1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/SCCIterator.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BasicAliasAnalysis.h" 25 #include "llvm/Analysis/CGSCCPassManager.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CallGraphSCCPass.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/LazyCallGraph.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Argument.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CallSite.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/InstIterator.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Use.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/IPO.h" 59 #include <cassert> 60 #include <iterator> 61 #include <map> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "functionattrs" 67 68 STATISTIC(NumReadNone, "Number of functions marked readnone"); 69 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 70 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 71 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 72 STATISTIC(NumReturned, "Number of arguments marked returned"); 73 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 74 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 75 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 76 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 77 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 78 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 79 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 80 81 static cl::opt<bool> EnableNonnullArgPropagation( 82 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 83 cl::desc("Try to propagate nonnull argument attributes from callsites to " 84 "caller functions.")); 85 86 static cl::opt<bool> DisableNoUnwindInference( 87 "disable-nounwind-inference", cl::Hidden, 88 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 89 90 static cl::opt<bool> DisableNoFreeInference( 91 "disable-nofree-inference", cl::Hidden, 92 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 93 94 namespace { 95 96 using SCCNodeSet = SmallSetVector<Function *, 8>; 97 98 } // end anonymous namespace 99 100 /// Returns the memory access attribute for function F using AAR for AA results, 101 /// where SCCNodes is the current SCC. 102 /// 103 /// If ThisBody is true, this function may examine the function body and will 104 /// return a result pertaining to this copy of the function. If it is false, the 105 /// result will be based only on AA results for the function declaration; it 106 /// will be assumed that some other (perhaps less optimized) version of the 107 /// function may be selected at link time. 108 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 109 AAResults &AAR, 110 const SCCNodeSet &SCCNodes) { 111 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 112 if (MRB == FMRB_DoesNotAccessMemory) 113 // Already perfect! 114 return MAK_ReadNone; 115 116 if (!ThisBody) { 117 if (AliasAnalysis::onlyReadsMemory(MRB)) 118 return MAK_ReadOnly; 119 120 if (AliasAnalysis::doesNotReadMemory(MRB)) 121 return MAK_WriteOnly; 122 123 // Conservatively assume it reads and writes to memory. 124 return MAK_MayWrite; 125 } 126 127 // Scan the function body for instructions that may read or write memory. 128 bool ReadsMemory = false; 129 bool WritesMemory = false; 130 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 131 Instruction *I = &*II; 132 133 // Some instructions can be ignored even if they read or write memory. 134 // Detect these now, skipping to the next instruction if one is found. 135 if (auto *Call = dyn_cast<CallBase>(I)) { 136 // Ignore calls to functions in the same SCC, as long as the call sites 137 // don't have operand bundles. Calls with operand bundles are allowed to 138 // have memory effects not described by the memory effects of the call 139 // target. 140 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 141 SCCNodes.count(Call->getCalledFunction())) 142 continue; 143 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 144 ModRefInfo MRI = createModRefInfo(MRB); 145 146 // If the call doesn't access memory, we're done. 147 if (isNoModRef(MRI)) 148 continue; 149 150 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 151 // The call could access any memory. If that includes writes, note it. 152 if (isModSet(MRI)) 153 WritesMemory = true; 154 // If it reads, note it. 155 if (isRefSet(MRI)) 156 ReadsMemory = true; 157 continue; 158 } 159 160 // Check whether all pointer arguments point to local memory, and 161 // ignore calls that only access local memory. 162 for (CallSite::arg_iterator CI = Call->arg_begin(), CE = Call->arg_end(); 163 CI != CE; ++CI) { 164 Value *Arg = *CI; 165 if (!Arg->getType()->isPtrOrPtrVectorTy()) 166 continue; 167 168 AAMDNodes AAInfo; 169 I->getAAMetadata(AAInfo); 170 MemoryLocation Loc(Arg, LocationSize::unknown(), AAInfo); 171 172 // Skip accesses to local or constant memory as they don't impact the 173 // externally visible mod/ref behavior. 174 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 175 continue; 176 177 if (isModSet(MRI)) 178 // Writes non-local memory. 179 WritesMemory = true; 180 if (isRefSet(MRI)) 181 // Ok, it reads non-local memory. 182 ReadsMemory = true; 183 } 184 continue; 185 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 186 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 187 if (!LI->isVolatile()) { 188 MemoryLocation Loc = MemoryLocation::get(LI); 189 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 190 continue; 191 } 192 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 193 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 194 if (!SI->isVolatile()) { 195 MemoryLocation Loc = MemoryLocation::get(SI); 196 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 197 continue; 198 } 199 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) { 200 // Ignore vaargs on local memory. 201 MemoryLocation Loc = MemoryLocation::get(VI); 202 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 203 continue; 204 } 205 206 // Any remaining instructions need to be taken seriously! Check if they 207 // read or write memory. 208 // 209 // Writes memory, remember that. 210 WritesMemory |= I->mayWriteToMemory(); 211 212 // If this instruction may read memory, remember that. 213 ReadsMemory |= I->mayReadFromMemory(); 214 } 215 216 if (WritesMemory) { 217 if (!ReadsMemory) 218 return MAK_WriteOnly; 219 else 220 return MAK_MayWrite; 221 } 222 223 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 224 } 225 226 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 227 AAResults &AAR) { 228 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 229 } 230 231 /// Deduce readonly/readnone attributes for the SCC. 232 template <typename AARGetterT> 233 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) { 234 // Check if any of the functions in the SCC read or write memory. If they 235 // write memory then they can't be marked readnone or readonly. 236 bool ReadsMemory = false; 237 bool WritesMemory = false; 238 for (Function *F : SCCNodes) { 239 // Call the callable parameter to look up AA results for this function. 240 AAResults &AAR = AARGetter(*F); 241 242 // Non-exact function definitions may not be selected at link time, and an 243 // alternative version that writes to memory may be selected. See the 244 // comment on GlobalValue::isDefinitionExact for more details. 245 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 246 AAR, SCCNodes)) { 247 case MAK_MayWrite: 248 return false; 249 case MAK_ReadOnly: 250 ReadsMemory = true; 251 break; 252 case MAK_WriteOnly: 253 WritesMemory = true; 254 break; 255 case MAK_ReadNone: 256 // Nothing to do! 257 break; 258 } 259 } 260 261 // If the SCC contains both functions that read and functions that write, then 262 // we cannot add readonly attributes. 263 if (ReadsMemory && WritesMemory) 264 return false; 265 266 // Success! Functions in this SCC do not access memory, or only read memory. 267 // Give them the appropriate attribute. 268 bool MadeChange = false; 269 270 for (Function *F : SCCNodes) { 271 if (F->doesNotAccessMemory()) 272 // Already perfect! 273 continue; 274 275 if (F->onlyReadsMemory() && ReadsMemory) 276 // No change. 277 continue; 278 279 if (F->doesNotReadMemory() && WritesMemory) 280 continue; 281 282 MadeChange = true; 283 284 // Clear out any existing attributes. 285 F->removeFnAttr(Attribute::ReadOnly); 286 F->removeFnAttr(Attribute::ReadNone); 287 F->removeFnAttr(Attribute::WriteOnly); 288 289 if (!WritesMemory && !ReadsMemory) { 290 // Clear out any "access range attributes" if readnone was deduced. 291 F->removeFnAttr(Attribute::ArgMemOnly); 292 F->removeFnAttr(Attribute::InaccessibleMemOnly); 293 F->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly); 294 } 295 296 // Add in the new attribute. 297 if (WritesMemory && !ReadsMemory) 298 F->addFnAttr(Attribute::WriteOnly); 299 else 300 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 301 302 if (WritesMemory && !ReadsMemory) 303 ++NumWriteOnly; 304 else if (ReadsMemory) 305 ++NumReadOnly; 306 else 307 ++NumReadNone; 308 } 309 310 return MadeChange; 311 } 312 313 namespace { 314 315 /// For a given pointer Argument, this retains a list of Arguments of functions 316 /// in the same SCC that the pointer data flows into. We use this to build an 317 /// SCC of the arguments. 318 struct ArgumentGraphNode { 319 Argument *Definition; 320 SmallVector<ArgumentGraphNode *, 4> Uses; 321 }; 322 323 class ArgumentGraph { 324 // We store pointers to ArgumentGraphNode objects, so it's important that 325 // that they not move around upon insert. 326 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 327 328 ArgumentMapTy ArgumentMap; 329 330 // There is no root node for the argument graph, in fact: 331 // void f(int *x, int *y) { if (...) f(x, y); } 332 // is an example where the graph is disconnected. The SCCIterator requires a 333 // single entry point, so we maintain a fake ("synthetic") root node that 334 // uses every node. Because the graph is directed and nothing points into 335 // the root, it will not participate in any SCCs (except for its own). 336 ArgumentGraphNode SyntheticRoot; 337 338 public: 339 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 340 341 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 342 343 iterator begin() { return SyntheticRoot.Uses.begin(); } 344 iterator end() { return SyntheticRoot.Uses.end(); } 345 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 346 347 ArgumentGraphNode *operator[](Argument *A) { 348 ArgumentGraphNode &Node = ArgumentMap[A]; 349 Node.Definition = A; 350 SyntheticRoot.Uses.push_back(&Node); 351 return &Node; 352 } 353 }; 354 355 /// This tracker checks whether callees are in the SCC, and if so it does not 356 /// consider that a capture, instead adding it to the "Uses" list and 357 /// continuing with the analysis. 358 struct ArgumentUsesTracker : public CaptureTracker { 359 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 360 361 void tooManyUses() override { Captured = true; } 362 363 bool captured(const Use *U) override { 364 CallSite CS(U->getUser()); 365 if (!CS.getInstruction()) { 366 Captured = true; 367 return true; 368 } 369 370 Function *F = CS.getCalledFunction(); 371 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 372 Captured = true; 373 return true; 374 } 375 376 // Note: the callee and the two successor blocks *follow* the argument 377 // operands. This means there is no need to adjust UseIndex to account for 378 // these. 379 380 unsigned UseIndex = 381 std::distance(const_cast<const Use *>(CS.arg_begin()), U); 382 383 assert(UseIndex < CS.data_operands_size() && 384 "Indirect function calls should have been filtered above!"); 385 386 if (UseIndex >= CS.getNumArgOperands()) { 387 // Data operand, but not a argument operand -- must be a bundle operand 388 assert(CS.hasOperandBundles() && "Must be!"); 389 390 // CaptureTracking told us that we're being captured by an operand bundle 391 // use. In this case it does not matter if the callee is within our SCC 392 // or not -- we've been captured in some unknown way, and we have to be 393 // conservative. 394 Captured = true; 395 return true; 396 } 397 398 if (UseIndex >= F->arg_size()) { 399 assert(F->isVarArg() && "More params than args in non-varargs call"); 400 Captured = true; 401 return true; 402 } 403 404 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 405 return false; 406 } 407 408 // True only if certainly captured (used outside our SCC). 409 bool Captured = false; 410 411 // Uses within our SCC. 412 SmallVector<Argument *, 4> Uses; 413 414 const SCCNodeSet &SCCNodes; 415 }; 416 417 } // end anonymous namespace 418 419 namespace llvm { 420 421 template <> struct GraphTraits<ArgumentGraphNode *> { 422 using NodeRef = ArgumentGraphNode *; 423 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 424 425 static NodeRef getEntryNode(NodeRef A) { return A; } 426 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 427 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 428 }; 429 430 template <> 431 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 432 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 433 434 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 435 return AG->begin(); 436 } 437 438 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 439 }; 440 441 } // end namespace llvm 442 443 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 444 static Attribute::AttrKind 445 determinePointerReadAttrs(Argument *A, 446 const SmallPtrSet<Argument *, 8> &SCCNodes) { 447 SmallVector<Use *, 32> Worklist; 448 SmallPtrSet<Use *, 32> Visited; 449 450 // inalloca arguments are always clobbered by the call. 451 if (A->hasInAllocaAttr()) 452 return Attribute::None; 453 454 bool IsRead = false; 455 // We don't need to track IsWritten. If A is written to, return immediately. 456 457 for (Use &U : A->uses()) { 458 Visited.insert(&U); 459 Worklist.push_back(&U); 460 } 461 462 while (!Worklist.empty()) { 463 Use *U = Worklist.pop_back_val(); 464 Instruction *I = cast<Instruction>(U->getUser()); 465 466 switch (I->getOpcode()) { 467 case Instruction::BitCast: 468 case Instruction::GetElementPtr: 469 case Instruction::PHI: 470 case Instruction::Select: 471 case Instruction::AddrSpaceCast: 472 // The original value is not read/written via this if the new value isn't. 473 for (Use &UU : I->uses()) 474 if (Visited.insert(&UU).second) 475 Worklist.push_back(&UU); 476 break; 477 478 case Instruction::Call: 479 case Instruction::Invoke: { 480 bool Captures = true; 481 482 if (I->getType()->isVoidTy()) 483 Captures = false; 484 485 auto AddUsersToWorklistIfCapturing = [&] { 486 if (Captures) 487 for (Use &UU : I->uses()) 488 if (Visited.insert(&UU).second) 489 Worklist.push_back(&UU); 490 }; 491 492 CallSite CS(I); 493 if (CS.doesNotAccessMemory()) { 494 AddUsersToWorklistIfCapturing(); 495 continue; 496 } 497 498 Function *F = CS.getCalledFunction(); 499 if (!F) { 500 if (CS.onlyReadsMemory()) { 501 IsRead = true; 502 AddUsersToWorklistIfCapturing(); 503 continue; 504 } 505 return Attribute::None; 506 } 507 508 // Note: the callee and the two successor blocks *follow* the argument 509 // operands. This means there is no need to adjust UseIndex to account 510 // for these. 511 512 unsigned UseIndex = std::distance(CS.arg_begin(), U); 513 514 // U cannot be the callee operand use: since we're exploring the 515 // transitive uses of an Argument, having such a use be a callee would 516 // imply the CallSite is an indirect call or invoke; and we'd take the 517 // early exit above. 518 assert(UseIndex < CS.data_operands_size() && 519 "Data operand use expected!"); 520 521 bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands(); 522 523 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 524 assert(F->isVarArg() && "More params than args in non-varargs call"); 525 return Attribute::None; 526 } 527 528 Captures &= !CS.doesNotCapture(UseIndex); 529 530 // Since the optimizer (by design) cannot see the data flow corresponding 531 // to a operand bundle use, these cannot participate in the optimistic SCC 532 // analysis. Instead, we model the operand bundle uses as arguments in 533 // call to a function external to the SCC. 534 if (IsOperandBundleUse || 535 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) { 536 537 // The accessors used on CallSite here do the right thing for calls and 538 // invokes with operand bundles. 539 540 if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex)) 541 return Attribute::None; 542 if (!CS.doesNotAccessMemory(UseIndex)) 543 IsRead = true; 544 } 545 546 AddUsersToWorklistIfCapturing(); 547 break; 548 } 549 550 case Instruction::Load: 551 // A volatile load has side effects beyond what readonly can be relied 552 // upon. 553 if (cast<LoadInst>(I)->isVolatile()) 554 return Attribute::None; 555 556 IsRead = true; 557 break; 558 559 case Instruction::ICmp: 560 case Instruction::Ret: 561 break; 562 563 default: 564 return Attribute::None; 565 } 566 } 567 568 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone; 569 } 570 571 /// Deduce returned attributes for the SCC. 572 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) { 573 bool Changed = false; 574 575 // Check each function in turn, determining if an argument is always returned. 576 for (Function *F : SCCNodes) { 577 // We can infer and propagate function attributes only when we know that the 578 // definition we'll get at link time is *exactly* the definition we see now. 579 // For more details, see GlobalValue::mayBeDerefined. 580 if (!F->hasExactDefinition()) 581 continue; 582 583 if (F->getReturnType()->isVoidTy()) 584 continue; 585 586 // There is nothing to do if an argument is already marked as 'returned'. 587 if (llvm::any_of(F->args(), 588 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 589 continue; 590 591 auto FindRetArg = [&]() -> Value * { 592 Value *RetArg = nullptr; 593 for (BasicBlock &BB : *F) 594 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 595 // Note that stripPointerCasts should look through functions with 596 // returned arguments. 597 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 598 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 599 return nullptr; 600 601 if (!RetArg) 602 RetArg = RetVal; 603 else if (RetArg != RetVal) 604 return nullptr; 605 } 606 607 return RetArg; 608 }; 609 610 if (Value *RetArg = FindRetArg()) { 611 auto *A = cast<Argument>(RetArg); 612 A->addAttr(Attribute::Returned); 613 ++NumReturned; 614 Changed = true; 615 } 616 } 617 618 return Changed; 619 } 620 621 /// If a callsite has arguments that are also arguments to the parent function, 622 /// try to propagate attributes from the callsite's arguments to the parent's 623 /// arguments. This may be important because inlining can cause information loss 624 /// when attribute knowledge disappears with the inlined call. 625 static bool addArgumentAttrsFromCallsites(Function &F) { 626 if (!EnableNonnullArgPropagation) 627 return false; 628 629 bool Changed = false; 630 631 // For an argument attribute to transfer from a callsite to the parent, the 632 // call must be guaranteed to execute every time the parent is called. 633 // Conservatively, just check for calls in the entry block that are guaranteed 634 // to execute. 635 // TODO: This could be enhanced by testing if the callsite post-dominates the 636 // entry block or by doing simple forward walks or backward walks to the 637 // callsite. 638 BasicBlock &Entry = F.getEntryBlock(); 639 for (Instruction &I : Entry) { 640 if (auto CS = CallSite(&I)) { 641 if (auto *CalledFunc = CS.getCalledFunction()) { 642 for (auto &CSArg : CalledFunc->args()) { 643 if (!CSArg.hasNonNullAttr()) 644 continue; 645 646 // If the non-null callsite argument operand is an argument to 'F' 647 // (the caller) and the call is guaranteed to execute, then the value 648 // must be non-null throughout 'F'. 649 auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo())); 650 if (FArg && !FArg->hasNonNullAttr()) { 651 FArg->addAttr(Attribute::NonNull); 652 Changed = true; 653 } 654 } 655 } 656 } 657 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 658 break; 659 } 660 661 return Changed; 662 } 663 664 static bool addReadAttr(Argument *A, Attribute::AttrKind R) { 665 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone) 666 && "Must be a Read attribute."); 667 assert(A && "Argument must not be null."); 668 669 // If the argument already has the attribute, nothing needs to be done. 670 if (A->hasAttribute(R)) 671 return false; 672 673 // Otherwise, remove potentially conflicting attribute, add the new one, 674 // and update statistics. 675 A->removeAttr(Attribute::WriteOnly); 676 A->removeAttr(Attribute::ReadOnly); 677 A->removeAttr(Attribute::ReadNone); 678 A->addAttr(R); 679 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; 680 return true; 681 } 682 683 /// Deduce nocapture attributes for the SCC. 684 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) { 685 bool Changed = false; 686 687 ArgumentGraph AG; 688 689 // Check each function in turn, determining which pointer arguments are not 690 // captured. 691 for (Function *F : SCCNodes) { 692 // We can infer and propagate function attributes only when we know that the 693 // definition we'll get at link time is *exactly* the definition we see now. 694 // For more details, see GlobalValue::mayBeDerefined. 695 if (!F->hasExactDefinition()) 696 continue; 697 698 Changed |= addArgumentAttrsFromCallsites(*F); 699 700 // Functions that are readonly (or readnone) and nounwind and don't return 701 // a value can't capture arguments. Don't analyze them. 702 if (F->onlyReadsMemory() && F->doesNotThrow() && 703 F->getReturnType()->isVoidTy()) { 704 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 705 ++A) { 706 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 707 A->addAttr(Attribute::NoCapture); 708 ++NumNoCapture; 709 Changed = true; 710 } 711 } 712 continue; 713 } 714 715 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 716 ++A) { 717 if (!A->getType()->isPointerTy()) 718 continue; 719 bool HasNonLocalUses = false; 720 if (!A->hasNoCaptureAttr()) { 721 ArgumentUsesTracker Tracker(SCCNodes); 722 PointerMayBeCaptured(&*A, &Tracker); 723 if (!Tracker.Captured) { 724 if (Tracker.Uses.empty()) { 725 // If it's trivially not captured, mark it nocapture now. 726 A->addAttr(Attribute::NoCapture); 727 ++NumNoCapture; 728 Changed = true; 729 } else { 730 // If it's not trivially captured and not trivially not captured, 731 // then it must be calling into another function in our SCC. Save 732 // its particulars for Argument-SCC analysis later. 733 ArgumentGraphNode *Node = AG[&*A]; 734 for (Argument *Use : Tracker.Uses) { 735 Node->Uses.push_back(AG[Use]); 736 if (Use != &*A) 737 HasNonLocalUses = true; 738 } 739 } 740 } 741 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 742 } 743 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 744 // Can we determine that it's readonly/readnone without doing an SCC? 745 // Note that we don't allow any calls at all here, or else our result 746 // will be dependent on the iteration order through the functions in the 747 // SCC. 748 SmallPtrSet<Argument *, 8> Self; 749 Self.insert(&*A); 750 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self); 751 if (R != Attribute::None) 752 Changed = addReadAttr(A, R); 753 } 754 } 755 } 756 757 // The graph we've collected is partial because we stopped scanning for 758 // argument uses once we solved the argument trivially. These partial nodes 759 // show up as ArgumentGraphNode objects with an empty Uses list, and for 760 // these nodes the final decision about whether they capture has already been 761 // made. If the definition doesn't have a 'nocapture' attribute by now, it 762 // captures. 763 764 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 765 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 766 if (ArgumentSCC.size() == 1) { 767 if (!ArgumentSCC[0]->Definition) 768 continue; // synthetic root node 769 770 // eg. "void f(int* x) { if (...) f(x); }" 771 if (ArgumentSCC[0]->Uses.size() == 1 && 772 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 773 Argument *A = ArgumentSCC[0]->Definition; 774 A->addAttr(Attribute::NoCapture); 775 ++NumNoCapture; 776 Changed = true; 777 } 778 continue; 779 } 780 781 bool SCCCaptured = false; 782 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 783 I != E && !SCCCaptured; ++I) { 784 ArgumentGraphNode *Node = *I; 785 if (Node->Uses.empty()) { 786 if (!Node->Definition->hasNoCaptureAttr()) 787 SCCCaptured = true; 788 } 789 } 790 if (SCCCaptured) 791 continue; 792 793 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 794 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 795 // quickly looking up whether a given Argument is in this ArgumentSCC. 796 for (ArgumentGraphNode *I : ArgumentSCC) { 797 ArgumentSCCNodes.insert(I->Definition); 798 } 799 800 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 801 I != E && !SCCCaptured; ++I) { 802 ArgumentGraphNode *N = *I; 803 for (ArgumentGraphNode *Use : N->Uses) { 804 Argument *A = Use->Definition; 805 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 806 continue; 807 SCCCaptured = true; 808 break; 809 } 810 } 811 if (SCCCaptured) 812 continue; 813 814 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 815 Argument *A = ArgumentSCC[i]->Definition; 816 A->addAttr(Attribute::NoCapture); 817 ++NumNoCapture; 818 Changed = true; 819 } 820 821 // We also want to compute readonly/readnone. With a small number of false 822 // negatives, we can assume that any pointer which is captured isn't going 823 // to be provably readonly or readnone, since by definition we can't 824 // analyze all uses of a captured pointer. 825 // 826 // The false negatives happen when the pointer is captured by a function 827 // that promises readonly/readnone behaviour on the pointer, then the 828 // pointer's lifetime ends before anything that writes to arbitrary memory. 829 // Also, a readonly/readnone pointer may be returned, but returning a 830 // pointer is capturing it. 831 832 Attribute::AttrKind ReadAttr = Attribute::ReadNone; 833 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 834 Argument *A = ArgumentSCC[i]->Definition; 835 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes); 836 if (K == Attribute::ReadNone) 837 continue; 838 if (K == Attribute::ReadOnly) { 839 ReadAttr = Attribute::ReadOnly; 840 continue; 841 } 842 ReadAttr = K; 843 break; 844 } 845 846 if (ReadAttr != Attribute::None) { 847 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 848 Argument *A = ArgumentSCC[i]->Definition; 849 Changed = addReadAttr(A, ReadAttr); 850 } 851 } 852 } 853 854 return Changed; 855 } 856 857 /// Tests whether a function is "malloc-like". 858 /// 859 /// A function is "malloc-like" if it returns either null or a pointer that 860 /// doesn't alias any other pointer visible to the caller. 861 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 862 SmallSetVector<Value *, 8> FlowsToReturn; 863 for (BasicBlock &BB : *F) 864 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 865 FlowsToReturn.insert(Ret->getReturnValue()); 866 867 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 868 Value *RetVal = FlowsToReturn[i]; 869 870 if (Constant *C = dyn_cast<Constant>(RetVal)) { 871 if (!C->isNullValue() && !isa<UndefValue>(C)) 872 return false; 873 874 continue; 875 } 876 877 if (isa<Argument>(RetVal)) 878 return false; 879 880 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 881 switch (RVI->getOpcode()) { 882 // Extend the analysis by looking upwards. 883 case Instruction::BitCast: 884 case Instruction::GetElementPtr: 885 case Instruction::AddrSpaceCast: 886 FlowsToReturn.insert(RVI->getOperand(0)); 887 continue; 888 case Instruction::Select: { 889 SelectInst *SI = cast<SelectInst>(RVI); 890 FlowsToReturn.insert(SI->getTrueValue()); 891 FlowsToReturn.insert(SI->getFalseValue()); 892 continue; 893 } 894 case Instruction::PHI: { 895 PHINode *PN = cast<PHINode>(RVI); 896 for (Value *IncValue : PN->incoming_values()) 897 FlowsToReturn.insert(IncValue); 898 continue; 899 } 900 901 // Check whether the pointer came from an allocation. 902 case Instruction::Alloca: 903 break; 904 case Instruction::Call: 905 case Instruction::Invoke: { 906 CallSite CS(RVI); 907 if (CS.hasRetAttr(Attribute::NoAlias)) 908 break; 909 if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction())) 910 break; 911 LLVM_FALLTHROUGH; 912 } 913 default: 914 return false; // Did not come from an allocation. 915 } 916 917 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 918 return false; 919 } 920 921 return true; 922 } 923 924 /// Deduce noalias attributes for the SCC. 925 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) { 926 // Check each function in turn, determining which functions return noalias 927 // pointers. 928 for (Function *F : SCCNodes) { 929 // Already noalias. 930 if (F->returnDoesNotAlias()) 931 continue; 932 933 // We can infer and propagate function attributes only when we know that the 934 // definition we'll get at link time is *exactly* the definition we see now. 935 // For more details, see GlobalValue::mayBeDerefined. 936 if (!F->hasExactDefinition()) 937 return false; 938 939 // We annotate noalias return values, which are only applicable to 940 // pointer types. 941 if (!F->getReturnType()->isPointerTy()) 942 continue; 943 944 if (!isFunctionMallocLike(F, SCCNodes)) 945 return false; 946 } 947 948 bool MadeChange = false; 949 for (Function *F : SCCNodes) { 950 if (F->returnDoesNotAlias() || 951 !F->getReturnType()->isPointerTy()) 952 continue; 953 954 F->setReturnDoesNotAlias(); 955 ++NumNoAlias; 956 MadeChange = true; 957 } 958 959 return MadeChange; 960 } 961 962 /// Tests whether this function is known to not return null. 963 /// 964 /// Requires that the function returns a pointer. 965 /// 966 /// Returns true if it believes the function will not return a null, and sets 967 /// \p Speculative based on whether the returned conclusion is a speculative 968 /// conclusion due to SCC calls. 969 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 970 bool &Speculative) { 971 assert(F->getReturnType()->isPointerTy() && 972 "nonnull only meaningful on pointer types"); 973 Speculative = false; 974 975 SmallSetVector<Value *, 8> FlowsToReturn; 976 for (BasicBlock &BB : *F) 977 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 978 FlowsToReturn.insert(Ret->getReturnValue()); 979 980 auto &DL = F->getParent()->getDataLayout(); 981 982 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 983 Value *RetVal = FlowsToReturn[i]; 984 985 // If this value is locally known to be non-null, we're good 986 if (isKnownNonZero(RetVal, DL)) 987 continue; 988 989 // Otherwise, we need to look upwards since we can't make any local 990 // conclusions. 991 Instruction *RVI = dyn_cast<Instruction>(RetVal); 992 if (!RVI) 993 return false; 994 switch (RVI->getOpcode()) { 995 // Extend the analysis by looking upwards. 996 case Instruction::BitCast: 997 case Instruction::GetElementPtr: 998 case Instruction::AddrSpaceCast: 999 FlowsToReturn.insert(RVI->getOperand(0)); 1000 continue; 1001 case Instruction::Select: { 1002 SelectInst *SI = cast<SelectInst>(RVI); 1003 FlowsToReturn.insert(SI->getTrueValue()); 1004 FlowsToReturn.insert(SI->getFalseValue()); 1005 continue; 1006 } 1007 case Instruction::PHI: { 1008 PHINode *PN = cast<PHINode>(RVI); 1009 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1010 FlowsToReturn.insert(PN->getIncomingValue(i)); 1011 continue; 1012 } 1013 case Instruction::Call: 1014 case Instruction::Invoke: { 1015 CallSite CS(RVI); 1016 Function *Callee = CS.getCalledFunction(); 1017 // A call to a node within the SCC is assumed to return null until 1018 // proven otherwise 1019 if (Callee && SCCNodes.count(Callee)) { 1020 Speculative = true; 1021 continue; 1022 } 1023 return false; 1024 } 1025 default: 1026 return false; // Unknown source, may be null 1027 }; 1028 llvm_unreachable("should have either continued or returned"); 1029 } 1030 1031 return true; 1032 } 1033 1034 /// Deduce nonnull attributes for the SCC. 1035 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) { 1036 // Speculative that all functions in the SCC return only nonnull 1037 // pointers. We may refute this as we analyze functions. 1038 bool SCCReturnsNonNull = true; 1039 1040 bool MadeChange = false; 1041 1042 // Check each function in turn, determining which functions return nonnull 1043 // pointers. 1044 for (Function *F : SCCNodes) { 1045 // Already nonnull. 1046 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1047 Attribute::NonNull)) 1048 continue; 1049 1050 // We can infer and propagate function attributes only when we know that the 1051 // definition we'll get at link time is *exactly* the definition we see now. 1052 // For more details, see GlobalValue::mayBeDerefined. 1053 if (!F->hasExactDefinition()) 1054 return false; 1055 1056 // We annotate nonnull return values, which are only applicable to 1057 // pointer types. 1058 if (!F->getReturnType()->isPointerTy()) 1059 continue; 1060 1061 bool Speculative = false; 1062 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1063 if (!Speculative) { 1064 // Mark the function eagerly since we may discover a function 1065 // which prevents us from speculating about the entire SCC 1066 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1067 << " as nonnull\n"); 1068 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 1069 ++NumNonNullReturn; 1070 MadeChange = true; 1071 } 1072 continue; 1073 } 1074 // At least one function returns something which could be null, can't 1075 // speculate any more. 1076 SCCReturnsNonNull = false; 1077 } 1078 1079 if (SCCReturnsNonNull) { 1080 for (Function *F : SCCNodes) { 1081 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1082 Attribute::NonNull) || 1083 !F->getReturnType()->isPointerTy()) 1084 continue; 1085 1086 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1087 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 1088 ++NumNonNullReturn; 1089 MadeChange = true; 1090 } 1091 } 1092 1093 return MadeChange; 1094 } 1095 1096 namespace { 1097 1098 /// Collects a set of attribute inference requests and performs them all in one 1099 /// go on a single SCC Node. Inference involves scanning function bodies 1100 /// looking for instructions that violate attribute assumptions. 1101 /// As soon as all the bodies are fine we are free to set the attribute. 1102 /// Customization of inference for individual attributes is performed by 1103 /// providing a handful of predicates for each attribute. 1104 class AttributeInferer { 1105 public: 1106 /// Describes a request for inference of a single attribute. 1107 struct InferenceDescriptor { 1108 1109 /// Returns true if this function does not have to be handled. 1110 /// General intent for this predicate is to provide an optimization 1111 /// for functions that do not need this attribute inference at all 1112 /// (say, for functions that already have the attribute). 1113 std::function<bool(const Function &)> SkipFunction; 1114 1115 /// Returns true if this instruction violates attribute assumptions. 1116 std::function<bool(Instruction &)> InstrBreaksAttribute; 1117 1118 /// Sets the inferred attribute for this function. 1119 std::function<void(Function &)> SetAttribute; 1120 1121 /// Attribute we derive. 1122 Attribute::AttrKind AKind; 1123 1124 /// If true, only "exact" definitions can be used to infer this attribute. 1125 /// See GlobalValue::isDefinitionExact. 1126 bool RequiresExactDefinition; 1127 1128 InferenceDescriptor(Attribute::AttrKind AK, 1129 std::function<bool(const Function &)> SkipFunc, 1130 std::function<bool(Instruction &)> InstrScan, 1131 std::function<void(Function &)> SetAttr, 1132 bool ReqExactDef) 1133 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1134 SetAttribute(SetAttr), AKind(AK), 1135 RequiresExactDefinition(ReqExactDef) {} 1136 }; 1137 1138 private: 1139 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1140 1141 public: 1142 void registerAttrInference(InferenceDescriptor AttrInference) { 1143 InferenceDescriptors.push_back(AttrInference); 1144 } 1145 1146 bool run(const SCCNodeSet &SCCNodes); 1147 }; 1148 1149 /// Perform all the requested attribute inference actions according to the 1150 /// attribute predicates stored before. 1151 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) { 1152 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1153 // Go through all the functions in SCC and check corresponding attribute 1154 // assumptions for each of them. Attributes that are invalid for this SCC 1155 // will be removed from InferInSCC. 1156 for (Function *F : SCCNodes) { 1157 1158 // No attributes whose assumptions are still valid - done. 1159 if (InferInSCC.empty()) 1160 return false; 1161 1162 // Check if our attributes ever need scanning/can be scanned. 1163 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1164 if (ID.SkipFunction(*F)) 1165 return false; 1166 1167 // Remove from further inference (invalidate) when visiting a function 1168 // that has no instructions to scan/has an unsuitable definition. 1169 return F->isDeclaration() || 1170 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1171 }); 1172 1173 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1174 // set up the F instructions scan to verify assumptions of the attribute. 1175 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1176 llvm::copy_if( 1177 InferInSCC, std::back_inserter(InferInThisFunc), 1178 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1179 1180 if (InferInThisFunc.empty()) 1181 continue; 1182 1183 // Start instruction scan. 1184 for (Instruction &I : instructions(*F)) { 1185 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1186 if (!ID.InstrBreaksAttribute(I)) 1187 return false; 1188 // Remove attribute from further inference on any other functions 1189 // because attribute assumptions have just been violated. 1190 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1191 return D.AKind == ID.AKind; 1192 }); 1193 // Remove attribute from the rest of current instruction scan. 1194 return true; 1195 }); 1196 1197 if (InferInThisFunc.empty()) 1198 break; 1199 } 1200 } 1201 1202 if (InferInSCC.empty()) 1203 return false; 1204 1205 bool Changed = false; 1206 for (Function *F : SCCNodes) 1207 // At this point InferInSCC contains only functions that were either: 1208 // - explicitly skipped from scan/inference, or 1209 // - verified to have no instructions that break attribute assumptions. 1210 // Hence we just go and force the attribute for all non-skipped functions. 1211 for (auto &ID : InferInSCC) { 1212 if (ID.SkipFunction(*F)) 1213 continue; 1214 Changed = true; 1215 ID.SetAttribute(*F); 1216 } 1217 return Changed; 1218 } 1219 1220 } // end anonymous namespace 1221 1222 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1223 static bool InstrBreaksNonConvergent(Instruction &I, 1224 const SCCNodeSet &SCCNodes) { 1225 const CallSite CS(&I); 1226 // Breaks non-convergent assumption if CS is a convergent call to a function 1227 // not in the SCC. 1228 return CS && CS.isConvergent() && SCCNodes.count(CS.getCalledFunction()) == 0; 1229 } 1230 1231 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1232 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1233 if (!I.mayThrow()) 1234 return false; 1235 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1236 if (Function *Callee = CI->getCalledFunction()) { 1237 // I is a may-throw call to a function inside our SCC. This doesn't 1238 // invalidate our current working assumption that the SCC is no-throw; we 1239 // just have to scan that other function. 1240 if (SCCNodes.count(Callee) > 0) 1241 return false; 1242 } 1243 } 1244 return true; 1245 } 1246 1247 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1248 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1249 CallSite CS(&I); 1250 if (!CS) 1251 return false; 1252 1253 Function *Callee = CS.getCalledFunction(); 1254 if (!Callee) 1255 return true; 1256 1257 if (Callee->doesNotFreeMemory()) 1258 return false; 1259 1260 if (SCCNodes.count(Callee) > 0) 1261 return false; 1262 1263 return true; 1264 } 1265 1266 /// Infer attributes from all functions in the SCC by scanning every 1267 /// instruction for compliance to the attribute assumptions. Currently it 1268 /// does: 1269 /// - removal of Convergent attribute 1270 /// - addition of NoUnwind attribute 1271 /// 1272 /// Returns true if any changes to function attributes were made. 1273 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) { 1274 1275 AttributeInferer AI; 1276 1277 // Request to remove the convergent attribute from all functions in the SCC 1278 // if every callsite within the SCC is not convergent (except for calls 1279 // to functions within the SCC). 1280 // Note: Removal of the attr from the callsites will happen in 1281 // InstCombineCalls separately. 1282 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1283 Attribute::Convergent, 1284 // Skip non-convergent functions. 1285 [](const Function &F) { return !F.isConvergent(); }, 1286 // Instructions that break non-convergent assumption. 1287 [SCCNodes](Instruction &I) { 1288 return InstrBreaksNonConvergent(I, SCCNodes); 1289 }, 1290 [](Function &F) { 1291 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1292 << "\n"); 1293 F.setNotConvergent(); 1294 }, 1295 /* RequiresExactDefinition= */ false}); 1296 1297 if (!DisableNoUnwindInference) 1298 // Request to infer nounwind attribute for all the functions in the SCC if 1299 // every callsite within the SCC is not throwing (except for calls to 1300 // functions within the SCC). Note that nounwind attribute suffers from 1301 // derefinement - results may change depending on how functions are 1302 // optimized. Thus it can be inferred only from exact definitions. 1303 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1304 Attribute::NoUnwind, 1305 // Skip non-throwing functions. 1306 [](const Function &F) { return F.doesNotThrow(); }, 1307 // Instructions that break non-throwing assumption. 1308 [SCCNodes](Instruction &I) { 1309 return InstrBreaksNonThrowing(I, SCCNodes); 1310 }, 1311 [](Function &F) { 1312 LLVM_DEBUG(dbgs() 1313 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1314 F.setDoesNotThrow(); 1315 ++NumNoUnwind; 1316 }, 1317 /* RequiresExactDefinition= */ true}); 1318 1319 if (!DisableNoFreeInference) 1320 // Request to infer nofree attribute for all the functions in the SCC if 1321 // every callsite within the SCC does not directly or indirectly free 1322 // memory (except for calls to functions within the SCC). Note that nofree 1323 // attribute suffers from derefinement - results may change depending on 1324 // how functions are optimized. Thus it can be inferred only from exact 1325 // definitions. 1326 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1327 Attribute::NoFree, 1328 // Skip functions known not to free memory. 1329 [](const Function &F) { return F.doesNotFreeMemory(); }, 1330 // Instructions that break non-deallocating assumption. 1331 [SCCNodes](Instruction &I) { 1332 return InstrBreaksNoFree(I, SCCNodes); 1333 }, 1334 [](Function &F) { 1335 LLVM_DEBUG(dbgs() 1336 << "Adding nofree attr to fn " << F.getName() << "\n"); 1337 F.setDoesNotFreeMemory(); 1338 ++NumNoFree; 1339 }, 1340 /* RequiresExactDefinition= */ true}); 1341 1342 // Perform all the requested attribute inference actions. 1343 return AI.run(SCCNodes); 1344 } 1345 1346 static bool setDoesNotRecurse(Function &F) { 1347 if (F.doesNotRecurse()) 1348 return false; 1349 F.setDoesNotRecurse(); 1350 ++NumNoRecurse; 1351 return true; 1352 } 1353 1354 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) { 1355 // Try and identify functions that do not recurse. 1356 1357 // If the SCC contains multiple nodes we know for sure there is recursion. 1358 if (SCCNodes.size() != 1) 1359 return false; 1360 1361 Function *F = *SCCNodes.begin(); 1362 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1363 return false; 1364 1365 // If all of the calls in F are identifiable and are to norecurse functions, F 1366 // is norecurse. This check also detects self-recursion as F is not currently 1367 // marked norecurse, so any called from F to F will not be marked norecurse. 1368 for (auto &BB : *F) 1369 for (auto &I : BB.instructionsWithoutDebug()) 1370 if (auto CS = CallSite(&I)) { 1371 Function *Callee = CS.getCalledFunction(); 1372 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1373 // Function calls a potentially recursive function. 1374 return false; 1375 } 1376 1377 // Every call was to a non-recursive function other than this function, and 1378 // we have no indirect recursion as the SCC size is one. This function cannot 1379 // recurse. 1380 return setDoesNotRecurse(*F); 1381 } 1382 1383 template <typename AARGetterT> 1384 static bool deriveAttrsInPostOrder(SCCNodeSet &SCCNodes, 1385 AARGetterT &&AARGetter, 1386 bool HasUnknownCall) { 1387 bool Changed = false; 1388 1389 // Bail if the SCC only contains optnone functions. 1390 if (SCCNodes.empty()) 1391 return Changed; 1392 1393 Changed |= addArgumentReturnedAttrs(SCCNodes); 1394 Changed |= addReadAttrs(SCCNodes, AARGetter); 1395 Changed |= addArgumentAttrs(SCCNodes); 1396 1397 // If we have no external nodes participating in the SCC, we can deduce some 1398 // more precise attributes as well. 1399 if (!HasUnknownCall) { 1400 Changed |= addNoAliasAttrs(SCCNodes); 1401 Changed |= addNonNullAttrs(SCCNodes); 1402 Changed |= inferAttrsFromFunctionBodies(SCCNodes); 1403 Changed |= addNoRecurseAttrs(SCCNodes); 1404 } 1405 1406 return Changed; 1407 } 1408 1409 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1410 CGSCCAnalysisManager &AM, 1411 LazyCallGraph &CG, 1412 CGSCCUpdateResult &) { 1413 FunctionAnalysisManager &FAM = 1414 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1415 1416 // We pass a lambda into functions to wire them up to the analysis manager 1417 // for getting function analyses. 1418 auto AARGetter = [&](Function &F) -> AAResults & { 1419 return FAM.getResult<AAManager>(F); 1420 }; 1421 1422 // Fill SCCNodes with the elements of the SCC. Also track whether there are 1423 // any external or opt-none nodes that will prevent us from optimizing any 1424 // part of the SCC. 1425 SCCNodeSet SCCNodes; 1426 bool HasUnknownCall = false; 1427 for (LazyCallGraph::Node &N : C) { 1428 Function &F = N.getFunction(); 1429 if (F.hasOptNone() || F.hasFnAttribute(Attribute::Naked)) { 1430 // Treat any function we're trying not to optimize as if it were an 1431 // indirect call and omit it from the node set used below. 1432 HasUnknownCall = true; 1433 continue; 1434 } 1435 // Track whether any functions in this SCC have an unknown call edge. 1436 // Note: if this is ever a performance hit, we can common it with 1437 // subsequent routines which also do scans over the instructions of the 1438 // function. 1439 if (!HasUnknownCall) 1440 for (Instruction &I : instructions(F)) 1441 if (auto CS = CallSite(&I)) 1442 if (!CS.getCalledFunction()) { 1443 HasUnknownCall = true; 1444 break; 1445 } 1446 1447 SCCNodes.insert(&F); 1448 } 1449 1450 if (deriveAttrsInPostOrder(SCCNodes, AARGetter, HasUnknownCall)) 1451 return PreservedAnalyses::none(); 1452 1453 return PreservedAnalyses::all(); 1454 } 1455 1456 namespace { 1457 1458 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1459 // Pass identification, replacement for typeid 1460 static char ID; 1461 1462 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1463 initializePostOrderFunctionAttrsLegacyPassPass( 1464 *PassRegistry::getPassRegistry()); 1465 } 1466 1467 bool runOnSCC(CallGraphSCC &SCC) override; 1468 1469 void getAnalysisUsage(AnalysisUsage &AU) const override { 1470 AU.setPreservesCFG(); 1471 AU.addRequired<AssumptionCacheTracker>(); 1472 getAAResultsAnalysisUsage(AU); 1473 CallGraphSCCPass::getAnalysisUsage(AU); 1474 } 1475 }; 1476 1477 } // end anonymous namespace 1478 1479 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1480 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs", 1481 "Deduce function attributes", false, false) 1482 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1483 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1484 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs", 1485 "Deduce function attributes", false, false) 1486 1487 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1488 return new PostOrderFunctionAttrsLegacyPass(); 1489 } 1490 1491 template <typename AARGetterT> 1492 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1493 1494 // Fill SCCNodes with the elements of the SCC. Used for quickly looking up 1495 // whether a given CallGraphNode is in this SCC. Also track whether there are 1496 // any external or opt-none nodes that will prevent us from optimizing any 1497 // part of the SCC. 1498 SCCNodeSet SCCNodes; 1499 bool ExternalNode = false; 1500 for (CallGraphNode *I : SCC) { 1501 Function *F = I->getFunction(); 1502 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) { 1503 // External node or function we're trying not to optimize - we both avoid 1504 // transform them and avoid leveraging information they provide. 1505 ExternalNode = true; 1506 continue; 1507 } 1508 1509 SCCNodes.insert(F); 1510 } 1511 1512 return deriveAttrsInPostOrder(SCCNodes, AARGetter, ExternalNode); 1513 } 1514 1515 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1516 if (skipSCC(SCC)) 1517 return false; 1518 return runImpl(SCC, LegacyAARGetter(*this)); 1519 } 1520 1521 namespace { 1522 1523 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1524 // Pass identification, replacement for typeid 1525 static char ID; 1526 1527 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1528 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1529 *PassRegistry::getPassRegistry()); 1530 } 1531 1532 bool runOnModule(Module &M) override; 1533 1534 void getAnalysisUsage(AnalysisUsage &AU) const override { 1535 AU.setPreservesCFG(); 1536 AU.addRequired<CallGraphWrapperPass>(); 1537 AU.addPreserved<CallGraphWrapperPass>(); 1538 } 1539 }; 1540 1541 } // end anonymous namespace 1542 1543 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1544 1545 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs", 1546 "Deduce function attributes in RPO", false, false) 1547 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1548 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs", 1549 "Deduce function attributes in RPO", false, false) 1550 1551 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1552 return new ReversePostOrderFunctionAttrsLegacyPass(); 1553 } 1554 1555 static bool addNoRecurseAttrsTopDown(Function &F) { 1556 // We check the preconditions for the function prior to calling this to avoid 1557 // the cost of building up a reversible post-order list. We assert them here 1558 // to make sure none of the invariants this relies on were violated. 1559 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1560 assert(!F.doesNotRecurse() && 1561 "This function has already been deduced as norecurs!"); 1562 assert(F.hasInternalLinkage() && 1563 "Can only do top-down deduction for internal linkage functions!"); 1564 1565 // If F is internal and all of its uses are calls from a non-recursive 1566 // functions, then none of its calls could in fact recurse without going 1567 // through a function marked norecurse, and so we can mark this function too 1568 // as norecurse. Note that the uses must actually be calls -- otherwise 1569 // a pointer to this function could be returned from a norecurse function but 1570 // this function could be recursively (indirectly) called. Note that this 1571 // also detects if F is directly recursive as F is not yet marked as 1572 // a norecurse function. 1573 for (auto *U : F.users()) { 1574 auto *I = dyn_cast<Instruction>(U); 1575 if (!I) 1576 return false; 1577 CallSite CS(I); 1578 if (!CS || !CS.getParent()->getParent()->doesNotRecurse()) 1579 return false; 1580 } 1581 return setDoesNotRecurse(F); 1582 } 1583 1584 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1585 // We only have a post-order SCC traversal (because SCCs are inherently 1586 // discovered in post-order), so we accumulate them in a vector and then walk 1587 // it in reverse. This is simpler than using the RPO iterator infrastructure 1588 // because we need to combine SCC detection and the PO walk of the call 1589 // graph. We can also cheat egregiously because we're primarily interested in 1590 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 1591 // with multiple functions in them will clearly be recursive. 1592 SmallVector<Function *, 16> Worklist; 1593 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 1594 if (I->size() != 1) 1595 continue; 1596 1597 Function *F = I->front()->getFunction(); 1598 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 1599 F->hasInternalLinkage()) 1600 Worklist.push_back(F); 1601 } 1602 1603 bool Changed = false; 1604 for (auto *F : llvm::reverse(Worklist)) 1605 Changed |= addNoRecurseAttrsTopDown(*F); 1606 1607 return Changed; 1608 } 1609 1610 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 1611 if (skipModule(M)) 1612 return false; 1613 1614 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1615 1616 return deduceFunctionAttributeInRPO(M, CG); 1617 } 1618 1619 PreservedAnalyses 1620 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 1621 auto &CG = AM.getResult<CallGraphAnalysis>(M); 1622 1623 if (!deduceFunctionAttributeInRPO(M, CG)) 1624 return PreservedAnalyses::all(); 1625 1626 PreservedAnalyses PA; 1627 PA.preserve<CallGraphAnalysis>(); 1628 return PA; 1629 } 1630