. We have no way 634 // of tracking copies of the pointer through memory to see 635 // if a reloaded copy is written to, thus we must give up. 636 return Attribute::None; 637 // Push users for processing once we finish this one 638 if (!I->getType()->isVoidTy()) 639 for (Use &UU : I->uses()) 640 if (Visited.insert(&UU).second) 641 Worklist.push_back(&UU); 642 } 643 644 if (CB.doesNotAccessMemory()) 645 continue; 646 647 if (Function *F = CB.getCalledFunction()) 648 if (CB.isArgOperand(U) && UseIndex < F->arg_size() && 649 SCCNodes.count(F->getArg(UseIndex))) 650 // This is an argument which is part of the speculative SCC. Note 651 // that only operands corresponding to formal arguments of the callee 652 // can participate in the speculation. 653 break; 654 655 // The accessors used on call site here do the right thing for calls and 656 // invokes with operand bundles. 657 if (CB.doesNotAccessMemory(UseIndex)) { 658 /* nop */ 659 } else if (CB.onlyReadsMemory() || CB.onlyReadsMemory(UseIndex)) { 660 IsRead = true; 661 } else if (CB.hasFnAttr(Attribute::WriteOnly) || 662 CB.dataOperandHasImpliedAttr(UseIndex, Attribute::WriteOnly)) { 663 IsWrite = true; 664 } else { 665 return Attribute::None; 666 } 667 break; 668 } 669 670 case Instruction::Load: 671 // A volatile load has side effects beyond what readonly can be relied 672 // upon. 673 if (cast<LoadInst>(I)->isVolatile()) 674 return Attribute::None; 675 676 IsRead = true; 677 break; 678 679 case Instruction::Store: 680 if (cast<StoreInst>(I)->getValueOperand() == *U) 681 // untrackable capture 682 return Attribute::None; 683 684 // A volatile store has side effects beyond what writeonly can be relied 685 // upon. 686 if (cast<StoreInst>(I)->isVolatile()) 687 return Attribute::None; 688 689 IsWrite = true; 690 break; 691 692 case Instruction::ICmp: 693 case Instruction::Ret: 694 break; 695 696 default: 697 return Attribute::None; 698 } 699 } 700 701 if (IsWrite && IsRead) 702 return Attribute::None; 703 else if (IsRead) 704 return Attribute::ReadOnly; 705 else if (IsWrite) 706 return Attribute::WriteOnly; 707 else 708 return Attribute::ReadNone; 709 } 710 711 /// Deduce returned attributes for the SCC. 712 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 713 SmallSet<Function *, 8> &Changed) { 714 // Check each function in turn, determining if an argument is always returned. 715 for (Function *F : SCCNodes) { 716 // We can infer and propagate function attributes only when we know that the 717 // definition we'll get at link time is *exactly* the definition we see now. 718 // For more details, see GlobalValue::mayBeDerefined. 719 if (!F->hasExactDefinition()) 720 continue; 721 722 if (F->getReturnType()->isVoidTy()) 723 continue; 724 725 // There is nothing to do if an argument is already marked as 'returned'. 726 if (llvm::any_of(F->args(), 727 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 728 continue; 729 730 auto FindRetArg = [&]() -> Value * { 731 Value *RetArg = nullptr; 732 for (BasicBlock &BB : *F) 733 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 734 // Note that stripPointerCasts should look through functions with 735 // returned arguments. 736 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 737 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 738 return nullptr; 739 740 if (!RetArg) 741 RetArg = RetVal; 742 else if (RetArg != RetVal) 743 return nullptr; 744 } 745 746 return RetArg; 747 }; 748 749 if (Value *RetArg = FindRetArg()) { 750 auto *A = cast<Argument>(RetArg); 751 A->addAttr(Attribute::Returned); 752 ++NumReturned; 753 Changed.insert(F); 754 } 755 } 756 } 757 758 /// If a callsite has arguments that are also arguments to the parent function, 759 /// try to propagate attributes from the callsite's arguments to the parent's 760 /// arguments. This may be important because inlining can cause information loss 761 /// when attribute knowledge disappears with the inlined call. 762 static bool addArgumentAttrsFromCallsites(Function &F) { 763 if (!EnableNonnullArgPropagation) 764 return false; 765 766 bool Changed = false; 767 768 // For an argument attribute to transfer from a callsite to the parent, the 769 // call must be guaranteed to execute every time the parent is called. 770 // Conservatively, just check for calls in the entry block that are guaranteed 771 // to execute. 772 // TODO: This could be enhanced by testing if the callsite post-dominates the 773 // entry block or by doing simple forward walks or backward walks to the 774 // callsite. 775 BasicBlock &Entry = F.getEntryBlock(); 776 for (Instruction &I : Entry) { 777 if (auto *CB = dyn_cast<CallBase>(&I)) { 778 if (auto *CalledFunc = CB->getCalledFunction()) { 779 for (auto &CSArg : CalledFunc->args()) { 780 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 781 continue; 782 783 // If the non-null callsite argument operand is an argument to 'F' 784 // (the caller) and the call is guaranteed to execute, then the value 785 // must be non-null throughout 'F'. 786 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 787 if (FArg && !FArg->hasNonNullAttr()) { 788 FArg->addAttr(Attribute::NonNull); 789 Changed = true; 790 } 791 } 792 } 793 } 794 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 795 break; 796 } 797 798 return Changed; 799 } 800 801 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 802 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 803 R == Attribute::WriteOnly) 804 && "Must be an access attribute."); 805 assert(A && "Argument must not be null."); 806 807 // If the argument already has the attribute, nothing needs to be done. 808 if (A->hasAttribute(R)) 809 return false; 810 811 // Otherwise, remove potentially conflicting attribute, add the new one, 812 // and update statistics. 813 A->removeAttr(Attribute::WriteOnly); 814 A->removeAttr(Attribute::ReadOnly); 815 A->removeAttr(Attribute::ReadNone); 816 A->addAttr(R); 817 if (R == Attribute::ReadOnly) 818 ++NumReadOnlyArg; 819 else if (R == Attribute::WriteOnly) 820 ++NumWriteOnlyArg; 821 else 822 ++NumReadNoneArg; 823 return true; 824 } 825 826 /// Deduce nocapture attributes for the SCC. 827 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 828 SmallSet<Function *, 8> &Changed) { 829 ArgumentGraph AG; 830 831 // Check each function in turn, determining which pointer arguments are not 832 // captured. 833 for (Function *F : SCCNodes) { 834 // We can infer and propagate function attributes only when we know that the 835 // definition we'll get at link time is *exactly* the definition we see now. 836 // For more details, see GlobalValue::mayBeDerefined. 837 if (!F->hasExactDefinition()) 838 continue; 839 840 if (addArgumentAttrsFromCallsites(*F)) 841 Changed.insert(F); 842 843 // Functions that are readonly (or readnone) and nounwind and don't return 844 // a value can't capture arguments. Don't analyze them. 845 if (F->onlyReadsMemory() && F->doesNotThrow() && 846 F->getReturnType()->isVoidTy()) { 847 for (Argument &A : F->args()) { 848 if (A.getType()->isPointerTy() && !A.hasNoCaptureAttr()) { 849 A.addAttr(Attribute::NoCapture); 850 ++NumNoCapture; 851 Changed.insert(F); 852 } 853 } 854 continue; 855 } 856 857 for (Argument &A : F->args()) { 858 if (!A.getType()->isPointerTy()) 859 continue; 860 bool HasNonLocalUses = false; 861 if (!A.hasNoCaptureAttr()) { 862 ArgumentUsesTracker Tracker(SCCNodes); 863 PointerMayBeCaptured(&A, &Tracker); 864 if (!Tracker.Captured) { 865 if (Tracker.Uses.empty()) { 866 // If it's trivially not captured, mark it nocapture now. 867 A.addAttr(Attribute::NoCapture); 868 ++NumNoCapture; 869 Changed.insert(F); 870 } else { 871 // If it's not trivially captured and not trivially not captured, 872 // then it must be calling into another function in our SCC. Save 873 // its particulars for Argument-SCC analysis later. 874 ArgumentGraphNode *Node = AG[&A]; 875 for (Argument *Use : Tracker.Uses) { 876 Node->Uses.push_back(AG[Use]); 877 if (Use != &A) 878 HasNonLocalUses = true; 879 } 880 } 881 } 882 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 883 } 884 if (!HasNonLocalUses && !A.onlyReadsMemory()) { 885 // Can we determine that it's readonly/readnone/writeonly without doing 886 // an SCC? Note that we don't allow any calls at all here, or else our 887 // result will be dependent on the iteration order through the 888 // functions in the SCC. 889 SmallPtrSet<Argument *, 8> Self; 890 Self.insert(&A); 891 Attribute::AttrKind R = determinePointerAccessAttrs(&A, Self); 892 if (R != Attribute::None) 893 if (addAccessAttr(&A, R)) 894 Changed.insert(F); 895 } 896 } 897 } 898 899 // The graph we've collected is partial because we stopped scanning for 900 // argument uses once we solved the argument trivially. These partial nodes 901 // show up as ArgumentGraphNode objects with an empty Uses list, and for 902 // these nodes the final decision about whether they capture has already been 903 // made. If the definition doesn't have a 'nocapture' attribute by now, it 904 // captures. 905 906 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 907 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 908 if (ArgumentSCC.size() == 1) { 909 if (!ArgumentSCC[0]->Definition) 910 continue; // synthetic root node 911 912 // eg. "void f(int* x) { if (...) f(x); }" 913 if (ArgumentSCC[0]->Uses.size() == 1 && 914 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 915 Argument *A = ArgumentSCC[0]->Definition; 916 A->addAttr(Attribute::NoCapture); 917 ++NumNoCapture; 918 Changed.insert(A->getParent()); 919 920 // Infer the access attributes given the new nocapture one 921 SmallPtrSet<Argument *, 8> Self; 922 Self.insert(&*A); 923 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 924 if (R != Attribute::None) 925 addAccessAttr(A, R); 926 } 927 continue; 928 } 929 930 bool SCCCaptured = false; 931 for (ArgumentGraphNode *Node : ArgumentSCC) { 932 if (Node->Uses.empty() && !Node->Definition->hasNoCaptureAttr()) { 933 SCCCaptured = true; 934 break; 935 } 936 } 937 if (SCCCaptured) 938 continue; 939 940 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 941 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 942 // quickly looking up whether a given Argument is in this ArgumentSCC. 943 for (ArgumentGraphNode *I : ArgumentSCC) { 944 ArgumentSCCNodes.insert(I->Definition); 945 } 946 947 for (ArgumentGraphNode *N : ArgumentSCC) { 948 for (ArgumentGraphNode *Use : N->Uses) { 949 Argument *A = Use->Definition; 950 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 951 continue; 952 SCCCaptured = true; 953 break; 954 } 955 if (SCCCaptured) 956 break; 957 } 958 if (SCCCaptured) 959 continue; 960 961 for (ArgumentGraphNode *N : ArgumentSCC) { 962 Argument *A = N->Definition; 963 A->addAttr(Attribute::NoCapture); 964 ++NumNoCapture; 965 Changed.insert(A->getParent()); 966 } 967 968 // We also want to compute readonly/readnone/writeonly. With a small number 969 // of false negatives, we can assume that any pointer which is captured 970 // isn't going to be provably readonly or readnone, since by definition 971 // we can't analyze all uses of a captured pointer. 972 // 973 // The false negatives happen when the pointer is captured by a function 974 // that promises readonly/readnone behaviour on the pointer, then the 975 // pointer's lifetime ends before anything that writes to arbitrary memory. 976 // Also, a readonly/readnone pointer may be returned, but returning a 977 // pointer is capturing it. 978 979 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 980 if (A == B) 981 return A; 982 if (A == Attribute::ReadNone) 983 return B; 984 if (B == Attribute::ReadNone) 985 return A; 986 return Attribute::None; 987 }; 988 989 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 990 for (ArgumentGraphNode *N : ArgumentSCC) { 991 Argument *A = N->Definition; 992 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 993 AccessAttr = meetAccessAttr(AccessAttr, K); 994 if (AccessAttr == Attribute::None) 995 break; 996 } 997 998 if (AccessAttr != Attribute::None) { 999 for (ArgumentGraphNode *N : ArgumentSCC) { 1000 Argument *A = N->Definition; 1001 if (addAccessAttr(A, AccessAttr)) 1002 Changed.insert(A->getParent()); 1003 } 1004 } 1005 } 1006 } 1007 1008 /// Tests whether a function is "malloc-like". 1009 /// 1010 /// A function is "malloc-like" if it returns either null or a pointer that 1011 /// doesn't alias any other pointer visible to the caller. 1012 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1013 SmallSetVector<Value *, 8> FlowsToReturn; 1014 for (BasicBlock &BB : *F) 1015 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1016 FlowsToReturn.insert(Ret->getReturnValue()); 1017 1018 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1019 Value *RetVal = FlowsToReturn[i]; 1020 1021 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1022 if (!C->isNullValue() && !isa<UndefValue>(C)) 1023 return false; 1024 1025 continue; 1026 } 1027 1028 if (isa<Argument>(RetVal)) 1029 return false; 1030 1031 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1032 switch (RVI->getOpcode()) { 1033 // Extend the analysis by looking upwards. 1034 case Instruction::BitCast: 1035 case Instruction::GetElementPtr: 1036 case Instruction::AddrSpaceCast: 1037 FlowsToReturn.insert(RVI->getOperand(0)); 1038 continue; 1039 case Instruction::Select: { 1040 SelectInst *SI = cast<SelectInst>(RVI); 1041 FlowsToReturn.insert(SI->getTrueValue()); 1042 FlowsToReturn.insert(SI->getFalseValue()); 1043 continue; 1044 } 1045 case Instruction::PHI: { 1046 PHINode *PN = cast<PHINode>(RVI); 1047 for (Value *IncValue : PN->incoming_values()) 1048 FlowsToReturn.insert(IncValue); 1049 continue; 1050 } 1051 1052 // Check whether the pointer came from an allocation. 1053 case Instruction::Alloca: 1054 break; 1055 case Instruction::Call: 1056 case Instruction::Invoke: { 1057 CallBase &CB = cast<CallBase>(*RVI); 1058 if (CB.hasRetAttr(Attribute::NoAlias)) 1059 break; 1060 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1061 break; 1062 [[fallthrough]]; 1063 } 1064 default: 1065 return false; // Did not come from an allocation. 1066 } 1067 1068 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1069 return false; 1070 } 1071 1072 return true; 1073 } 1074 1075 /// Deduce noalias attributes for the SCC. 1076 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1077 SmallSet<Function *, 8> &Changed) { 1078 // Check each function in turn, determining which functions return noalias 1079 // pointers. 1080 for (Function *F : SCCNodes) { 1081 // Already noalias. 1082 if (F->returnDoesNotAlias()) 1083 continue; 1084 1085 // We can infer and propagate function attributes only when we know that the 1086 // definition we'll get at link time is *exactly* the definition we see now. 1087 // For more details, see GlobalValue::mayBeDerefined. 1088 if (!F->hasExactDefinition()) 1089 return; 1090 1091 // We annotate noalias return values, which are only applicable to 1092 // pointer types. 1093 if (!F->getReturnType()->isPointerTy()) 1094 continue; 1095 1096 if (!isFunctionMallocLike(F, SCCNodes)) 1097 return; 1098 } 1099 1100 for (Function *F : SCCNodes) { 1101 if (F->returnDoesNotAlias() || 1102 !F->getReturnType()->isPointerTy()) 1103 continue; 1104 1105 F->setReturnDoesNotAlias(); 1106 ++NumNoAlias; 1107 Changed.insert(F); 1108 } 1109 } 1110 1111 /// Tests whether this function is known to not return null. 1112 /// 1113 /// Requires that the function returns a pointer. 1114 /// 1115 /// Returns true if it believes the function will not return a null, and sets 1116 /// \p Speculative based on whether the returned conclusion is a speculative 1117 /// conclusion due to SCC calls. 1118 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1119 bool &Speculative) { 1120 assert(F->getReturnType()->isPointerTy() && 1121 "nonnull only meaningful on pointer types"); 1122 Speculative = false; 1123 1124 SmallSetVector<Value *, 8> FlowsToReturn; 1125 for (BasicBlock &BB : *F) 1126 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1127 FlowsToReturn.insert(Ret->getReturnValue()); 1128 1129 auto &DL = F->getParent()->getDataLayout(); 1130 1131 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1132 Value *RetVal = FlowsToReturn[i]; 1133 1134 // If this value is locally known to be non-null, we're good 1135 if (isKnownNonZero(RetVal, DL)) 1136 continue; 1137 1138 // Otherwise, we need to look upwards since we can't make any local 1139 // conclusions. 1140 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1141 if (!RVI) 1142 return false; 1143 switch (RVI->getOpcode()) { 1144 // Extend the analysis by looking upwards. 1145 case Instruction::BitCast: 1146 case Instruction::GetElementPtr: 1147 case Instruction::AddrSpaceCast: 1148 FlowsToReturn.insert(RVI->getOperand(0)); 1149 continue; 1150 case Instruction::Select: { 1151 SelectInst *SI = cast<SelectInst>(RVI); 1152 FlowsToReturn.insert(SI->getTrueValue()); 1153 FlowsToReturn.insert(SI->getFalseValue()); 1154 continue; 1155 } 1156 case Instruction::PHI: { 1157 PHINode *PN = cast<PHINode>(RVI); 1158 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1159 FlowsToReturn.insert(PN->getIncomingValue(i)); 1160 continue; 1161 } 1162 case Instruction::Call: 1163 case Instruction::Invoke: { 1164 CallBase &CB = cast<CallBase>(*RVI); 1165 Function *Callee = CB.getCalledFunction(); 1166 // A call to a node within the SCC is assumed to return null until 1167 // proven otherwise 1168 if (Callee && SCCNodes.count(Callee)) { 1169 Speculative = true; 1170 continue; 1171 } 1172 return false; 1173 } 1174 default: 1175 return false; // Unknown source, may be null 1176 }; 1177 llvm_unreachable("should have either continued or returned"); 1178 } 1179 1180 return true; 1181 } 1182 1183 /// Deduce nonnull attributes for the SCC. 1184 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1185 SmallSet<Function *, 8> &Changed) { 1186 // Speculative that all functions in the SCC return only nonnull 1187 // pointers. We may refute this as we analyze functions. 1188 bool SCCReturnsNonNull = true; 1189 1190 // Check each function in turn, determining which functions return nonnull 1191 // pointers. 1192 for (Function *F : SCCNodes) { 1193 // Already nonnull. 1194 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1195 continue; 1196 1197 // We can infer and propagate function attributes only when we know that the 1198 // definition we'll get at link time is *exactly* the definition we see now. 1199 // For more details, see GlobalValue::mayBeDerefined. 1200 if (!F->hasExactDefinition()) 1201 return; 1202 1203 // We annotate nonnull return values, which are only applicable to 1204 // pointer types. 1205 if (!F->getReturnType()->isPointerTy()) 1206 continue; 1207 1208 bool Speculative = false; 1209 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1210 if (!Speculative) { 1211 // Mark the function eagerly since we may discover a function 1212 // which prevents us from speculating about the entire SCC 1213 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1214 << " as nonnull\n"); 1215 F->addRetAttr(Attribute::NonNull); 1216 ++NumNonNullReturn; 1217 Changed.insert(F); 1218 } 1219 continue; 1220 } 1221 // At least one function returns something which could be null, can't 1222 // speculate any more. 1223 SCCReturnsNonNull = false; 1224 } 1225 1226 if (SCCReturnsNonNull) { 1227 for (Function *F : SCCNodes) { 1228 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1229 !F->getReturnType()->isPointerTy()) 1230 continue; 1231 1232 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1233 F->addRetAttr(Attribute::NonNull); 1234 ++NumNonNullReturn; 1235 Changed.insert(F); 1236 } 1237 } 1238 } 1239 1240 namespace { 1241 1242 /// Collects a set of attribute inference requests and performs them all in one 1243 /// go on a single SCC Node. Inference involves scanning function bodies 1244 /// looking for instructions that violate attribute assumptions. 1245 /// As soon as all the bodies are fine we are free to set the attribute. 1246 /// Customization of inference for individual attributes is performed by 1247 /// providing a handful of predicates for each attribute. 1248 class AttributeInferer { 1249 public: 1250 /// Describes a request for inference of a single attribute. 1251 struct InferenceDescriptor { 1252 1253 /// Returns true if this function does not have to be handled. 1254 /// General intent for this predicate is to provide an optimization 1255 /// for functions that do not need this attribute inference at all 1256 /// (say, for functions that already have the attribute). 1257 std::function<bool(const Function &)> SkipFunction; 1258 1259 /// Returns true if this instruction violates attribute assumptions. 1260 std::function<bool(Instruction &)> InstrBreaksAttribute; 1261 1262 /// Sets the inferred attribute for this function. 1263 std::function<void(Function &)> SetAttribute; 1264 1265 /// Attribute we derive. 1266 Attribute::AttrKind AKind; 1267 1268 /// If true, only "exact" definitions can be used to infer this attribute. 1269 /// See GlobalValue::isDefinitionExact. 1270 bool RequiresExactDefinition; 1271 1272 InferenceDescriptor(Attribute::AttrKind AK, 1273 std::function<bool(const Function &)> SkipFunc, 1274 std::function<bool(Instruction &)> InstrScan, 1275 std::function<void(Function &)> SetAttr, 1276 bool ReqExactDef) 1277 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1278 SetAttribute(SetAttr), AKind(AK), 1279 RequiresExactDefinition(ReqExactDef) {} 1280 }; 1281 1282 private: 1283 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1284 1285 public: 1286 void registerAttrInference(InferenceDescriptor AttrInference) { 1287 InferenceDescriptors.push_back(AttrInference); 1288 } 1289 1290 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1291 }; 1292 1293 /// Perform all the requested attribute inference actions according to the 1294 /// attribute predicates stored before. 1295 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1296 SmallSet<Function *, 8> &Changed) { 1297 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1298 // Go through all the functions in SCC and check corresponding attribute 1299 // assumptions for each of them. Attributes that are invalid for this SCC 1300 // will be removed from InferInSCC. 1301 for (Function *F : SCCNodes) { 1302 1303 // No attributes whose assumptions are still valid - done. 1304 if (InferInSCC.empty()) 1305 return; 1306 1307 // Check if our attributes ever need scanning/can be scanned. 1308 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1309 if (ID.SkipFunction(*F)) 1310 return false; 1311 1312 // Remove from further inference (invalidate) when visiting a function 1313 // that has no instructions to scan/has an unsuitable definition. 1314 return F->isDeclaration() || 1315 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1316 }); 1317 1318 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1319 // set up the F instructions scan to verify assumptions of the attribute. 1320 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1321 llvm::copy_if( 1322 InferInSCC, std::back_inserter(InferInThisFunc), 1323 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1324 1325 if (InferInThisFunc.empty()) 1326 continue; 1327 1328 // Start instruction scan. 1329 for (Instruction &I : instructions(*F)) { 1330 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1331 if (!ID.InstrBreaksAttribute(I)) 1332 return false; 1333 // Remove attribute from further inference on any other functions 1334 // because attribute assumptions have just been violated. 1335 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1336 return D.AKind == ID.AKind; 1337 }); 1338 // Remove attribute from the rest of current instruction scan. 1339 return true; 1340 }); 1341 1342 if (InferInThisFunc.empty()) 1343 break; 1344 } 1345 } 1346 1347 if (InferInSCC.empty()) 1348 return; 1349 1350 for (Function *F : SCCNodes) 1351 // At this point InferInSCC contains only functions that were either: 1352 // - explicitly skipped from scan/inference, or 1353 // - verified to have no instructions that break attribute assumptions. 1354 // Hence we just go and force the attribute for all non-skipped functions. 1355 for (auto &ID : InferInSCC) { 1356 if (ID.SkipFunction(*F)) 1357 continue; 1358 Changed.insert(F); 1359 ID.SetAttribute(*F); 1360 } 1361 } 1362 1363 struct SCCNodesResult { 1364 SCCNodeSet SCCNodes; 1365 bool HasUnknownCall; 1366 }; 1367 1368 } // end anonymous namespace 1369 1370 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1371 static bool InstrBreaksNonConvergent(Instruction &I, 1372 const SCCNodeSet &SCCNodes) { 1373 const CallBase *CB = dyn_cast<CallBase>(&I); 1374 // Breaks non-convergent assumption if CS is a convergent call to a function 1375 // not in the SCC. 1376 return CB && CB->isConvergent() && 1377 !SCCNodes.contains(CB->getCalledFunction()); 1378 } 1379 1380 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1381 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1382 if (!I.mayThrow()) 1383 return false; 1384 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1385 if (Function *Callee = CI->getCalledFunction()) { 1386 // I is a may-throw call to a function inside our SCC. This doesn't 1387 // invalidate our current working assumption that the SCC is no-throw; we 1388 // just have to scan that other function. 1389 if (SCCNodes.contains(Callee)) 1390 return false; 1391 } 1392 } 1393 return true; 1394 } 1395 1396 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1397 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1398 CallBase *CB = dyn_cast<CallBase>(&I); 1399 if (!CB) 1400 return false; 1401 1402 if (CB->hasFnAttr(Attribute::NoFree)) 1403 return false; 1404 1405 // Speculatively assume in SCC. 1406 if (Function *Callee = CB->getCalledFunction()) 1407 if (SCCNodes.contains(Callee)) 1408 return false; 1409 1410 return true; 1411 } 1412 1413 /// Attempt to remove convergent function attribute when possible. 1414 /// 1415 /// Returns true if any changes to function attributes were made. 1416 static void inferConvergent(const SCCNodeSet &SCCNodes, 1417 SmallSet<Function *, 8> &Changed) { 1418 AttributeInferer AI; 1419 1420 // Request to remove the convergent attribute from all functions in the SCC 1421 // if every callsite within the SCC is not convergent (except for calls 1422 // to functions within the SCC). 1423 // Note: Removal of the attr from the callsites will happen in 1424 // InstCombineCalls separately. 1425 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1426 Attribute::Convergent, 1427 // Skip non-convergent functions. 1428 [](const Function &F) { return !F.isConvergent(); }, 1429 // Instructions that break non-convergent assumption. 1430 [SCCNodes](Instruction &I) { 1431 return InstrBreaksNonConvergent(I, SCCNodes); 1432 }, 1433 [](Function &F) { 1434 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1435 << "\n"); 1436 F.setNotConvergent(); 1437 }, 1438 /* RequiresExactDefinition= */ false}); 1439 // Perform all the requested attribute inference actions. 1440 AI.run(SCCNodes, Changed); 1441 } 1442 1443 /// Infer attributes from all functions in the SCC by scanning every 1444 /// instruction for compliance to the attribute assumptions. Currently it 1445 /// does: 1446 /// - addition of NoUnwind attribute 1447 /// 1448 /// Returns true if any changes to function attributes were made. 1449 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1450 SmallSet<Function *, 8> &Changed) { 1451 AttributeInferer AI; 1452 1453 if (!DisableNoUnwindInference) 1454 // Request to infer nounwind attribute for all the functions in the SCC if 1455 // every callsite within the SCC is not throwing (except for calls to 1456 // functions within the SCC). Note that nounwind attribute suffers from 1457 // derefinement - results may change depending on how functions are 1458 // optimized. Thus it can be inferred only from exact definitions. 1459 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1460 Attribute::NoUnwind, 1461 // Skip non-throwing functions. 1462 [](const Function &F) { return F.doesNotThrow(); }, 1463 // Instructions that break non-throwing assumption. 1464 [&SCCNodes](Instruction &I) { 1465 return InstrBreaksNonThrowing(I, SCCNodes); 1466 }, 1467 [](Function &F) { 1468 LLVM_DEBUG(dbgs() 1469 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1470 F.setDoesNotThrow(); 1471 ++NumNoUnwind; 1472 }, 1473 /* RequiresExactDefinition= */ true}); 1474 1475 if (!DisableNoFreeInference) 1476 // Request to infer nofree attribute for all the functions in the SCC if 1477 // every callsite within the SCC does not directly or indirectly free 1478 // memory (except for calls to functions within the SCC). Note that nofree 1479 // attribute suffers from derefinement - results may change depending on 1480 // how functions are optimized. Thus it can be inferred only from exact 1481 // definitions. 1482 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1483 Attribute::NoFree, 1484 // Skip functions known not to free memory. 1485 [](const Function &F) { return F.doesNotFreeMemory(); }, 1486 // Instructions that break non-deallocating assumption. 1487 [&SCCNodes](Instruction &I) { 1488 return InstrBreaksNoFree(I, SCCNodes); 1489 }, 1490 [](Function &F) { 1491 LLVM_DEBUG(dbgs() 1492 << "Adding nofree attr to fn " << F.getName() << "\n"); 1493 F.setDoesNotFreeMemory(); 1494 ++NumNoFree; 1495 }, 1496 /* RequiresExactDefinition= */ true}); 1497 1498 // Perform all the requested attribute inference actions. 1499 AI.run(SCCNodes, Changed); 1500 } 1501 1502 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1503 SmallSet<Function *, 8> &Changed) { 1504 // Try and identify functions that do not recurse. 1505 1506 // If the SCC contains multiple nodes we know for sure there is recursion. 1507 if (SCCNodes.size() != 1) 1508 return; 1509 1510 Function *F = *SCCNodes.begin(); 1511 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1512 return; 1513 1514 // If all of the calls in F are identifiable and are to norecurse functions, F 1515 // is norecurse. This check also detects self-recursion as F is not currently 1516 // marked norecurse, so any called from F to F will not be marked norecurse. 1517 for (auto &BB : *F) 1518 for (auto &I : BB.instructionsWithoutDebug()) 1519 if (auto *CB = dyn_cast<CallBase>(&I)) { 1520 Function *Callee = CB->getCalledFunction(); 1521 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1522 // Function calls a potentially recursive function. 1523 return; 1524 } 1525 1526 // Every call was to a non-recursive function other than this function, and 1527 // we have no indirect recursion as the SCC size is one. This function cannot 1528 // recurse. 1529 F->setDoesNotRecurse(); 1530 ++NumNoRecurse; 1531 Changed.insert(F); 1532 } 1533 1534 static bool instructionDoesNotReturn(Instruction &I) { 1535 if (auto *CB = dyn_cast<CallBase>(&I)) 1536 return CB->hasFnAttr(Attribute::NoReturn); 1537 return false; 1538 } 1539 1540 // A basic block can only return if it terminates with a ReturnInst and does not 1541 // contain calls to noreturn functions. 1542 static bool basicBlockCanReturn(BasicBlock &BB) { 1543 if (!isa<ReturnInst>(BB.getTerminator())) 1544 return false; 1545 return none_of(BB, instructionDoesNotReturn); 1546 } 1547 1548 // FIXME: this doesn't handle recursion. 1549 static bool canReturn(Function &F) { 1550 SmallVector<BasicBlock *, 16> Worklist; 1551 SmallPtrSet<BasicBlock *, 16> Visited; 1552 1553 Visited.insert(&F.front()); 1554 Worklist.push_back(&F.front()); 1555 1556 do { 1557 BasicBlock *BB = Worklist.pop_back_val(); 1558 if (basicBlockCanReturn(*BB)) 1559 return true; 1560 for (BasicBlock *Succ : successors(BB)) 1561 if (Visited.insert(Succ).second) 1562 Worklist.push_back(Succ); 1563 } while (!Worklist.empty()); 1564 1565 return false; 1566 } 1567 1568 // Set the noreturn function attribute if possible. 1569 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1570 SmallSet<Function *, 8> &Changed) { 1571 for (Function *F : SCCNodes) { 1572 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1573 F->doesNotReturn()) 1574 continue; 1575 1576 if (!canReturn(*F)) { 1577 F->setDoesNotReturn(); 1578 Changed.insert(F); 1579 } 1580 } 1581 } 1582 1583 static bool functionWillReturn(const Function &F) { 1584 // We can infer and propagate function attributes only when we know that the 1585 // definition we'll get at link time is *exactly* the definition we see now. 1586 // For more details, see GlobalValue::mayBeDerefined. 1587 if (!F.hasExactDefinition()) 1588 return false; 1589 1590 // Must-progress function without side-effects must return. 1591 if (F.mustProgress() && F.onlyReadsMemory()) 1592 return true; 1593 1594 // Can only analyze functions with a definition. 1595 if (F.isDeclaration()) 1596 return false; 1597 1598 // Functions with loops require more sophisticated analysis, as the loop 1599 // may be infinite. For now, don't try to handle them. 1600 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1601 FindFunctionBackedges(F, Backedges); 1602 if (!Backedges.empty()) 1603 return false; 1604 1605 // If there are no loops, then the function is willreturn if all calls in 1606 // it are willreturn. 1607 return all_of(instructions(F), [](const Instruction &I) { 1608 return I.willReturn(); 1609 }); 1610 } 1611 1612 // Set the willreturn function attribute if possible. 1613 static void addWillReturn(const SCCNodeSet &SCCNodes, 1614 SmallSet<Function *, 8> &Changed) { 1615 for (Function *F : SCCNodes) { 1616 if (!F || F->willReturn() || !functionWillReturn(*F)) 1617 continue; 1618 1619 F->setWillReturn(); 1620 NumWillReturn++; 1621 Changed.insert(F); 1622 } 1623 } 1624 1625 // Return true if this is an atomic which has an ordering stronger than 1626 // unordered. Note that this is different than the predicate we use in 1627 // Attributor. Here we chose to be conservative and consider monotonic 1628 // operations potentially synchronizing. We generally don't do much with 1629 // monotonic operations, so this is simply risk reduction. 1630 static bool isOrderedAtomic(Instruction *I) { 1631 if (!I->isAtomic()) 1632 return false; 1633 1634 if (auto *FI = dyn_cast<FenceInst>(I)) 1635 // All legal orderings for fence are stronger than monotonic. 1636 return FI->getSyncScopeID() != SyncScope::SingleThread; 1637 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1638 return true; 1639 else if (auto *SI = dyn_cast<StoreInst>(I)) 1640 return !SI->isUnordered(); 1641 else if (auto *LI = dyn_cast<LoadInst>(I)) 1642 return !LI->isUnordered(); 1643 else { 1644 llvm_unreachable("unknown atomic instruction?"); 1645 } 1646 } 1647 1648 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1649 // Volatile may synchronize 1650 if (I.isVolatile()) 1651 return true; 1652 1653 // An ordered atomic may synchronize. (See comment about on monotonic.) 1654 if (isOrderedAtomic(&I)) 1655 return true; 1656 1657 auto *CB = dyn_cast<CallBase>(&I); 1658 if (!CB) 1659 // Non call site cases covered by the two checks above 1660 return false; 1661 1662 if (CB->hasFnAttr(Attribute::NoSync)) 1663 return false; 1664 1665 // Non volatile memset/memcpy/memmoves are nosync 1666 // NOTE: Only intrinsics with volatile flags should be handled here. All 1667 // others should be marked in Intrinsics.td. 1668 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1669 if (!MI->isVolatile()) 1670 return false; 1671 1672 // Speculatively assume in SCC. 1673 if (Function *Callee = CB->getCalledFunction()) 1674 if (SCCNodes.contains(Callee)) 1675 return false; 1676 1677 return true; 1678 } 1679 1680 // Infer the nosync attribute. 1681 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1682 SmallSet<Function *, 8> &Changed) { 1683 AttributeInferer AI; 1684 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1685 Attribute::NoSync, 1686 // Skip already marked functions. 1687 [](const Function &F) { return F.hasNoSync(); }, 1688 // Instructions that break nosync assumption. 1689 [&SCCNodes](Instruction &I) { 1690 return InstrBreaksNoSync(I, SCCNodes); 1691 }, 1692 [](Function &F) { 1693 LLVM_DEBUG(dbgs() 1694 << "Adding nosync attr to fn " << F.getName() << "\n"); 1695 F.setNoSync(); 1696 ++NumNoSync; 1697 }, 1698 /* RequiresExactDefinition= */ true}); 1699 AI.run(SCCNodes, Changed); 1700 } 1701 1702 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1703 SCCNodesResult Res; 1704 Res.HasUnknownCall = false; 1705 for (Function *F : Functions) { 1706 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1707 F->isPresplitCoroutine()) { 1708 // Treat any function we're trying not to optimize as if it were an 1709 // indirect call and omit it from the node set used below. 1710 Res.HasUnknownCall = true; 1711 continue; 1712 } 1713 // Track whether any functions in this SCC have an unknown call edge. 1714 // Note: if this is ever a performance hit, we can common it with 1715 // subsequent routines which also do scans over the instructions of the 1716 // function. 1717 if (!Res.HasUnknownCall) { 1718 for (Instruction &I : instructions(*F)) { 1719 if (auto *CB = dyn_cast<CallBase>(&I)) { 1720 if (!CB->getCalledFunction()) { 1721 Res.HasUnknownCall = true; 1722 break; 1723 } 1724 } 1725 } 1726 } 1727 Res.SCCNodes.insert(F); 1728 } 1729 return Res; 1730 } 1731 1732 template <typename AARGetterT> 1733 static SmallSet<Function *, 8> 1734 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1735 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1736 1737 // Bail if the SCC only contains optnone functions. 1738 if (Nodes.SCCNodes.empty()) 1739 return {}; 1740 1741 SmallSet<Function *, 8> Changed; 1742 1743 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1744 addMemoryAttrs(Nodes.SCCNodes, AARGetter, Changed); 1745 addArgumentAttrs(Nodes.SCCNodes, Changed); 1746 inferConvergent(Nodes.SCCNodes, Changed); 1747 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1748 addWillReturn(Nodes.SCCNodes, Changed); 1749 1750 // If we have no external nodes participating in the SCC, we can deduce some 1751 // more precise attributes as well. 1752 if (!Nodes.HasUnknownCall) { 1753 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1754 addNonNullAttrs(Nodes.SCCNodes, Changed); 1755 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1756 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1757 } 1758 1759 addNoSyncAttr(Nodes.SCCNodes, Changed); 1760 1761 // Finally, infer the maximal set of attributes from the ones we've inferred 1762 // above. This is handling the cases where one attribute on a signature 1763 // implies another, but for implementation reasons the inference rule for 1764 // the later is missing (or simply less sophisticated). 1765 for (Function *F : Nodes.SCCNodes) 1766 if (F) 1767 if (inferAttributesFromOthers(*F)) 1768 Changed.insert(F); 1769 1770 return Changed; 1771 } 1772 1773 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1774 CGSCCAnalysisManager &AM, 1775 LazyCallGraph &CG, 1776 CGSCCUpdateResult &) { 1777 FunctionAnalysisManager &FAM = 1778 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1779 1780 // We pass a lambda into functions to wire them up to the analysis manager 1781 // for getting function analyses. 1782 auto AARGetter = [&](Function &F) -> AAResults & { 1783 return FAM.getResult<AAManager>(F); 1784 }; 1785 1786 SmallVector<Function *, 8> Functions; 1787 for (LazyCallGraph::Node &N : C) { 1788 Functions.push_back(&N.getFunction()); 1789 } 1790 1791 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1792 if (ChangedFunctions.empty()) 1793 return PreservedAnalyses::all(); 1794 1795 // Invalidate analyses for modified functions so that we don't have to 1796 // invalidate all analyses for all functions in this SCC. 1797 PreservedAnalyses FuncPA; 1798 // We haven't changed the CFG for modified functions. 1799 FuncPA.preserveSet<CFGAnalyses>(); 1800 for (Function *Changed : ChangedFunctions) { 1801 FAM.invalidate(*Changed, FuncPA); 1802 // Also invalidate any direct callers of changed functions since analyses 1803 // may care about attributes of direct callees. For example, MemorySSA cares 1804 // about whether or not a call's callee modifies memory and queries that 1805 // through function attributes. 1806 for (auto *U : Changed->users()) { 1807 if (auto *Call = dyn_cast<CallBase>(U)) { 1808 if (Call->getCalledFunction() == Changed) 1809 FAM.invalidate(*Call->getFunction(), FuncPA); 1810 } 1811 } 1812 } 1813 1814 PreservedAnalyses PA; 1815 // We have not added or removed functions. 1816 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1817 // We already invalidated all relevant function analyses above. 1818 PA.preserveSet<AllAnalysesOn<Function>>(); 1819 return PA; 1820 } 1821 1822 namespace { 1823 1824 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1825 // Pass identification, replacement for typeid 1826 static char ID; 1827 1828 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1829 initializePostOrderFunctionAttrsLegacyPassPass( 1830 *PassRegistry::getPassRegistry()); 1831 } 1832 1833 bool runOnSCC(CallGraphSCC &SCC) override; 1834 1835 void getAnalysisUsage(AnalysisUsage &AU) const override { 1836 AU.setPreservesCFG(); 1837 AU.addRequired<AssumptionCacheTracker>(); 1838 getAAResultsAnalysisUsage(AU); 1839 CallGraphSCCPass::getAnalysisUsage(AU); 1840 } 1841 }; 1842 1843 } // end anonymous namespace 1844 1845 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1846 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1847 "Deduce function attributes", false, false) 1848 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1849 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1850 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1851 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1852 "Deduce function attributes", false, false) 1853 1854 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1855 return new PostOrderFunctionAttrsLegacyPass(); 1856 } 1857 1858 template <typename AARGetterT> 1859 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1860 SmallVector<Function *, 8> Functions; 1861 for (CallGraphNode *I : SCC) { 1862 Functions.push_back(I->getFunction()); 1863 } 1864 1865 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1866 } 1867 1868 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1869 if (skipSCC(SCC)) 1870 return false; 1871 return runImpl(SCC, LegacyAARGetter(*this)); 1872 } 1873 1874 namespace { 1875 1876 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1877 // Pass identification, replacement for typeid 1878 static char ID; 1879 1880 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1881 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1882 *PassRegistry::getPassRegistry()); 1883 } 1884 1885 bool runOnModule(Module &M) override; 1886 1887 void getAnalysisUsage(AnalysisUsage &AU) const override { 1888 AU.setPreservesCFG(); 1889 AU.addRequired<CallGraphWrapperPass>(); 1890 AU.addPreserved<CallGraphWrapperPass>(); 1891 } 1892 }; 1893 1894 } // end anonymous namespace 1895 1896 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1897 1898 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1899 "rpo-function-attrs", "Deduce function attributes in RPO", 1900 false, false) 1901 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1902 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1903 "rpo-function-attrs", "Deduce function attributes in RPO", 1904 false, false) 1905 1906 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1907 return new ReversePostOrderFunctionAttrsLegacyPass(); 1908 } 1909 1910 static bool addNoRecurseAttrsTopDown(Function &F) { 1911 // We check the preconditions for the function prior to calling this to avoid 1912 // the cost of building up a reversible post-order list. We assert them here 1913 // to make sure none of the invariants this relies on were violated. 1914 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1915 assert(!F.doesNotRecurse() && 1916 "This function has already been deduced as norecurs!"); 1917 assert(F.hasInternalLinkage() && 1918 "Can only do top-down deduction for internal linkage functions!"); 1919 1920 // If F is internal and all of its uses are calls from a non-recursive 1921 // functions, then none of its calls could in fact recurse without going 1922 // through a function marked norecurse, and so we can mark this function too 1923 // as norecurse. Note that the uses must actually be calls -- otherwise 1924 // a pointer to this function could be returned from a norecurse function but 1925 // this function could be recursively (indirectly) called. Note that this 1926 // also detects if F is directly recursive as F is not yet marked as 1927 // a norecurse function. 1928 for (auto &U : F.uses()) { 1929 auto *I = dyn_cast<Instruction>(U.getUser()); 1930 if (!I) 1931 return false; 1932 CallBase *CB = dyn_cast<CallBase>(I); 1933 if (!CB || !CB->isCallee(&U) || 1934 !CB->getParent()->getParent()->doesNotRecurse()) 1935 return false; 1936 } 1937 F.setDoesNotRecurse(); 1938 ++NumNoRecurse; 1939 return true; 1940 } 1941 1942 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1943 // We only have a post-order SCC traversal (because SCCs are inherently 1944 // discovered in post-order), so we accumulate them in a vector and then walk 1945 // it in reverse. This is simpler than using the RPO iterator infrastructure 1946 // because we need to combine SCC detection and the PO walk of the call 1947 // graph. We can also cheat egregiously because we're primarily interested in 1948 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 1949 // with multiple functions in them will clearly be recursive. 1950 SmallVector<Function *, 16> Worklist; 1951 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 1952 if (I->size() != 1) 1953 continue; 1954 1955 Function *F = I->front()->getFunction(); 1956 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 1957 F->hasInternalLinkage()) 1958 Worklist.push_back(F); 1959 } 1960 1961 bool Changed = false; 1962 for (auto *F : llvm::reverse(Worklist)) 1963 Changed |= addNoRecurseAttrsTopDown(*F); 1964 1965 return Changed; 1966 } 1967 1968 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 1969 if (skipModule(M)) 1970 return false; 1971 1972 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1973 1974 return deduceFunctionAttributeInRPO(M, CG); 1975 } 1976 1977 PreservedAnalyses 1978 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 1979 auto &CG = AM.getResult<CallGraphAnalysis>(M); 1980 1981 if (!deduceFunctionAttributeInRPO(M, CG)) 1982 return PreservedAnalyses::all(); 1983 1984 PreservedAnalyses PA; 1985 PA.preserve<CallGraphAnalysis>(); 1986 return PA; 1987 } 1988