1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/ModuleSummaryIndex.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumArgMemOnly, "Number of functions marked argmemonly"); 73 STATISTIC(NumReadNone, "Number of functions marked readnone"); 74 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 75 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 76 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 77 STATISTIC(NumReturned, "Number of arguments marked returned"); 78 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 79 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 80 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 81 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 82 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 83 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 84 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 85 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 86 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 87 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 88 89 STATISTIC(NumThinLinkNoRecurse, 90 "Number of functions marked as norecurse during thinlink"); 91 STATISTIC(NumThinLinkNoUnwind, 92 "Number of functions marked as nounwind during thinlink"); 93 94 static cl::opt<bool> EnableNonnullArgPropagation( 95 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 96 cl::desc("Try to propagate nonnull argument attributes from callsites to " 97 "caller functions.")); 98 99 static cl::opt<bool> DisableNoUnwindInference( 100 "disable-nounwind-inference", cl::Hidden, 101 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 102 103 static cl::opt<bool> DisableNoFreeInference( 104 "disable-nofree-inference", cl::Hidden, 105 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 106 107 static cl::opt<bool> DisableThinLTOPropagation( 108 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 109 cl::desc("Don't propagate function-attrs in thinLTO")); 110 111 namespace { 112 113 using SCCNodeSet = SmallSetVector<Function *, 8>; 114 115 } // end anonymous namespace 116 117 /// Returns the memory access attribute for function F using AAR for AA results, 118 /// where SCCNodes is the current SCC. 119 /// 120 /// If ThisBody is true, this function may examine the function body and will 121 /// return a result pertaining to this copy of the function. If it is false, the 122 /// result will be based only on AA results for the function declaration; it 123 /// will be assumed that some other (perhaps less optimized) version of the 124 /// function may be selected at link time. 125 static FunctionModRefBehavior 126 checkFunctionMemoryAccess(Function &F, bool ThisBody, AAResults &AAR, 127 const SCCNodeSet &SCCNodes) { 128 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 129 if (MRB == FMRB_DoesNotAccessMemory) 130 // Already perfect! 131 return MRB; 132 133 if (!ThisBody) 134 return MRB; 135 136 // Scan the function body for instructions that may read or write memory. 137 bool ReadsMemory = false; 138 bool WritesMemory = false; 139 // Track if the function accesses memory not based on pointer arguments or 140 // allocas. 141 bool AccessesNonArgsOrAlloca = false; 142 // Returns true if Ptr is not based on a function argument. 143 auto IsArgumentOrAlloca = [](const Value *Ptr) { 144 const Value *UO = getUnderlyingObject(Ptr); 145 return isa<Argument>(UO) || isa<AllocaInst>(UO); 146 }; 147 for (Instruction &I : instructions(F)) { 148 // Some instructions can be ignored even if they read or write memory. 149 // Detect these now, skipping to the next instruction if one is found. 150 if (auto *Call = dyn_cast<CallBase>(&I)) { 151 // Ignore calls to functions in the same SCC, as long as the call sites 152 // don't have operand bundles. Calls with operand bundles are allowed to 153 // have memory effects not described by the memory effects of the call 154 // target. 155 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 156 SCCNodes.count(Call->getCalledFunction())) 157 continue; 158 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 159 ModRefInfo MRI = createModRefInfo(MRB); 160 161 // If the call doesn't access memory, we're done. 162 if (isNoModRef(MRI)) 163 continue; 164 165 // A pseudo probe call shouldn't change any function attribute since it 166 // doesn't translate to a real instruction. It comes with a memory access 167 // tag to prevent itself being removed by optimizations and not block 168 // other instructions being optimized. 169 if (isa<PseudoProbeInst>(I)) 170 continue; 171 172 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 173 // The call could access any memory. If that includes writes, note it. 174 if (isModSet(MRI)) 175 WritesMemory = true; 176 // If it reads, note it. 177 if (isRefSet(MRI)) 178 ReadsMemory = true; 179 AccessesNonArgsOrAlloca = true; 180 continue; 181 } 182 183 // Check whether all pointer arguments point to local memory, and 184 // ignore calls that only access local memory. 185 for (const Use &U : Call->args()) { 186 const Value *Arg = U; 187 if (!Arg->getType()->isPtrOrPtrVectorTy()) 188 continue; 189 190 MemoryLocation Loc = 191 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 192 // Skip accesses to local or constant memory as they don't impact the 193 // externally visible mod/ref behavior. 194 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 195 continue; 196 197 AccessesNonArgsOrAlloca |= !IsArgumentOrAlloca(Loc.Ptr); 198 199 if (isModSet(MRI)) 200 // Writes non-local memory. 201 WritesMemory = true; 202 if (isRefSet(MRI)) 203 // Ok, it reads non-local memory. 204 ReadsMemory = true; 205 } 206 continue; 207 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 208 MemoryLocation Loc = MemoryLocation::get(LI); 209 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 210 if (!LI->isVolatile() && 211 AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 212 continue; 213 AccessesNonArgsOrAlloca |= !IsArgumentOrAlloca(Loc.Ptr); 214 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 215 MemoryLocation Loc = MemoryLocation::get(SI); 216 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 217 if (!SI->isVolatile() && 218 AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 219 continue; 220 AccessesNonArgsOrAlloca |= !IsArgumentOrAlloca(Loc.Ptr); 221 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 222 // Ignore vaargs on local memory. 223 MemoryLocation Loc = MemoryLocation::get(VI); 224 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 225 continue; 226 AccessesNonArgsOrAlloca |= !IsArgumentOrAlloca(Loc.Ptr); 227 } else { 228 // If AccessesNonArgsOrAlloca has not been updated above, set it 229 // conservatively. 230 AccessesNonArgsOrAlloca |= I.mayReadOrWriteMemory(); 231 } 232 233 // Any remaining instructions need to be taken seriously! Check if they 234 // read or write memory. 235 // 236 // Writes memory, remember that. 237 WritesMemory |= I.mayWriteToMemory(); 238 239 // If this instruction may read memory, remember that. 240 ReadsMemory |= I.mayReadFromMemory(); 241 } 242 243 if (!WritesMemory && !ReadsMemory) 244 return FMRB_DoesNotAccessMemory; 245 246 FunctionModRefBehavior Result = FunctionModRefBehavior(FMRL_Anywhere); 247 if (!AccessesNonArgsOrAlloca) 248 Result = FunctionModRefBehavior(FMRL_ArgumentPointees); 249 if (WritesMemory) 250 Result = FunctionModRefBehavior(Result | static_cast<int>(ModRefInfo::Mod)); 251 if (ReadsMemory) 252 Result = FunctionModRefBehavior(Result | static_cast<int>(ModRefInfo::Ref)); 253 return Result; 254 } 255 256 FunctionModRefBehavior llvm::computeFunctionBodyMemoryAccess(Function &F, 257 AAResults &AAR) { 258 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 259 } 260 261 /// Deduce readonly/readnone/writeonly attributes for the SCC. 262 template <typename AARGetterT> 263 static void addMemoryAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 264 SmallSet<Function *, 8> &Changed) { 265 // Check if any of the functions in the SCC read or write memory. If they 266 // write memory then they can't be marked readnone or readonly. 267 bool ReadsMemory = false; 268 bool WritesMemory = false; 269 // Check if all functions only access memory through their arguments. 270 bool ArgMemOnly = true; 271 for (Function *F : SCCNodes) { 272 // Call the callable parameter to look up AA results for this function. 273 AAResults &AAR = AARGetter(*F); 274 // Non-exact function definitions may not be selected at link time, and an 275 // alternative version that writes to memory may be selected. See the 276 // comment on GlobalValue::isDefinitionExact for more details. 277 FunctionModRefBehavior FMRB = 278 checkFunctionMemoryAccess(*F, F->hasExactDefinition(), AAR, SCCNodes); 279 if (FMRB == FMRB_DoesNotAccessMemory) 280 continue; 281 ModRefInfo MR = createModRefInfo(FMRB); 282 ReadsMemory |= isRefSet(MR); 283 WritesMemory |= isModSet(MR); 284 ArgMemOnly &= AliasAnalysis::onlyAccessesArgPointees(FMRB); 285 // Reached neither readnone, readonly, writeonly nor argmemonly can be 286 // inferred. Exit. 287 if (ReadsMemory && WritesMemory && !ArgMemOnly) 288 return; 289 } 290 291 assert((!ReadsMemory || !WritesMemory || ArgMemOnly) && 292 "no memory attributes can be added for this SCC, should have exited " 293 "earlier"); 294 // Success! Functions in this SCC do not access memory, only read memory, 295 // only write memory, or only access memory through its arguments. Give them 296 // the appropriate attribute. 297 298 for (Function *F : SCCNodes) { 299 // If possible add argmemonly attribute to F, if it accesses memory. 300 if (ArgMemOnly && !F->onlyAccessesArgMemory() && 301 (ReadsMemory || WritesMemory)) { 302 NumArgMemOnly++; 303 F->addFnAttr(Attribute::ArgMemOnly); 304 Changed.insert(F); 305 } 306 307 // The SCC contains functions both writing and reading from memory. We 308 // cannot add readonly or writeonline attributes. 309 if (ReadsMemory && WritesMemory) 310 continue; 311 if (F->doesNotAccessMemory()) 312 // Already perfect! 313 continue; 314 315 if (F->onlyReadsMemory() && ReadsMemory) 316 // No change. 317 continue; 318 319 if (F->onlyWritesMemory() && WritesMemory) 320 continue; 321 322 Changed.insert(F); 323 324 // Clear out any existing attributes. 325 AttributeMask AttrsToRemove; 326 AttrsToRemove.addAttribute(Attribute::ReadOnly); 327 AttrsToRemove.addAttribute(Attribute::ReadNone); 328 AttrsToRemove.addAttribute(Attribute::WriteOnly); 329 330 if (!WritesMemory && !ReadsMemory) { 331 // Clear out any "access range attributes" if readnone was deduced. 332 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 333 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 334 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 335 } 336 F->removeFnAttrs(AttrsToRemove); 337 338 // Add in the new attribute. 339 if (WritesMemory && !ReadsMemory) 340 F->addFnAttr(Attribute::WriteOnly); 341 else 342 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 343 344 if (WritesMemory && !ReadsMemory) 345 ++NumWriteOnly; 346 else if (ReadsMemory) 347 ++NumReadOnly; 348 else 349 ++NumReadNone; 350 } 351 } 352 353 // Compute definitive function attributes for a function taking into account 354 // prevailing definitions and linkage types 355 static FunctionSummary *calculatePrevailingSummary( 356 ValueInfo VI, 357 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 358 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 359 IsPrevailing) { 360 361 if (CachedPrevailingSummary.count(VI)) 362 return CachedPrevailingSummary[VI]; 363 364 /// At this point, prevailing symbols have been resolved. The following leads 365 /// to returning a conservative result: 366 /// - Multiple instances with local linkage. Normally local linkage would be 367 /// unique per module 368 /// as the GUID includes the module path. We could have a guid alias if 369 /// there wasn't any distinguishing path when each file was compiled, but 370 /// that should be rare so we'll punt on those. 371 372 /// These next 2 cases should not happen and will assert: 373 /// - Multiple instances with external linkage. This should be caught in 374 /// symbol resolution 375 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 376 /// knowledge meaning we have to go conservative. 377 378 /// Otherwise, we calculate attributes for a function as: 379 /// 1. If we have a local linkage, take its attributes. If there's somehow 380 /// multiple, bail and go conservative. 381 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 382 /// prevailing, take its attributes. 383 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 384 /// differences. However, if the prevailing copy is known it will be used 385 /// so take its attributes. If the prevailing copy is in a native file 386 /// all IR copies will be dead and propagation will go conservative. 387 /// 4. AvailableExternally summaries without a prevailing copy are known to 388 /// occur in a couple of circumstances: 389 /// a. An internal function gets imported due to its caller getting 390 /// imported, it becomes AvailableExternally but no prevailing 391 /// definition exists. Because it has to get imported along with its 392 /// caller the attributes will be captured by propagating on its 393 /// caller. 394 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 395 /// definitions of explicitly instanced template declarations 396 /// for inlining which are ultimately dropped from the TU. Since this 397 /// is localized to the TU the attributes will have already made it to 398 /// the callers. 399 /// These are edge cases and already captured by their callers so we 400 /// ignore these for now. If they become relevant to optimize in the 401 /// future this can be revisited. 402 /// 5. Otherwise, go conservative. 403 404 CachedPrevailingSummary[VI] = nullptr; 405 FunctionSummary *Local = nullptr; 406 FunctionSummary *Prevailing = nullptr; 407 408 for (const auto &GVS : VI.getSummaryList()) { 409 if (!GVS->isLive()) 410 continue; 411 412 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 413 // Virtual and Unknown (e.g. indirect) calls require going conservative 414 if (!FS || FS->fflags().HasUnknownCall) 415 return nullptr; 416 417 const auto &Linkage = GVS->linkage(); 418 if (GlobalValue::isLocalLinkage(Linkage)) { 419 if (Local) { 420 LLVM_DEBUG( 421 dbgs() 422 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 423 "function " 424 << VI.name() << " from " << FS->modulePath() << ". Previous module " 425 << Local->modulePath() << "\n"); 426 return nullptr; 427 } 428 Local = FS; 429 } else if (GlobalValue::isExternalLinkage(Linkage)) { 430 assert(IsPrevailing(VI.getGUID(), GVS.get())); 431 Prevailing = FS; 432 break; 433 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 434 GlobalValue::isLinkOnceODRLinkage(Linkage) || 435 GlobalValue::isWeakAnyLinkage(Linkage) || 436 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 437 if (IsPrevailing(VI.getGUID(), GVS.get())) { 438 Prevailing = FS; 439 break; 440 } 441 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 442 // TODO: Handle these cases if they become meaningful 443 continue; 444 } 445 } 446 447 if (Local) { 448 assert(!Prevailing); 449 CachedPrevailingSummary[VI] = Local; 450 } else if (Prevailing) { 451 assert(!Local); 452 CachedPrevailingSummary[VI] = Prevailing; 453 } 454 455 return CachedPrevailingSummary[VI]; 456 } 457 458 bool llvm::thinLTOPropagateFunctionAttrs( 459 ModuleSummaryIndex &Index, 460 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 461 IsPrevailing) { 462 // TODO: implement addNoAliasAttrs once 463 // there's more information about the return type in the summary 464 if (DisableThinLTOPropagation) 465 return false; 466 467 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 468 bool Changed = false; 469 470 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 471 // Assume we can propagate unless we discover otherwise 472 FunctionSummary::FFlags InferredFlags; 473 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 474 InferredFlags.NoUnwind = true; 475 476 for (auto &V : SCCNodes) { 477 FunctionSummary *CallerSummary = 478 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 479 480 // Function summaries can fail to contain information such as declarations 481 if (!CallerSummary) 482 return; 483 484 if (CallerSummary->fflags().MayThrow) 485 InferredFlags.NoUnwind = false; 486 487 for (const auto &Callee : CallerSummary->calls()) { 488 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 489 Callee.first, CachedPrevailingSummary, IsPrevailing); 490 491 if (!CalleeSummary) 492 return; 493 494 if (!CalleeSummary->fflags().NoRecurse) 495 InferredFlags.NoRecurse = false; 496 497 if (!CalleeSummary->fflags().NoUnwind) 498 InferredFlags.NoUnwind = false; 499 500 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 501 break; 502 } 503 } 504 505 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 506 Changed = true; 507 for (auto &V : SCCNodes) { 508 if (InferredFlags.NoRecurse) { 509 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 510 << V.name() << "\n"); 511 ++NumThinLinkNoRecurse; 512 } 513 514 if (InferredFlags.NoUnwind) { 515 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 516 << V.name() << "\n"); 517 ++NumThinLinkNoUnwind; 518 } 519 520 for (auto &S : V.getSummaryList()) { 521 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 522 if (InferredFlags.NoRecurse) 523 FS->setNoRecurse(); 524 525 if (InferredFlags.NoUnwind) 526 FS->setNoUnwind(); 527 } 528 } 529 } 530 } 531 }; 532 533 // Call propagation functions on each SCC in the Index 534 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 535 ++I) { 536 std::vector<ValueInfo> Nodes(*I); 537 PropagateAttributes(Nodes); 538 } 539 return Changed; 540 } 541 542 namespace { 543 544 /// For a given pointer Argument, this retains a list of Arguments of functions 545 /// in the same SCC that the pointer data flows into. We use this to build an 546 /// SCC of the arguments. 547 struct ArgumentGraphNode { 548 Argument *Definition; 549 SmallVector<ArgumentGraphNode *, 4> Uses; 550 }; 551 552 class ArgumentGraph { 553 // We store pointers to ArgumentGraphNode objects, so it's important that 554 // that they not move around upon insert. 555 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 556 557 ArgumentMapTy ArgumentMap; 558 559 // There is no root node for the argument graph, in fact: 560 // void f(int *x, int *y) { if (...) f(x, y); } 561 // is an example where the graph is disconnected. The SCCIterator requires a 562 // single entry point, so we maintain a fake ("synthetic") root node that 563 // uses every node. Because the graph is directed and nothing points into 564 // the root, it will not participate in any SCCs (except for its own). 565 ArgumentGraphNode SyntheticRoot; 566 567 public: 568 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 569 570 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 571 572 iterator begin() { return SyntheticRoot.Uses.begin(); } 573 iterator end() { return SyntheticRoot.Uses.end(); } 574 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 575 576 ArgumentGraphNode *operator[](Argument *A) { 577 ArgumentGraphNode &Node = ArgumentMap[A]; 578 Node.Definition = A; 579 SyntheticRoot.Uses.push_back(&Node); 580 return &Node; 581 } 582 }; 583 584 /// This tracker checks whether callees are in the SCC, and if so it does not 585 /// consider that a capture, instead adding it to the "Uses" list and 586 /// continuing with the analysis. 587 struct ArgumentUsesTracker : public CaptureTracker { 588 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 589 590 void tooManyUses() override { Captured = true; } 591 592 bool captured(const Use *U) override { 593 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 594 if (!CB) { 595 Captured = true; 596 return true; 597 } 598 599 Function *F = CB->getCalledFunction(); 600 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 601 Captured = true; 602 return true; 603 } 604 605 assert(!CB->isCallee(U) && "callee operand reported captured?"); 606 const unsigned UseIndex = CB->getDataOperandNo(U); 607 if (UseIndex >= CB->arg_size()) { 608 // Data operand, but not a argument operand -- must be a bundle operand 609 assert(CB->hasOperandBundles() && "Must be!"); 610 611 // CaptureTracking told us that we're being captured by an operand bundle 612 // use. In this case it does not matter if the callee is within our SCC 613 // or not -- we've been captured in some unknown way, and we have to be 614 // conservative. 615 Captured = true; 616 return true; 617 } 618 619 if (UseIndex >= F->arg_size()) { 620 assert(F->isVarArg() && "More params than args in non-varargs call"); 621 Captured = true; 622 return true; 623 } 624 625 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 626 return false; 627 } 628 629 // True only if certainly captured (used outside our SCC). 630 bool Captured = false; 631 632 // Uses within our SCC. 633 SmallVector<Argument *, 4> Uses; 634 635 const SCCNodeSet &SCCNodes; 636 }; 637 638 } // end anonymous namespace 639 640 namespace llvm { 641 642 template <> struct GraphTraits<ArgumentGraphNode *> { 643 using NodeRef = ArgumentGraphNode *; 644 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 645 646 static NodeRef getEntryNode(NodeRef A) { return A; } 647 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 648 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 649 }; 650 651 template <> 652 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 653 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 654 655 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 656 return AG->begin(); 657 } 658 659 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 660 }; 661 662 } // end namespace llvm 663 664 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 665 static Attribute::AttrKind 666 determinePointerAccessAttrs(Argument *A, 667 const SmallPtrSet<Argument *, 8> &SCCNodes) { 668 SmallVector<Use *, 32> Worklist; 669 SmallPtrSet<Use *, 32> Visited; 670 671 // inalloca arguments are always clobbered by the call. 672 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 673 return Attribute::None; 674 675 bool IsRead = false; 676 bool IsWrite = false; 677 678 for (Use &U : A->uses()) { 679 Visited.insert(&U); 680 Worklist.push_back(&U); 681 } 682 683 while (!Worklist.empty()) { 684 if (IsWrite && IsRead) 685 // No point in searching further.. 686 return Attribute::None; 687 688 Use *U = Worklist.pop_back_val(); 689 Instruction *I = cast<Instruction>(U->getUser()); 690 691 switch (I->getOpcode()) { 692 case Instruction::BitCast: 693 case Instruction::GetElementPtr: 694 case Instruction::PHI: 695 case Instruction::Select: 696 case Instruction::AddrSpaceCast: 697 // The original value is not read/written via this if the new value isn't. 698 for (Use &UU : I->uses()) 699 if (Visited.insert(&UU).second) 700 Worklist.push_back(&UU); 701 break; 702 703 case Instruction::Call: 704 case Instruction::Invoke: { 705 CallBase &CB = cast<CallBase>(*I); 706 if (CB.isCallee(U)) { 707 IsRead = true; 708 // Note that indirect calls do not capture, see comment in 709 // CaptureTracking for context 710 continue; 711 } 712 713 // Given we've explictily handled the callee operand above, what's left 714 // must be a data operand (e.g. argument or operand bundle) 715 const unsigned UseIndex = CB.getDataOperandNo(U); 716 717 if (!CB.doesNotCapture(UseIndex)) { 718 if (!CB.onlyReadsMemory()) 719 // If the callee can save a copy into other memory, then simply 720 // scanning uses of the call is insufficient. We have no way 721 // of tracking copies of the pointer through memory to see 722 // if a reloaded copy is written to, thus we must give up. 723 return Attribute::None; 724 // Push users for processing once we finish this one 725 if (!I->getType()->isVoidTy()) 726 for (Use &UU : I->uses()) 727 if (Visited.insert(&UU).second) 728 Worklist.push_back(&UU); 729 } 730 731 if (CB.doesNotAccessMemory()) 732 continue; 733 734 if (Function *F = CB.getCalledFunction()) 735 if (CB.isArgOperand(U) && UseIndex < F->arg_size() && 736 SCCNodes.count(F->getArg(UseIndex))) 737 // This is an argument which is part of the speculative SCC. Note 738 // that only operands corresponding to formal arguments of the callee 739 // can participate in the speculation. 740 break; 741 742 // The accessors used on call site here do the right thing for calls and 743 // invokes with operand bundles. 744 if (CB.doesNotAccessMemory(UseIndex)) { 745 /* nop */ 746 } else if (CB.onlyReadsMemory() || CB.onlyReadsMemory(UseIndex)) { 747 IsRead = true; 748 } else if (CB.hasFnAttr(Attribute::WriteOnly) || 749 CB.dataOperandHasImpliedAttr(UseIndex, Attribute::WriteOnly)) { 750 IsWrite = true; 751 } else { 752 return Attribute::None; 753 } 754 break; 755 } 756 757 case Instruction::Load: 758 // A volatile load has side effects beyond what readonly can be relied 759 // upon. 760 if (cast<LoadInst>(I)->isVolatile()) 761 return Attribute::None; 762 763 IsRead = true; 764 break; 765 766 case Instruction::Store: 767 if (cast<StoreInst>(I)->getValueOperand() == *U) 768 // untrackable capture 769 return Attribute::None; 770 771 // A volatile store has side effects beyond what writeonly can be relied 772 // upon. 773 if (cast<StoreInst>(I)->isVolatile()) 774 return Attribute::None; 775 776 IsWrite = true; 777 break; 778 779 case Instruction::ICmp: 780 case Instruction::Ret: 781 break; 782 783 default: 784 return Attribute::None; 785 } 786 } 787 788 if (IsWrite && IsRead) 789 return Attribute::None; 790 else if (IsRead) 791 return Attribute::ReadOnly; 792 else if (IsWrite) 793 return Attribute::WriteOnly; 794 else 795 return Attribute::ReadNone; 796 } 797 798 /// Deduce returned attributes for the SCC. 799 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 800 SmallSet<Function *, 8> &Changed) { 801 // Check each function in turn, determining if an argument is always returned. 802 for (Function *F : SCCNodes) { 803 // We can infer and propagate function attributes only when we know that the 804 // definition we'll get at link time is *exactly* the definition we see now. 805 // For more details, see GlobalValue::mayBeDerefined. 806 if (!F->hasExactDefinition()) 807 continue; 808 809 if (F->getReturnType()->isVoidTy()) 810 continue; 811 812 // There is nothing to do if an argument is already marked as 'returned'. 813 if (llvm::any_of(F->args(), 814 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 815 continue; 816 817 auto FindRetArg = [&]() -> Value * { 818 Value *RetArg = nullptr; 819 for (BasicBlock &BB : *F) 820 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 821 // Note that stripPointerCasts should look through functions with 822 // returned arguments. 823 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 824 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 825 return nullptr; 826 827 if (!RetArg) 828 RetArg = RetVal; 829 else if (RetArg != RetVal) 830 return nullptr; 831 } 832 833 return RetArg; 834 }; 835 836 if (Value *RetArg = FindRetArg()) { 837 auto *A = cast<Argument>(RetArg); 838 A->addAttr(Attribute::Returned); 839 ++NumReturned; 840 Changed.insert(F); 841 } 842 } 843 } 844 845 /// If a callsite has arguments that are also arguments to the parent function, 846 /// try to propagate attributes from the callsite's arguments to the parent's 847 /// arguments. This may be important because inlining can cause information loss 848 /// when attribute knowledge disappears with the inlined call. 849 static bool addArgumentAttrsFromCallsites(Function &F) { 850 if (!EnableNonnullArgPropagation) 851 return false; 852 853 bool Changed = false; 854 855 // For an argument attribute to transfer from a callsite to the parent, the 856 // call must be guaranteed to execute every time the parent is called. 857 // Conservatively, just check for calls in the entry block that are guaranteed 858 // to execute. 859 // TODO: This could be enhanced by testing if the callsite post-dominates the 860 // entry block or by doing simple forward walks or backward walks to the 861 // callsite. 862 BasicBlock &Entry = F.getEntryBlock(); 863 for (Instruction &I : Entry) { 864 if (auto *CB = dyn_cast<CallBase>(&I)) { 865 if (auto *CalledFunc = CB->getCalledFunction()) { 866 for (auto &CSArg : CalledFunc->args()) { 867 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 868 continue; 869 870 // If the non-null callsite argument operand is an argument to 'F' 871 // (the caller) and the call is guaranteed to execute, then the value 872 // must be non-null throughout 'F'. 873 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 874 if (FArg && !FArg->hasNonNullAttr()) { 875 FArg->addAttr(Attribute::NonNull); 876 Changed = true; 877 } 878 } 879 } 880 } 881 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 882 break; 883 } 884 885 return Changed; 886 } 887 888 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 889 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 890 R == Attribute::WriteOnly) 891 && "Must be an access attribute."); 892 assert(A && "Argument must not be null."); 893 894 // If the argument already has the attribute, nothing needs to be done. 895 if (A->hasAttribute(R)) 896 return false; 897 898 // Otherwise, remove potentially conflicting attribute, add the new one, 899 // and update statistics. 900 A->removeAttr(Attribute::WriteOnly); 901 A->removeAttr(Attribute::ReadOnly); 902 A->removeAttr(Attribute::ReadNone); 903 A->addAttr(R); 904 if (R == Attribute::ReadOnly) 905 ++NumReadOnlyArg; 906 else if (R == Attribute::WriteOnly) 907 ++NumWriteOnlyArg; 908 else 909 ++NumReadNoneArg; 910 return true; 911 } 912 913 /// Deduce nocapture attributes for the SCC. 914 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 915 SmallSet<Function *, 8> &Changed) { 916 ArgumentGraph AG; 917 918 // Check each function in turn, determining which pointer arguments are not 919 // captured. 920 for (Function *F : SCCNodes) { 921 // We can infer and propagate function attributes only when we know that the 922 // definition we'll get at link time is *exactly* the definition we see now. 923 // For more details, see GlobalValue::mayBeDerefined. 924 if (!F->hasExactDefinition()) 925 continue; 926 927 if (addArgumentAttrsFromCallsites(*F)) 928 Changed.insert(F); 929 930 // Functions that are readonly (or readnone) and nounwind and don't return 931 // a value can't capture arguments. Don't analyze them. 932 if (F->onlyReadsMemory() && F->doesNotThrow() && 933 F->getReturnType()->isVoidTy()) { 934 for (Argument &A : F->args()) { 935 if (A.getType()->isPointerTy() && !A.hasNoCaptureAttr()) { 936 A.addAttr(Attribute::NoCapture); 937 ++NumNoCapture; 938 Changed.insert(F); 939 } 940 } 941 continue; 942 } 943 944 for (Argument &A : F->args()) { 945 if (!A.getType()->isPointerTy()) 946 continue; 947 bool HasNonLocalUses = false; 948 if (!A.hasNoCaptureAttr()) { 949 ArgumentUsesTracker Tracker(SCCNodes); 950 PointerMayBeCaptured(&A, &Tracker); 951 if (!Tracker.Captured) { 952 if (Tracker.Uses.empty()) { 953 // If it's trivially not captured, mark it nocapture now. 954 A.addAttr(Attribute::NoCapture); 955 ++NumNoCapture; 956 Changed.insert(F); 957 } else { 958 // If it's not trivially captured and not trivially not captured, 959 // then it must be calling into another function in our SCC. Save 960 // its particulars for Argument-SCC analysis later. 961 ArgumentGraphNode *Node = AG[&A]; 962 for (Argument *Use : Tracker.Uses) { 963 Node->Uses.push_back(AG[Use]); 964 if (Use != &A) 965 HasNonLocalUses = true; 966 } 967 } 968 } 969 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 970 } 971 if (!HasNonLocalUses && !A.onlyReadsMemory()) { 972 // Can we determine that it's readonly/readnone/writeonly without doing 973 // an SCC? Note that we don't allow any calls at all here, or else our 974 // result will be dependent on the iteration order through the 975 // functions in the SCC. 976 SmallPtrSet<Argument *, 8> Self; 977 Self.insert(&A); 978 Attribute::AttrKind R = determinePointerAccessAttrs(&A, Self); 979 if (R != Attribute::None) 980 if (addAccessAttr(&A, R)) 981 Changed.insert(F); 982 } 983 } 984 } 985 986 // The graph we've collected is partial because we stopped scanning for 987 // argument uses once we solved the argument trivially. These partial nodes 988 // show up as ArgumentGraphNode objects with an empty Uses list, and for 989 // these nodes the final decision about whether they capture has already been 990 // made. If the definition doesn't have a 'nocapture' attribute by now, it 991 // captures. 992 993 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 994 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 995 if (ArgumentSCC.size() == 1) { 996 if (!ArgumentSCC[0]->Definition) 997 continue; // synthetic root node 998 999 // eg. "void f(int* x) { if (...) f(x); }" 1000 if (ArgumentSCC[0]->Uses.size() == 1 && 1001 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 1002 Argument *A = ArgumentSCC[0]->Definition; 1003 A->addAttr(Attribute::NoCapture); 1004 ++NumNoCapture; 1005 Changed.insert(A->getParent()); 1006 1007 // Infer the access attributes given the new nocapture one 1008 SmallPtrSet<Argument *, 8> Self; 1009 Self.insert(&*A); 1010 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 1011 if (R != Attribute::None) 1012 addAccessAttr(A, R); 1013 } 1014 continue; 1015 } 1016 1017 bool SCCCaptured = false; 1018 for (ArgumentGraphNode *Node : ArgumentSCC) { 1019 if (Node->Uses.empty() && !Node->Definition->hasNoCaptureAttr()) { 1020 SCCCaptured = true; 1021 break; 1022 } 1023 } 1024 if (SCCCaptured) 1025 continue; 1026 1027 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1028 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1029 // quickly looking up whether a given Argument is in this ArgumentSCC. 1030 for (ArgumentGraphNode *I : ArgumentSCC) { 1031 ArgumentSCCNodes.insert(I->Definition); 1032 } 1033 1034 for (ArgumentGraphNode *N : ArgumentSCC) { 1035 for (ArgumentGraphNode *Use : N->Uses) { 1036 Argument *A = Use->Definition; 1037 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1038 continue; 1039 SCCCaptured = true; 1040 break; 1041 } 1042 if (SCCCaptured) 1043 break; 1044 } 1045 if (SCCCaptured) 1046 continue; 1047 1048 for (ArgumentGraphNode *N : ArgumentSCC) { 1049 Argument *A = N->Definition; 1050 A->addAttr(Attribute::NoCapture); 1051 ++NumNoCapture; 1052 Changed.insert(A->getParent()); 1053 } 1054 1055 // We also want to compute readonly/readnone/writeonly. With a small number 1056 // of false negatives, we can assume that any pointer which is captured 1057 // isn't going to be provably readonly or readnone, since by definition 1058 // we can't analyze all uses of a captured pointer. 1059 // 1060 // The false negatives happen when the pointer is captured by a function 1061 // that promises readonly/readnone behaviour on the pointer, then the 1062 // pointer's lifetime ends before anything that writes to arbitrary memory. 1063 // Also, a readonly/readnone pointer may be returned, but returning a 1064 // pointer is capturing it. 1065 1066 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1067 if (A == B) 1068 return A; 1069 if (A == Attribute::ReadNone) 1070 return B; 1071 if (B == Attribute::ReadNone) 1072 return A; 1073 return Attribute::None; 1074 }; 1075 1076 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1077 for (ArgumentGraphNode *N : ArgumentSCC) { 1078 Argument *A = N->Definition; 1079 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1080 AccessAttr = meetAccessAttr(AccessAttr, K); 1081 if (AccessAttr == Attribute::None) 1082 break; 1083 } 1084 1085 if (AccessAttr != Attribute::None) { 1086 for (ArgumentGraphNode *N : ArgumentSCC) { 1087 Argument *A = N->Definition; 1088 if (addAccessAttr(A, AccessAttr)) 1089 Changed.insert(A->getParent()); 1090 } 1091 } 1092 } 1093 } 1094 1095 /// Tests whether a function is "malloc-like". 1096 /// 1097 /// A function is "malloc-like" if it returns either null or a pointer that 1098 /// doesn't alias any other pointer visible to the caller. 1099 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1100 SmallSetVector<Value *, 8> FlowsToReturn; 1101 for (BasicBlock &BB : *F) 1102 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1103 FlowsToReturn.insert(Ret->getReturnValue()); 1104 1105 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1106 Value *RetVal = FlowsToReturn[i]; 1107 1108 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1109 if (!C->isNullValue() && !isa<UndefValue>(C)) 1110 return false; 1111 1112 continue; 1113 } 1114 1115 if (isa<Argument>(RetVal)) 1116 return false; 1117 1118 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1119 switch (RVI->getOpcode()) { 1120 // Extend the analysis by looking upwards. 1121 case Instruction::BitCast: 1122 case Instruction::GetElementPtr: 1123 case Instruction::AddrSpaceCast: 1124 FlowsToReturn.insert(RVI->getOperand(0)); 1125 continue; 1126 case Instruction::Select: { 1127 SelectInst *SI = cast<SelectInst>(RVI); 1128 FlowsToReturn.insert(SI->getTrueValue()); 1129 FlowsToReturn.insert(SI->getFalseValue()); 1130 continue; 1131 } 1132 case Instruction::PHI: { 1133 PHINode *PN = cast<PHINode>(RVI); 1134 for (Value *IncValue : PN->incoming_values()) 1135 FlowsToReturn.insert(IncValue); 1136 continue; 1137 } 1138 1139 // Check whether the pointer came from an allocation. 1140 case Instruction::Alloca: 1141 break; 1142 case Instruction::Call: 1143 case Instruction::Invoke: { 1144 CallBase &CB = cast<CallBase>(*RVI); 1145 if (CB.hasRetAttr(Attribute::NoAlias)) 1146 break; 1147 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1148 break; 1149 LLVM_FALLTHROUGH; 1150 } 1151 default: 1152 return false; // Did not come from an allocation. 1153 } 1154 1155 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 /// Deduce noalias attributes for the SCC. 1163 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1164 SmallSet<Function *, 8> &Changed) { 1165 // Check each function in turn, determining which functions return noalias 1166 // pointers. 1167 for (Function *F : SCCNodes) { 1168 // Already noalias. 1169 if (F->returnDoesNotAlias()) 1170 continue; 1171 1172 // We can infer and propagate function attributes only when we know that the 1173 // definition we'll get at link time is *exactly* the definition we see now. 1174 // For more details, see GlobalValue::mayBeDerefined. 1175 if (!F->hasExactDefinition()) 1176 return; 1177 1178 // We annotate noalias return values, which are only applicable to 1179 // pointer types. 1180 if (!F->getReturnType()->isPointerTy()) 1181 continue; 1182 1183 if (!isFunctionMallocLike(F, SCCNodes)) 1184 return; 1185 } 1186 1187 for (Function *F : SCCNodes) { 1188 if (F->returnDoesNotAlias() || 1189 !F->getReturnType()->isPointerTy()) 1190 continue; 1191 1192 F->setReturnDoesNotAlias(); 1193 ++NumNoAlias; 1194 Changed.insert(F); 1195 } 1196 } 1197 1198 /// Tests whether this function is known to not return null. 1199 /// 1200 /// Requires that the function returns a pointer. 1201 /// 1202 /// Returns true if it believes the function will not return a null, and sets 1203 /// \p Speculative based on whether the returned conclusion is a speculative 1204 /// conclusion due to SCC calls. 1205 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1206 bool &Speculative) { 1207 assert(F->getReturnType()->isPointerTy() && 1208 "nonnull only meaningful on pointer types"); 1209 Speculative = false; 1210 1211 SmallSetVector<Value *, 8> FlowsToReturn; 1212 for (BasicBlock &BB : *F) 1213 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1214 FlowsToReturn.insert(Ret->getReturnValue()); 1215 1216 auto &DL = F->getParent()->getDataLayout(); 1217 1218 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1219 Value *RetVal = FlowsToReturn[i]; 1220 1221 // If this value is locally known to be non-null, we're good 1222 if (isKnownNonZero(RetVal, DL)) 1223 continue; 1224 1225 // Otherwise, we need to look upwards since we can't make any local 1226 // conclusions. 1227 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1228 if (!RVI) 1229 return false; 1230 switch (RVI->getOpcode()) { 1231 // Extend the analysis by looking upwards. 1232 case Instruction::BitCast: 1233 case Instruction::GetElementPtr: 1234 case Instruction::AddrSpaceCast: 1235 FlowsToReturn.insert(RVI->getOperand(0)); 1236 continue; 1237 case Instruction::Select: { 1238 SelectInst *SI = cast<SelectInst>(RVI); 1239 FlowsToReturn.insert(SI->getTrueValue()); 1240 FlowsToReturn.insert(SI->getFalseValue()); 1241 continue; 1242 } 1243 case Instruction::PHI: { 1244 PHINode *PN = cast<PHINode>(RVI); 1245 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1246 FlowsToReturn.insert(PN->getIncomingValue(i)); 1247 continue; 1248 } 1249 case Instruction::Call: 1250 case Instruction::Invoke: { 1251 CallBase &CB = cast<CallBase>(*RVI); 1252 Function *Callee = CB.getCalledFunction(); 1253 // A call to a node within the SCC is assumed to return null until 1254 // proven otherwise 1255 if (Callee && SCCNodes.count(Callee)) { 1256 Speculative = true; 1257 continue; 1258 } 1259 return false; 1260 } 1261 default: 1262 return false; // Unknown source, may be null 1263 }; 1264 llvm_unreachable("should have either continued or returned"); 1265 } 1266 1267 return true; 1268 } 1269 1270 /// Deduce nonnull attributes for the SCC. 1271 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1272 SmallSet<Function *, 8> &Changed) { 1273 // Speculative that all functions in the SCC return only nonnull 1274 // pointers. We may refute this as we analyze functions. 1275 bool SCCReturnsNonNull = true; 1276 1277 // Check each function in turn, determining which functions return nonnull 1278 // pointers. 1279 for (Function *F : SCCNodes) { 1280 // Already nonnull. 1281 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1282 continue; 1283 1284 // We can infer and propagate function attributes only when we know that the 1285 // definition we'll get at link time is *exactly* the definition we see now. 1286 // For more details, see GlobalValue::mayBeDerefined. 1287 if (!F->hasExactDefinition()) 1288 return; 1289 1290 // We annotate nonnull return values, which are only applicable to 1291 // pointer types. 1292 if (!F->getReturnType()->isPointerTy()) 1293 continue; 1294 1295 bool Speculative = false; 1296 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1297 if (!Speculative) { 1298 // Mark the function eagerly since we may discover a function 1299 // which prevents us from speculating about the entire SCC 1300 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1301 << " as nonnull\n"); 1302 F->addRetAttr(Attribute::NonNull); 1303 ++NumNonNullReturn; 1304 Changed.insert(F); 1305 } 1306 continue; 1307 } 1308 // At least one function returns something which could be null, can't 1309 // speculate any more. 1310 SCCReturnsNonNull = false; 1311 } 1312 1313 if (SCCReturnsNonNull) { 1314 for (Function *F : SCCNodes) { 1315 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1316 !F->getReturnType()->isPointerTy()) 1317 continue; 1318 1319 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1320 F->addRetAttr(Attribute::NonNull); 1321 ++NumNonNullReturn; 1322 Changed.insert(F); 1323 } 1324 } 1325 } 1326 1327 namespace { 1328 1329 /// Collects a set of attribute inference requests and performs them all in one 1330 /// go on a single SCC Node. Inference involves scanning function bodies 1331 /// looking for instructions that violate attribute assumptions. 1332 /// As soon as all the bodies are fine we are free to set the attribute. 1333 /// Customization of inference for individual attributes is performed by 1334 /// providing a handful of predicates for each attribute. 1335 class AttributeInferer { 1336 public: 1337 /// Describes a request for inference of a single attribute. 1338 struct InferenceDescriptor { 1339 1340 /// Returns true if this function does not have to be handled. 1341 /// General intent for this predicate is to provide an optimization 1342 /// for functions that do not need this attribute inference at all 1343 /// (say, for functions that already have the attribute). 1344 std::function<bool(const Function &)> SkipFunction; 1345 1346 /// Returns true if this instruction violates attribute assumptions. 1347 std::function<bool(Instruction &)> InstrBreaksAttribute; 1348 1349 /// Sets the inferred attribute for this function. 1350 std::function<void(Function &)> SetAttribute; 1351 1352 /// Attribute we derive. 1353 Attribute::AttrKind AKind; 1354 1355 /// If true, only "exact" definitions can be used to infer this attribute. 1356 /// See GlobalValue::isDefinitionExact. 1357 bool RequiresExactDefinition; 1358 1359 InferenceDescriptor(Attribute::AttrKind AK, 1360 std::function<bool(const Function &)> SkipFunc, 1361 std::function<bool(Instruction &)> InstrScan, 1362 std::function<void(Function &)> SetAttr, 1363 bool ReqExactDef) 1364 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1365 SetAttribute(SetAttr), AKind(AK), 1366 RequiresExactDefinition(ReqExactDef) {} 1367 }; 1368 1369 private: 1370 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1371 1372 public: 1373 void registerAttrInference(InferenceDescriptor AttrInference) { 1374 InferenceDescriptors.push_back(AttrInference); 1375 } 1376 1377 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1378 }; 1379 1380 /// Perform all the requested attribute inference actions according to the 1381 /// attribute predicates stored before. 1382 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1383 SmallSet<Function *, 8> &Changed) { 1384 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1385 // Go through all the functions in SCC and check corresponding attribute 1386 // assumptions for each of them. Attributes that are invalid for this SCC 1387 // will be removed from InferInSCC. 1388 for (Function *F : SCCNodes) { 1389 1390 // No attributes whose assumptions are still valid - done. 1391 if (InferInSCC.empty()) 1392 return; 1393 1394 // Check if our attributes ever need scanning/can be scanned. 1395 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1396 if (ID.SkipFunction(*F)) 1397 return false; 1398 1399 // Remove from further inference (invalidate) when visiting a function 1400 // that has no instructions to scan/has an unsuitable definition. 1401 return F->isDeclaration() || 1402 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1403 }); 1404 1405 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1406 // set up the F instructions scan to verify assumptions of the attribute. 1407 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1408 llvm::copy_if( 1409 InferInSCC, std::back_inserter(InferInThisFunc), 1410 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1411 1412 if (InferInThisFunc.empty()) 1413 continue; 1414 1415 // Start instruction scan. 1416 for (Instruction &I : instructions(*F)) { 1417 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1418 if (!ID.InstrBreaksAttribute(I)) 1419 return false; 1420 // Remove attribute from further inference on any other functions 1421 // because attribute assumptions have just been violated. 1422 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1423 return D.AKind == ID.AKind; 1424 }); 1425 // Remove attribute from the rest of current instruction scan. 1426 return true; 1427 }); 1428 1429 if (InferInThisFunc.empty()) 1430 break; 1431 } 1432 } 1433 1434 if (InferInSCC.empty()) 1435 return; 1436 1437 for (Function *F : SCCNodes) 1438 // At this point InferInSCC contains only functions that were either: 1439 // - explicitly skipped from scan/inference, or 1440 // - verified to have no instructions that break attribute assumptions. 1441 // Hence we just go and force the attribute for all non-skipped functions. 1442 for (auto &ID : InferInSCC) { 1443 if (ID.SkipFunction(*F)) 1444 continue; 1445 Changed.insert(F); 1446 ID.SetAttribute(*F); 1447 } 1448 } 1449 1450 struct SCCNodesResult { 1451 SCCNodeSet SCCNodes; 1452 bool HasUnknownCall; 1453 }; 1454 1455 } // end anonymous namespace 1456 1457 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1458 static bool InstrBreaksNonConvergent(Instruction &I, 1459 const SCCNodeSet &SCCNodes) { 1460 const CallBase *CB = dyn_cast<CallBase>(&I); 1461 // Breaks non-convergent assumption if CS is a convergent call to a function 1462 // not in the SCC. 1463 return CB && CB->isConvergent() && 1464 !SCCNodes.contains(CB->getCalledFunction()); 1465 } 1466 1467 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1468 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1469 if (!I.mayThrow()) 1470 return false; 1471 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1472 if (Function *Callee = CI->getCalledFunction()) { 1473 // I is a may-throw call to a function inside our SCC. This doesn't 1474 // invalidate our current working assumption that the SCC is no-throw; we 1475 // just have to scan that other function. 1476 if (SCCNodes.contains(Callee)) 1477 return false; 1478 } 1479 } 1480 return true; 1481 } 1482 1483 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1484 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1485 CallBase *CB = dyn_cast<CallBase>(&I); 1486 if (!CB) 1487 return false; 1488 1489 if (CB->hasFnAttr(Attribute::NoFree)) 1490 return false; 1491 1492 // Speculatively assume in SCC. 1493 if (Function *Callee = CB->getCalledFunction()) 1494 if (SCCNodes.contains(Callee)) 1495 return false; 1496 1497 return true; 1498 } 1499 1500 /// Attempt to remove convergent function attribute when possible. 1501 /// 1502 /// Returns true if any changes to function attributes were made. 1503 static void inferConvergent(const SCCNodeSet &SCCNodes, 1504 SmallSet<Function *, 8> &Changed) { 1505 AttributeInferer AI; 1506 1507 // Request to remove the convergent attribute from all functions in the SCC 1508 // if every callsite within the SCC is not convergent (except for calls 1509 // to functions within the SCC). 1510 // Note: Removal of the attr from the callsites will happen in 1511 // InstCombineCalls separately. 1512 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1513 Attribute::Convergent, 1514 // Skip non-convergent functions. 1515 [](const Function &F) { return !F.isConvergent(); }, 1516 // Instructions that break non-convergent assumption. 1517 [SCCNodes](Instruction &I) { 1518 return InstrBreaksNonConvergent(I, SCCNodes); 1519 }, 1520 [](Function &F) { 1521 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1522 << "\n"); 1523 F.setNotConvergent(); 1524 }, 1525 /* RequiresExactDefinition= */ false}); 1526 // Perform all the requested attribute inference actions. 1527 AI.run(SCCNodes, Changed); 1528 } 1529 1530 /// Infer attributes from all functions in the SCC by scanning every 1531 /// instruction for compliance to the attribute assumptions. Currently it 1532 /// does: 1533 /// - addition of NoUnwind attribute 1534 /// 1535 /// Returns true if any changes to function attributes were made. 1536 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1537 SmallSet<Function *, 8> &Changed) { 1538 AttributeInferer AI; 1539 1540 if (!DisableNoUnwindInference) 1541 // Request to infer nounwind attribute for all the functions in the SCC if 1542 // every callsite within the SCC is not throwing (except for calls to 1543 // functions within the SCC). Note that nounwind attribute suffers from 1544 // derefinement - results may change depending on how functions are 1545 // optimized. Thus it can be inferred only from exact definitions. 1546 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1547 Attribute::NoUnwind, 1548 // Skip non-throwing functions. 1549 [](const Function &F) { return F.doesNotThrow(); }, 1550 // Instructions that break non-throwing assumption. 1551 [&SCCNodes](Instruction &I) { 1552 return InstrBreaksNonThrowing(I, SCCNodes); 1553 }, 1554 [](Function &F) { 1555 LLVM_DEBUG(dbgs() 1556 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1557 F.setDoesNotThrow(); 1558 ++NumNoUnwind; 1559 }, 1560 /* RequiresExactDefinition= */ true}); 1561 1562 if (!DisableNoFreeInference) 1563 // Request to infer nofree attribute for all the functions in the SCC if 1564 // every callsite within the SCC does not directly or indirectly free 1565 // memory (except for calls to functions within the SCC). Note that nofree 1566 // attribute suffers from derefinement - results may change depending on 1567 // how functions are optimized. Thus it can be inferred only from exact 1568 // definitions. 1569 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1570 Attribute::NoFree, 1571 // Skip functions known not to free memory. 1572 [](const Function &F) { return F.doesNotFreeMemory(); }, 1573 // Instructions that break non-deallocating assumption. 1574 [&SCCNodes](Instruction &I) { 1575 return InstrBreaksNoFree(I, SCCNodes); 1576 }, 1577 [](Function &F) { 1578 LLVM_DEBUG(dbgs() 1579 << "Adding nofree attr to fn " << F.getName() << "\n"); 1580 F.setDoesNotFreeMemory(); 1581 ++NumNoFree; 1582 }, 1583 /* RequiresExactDefinition= */ true}); 1584 1585 // Perform all the requested attribute inference actions. 1586 AI.run(SCCNodes, Changed); 1587 } 1588 1589 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1590 SmallSet<Function *, 8> &Changed) { 1591 // Try and identify functions that do not recurse. 1592 1593 // If the SCC contains multiple nodes we know for sure there is recursion. 1594 if (SCCNodes.size() != 1) 1595 return; 1596 1597 Function *F = *SCCNodes.begin(); 1598 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1599 return; 1600 1601 // If all of the calls in F are identifiable and are to norecurse functions, F 1602 // is norecurse. This check also detects self-recursion as F is not currently 1603 // marked norecurse, so any called from F to F will not be marked norecurse. 1604 for (auto &BB : *F) 1605 for (auto &I : BB.instructionsWithoutDebug()) 1606 if (auto *CB = dyn_cast<CallBase>(&I)) { 1607 Function *Callee = CB->getCalledFunction(); 1608 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1609 // Function calls a potentially recursive function. 1610 return; 1611 } 1612 1613 // Every call was to a non-recursive function other than this function, and 1614 // we have no indirect recursion as the SCC size is one. This function cannot 1615 // recurse. 1616 F->setDoesNotRecurse(); 1617 ++NumNoRecurse; 1618 Changed.insert(F); 1619 } 1620 1621 static bool instructionDoesNotReturn(Instruction &I) { 1622 if (auto *CB = dyn_cast<CallBase>(&I)) 1623 return CB->hasFnAttr(Attribute::NoReturn); 1624 return false; 1625 } 1626 1627 // A basic block can only return if it terminates with a ReturnInst and does not 1628 // contain calls to noreturn functions. 1629 static bool basicBlockCanReturn(BasicBlock &BB) { 1630 if (!isa<ReturnInst>(BB.getTerminator())) 1631 return false; 1632 return none_of(BB, instructionDoesNotReturn); 1633 } 1634 1635 // FIXME: this doesn't handle recursion. 1636 static bool canReturn(Function &F) { 1637 SmallVector<BasicBlock *, 16> Worklist; 1638 SmallPtrSet<BasicBlock *, 16> Visited; 1639 1640 Visited.insert(&F.front()); 1641 Worklist.push_back(&F.front()); 1642 1643 do { 1644 BasicBlock *BB = Worklist.pop_back_val(); 1645 if (basicBlockCanReturn(*BB)) 1646 return true; 1647 for (BasicBlock *Succ : successors(BB)) 1648 if (Visited.insert(Succ).second) 1649 Worklist.push_back(Succ); 1650 } while (!Worklist.empty()); 1651 1652 return false; 1653 } 1654 1655 // Set the noreturn function attribute if possible. 1656 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1657 SmallSet<Function *, 8> &Changed) { 1658 for (Function *F : SCCNodes) { 1659 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1660 F->doesNotReturn()) 1661 continue; 1662 1663 if (!canReturn(*F)) { 1664 F->setDoesNotReturn(); 1665 Changed.insert(F); 1666 } 1667 } 1668 } 1669 1670 static bool functionWillReturn(const Function &F) { 1671 // We can infer and propagate function attributes only when we know that the 1672 // definition we'll get at link time is *exactly* the definition we see now. 1673 // For more details, see GlobalValue::mayBeDerefined. 1674 if (!F.hasExactDefinition()) 1675 return false; 1676 1677 // Must-progress function without side-effects must return. 1678 if (F.mustProgress() && F.onlyReadsMemory()) 1679 return true; 1680 1681 // Can only analyze functions with a definition. 1682 if (F.isDeclaration()) 1683 return false; 1684 1685 // Functions with loops require more sophisticated analysis, as the loop 1686 // may be infinite. For now, don't try to handle them. 1687 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1688 FindFunctionBackedges(F, Backedges); 1689 if (!Backedges.empty()) 1690 return false; 1691 1692 // If there are no loops, then the function is willreturn if all calls in 1693 // it are willreturn. 1694 return all_of(instructions(F), [](const Instruction &I) { 1695 return I.willReturn(); 1696 }); 1697 } 1698 1699 // Set the willreturn function attribute if possible. 1700 static void addWillReturn(const SCCNodeSet &SCCNodes, 1701 SmallSet<Function *, 8> &Changed) { 1702 for (Function *F : SCCNodes) { 1703 if (!F || F->willReturn() || !functionWillReturn(*F)) 1704 continue; 1705 1706 F->setWillReturn(); 1707 NumWillReturn++; 1708 Changed.insert(F); 1709 } 1710 } 1711 1712 // Return true if this is an atomic which has an ordering stronger than 1713 // unordered. Note that this is different than the predicate we use in 1714 // Attributor. Here we chose to be conservative and consider monotonic 1715 // operations potentially synchronizing. We generally don't do much with 1716 // monotonic operations, so this is simply risk reduction. 1717 static bool isOrderedAtomic(Instruction *I) { 1718 if (!I->isAtomic()) 1719 return false; 1720 1721 if (auto *FI = dyn_cast<FenceInst>(I)) 1722 // All legal orderings for fence are stronger than monotonic. 1723 return FI->getSyncScopeID() != SyncScope::SingleThread; 1724 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1725 return true; 1726 else if (auto *SI = dyn_cast<StoreInst>(I)) 1727 return !SI->isUnordered(); 1728 else if (auto *LI = dyn_cast<LoadInst>(I)) 1729 return !LI->isUnordered(); 1730 else { 1731 llvm_unreachable("unknown atomic instruction?"); 1732 } 1733 } 1734 1735 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1736 // Volatile may synchronize 1737 if (I.isVolatile()) 1738 return true; 1739 1740 // An ordered atomic may synchronize. (See comment about on monotonic.) 1741 if (isOrderedAtomic(&I)) 1742 return true; 1743 1744 auto *CB = dyn_cast<CallBase>(&I); 1745 if (!CB) 1746 // Non call site cases covered by the two checks above 1747 return false; 1748 1749 if (CB->hasFnAttr(Attribute::NoSync)) 1750 return false; 1751 1752 // Non volatile memset/memcpy/memmoves are nosync 1753 // NOTE: Only intrinsics with volatile flags should be handled here. All 1754 // others should be marked in Intrinsics.td. 1755 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1756 if (!MI->isVolatile()) 1757 return false; 1758 1759 // Speculatively assume in SCC. 1760 if (Function *Callee = CB->getCalledFunction()) 1761 if (SCCNodes.contains(Callee)) 1762 return false; 1763 1764 return true; 1765 } 1766 1767 // Infer the nosync attribute. 1768 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1769 SmallSet<Function *, 8> &Changed) { 1770 AttributeInferer AI; 1771 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1772 Attribute::NoSync, 1773 // Skip already marked functions. 1774 [](const Function &F) { return F.hasNoSync(); }, 1775 // Instructions that break nosync assumption. 1776 [&SCCNodes](Instruction &I) { 1777 return InstrBreaksNoSync(I, SCCNodes); 1778 }, 1779 [](Function &F) { 1780 LLVM_DEBUG(dbgs() 1781 << "Adding nosync attr to fn " << F.getName() << "\n"); 1782 F.setNoSync(); 1783 ++NumNoSync; 1784 }, 1785 /* RequiresExactDefinition= */ true}); 1786 AI.run(SCCNodes, Changed); 1787 } 1788 1789 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1790 SCCNodesResult Res; 1791 Res.HasUnknownCall = false; 1792 for (Function *F : Functions) { 1793 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1794 F->isPresplitCoroutine()) { 1795 // Treat any function we're trying not to optimize as if it were an 1796 // indirect call and omit it from the node set used below. 1797 Res.HasUnknownCall = true; 1798 continue; 1799 } 1800 // Track whether any functions in this SCC have an unknown call edge. 1801 // Note: if this is ever a performance hit, we can common it with 1802 // subsequent routines which also do scans over the instructions of the 1803 // function. 1804 if (!Res.HasUnknownCall) { 1805 for (Instruction &I : instructions(*F)) { 1806 if (auto *CB = dyn_cast<CallBase>(&I)) { 1807 if (!CB->getCalledFunction()) { 1808 Res.HasUnknownCall = true; 1809 break; 1810 } 1811 } 1812 } 1813 } 1814 Res.SCCNodes.insert(F); 1815 } 1816 return Res; 1817 } 1818 1819 template <typename AARGetterT> 1820 static SmallSet<Function *, 8> 1821 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1822 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1823 1824 // Bail if the SCC only contains optnone functions. 1825 if (Nodes.SCCNodes.empty()) 1826 return {}; 1827 1828 SmallSet<Function *, 8> Changed; 1829 1830 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1831 addMemoryAttrs(Nodes.SCCNodes, AARGetter, Changed); 1832 addArgumentAttrs(Nodes.SCCNodes, Changed); 1833 inferConvergent(Nodes.SCCNodes, Changed); 1834 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1835 addWillReturn(Nodes.SCCNodes, Changed); 1836 1837 // If we have no external nodes participating in the SCC, we can deduce some 1838 // more precise attributes as well. 1839 if (!Nodes.HasUnknownCall) { 1840 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1841 addNonNullAttrs(Nodes.SCCNodes, Changed); 1842 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1843 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1844 } 1845 1846 addNoSyncAttr(Nodes.SCCNodes, Changed); 1847 1848 // Finally, infer the maximal set of attributes from the ones we've inferred 1849 // above. This is handling the cases where one attribute on a signature 1850 // implies another, but for implementation reasons the inference rule for 1851 // the later is missing (or simply less sophisticated). 1852 for (Function *F : Nodes.SCCNodes) 1853 if (F) 1854 if (inferAttributesFromOthers(*F)) 1855 Changed.insert(F); 1856 1857 return Changed; 1858 } 1859 1860 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1861 CGSCCAnalysisManager &AM, 1862 LazyCallGraph &CG, 1863 CGSCCUpdateResult &) { 1864 FunctionAnalysisManager &FAM = 1865 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1866 1867 // We pass a lambda into functions to wire them up to the analysis manager 1868 // for getting function analyses. 1869 auto AARGetter = [&](Function &F) -> AAResults & { 1870 return FAM.getResult<AAManager>(F); 1871 }; 1872 1873 SmallVector<Function *, 8> Functions; 1874 for (LazyCallGraph::Node &N : C) { 1875 Functions.push_back(&N.getFunction()); 1876 } 1877 1878 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1879 if (ChangedFunctions.empty()) 1880 return PreservedAnalyses::all(); 1881 1882 // Invalidate analyses for modified functions so that we don't have to 1883 // invalidate all analyses for all functions in this SCC. 1884 PreservedAnalyses FuncPA; 1885 // We haven't changed the CFG for modified functions. 1886 FuncPA.preserveSet<CFGAnalyses>(); 1887 for (Function *Changed : ChangedFunctions) { 1888 FAM.invalidate(*Changed, FuncPA); 1889 // Also invalidate any direct callers of changed functions since analyses 1890 // may care about attributes of direct callees. For example, MemorySSA cares 1891 // about whether or not a call's callee modifies memory and queries that 1892 // through function attributes. 1893 for (auto *U : Changed->users()) { 1894 if (auto *Call = dyn_cast<CallBase>(U)) { 1895 if (Call->getCalledFunction() == Changed) 1896 FAM.invalidate(*Call->getFunction(), FuncPA); 1897 } 1898 } 1899 } 1900 1901 PreservedAnalyses PA; 1902 // We have not added or removed functions. 1903 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1904 // We already invalidated all relevant function analyses above. 1905 PA.preserveSet<AllAnalysesOn<Function>>(); 1906 return PA; 1907 } 1908 1909 namespace { 1910 1911 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1912 // Pass identification, replacement for typeid 1913 static char ID; 1914 1915 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1916 initializePostOrderFunctionAttrsLegacyPassPass( 1917 *PassRegistry::getPassRegistry()); 1918 } 1919 1920 bool runOnSCC(CallGraphSCC &SCC) override; 1921 1922 void getAnalysisUsage(AnalysisUsage &AU) const override { 1923 AU.setPreservesCFG(); 1924 AU.addRequired<AssumptionCacheTracker>(); 1925 getAAResultsAnalysisUsage(AU); 1926 CallGraphSCCPass::getAnalysisUsage(AU); 1927 } 1928 }; 1929 1930 } // end anonymous namespace 1931 1932 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1933 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1934 "Deduce function attributes", false, false) 1935 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1936 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1937 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1938 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1939 "Deduce function attributes", false, false) 1940 1941 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1942 return new PostOrderFunctionAttrsLegacyPass(); 1943 } 1944 1945 template <typename AARGetterT> 1946 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1947 SmallVector<Function *, 8> Functions; 1948 for (CallGraphNode *I : SCC) { 1949 Functions.push_back(I->getFunction()); 1950 } 1951 1952 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1953 } 1954 1955 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1956 if (skipSCC(SCC)) 1957 return false; 1958 return runImpl(SCC, LegacyAARGetter(*this)); 1959 } 1960 1961 namespace { 1962 1963 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1964 // Pass identification, replacement for typeid 1965 static char ID; 1966 1967 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1968 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1969 *PassRegistry::getPassRegistry()); 1970 } 1971 1972 bool runOnModule(Module &M) override; 1973 1974 void getAnalysisUsage(AnalysisUsage &AU) const override { 1975 AU.setPreservesCFG(); 1976 AU.addRequired<CallGraphWrapperPass>(); 1977 AU.addPreserved<CallGraphWrapperPass>(); 1978 } 1979 }; 1980 1981 } // end anonymous namespace 1982 1983 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1984 1985 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1986 "rpo-function-attrs", "Deduce function attributes in RPO", 1987 false, false) 1988 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1989 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1990 "rpo-function-attrs", "Deduce function attributes in RPO", 1991 false, false) 1992 1993 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1994 return new ReversePostOrderFunctionAttrsLegacyPass(); 1995 } 1996 1997 static bool addNoRecurseAttrsTopDown(Function &F) { 1998 // We check the preconditions for the function prior to calling this to avoid 1999 // the cost of building up a reversible post-order list. We assert them here 2000 // to make sure none of the invariants this relies on were violated. 2001 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 2002 assert(!F.doesNotRecurse() && 2003 "This function has already been deduced as norecurs!"); 2004 assert(F.hasInternalLinkage() && 2005 "Can only do top-down deduction for internal linkage functions!"); 2006 2007 // If F is internal and all of its uses are calls from a non-recursive 2008 // functions, then none of its calls could in fact recurse without going 2009 // through a function marked norecurse, and so we can mark this function too 2010 // as norecurse. Note that the uses must actually be calls -- otherwise 2011 // a pointer to this function could be returned from a norecurse function but 2012 // this function could be recursively (indirectly) called. Note that this 2013 // also detects if F is directly recursive as F is not yet marked as 2014 // a norecurse function. 2015 for (auto &U : F.uses()) { 2016 auto *I = dyn_cast<Instruction>(U.getUser()); 2017 if (!I) 2018 return false; 2019 CallBase *CB = dyn_cast<CallBase>(I); 2020 if (!CB || !CB->isCallee(&U) || 2021 !CB->getParent()->getParent()->doesNotRecurse()) 2022 return false; 2023 } 2024 F.setDoesNotRecurse(); 2025 ++NumNoRecurse; 2026 return true; 2027 } 2028 2029 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 2030 // We only have a post-order SCC traversal (because SCCs are inherently 2031 // discovered in post-order), so we accumulate them in a vector and then walk 2032 // it in reverse. This is simpler than using the RPO iterator infrastructure 2033 // because we need to combine SCC detection and the PO walk of the call 2034 // graph. We can also cheat egregiously because we're primarily interested in 2035 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 2036 // with multiple functions in them will clearly be recursive. 2037 SmallVector<Function *, 16> Worklist; 2038 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 2039 if (I->size() != 1) 2040 continue; 2041 2042 Function *F = I->front()->getFunction(); 2043 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2044 F->hasInternalLinkage()) 2045 Worklist.push_back(F); 2046 } 2047 2048 bool Changed = false; 2049 for (auto *F : llvm::reverse(Worklist)) 2050 Changed |= addNoRecurseAttrsTopDown(*F); 2051 2052 return Changed; 2053 } 2054 2055 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2056 if (skipModule(M)) 2057 return false; 2058 2059 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2060 2061 return deduceFunctionAttributeInRPO(M, CG); 2062 } 2063 2064 PreservedAnalyses 2065 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2066 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2067 2068 if (!deduceFunctionAttributeInRPO(M, CG)) 2069 return PreservedAnalyses::all(); 2070 2071 PreservedAnalyses PA; 2072 PA.preserve<CallGraphAnalysis>(); 2073 return PA; 2074 } 2075