xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions.  Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions.  This
12 // pass also deletes dead return values in a similar way.
13 //
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/NoFolder.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Use.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/IPO.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include <cassert>
49 #include <cstdint>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "deadargelim"
56 
57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
58 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
59 STATISTIC(NumArgumentsReplacedWithUndef,
60           "Number of unread args replaced with undef");
61 
62 namespace {
63 
64   /// DAE - The dead argument elimination pass.
65   class DAE : public ModulePass {
66   protected:
67     // DAH uses this to specify a different ID.
68     explicit DAE(char &ID) : ModulePass(ID) {}
69 
70   public:
71     static char ID; // Pass identification, replacement for typeid
72 
73     DAE() : ModulePass(ID) {
74       initializeDAEPass(*PassRegistry::getPassRegistry());
75     }
76 
77     bool runOnModule(Module &M) override {
78       if (skipModule(M))
79         return false;
80       DeadArgumentEliminationPass DAEP(ShouldHackArguments());
81       ModuleAnalysisManager DummyMAM;
82       PreservedAnalyses PA = DAEP.run(M, DummyMAM);
83       return !PA.areAllPreserved();
84     }
85 
86     virtual bool ShouldHackArguments() const { return false; }
87   };
88 
89 } // end anonymous namespace
90 
91 char DAE::ID = 0;
92 
93 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
94 
95 namespace {
96 
97   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
98   /// deletes arguments to functions which are external.  This is only for use
99   /// by bugpoint.
100   struct DAH : public DAE {
101     static char ID;
102 
103     DAH() : DAE(ID) {}
104 
105     bool ShouldHackArguments() const override { return true; }
106   };
107 
108 } // end anonymous namespace
109 
110 char DAH::ID = 0;
111 
112 INITIALIZE_PASS(DAH, "deadarghaX0r",
113                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
114                 false, false)
115 
116 /// createDeadArgEliminationPass - This pass removes arguments from functions
117 /// which are not used by the body of the function.
118 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
119 
120 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
121 
122 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
123 /// llvm.vastart is never called, the varargs list is dead for the function.
124 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
125   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
126   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
127 
128   // Ensure that the function is only directly called.
129   if (Fn.hasAddressTaken())
130     return false;
131 
132   // Don't touch naked functions. The assembly might be using an argument, or
133   // otherwise rely on the frame layout in a way that this analysis will not
134   // see.
135   if (Fn.hasFnAttribute(Attribute::Naked)) {
136     return false;
137   }
138 
139   // Okay, we know we can transform this function if safe.  Scan its body
140   // looking for calls marked musttail or calls to llvm.vastart.
141   for (BasicBlock &BB : Fn) {
142     for (Instruction &I : BB) {
143       CallInst *CI = dyn_cast<CallInst>(&I);
144       if (!CI)
145         continue;
146       if (CI->isMustTailCall())
147         return false;
148       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
149         if (II->getIntrinsicID() == Intrinsic::vastart)
150           return false;
151       }
152     }
153   }
154 
155   // If we get here, there are no calls to llvm.vastart in the function body,
156   // remove the "..." and adjust all the calls.
157 
158   // Start by computing a new prototype for the function, which is the same as
159   // the old function, but doesn't have isVarArg set.
160   FunctionType *FTy = Fn.getFunctionType();
161 
162   std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
163   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
164                                                 Params, false);
165   unsigned NumArgs = Params.size();
166 
167   // Create the new function body and insert it into the module...
168   Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
169   NF->copyAttributesFrom(&Fn);
170   NF->setComdat(Fn.getComdat());
171   Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
172   NF->takeName(&Fn);
173 
174   // Loop over all of the callers of the function, transforming the call sites
175   // to pass in a smaller number of arguments into the new function.
176   //
177   std::vector<Value *> Args;
178   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
179     CallBase *CB = dyn_cast<CallBase>(*I++);
180     if (!CB)
181       continue;
182 
183     // Pass all the same arguments.
184     Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
185 
186     // Drop any attributes that were on the vararg arguments.
187     AttributeList PAL = CB->getAttributes();
188     if (!PAL.isEmpty()) {
189       SmallVector<AttributeSet, 8> ArgAttrs;
190       for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
191         ArgAttrs.push_back(PAL.getParamAttributes(ArgNo));
192       PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(),
193                                PAL.getRetAttributes(), ArgAttrs);
194     }
195 
196     SmallVector<OperandBundleDef, 1> OpBundles;
197     CB->getOperandBundlesAsDefs(OpBundles);
198 
199     CallBase *NewCB = nullptr;
200     if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
201       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
202                                  Args, OpBundles, "", CB);
203     } else {
204       NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
205       cast<CallInst>(NewCB)->setTailCallKind(
206           cast<CallInst>(CB)->getTailCallKind());
207     }
208     NewCB->setCallingConv(CB->getCallingConv());
209     NewCB->setAttributes(PAL);
210     NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
211 
212     Args.clear();
213 
214     if (!CB->use_empty())
215       CB->replaceAllUsesWith(NewCB);
216 
217     NewCB->takeName(CB);
218 
219     // Finally, remove the old call from the program, reducing the use-count of
220     // F.
221     CB->eraseFromParent();
222   }
223 
224   // Since we have now created the new function, splice the body of the old
225   // function right into the new function, leaving the old rotting hulk of the
226   // function empty.
227   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
228 
229   // Loop over the argument list, transferring uses of the old arguments over to
230   // the new arguments, also transferring over the names as well.  While we're at
231   // it, remove the dead arguments from the DeadArguments list.
232   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
233        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
234     // Move the name and users over to the new version.
235     I->replaceAllUsesWith(&*I2);
236     I2->takeName(&*I);
237   }
238 
239   // Clone metadatas from the old function, including debug info descriptor.
240   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
241   Fn.getAllMetadata(MDs);
242   for (auto MD : MDs)
243     NF->addMetadata(MD.first, *MD.second);
244 
245   // Fix up any BlockAddresses that refer to the function.
246   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
247   // Delete the bitcast that we just created, so that NF does not
248   // appear to be address-taken.
249   NF->removeDeadConstantUsers();
250   // Finally, nuke the old function.
251   Fn.eraseFromParent();
252   return true;
253 }
254 
255 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
256 /// arguments that are unused, and changes the caller parameters to be undefined
257 /// instead.
258 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
259   // We cannot change the arguments if this TU does not define the function or
260   // if the linker may choose a function body from another TU, even if the
261   // nominal linkage indicates that other copies of the function have the same
262   // semantics. In the below example, the dead load from %p may not have been
263   // eliminated from the linker-chosen copy of f, so replacing %p with undef
264   // in callers may introduce undefined behavior.
265   //
266   // define linkonce_odr void @f(i32* %p) {
267   //   %v = load i32 %p
268   //   ret void
269   // }
270   if (!Fn.hasExactDefinition())
271     return false;
272 
273   // Functions with local linkage should already have been handled, except the
274   // fragile (variadic) ones which we can improve here.
275   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
276     return false;
277 
278   // Don't touch naked functions. The assembly might be using an argument, or
279   // otherwise rely on the frame layout in a way that this analysis will not
280   // see.
281   if (Fn.hasFnAttribute(Attribute::Naked))
282     return false;
283 
284   if (Fn.use_empty())
285     return false;
286 
287   SmallVector<unsigned, 8> UnusedArgs;
288   bool Changed = false;
289 
290   AttrBuilder UBImplyingAttributes = AttributeFuncs::getUBImplyingAttributes();
291   for (Argument &Arg : Fn.args()) {
292     if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
293         !Arg.hasPassPointeeByValueCopyAttr()) {
294       if (Arg.isUsedByMetadata()) {
295         Arg.replaceAllUsesWith(UndefValue::get(Arg.getType()));
296         Changed = true;
297       }
298       UnusedArgs.push_back(Arg.getArgNo());
299       Fn.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
300     }
301   }
302 
303   if (UnusedArgs.empty())
304     return false;
305 
306   for (Use &U : Fn.uses()) {
307     CallBase *CB = dyn_cast<CallBase>(U.getUser());
308     if (!CB || !CB->isCallee(&U))
309       continue;
310 
311     // Now go through all unused args and replace them with "undef".
312     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
313       unsigned ArgNo = UnusedArgs[I];
314 
315       Value *Arg = CB->getArgOperand(ArgNo);
316       CB->setArgOperand(ArgNo, UndefValue::get(Arg->getType()));
317       CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
318 
319       ++NumArgumentsReplacedWithUndef;
320       Changed = true;
321     }
322   }
323 
324   return Changed;
325 }
326 
327 /// Convenience function that returns the number of return values. It returns 0
328 /// for void functions and 1 for functions not returning a struct. It returns
329 /// the number of struct elements for functions returning a struct.
330 static unsigned NumRetVals(const Function *F) {
331   Type *RetTy = F->getReturnType();
332   if (RetTy->isVoidTy())
333     return 0;
334   else if (StructType *STy = dyn_cast<StructType>(RetTy))
335     return STy->getNumElements();
336   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
337     return ATy->getNumElements();
338   else
339     return 1;
340 }
341 
342 /// Returns the sub-type a function will return at a given Idx. Should
343 /// correspond to the result type of an ExtractValue instruction executed with
344 /// just that one Idx (i.e. only top-level structure is considered).
345 static Type *getRetComponentType(const Function *F, unsigned Idx) {
346   Type *RetTy = F->getReturnType();
347   assert(!RetTy->isVoidTy() && "void type has no subtype");
348 
349   if (StructType *STy = dyn_cast<StructType>(RetTy))
350     return STy->getElementType(Idx);
351   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
352     return ATy->getElementType();
353   else
354     return RetTy;
355 }
356 
357 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
358 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
359 /// liveness of Use.
360 DeadArgumentEliminationPass::Liveness
361 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
362                                            UseVector &MaybeLiveUses) {
363   // We're live if our use or its Function is already marked as live.
364   if (IsLive(Use))
365     return Live;
366 
367   // We're maybe live otherwise, but remember that we must become live if
368   // Use becomes live.
369   MaybeLiveUses.push_back(Use);
370   return MaybeLive;
371 }
372 
373 /// SurveyUse - This looks at a single use of an argument or return value
374 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
375 /// if it causes the used value to become MaybeLive.
376 ///
377 /// RetValNum is the return value number to use when this use is used in a
378 /// return instruction. This is used in the recursion, you should always leave
379 /// it at 0.
380 DeadArgumentEliminationPass::Liveness
381 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
382                                        unsigned RetValNum) {
383     const User *V = U->getUser();
384     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
385       // The value is returned from a function. It's only live when the
386       // function's return value is live. We use RetValNum here, for the case
387       // that U is really a use of an insertvalue instruction that uses the
388       // original Use.
389       const Function *F = RI->getParent()->getParent();
390       if (RetValNum != -1U) {
391         RetOrArg Use = CreateRet(F, RetValNum);
392         // We might be live, depending on the liveness of Use.
393         return MarkIfNotLive(Use, MaybeLiveUses);
394       } else {
395         DeadArgumentEliminationPass::Liveness Result = MaybeLive;
396         for (unsigned Ri = 0; Ri < NumRetVals(F); ++Ri) {
397           RetOrArg Use = CreateRet(F, Ri);
398           // We might be live, depending on the liveness of Use. If any
399           // sub-value is live, then the entire value is considered live. This
400           // is a conservative choice, and better tracking is possible.
401           DeadArgumentEliminationPass::Liveness SubResult =
402               MarkIfNotLive(Use, MaybeLiveUses);
403           if (Result != Live)
404             Result = SubResult;
405         }
406         return Result;
407       }
408     }
409     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
410       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
411           && IV->hasIndices())
412         // The use we are examining is inserted into an aggregate. Our liveness
413         // depends on all uses of that aggregate, but if it is used as a return
414         // value, only index at which we were inserted counts.
415         RetValNum = *IV->idx_begin();
416 
417       // Note that if we are used as the aggregate operand to the insertvalue,
418       // we don't change RetValNum, but do survey all our uses.
419 
420       Liveness Result = MaybeLive;
421       for (const Use &UU : IV->uses()) {
422         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
423         if (Result == Live)
424           break;
425       }
426       return Result;
427     }
428 
429     if (const auto *CB = dyn_cast<CallBase>(V)) {
430       const Function *F = CB->getCalledFunction();
431       if (F) {
432         // Used in a direct call.
433 
434         // The function argument is live if it is used as a bundle operand.
435         if (CB->isBundleOperand(U))
436           return Live;
437 
438         // Find the argument number. We know for sure that this use is an
439         // argument, since if it was the function argument this would be an
440         // indirect call and the we know can't be looking at a value of the
441         // label type (for the invoke instruction).
442         unsigned ArgNo = CB->getArgOperandNo(U);
443 
444         if (ArgNo >= F->getFunctionType()->getNumParams())
445           // The value is passed in through a vararg! Must be live.
446           return Live;
447 
448         assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
449                "Argument is not where we expected it");
450 
451         // Value passed to a normal call. It's only live when the corresponding
452         // argument to the called function turns out live.
453         RetOrArg Use = CreateArg(F, ArgNo);
454         return MarkIfNotLive(Use, MaybeLiveUses);
455       }
456     }
457     // Used in any other way? Value must be live.
458     return Live;
459 }
460 
461 /// SurveyUses - This looks at all the uses of the given value
462 /// Returns the Liveness deduced from the uses of this value.
463 ///
464 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
465 /// the result is Live, MaybeLiveUses might be modified but its content should
466 /// be ignored (since it might not be complete).
467 DeadArgumentEliminationPass::Liveness
468 DeadArgumentEliminationPass::SurveyUses(const Value *V,
469                                         UseVector &MaybeLiveUses) {
470   // Assume it's dead (which will only hold if there are no uses at all..).
471   Liveness Result = MaybeLive;
472   // Check each use.
473   for (const Use &U : V->uses()) {
474     Result = SurveyUse(&U, MaybeLiveUses);
475     if (Result == Live)
476       break;
477   }
478   return Result;
479 }
480 
481 // SurveyFunction - This performs the initial survey of the specified function,
482 // checking out whether or not it uses any of its incoming arguments or whether
483 // any callers use the return value.  This fills in the LiveValues set and Uses
484 // map.
485 //
486 // We consider arguments of non-internal functions to be intrinsically alive as
487 // well as arguments to functions which have their "address taken".
488 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
489   // Functions with inalloca/preallocated parameters are expecting args in a
490   // particular register and memory layout.
491   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
492       F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
493     MarkLive(F);
494     return;
495   }
496 
497   // Don't touch naked functions. The assembly might be using an argument, or
498   // otherwise rely on the frame layout in a way that this analysis will not
499   // see.
500   if (F.hasFnAttribute(Attribute::Naked)) {
501     MarkLive(F);
502     return;
503   }
504 
505   unsigned RetCount = NumRetVals(&F);
506 
507   // Assume all return values are dead
508   using RetVals = SmallVector<Liveness, 5>;
509 
510   RetVals RetValLiveness(RetCount, MaybeLive);
511 
512   using RetUses = SmallVector<UseVector, 5>;
513 
514   // These vectors map each return value to the uses that make it MaybeLive, so
515   // we can add those to the Uses map if the return value really turns out to be
516   // MaybeLive. Initialized to a list of RetCount empty lists.
517   RetUses MaybeLiveRetUses(RetCount);
518 
519   bool HasMustTailCalls = false;
520 
521   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
522     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
523       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
524           != F.getFunctionType()->getReturnType()) {
525         // We don't support old style multiple return values.
526         MarkLive(F);
527         return;
528       }
529     }
530 
531     // If we have any returns of `musttail` results - the signature can't
532     // change
533     if (BB->getTerminatingMustTailCall() != nullptr)
534       HasMustTailCalls = true;
535   }
536 
537   if (HasMustTailCalls) {
538     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
539                       << " has musttail calls\n");
540   }
541 
542   if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
543     MarkLive(F);
544     return;
545   }
546 
547   LLVM_DEBUG(
548       dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
549              << F.getName() << "\n");
550   // Keep track of the number of live retvals, so we can skip checks once all
551   // of them turn out to be live.
552   unsigned NumLiveRetVals = 0;
553 
554   bool HasMustTailCallers = false;
555 
556   // Loop all uses of the function.
557   for (const Use &U : F.uses()) {
558     // If the function is PASSED IN as an argument, its address has been
559     // taken.
560     const auto *CB = dyn_cast<CallBase>(U.getUser());
561     if (!CB || !CB->isCallee(&U)) {
562       MarkLive(F);
563       return;
564     }
565 
566     // The number of arguments for `musttail` call must match the number of
567     // arguments of the caller
568     if (CB->isMustTailCall())
569       HasMustTailCallers = true;
570 
571     // If we end up here, we are looking at a direct call to our function.
572 
573     // Now, check how our return value(s) is/are used in this caller. Don't
574     // bother checking return values if all of them are live already.
575     if (NumLiveRetVals == RetCount)
576       continue;
577 
578     // Check all uses of the return value.
579     for (const Use &U : CB->uses()) {
580       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
581         // This use uses a part of our return value, survey the uses of
582         // that part and store the results for this index only.
583         unsigned Idx = *Ext->idx_begin();
584         if (RetValLiveness[Idx] != Live) {
585           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
586           if (RetValLiveness[Idx] == Live)
587             NumLiveRetVals++;
588         }
589       } else {
590         // Used by something else than extractvalue. Survey, but assume that the
591         // result applies to all sub-values.
592         UseVector MaybeLiveAggregateUses;
593         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
594           NumLiveRetVals = RetCount;
595           RetValLiveness.assign(RetCount, Live);
596           break;
597         } else {
598           for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
599             if (RetValLiveness[Ri] != Live)
600               MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
601                                           MaybeLiveAggregateUses.end());
602           }
603         }
604       }
605     }
606   }
607 
608   if (HasMustTailCallers) {
609     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
610                       << " has musttail callers\n");
611   }
612 
613   // Now we've inspected all callers, record the liveness of our return values.
614   for (unsigned Ri = 0; Ri != RetCount; ++Ri)
615     MarkValue(CreateRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
616 
617   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
618                     << F.getName() << "\n");
619 
620   // Now, check all of our arguments.
621   unsigned ArgI = 0;
622   UseVector MaybeLiveArgUses;
623   for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
624        AI != E; ++AI, ++ArgI) {
625     Liveness Result;
626     if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
627         HasMustTailCalls) {
628       // Variadic functions will already have a va_arg function expanded inside
629       // them, making them potentially very sensitive to ABI changes resulting
630       // from removing arguments entirely, so don't. For example AArch64 handles
631       // register and stack HFAs very differently, and this is reflected in the
632       // IR which has already been generated.
633       //
634       // `musttail` calls to this function restrict argument removal attempts.
635       // The signature of the caller must match the signature of the function.
636       //
637       // `musttail` calls in this function prevents us from changing its
638       // signature
639       Result = Live;
640     } else {
641       // See what the effect of this use is (recording any uses that cause
642       // MaybeLive in MaybeLiveArgUses).
643       Result = SurveyUses(&*AI, MaybeLiveArgUses);
644     }
645 
646     // Mark the result.
647     MarkValue(CreateArg(&F, ArgI), Result, MaybeLiveArgUses);
648     // Clear the vector again for the next iteration.
649     MaybeLiveArgUses.clear();
650   }
651 }
652 
653 /// MarkValue - This function marks the liveness of RA depending on L. If L is
654 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
655 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
656 /// live later on.
657 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
658                                             const UseVector &MaybeLiveUses) {
659   switch (L) {
660     case Live:
661       MarkLive(RA);
662       break;
663     case MaybeLive:
664       assert(!IsLive(RA) && "Use is already live!");
665       for (const auto &MaybeLiveUse : MaybeLiveUses) {
666         if (IsLive(MaybeLiveUse)) {
667           // A use is live, so this value is live.
668           MarkLive(RA);
669           break;
670         } else {
671           // Note any uses of this value, so this value can be
672           // marked live whenever one of the uses becomes live.
673           Uses.insert(std::make_pair(MaybeLiveUse, RA));
674         }
675       }
676       break;
677   }
678 }
679 
680 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
681 /// changed in any way. Additionally,
682 /// mark any values that are used as this function's parameters or by its return
683 /// values (according to Uses) live as well.
684 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
685   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
686                     << F.getName() << "\n");
687   // Mark the function as live.
688   LiveFunctions.insert(&F);
689   // Mark all arguments as live.
690   for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
691     PropagateLiveness(CreateArg(&F, ArgI));
692   // Mark all return values as live.
693   for (unsigned Ri = 0, E = NumRetVals(&F); Ri != E; ++Ri)
694     PropagateLiveness(CreateRet(&F, Ri));
695 }
696 
697 /// MarkLive - Mark the given return value or argument as live. Additionally,
698 /// mark any values that are used by this value (according to Uses) live as
699 /// well.
700 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
701   if (IsLive(RA))
702     return; // Already marked Live.
703 
704   LiveValues.insert(RA);
705 
706   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
707                     << RA.getDescription() << " live\n");
708   PropagateLiveness(RA);
709 }
710 
711 bool DeadArgumentEliminationPass::IsLive(const RetOrArg &RA) {
712   return LiveFunctions.count(RA.F) || LiveValues.count(RA);
713 }
714 
715 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
716 /// to any other values it uses (according to Uses).
717 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
718   // We don't use upper_bound (or equal_range) here, because our recursive call
719   // to ourselves is likely to cause the upper_bound (which is the first value
720   // not belonging to RA) to become erased and the iterator invalidated.
721   UseMap::iterator Begin = Uses.lower_bound(RA);
722   UseMap::iterator E = Uses.end();
723   UseMap::iterator I;
724   for (I = Begin; I != E && I->first == RA; ++I)
725     MarkLive(I->second);
726 
727   // Erase RA from the Uses map (from the lower bound to wherever we ended up
728   // after the loop).
729   Uses.erase(Begin, I);
730 }
731 
732 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
733 // that are not in LiveValues. Transform the function and all of the callees of
734 // the function to not have these arguments and return values.
735 //
736 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
737   // Don't modify fully live functions
738   if (LiveFunctions.count(F))
739     return false;
740 
741   // Start by computing a new prototype for the function, which is the same as
742   // the old function, but has fewer arguments and a different return type.
743   FunctionType *FTy = F->getFunctionType();
744   std::vector<Type*> Params;
745 
746   // Keep track of if we have a live 'returned' argument
747   bool HasLiveReturnedArg = false;
748 
749   // Set up to build a new list of parameter attributes.
750   SmallVector<AttributeSet, 8> ArgAttrVec;
751   const AttributeList &PAL = F->getAttributes();
752 
753   // Remember which arguments are still alive.
754   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
755   // Construct the new parameter list from non-dead arguments. Also construct
756   // a new set of parameter attributes to correspond. Skip the first parameter
757   // attribute, since that belongs to the return value.
758   unsigned ArgI = 0;
759   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
760        ++I, ++ArgI) {
761     RetOrArg Arg = CreateArg(F, ArgI);
762     if (LiveValues.erase(Arg)) {
763       Params.push_back(I->getType());
764       ArgAlive[ArgI] = true;
765       ArgAttrVec.push_back(PAL.getParamAttributes(ArgI));
766       HasLiveReturnedArg |= PAL.hasParamAttribute(ArgI, Attribute::Returned);
767     } else {
768       ++NumArgumentsEliminated;
769       LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
770                         << ArgI << " (" << I->getName() << ") from "
771                         << F->getName() << "\n");
772     }
773   }
774 
775   // Find out the new return value.
776   Type *RetTy = FTy->getReturnType();
777   Type *NRetTy = nullptr;
778   unsigned RetCount = NumRetVals(F);
779 
780   // -1 means unused, other numbers are the new index
781   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
782   std::vector<Type*> RetTypes;
783 
784   // If there is a function with a live 'returned' argument but a dead return
785   // value, then there are two possible actions:
786   // 1) Eliminate the return value and take off the 'returned' attribute on the
787   //    argument.
788   // 2) Retain the 'returned' attribute and treat the return value (but not the
789   //    entire function) as live so that it is not eliminated.
790   //
791   // It's not clear in the general case which option is more profitable because,
792   // even in the absence of explicit uses of the return value, code generation
793   // is free to use the 'returned' attribute to do things like eliding
794   // save/restores of registers across calls. Whether or not this happens is
795   // target and ABI-specific as well as depending on the amount of register
796   // pressure, so there's no good way for an IR-level pass to figure this out.
797   //
798   // Fortunately, the only places where 'returned' is currently generated by
799   // the FE are places where 'returned' is basically free and almost always a
800   // performance win, so the second option can just be used always for now.
801   //
802   // This should be revisited if 'returned' is ever applied more liberally.
803   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
804     NRetTy = RetTy;
805   } else {
806     // Look at each of the original return values individually.
807     for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
808       RetOrArg Ret = CreateRet(F, Ri);
809       if (LiveValues.erase(Ret)) {
810         RetTypes.push_back(getRetComponentType(F, Ri));
811         NewRetIdxs[Ri] = RetTypes.size() - 1;
812       } else {
813         ++NumRetValsEliminated;
814         LLVM_DEBUG(
815             dbgs() << "DeadArgumentEliminationPass - Removing return value "
816                    << Ri << " from " << F->getName() << "\n");
817       }
818     }
819     if (RetTypes.size() > 1) {
820       // More than one return type? Reduce it down to size.
821       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
822         // Make the new struct packed if we used to return a packed struct
823         // already.
824         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
825       } else {
826         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
827         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
828       }
829     } else if (RetTypes.size() == 1)
830       // One return type? Just a simple value then, but only if we didn't use to
831       // return a struct with that simple value before.
832       NRetTy = RetTypes.front();
833     else if (RetTypes.empty())
834       // No return types? Make it void, but only if we didn't use to return {}.
835       NRetTy = Type::getVoidTy(F->getContext());
836   }
837 
838   assert(NRetTy && "No new return type found?");
839 
840   // The existing function return attributes.
841   AttrBuilder RAttrs(PAL.getRetAttributes());
842 
843   // Remove any incompatible attributes, but only if we removed all return
844   // values. Otherwise, ensure that we don't have any conflicting attributes
845   // here. Currently, this should not be possible, but special handling might be
846   // required when new return value attributes are added.
847   if (NRetTy->isVoidTy())
848     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
849   else
850     assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
851            "Return attributes no longer compatible?");
852 
853   AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
854 
855   // Strip allocsize attributes. They might refer to the deleted arguments.
856   AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute(
857       F->getContext(), Attribute::AllocSize);
858 
859   // Reconstruct the AttributesList based on the vector we constructed.
860   assert(ArgAttrVec.size() == Params.size());
861   AttributeList NewPAL =
862       AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
863 
864   // Create the new function type based on the recomputed parameters.
865   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
866 
867   // No change?
868   if (NFTy == FTy)
869     return false;
870 
871   // Create the new function body and insert it into the module...
872   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
873   NF->copyAttributesFrom(F);
874   NF->setComdat(F->getComdat());
875   NF->setAttributes(NewPAL);
876   // Insert the new function before the old function, so we won't be processing
877   // it again.
878   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
879   NF->takeName(F);
880 
881   // Loop over all of the callers of the function, transforming the call sites
882   // to pass in a smaller number of arguments into the new function.
883   std::vector<Value*> Args;
884   while (!F->use_empty()) {
885     CallBase &CB = cast<CallBase>(*F->user_back());
886 
887     ArgAttrVec.clear();
888     const AttributeList &CallPAL = CB.getAttributes();
889 
890     // Adjust the call return attributes in case the function was changed to
891     // return void.
892     AttrBuilder RAttrs(CallPAL.getRetAttributes());
893     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
894     AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
895 
896     // Declare these outside of the loops, so we can reuse them for the second
897     // loop, which loops the varargs.
898     auto I = CB.arg_begin();
899     unsigned Pi = 0;
900     // Loop over those operands, corresponding to the normal arguments to the
901     // original function, and add those that are still alive.
902     for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
903       if (ArgAlive[Pi]) {
904         Args.push_back(*I);
905         // Get original parameter attributes, but skip return attributes.
906         AttributeSet Attrs = CallPAL.getParamAttributes(Pi);
907         if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
908           // If the return type has changed, then get rid of 'returned' on the
909           // call site. The alternative is to make all 'returned' attributes on
910           // call sites keep the return value alive just like 'returned'
911           // attributes on function declaration but it's less clearly a win and
912           // this is not an expected case anyway
913           ArgAttrVec.push_back(AttributeSet::get(
914               F->getContext(),
915               AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
916         } else {
917           // Otherwise, use the original attributes.
918           ArgAttrVec.push_back(Attrs);
919         }
920       }
921 
922     // Push any varargs arguments on the list. Don't forget their attributes.
923     for (auto E = CB.arg_end(); I != E; ++I, ++Pi) {
924       Args.push_back(*I);
925       ArgAttrVec.push_back(CallPAL.getParamAttributes(Pi));
926     }
927 
928     // Reconstruct the AttributesList based on the vector we constructed.
929     assert(ArgAttrVec.size() == Args.size());
930 
931     // Again, be sure to remove any allocsize attributes, since their indices
932     // may now be incorrect.
933     AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute(
934         F->getContext(), Attribute::AllocSize);
935 
936     AttributeList NewCallPAL = AttributeList::get(
937         F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
938 
939     SmallVector<OperandBundleDef, 1> OpBundles;
940     CB.getOperandBundlesAsDefs(OpBundles);
941 
942     CallBase *NewCB = nullptr;
943     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
944       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
945                                  Args, OpBundles, "", CB.getParent());
946     } else {
947       NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
948       cast<CallInst>(NewCB)->setTailCallKind(
949           cast<CallInst>(&CB)->getTailCallKind());
950     }
951     NewCB->setCallingConv(CB.getCallingConv());
952     NewCB->setAttributes(NewCallPAL);
953     NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
954     Args.clear();
955     ArgAttrVec.clear();
956 
957     if (!CB.use_empty() || CB.isUsedByMetadata()) {
958       if (NewCB->getType() == CB.getType()) {
959         // Return type not changed? Just replace users then.
960         CB.replaceAllUsesWith(NewCB);
961         NewCB->takeName(&CB);
962       } else if (NewCB->getType()->isVoidTy()) {
963         // If the return value is dead, replace any uses of it with undef
964         // (any non-debug value uses will get removed later on).
965         if (!CB.getType()->isX86_MMXTy())
966           CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
967       } else {
968         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
969                "Return type changed, but not into a void. The old return type"
970                " must have been a struct or an array!");
971         Instruction *InsertPt = &CB;
972         if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
973           BasicBlock *NewEdge =
974               SplitEdge(NewCB->getParent(), II->getNormalDest());
975           InsertPt = &*NewEdge->getFirstInsertionPt();
976         }
977 
978         // We used to return a struct or array. Instead of doing smart stuff
979         // with all the uses, we will just rebuild it using extract/insertvalue
980         // chaining and let instcombine clean that up.
981         //
982         // Start out building up our return value from undef
983         Value *RetVal = UndefValue::get(RetTy);
984         for (unsigned Ri = 0; Ri != RetCount; ++Ri)
985           if (NewRetIdxs[Ri] != -1) {
986             Value *V;
987             IRBuilder<NoFolder> IRB(InsertPt);
988             if (RetTypes.size() > 1)
989               // We are still returning a struct, so extract the value from our
990               // return value
991               V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
992             else
993               // We are now returning a single element, so just insert that
994               V = NewCB;
995             // Insert the value at the old position
996             RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
997           }
998         // Now, replace all uses of the old call instruction with the return
999         // struct we built
1000         CB.replaceAllUsesWith(RetVal);
1001         NewCB->takeName(&CB);
1002       }
1003     }
1004 
1005     // Finally, remove the old call from the program, reducing the use-count of
1006     // F.
1007     CB.eraseFromParent();
1008   }
1009 
1010   // Since we have now created the new function, splice the body of the old
1011   // function right into the new function, leaving the old rotting hulk of the
1012   // function empty.
1013   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1014 
1015   // Loop over the argument list, transferring uses of the old arguments over to
1016   // the new arguments, also transferring over the names as well.
1017   ArgI = 0;
1018   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1019                               I2 = NF->arg_begin();
1020        I != E; ++I, ++ArgI)
1021     if (ArgAlive[ArgI]) {
1022       // If this is a live argument, move the name and users over to the new
1023       // version.
1024       I->replaceAllUsesWith(&*I2);
1025       I2->takeName(&*I);
1026       ++I2;
1027     } else {
1028       // If this argument is dead, replace any uses of it with undef
1029       // (any non-debug value uses will get removed later on).
1030       if (!I->getType()->isX86_MMXTy())
1031         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1032     }
1033 
1034   // If we change the return value of the function we must rewrite any return
1035   // instructions.  Check this now.
1036   if (F->getReturnType() != NF->getReturnType())
1037     for (BasicBlock &BB : *NF)
1038       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1039         IRBuilder<NoFolder> IRB(RI);
1040         Value *RetVal = nullptr;
1041 
1042         if (!NFTy->getReturnType()->isVoidTy()) {
1043           assert(RetTy->isStructTy() || RetTy->isArrayTy());
1044           // The original return value was a struct or array, insert
1045           // extractvalue/insertvalue chains to extract only the values we need
1046           // to return and insert them into our new result.
1047           // This does generate messy code, but we'll let it to instcombine to
1048           // clean that up.
1049           Value *OldRet = RI->getOperand(0);
1050           // Start out building up our return value from undef
1051           RetVal = UndefValue::get(NRetTy);
1052           for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1053             if (NewRetIdxs[RetI] != -1) {
1054               Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1055 
1056               if (RetTypes.size() > 1) {
1057                 // We're still returning a struct, so reinsert the value into
1058                 // our new return value at the new index
1059 
1060                 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1061                                                "newret");
1062               } else {
1063                 // We are now only returning a simple value, so just return the
1064                 // extracted value.
1065                 RetVal = EV;
1066               }
1067             }
1068         }
1069         // Replace the return instruction with one returning the new return
1070         // value (possibly 0 if we became void).
1071         auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1072         NewRet->setDebugLoc(RI->getDebugLoc());
1073         BB.getInstList().erase(RI);
1074       }
1075 
1076   // Clone metadatas from the old function, including debug info descriptor.
1077   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1078   F->getAllMetadata(MDs);
1079   for (auto MD : MDs)
1080     NF->addMetadata(MD.first, *MD.second);
1081 
1082   // Now that the old function is dead, delete it.
1083   F->eraseFromParent();
1084 
1085   return true;
1086 }
1087 
1088 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1089                                                    ModuleAnalysisManager &) {
1090   bool Changed = false;
1091 
1092   // First pass: Do a simple check to see if any functions can have their "..."
1093   // removed.  We can do this if they never call va_start.  This loop cannot be
1094   // fused with the next loop, because deleting a function invalidates
1095   // information computed while surveying other functions.
1096   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1097   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1098     Function &F = *I++;
1099     if (F.getFunctionType()->isVarArg())
1100       Changed |= DeleteDeadVarargs(F);
1101   }
1102 
1103   // Second phase:loop through the module, determining which arguments are live.
1104   // We assume all arguments are dead unless proven otherwise (allowing us to
1105   // determine that dead arguments passed into recursive functions are dead).
1106   //
1107   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1108   for (auto &F : M)
1109     SurveyFunction(F);
1110 
1111   // Now, remove all dead arguments and return values from each function in
1112   // turn.
1113   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1114     // Increment now, because the function will probably get removed (ie.
1115     // replaced by a new one).
1116     Function *F = &*I++;
1117     Changed |= RemoveDeadStuffFromFunction(F);
1118   }
1119 
1120   // Finally, look for any unused parameters in functions with non-local
1121   // linkage and replace the passed in parameters with undef.
1122   for (auto &F : M)
1123     Changed |= RemoveDeadArgumentsFromCallers(F);
1124 
1125   if (!Changed)
1126     return PreservedAnalyses::all();
1127   return PreservedAnalyses::none();
1128 }
1129