1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass deletes dead arguments from internal functions. Dead argument 10 // elimination removes arguments which are directly dead, as well as arguments 11 // only passed into function calls as dead arguments of other functions. This 12 // pass also deletes dead return values in a similar way. 13 // 14 // This pass is often useful as a cleanup pass to run after aggressive 15 // interprocedural passes, which add possibly-dead arguments or return values. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Use.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "deadargelim" 56 57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); 58 STATISTIC(NumRetValsEliminated , "Number of unused return values removed"); 59 STATISTIC(NumArgumentsReplacedWithUndef, 60 "Number of unread args replaced with undef"); 61 62 namespace { 63 64 /// DAE - The dead argument elimination pass. 65 class DAE : public ModulePass { 66 protected: 67 // DAH uses this to specify a different ID. 68 explicit DAE(char &ID) : ModulePass(ID) {} 69 70 public: 71 static char ID; // Pass identification, replacement for typeid 72 73 DAE() : ModulePass(ID) { 74 initializeDAEPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnModule(Module &M) override { 78 if (skipModule(M)) 79 return false; 80 DeadArgumentEliminationPass DAEP(ShouldHackArguments()); 81 ModuleAnalysisManager DummyMAM; 82 PreservedAnalyses PA = DAEP.run(M, DummyMAM); 83 return !PA.areAllPreserved(); 84 } 85 86 virtual bool ShouldHackArguments() const { return false; } 87 }; 88 89 } // end anonymous namespace 90 91 char DAE::ID = 0; 92 93 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) 94 95 namespace { 96 97 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but 98 /// deletes arguments to functions which are external. This is only for use 99 /// by bugpoint. 100 struct DAH : public DAE { 101 static char ID; 102 103 DAH() : DAE(ID) {} 104 105 bool ShouldHackArguments() const override { return true; } 106 }; 107 108 } // end anonymous namespace 109 110 char DAH::ID = 0; 111 112 INITIALIZE_PASS(DAH, "deadarghaX0r", 113 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", 114 false, false) 115 116 /// createDeadArgEliminationPass - This pass removes arguments from functions 117 /// which are not used by the body of the function. 118 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } 119 120 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } 121 122 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if 123 /// llvm.vastart is never called, the varargs list is dead for the function. 124 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) { 125 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); 126 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; 127 128 // Ensure that the function is only directly called. 129 if (Fn.hasAddressTaken()) 130 return false; 131 132 // Don't touch naked functions. The assembly might be using an argument, or 133 // otherwise rely on the frame layout in a way that this analysis will not 134 // see. 135 if (Fn.hasFnAttribute(Attribute::Naked)) { 136 return false; 137 } 138 139 // Okay, we know we can transform this function if safe. Scan its body 140 // looking for calls marked musttail or calls to llvm.vastart. 141 for (BasicBlock &BB : Fn) { 142 for (Instruction &I : BB) { 143 CallInst *CI = dyn_cast<CallInst>(&I); 144 if (!CI) 145 continue; 146 if (CI->isMustTailCall()) 147 return false; 148 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 149 if (II->getIntrinsicID() == Intrinsic::vastart) 150 return false; 151 } 152 } 153 } 154 155 // If we get here, there are no calls to llvm.vastart in the function body, 156 // remove the "..." and adjust all the calls. 157 158 // Start by computing a new prototype for the function, which is the same as 159 // the old function, but doesn't have isVarArg set. 160 FunctionType *FTy = Fn.getFunctionType(); 161 162 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end()); 163 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), 164 Params, false); 165 unsigned NumArgs = Params.size(); 166 167 // Create the new function body and insert it into the module... 168 Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace()); 169 NF->copyAttributesFrom(&Fn); 170 NF->setComdat(Fn.getComdat()); 171 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF); 172 NF->takeName(&Fn); 173 174 // Loop over all of the callers of the function, transforming the call sites 175 // to pass in a smaller number of arguments into the new function. 176 // 177 std::vector<Value *> Args; 178 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) { 179 CallBase *CB = dyn_cast<CallBase>(*I++); 180 if (!CB) 181 continue; 182 183 // Pass all the same arguments. 184 Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs); 185 186 // Drop any attributes that were on the vararg arguments. 187 AttributeList PAL = CB->getAttributes(); 188 if (!PAL.isEmpty()) { 189 SmallVector<AttributeSet, 8> ArgAttrs; 190 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) 191 ArgAttrs.push_back(PAL.getParamAttributes(ArgNo)); 192 PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(), 193 PAL.getRetAttributes(), ArgAttrs); 194 } 195 196 SmallVector<OperandBundleDef, 1> OpBundles; 197 CB->getOperandBundlesAsDefs(OpBundles); 198 199 CallBase *NewCB = nullptr; 200 if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) { 201 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 202 Args, OpBundles, "", CB); 203 } else { 204 NewCB = CallInst::Create(NF, Args, OpBundles, "", CB); 205 cast<CallInst>(NewCB)->setTailCallKind( 206 cast<CallInst>(CB)->getTailCallKind()); 207 } 208 NewCB->setCallingConv(CB->getCallingConv()); 209 NewCB->setAttributes(PAL); 210 NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 211 212 Args.clear(); 213 214 if (!CB->use_empty()) 215 CB->replaceAllUsesWith(NewCB); 216 217 NewCB->takeName(CB); 218 219 // Finally, remove the old call from the program, reducing the use-count of 220 // F. 221 CB->eraseFromParent(); 222 } 223 224 // Since we have now created the new function, splice the body of the old 225 // function right into the new function, leaving the old rotting hulk of the 226 // function empty. 227 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); 228 229 // Loop over the argument list, transferring uses of the old arguments over to 230 // the new arguments, also transferring over the names as well. While we're at 231 // it, remove the dead arguments from the DeadArguments list. 232 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), 233 I2 = NF->arg_begin(); I != E; ++I, ++I2) { 234 // Move the name and users over to the new version. 235 I->replaceAllUsesWith(&*I2); 236 I2->takeName(&*I); 237 } 238 239 // Clone metadatas from the old function, including debug info descriptor. 240 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 241 Fn.getAllMetadata(MDs); 242 for (auto MD : MDs) 243 NF->addMetadata(MD.first, *MD.second); 244 245 // Fix up any BlockAddresses that refer to the function. 246 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType())); 247 // Delete the bitcast that we just created, so that NF does not 248 // appear to be address-taken. 249 NF->removeDeadConstantUsers(); 250 // Finally, nuke the old function. 251 Fn.eraseFromParent(); 252 return true; 253 } 254 255 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any 256 /// arguments that are unused, and changes the caller parameters to be undefined 257 /// instead. 258 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) { 259 // We cannot change the arguments if this TU does not define the function or 260 // if the linker may choose a function body from another TU, even if the 261 // nominal linkage indicates that other copies of the function have the same 262 // semantics. In the below example, the dead load from %p may not have been 263 // eliminated from the linker-chosen copy of f, so replacing %p with undef 264 // in callers may introduce undefined behavior. 265 // 266 // define linkonce_odr void @f(i32* %p) { 267 // %v = load i32 %p 268 // ret void 269 // } 270 if (!Fn.hasExactDefinition()) 271 return false; 272 273 // Functions with local linkage should already have been handled, except the 274 // fragile (variadic) ones which we can improve here. 275 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg()) 276 return false; 277 278 // Don't touch naked functions. The assembly might be using an argument, or 279 // otherwise rely on the frame layout in a way that this analysis will not 280 // see. 281 if (Fn.hasFnAttribute(Attribute::Naked)) 282 return false; 283 284 if (Fn.use_empty()) 285 return false; 286 287 SmallVector<unsigned, 8> UnusedArgs; 288 bool Changed = false; 289 290 for (Argument &Arg : Fn.args()) { 291 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && 292 !Arg.hasPassPointeeByValueAttr()) { 293 if (Arg.isUsedByMetadata()) { 294 Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); 295 Changed = true; 296 } 297 UnusedArgs.push_back(Arg.getArgNo()); 298 } 299 } 300 301 if (UnusedArgs.empty()) 302 return false; 303 304 for (Use &U : Fn.uses()) { 305 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 306 if (!CB || !CB->isCallee(&U)) 307 continue; 308 309 // Now go through all unused args and replace them with "undef". 310 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { 311 unsigned ArgNo = UnusedArgs[I]; 312 313 Value *Arg = CB->getArgOperand(ArgNo); 314 CB->setArgOperand(ArgNo, UndefValue::get(Arg->getType())); 315 ++NumArgumentsReplacedWithUndef; 316 Changed = true; 317 } 318 } 319 320 return Changed; 321 } 322 323 /// Convenience function that returns the number of return values. It returns 0 324 /// for void functions and 1 for functions not returning a struct. It returns 325 /// the number of struct elements for functions returning a struct. 326 static unsigned NumRetVals(const Function *F) { 327 Type *RetTy = F->getReturnType(); 328 if (RetTy->isVoidTy()) 329 return 0; 330 else if (StructType *STy = dyn_cast<StructType>(RetTy)) 331 return STy->getNumElements(); 332 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 333 return ATy->getNumElements(); 334 else 335 return 1; 336 } 337 338 /// Returns the sub-type a function will return at a given Idx. Should 339 /// correspond to the result type of an ExtractValue instruction executed with 340 /// just that one Idx (i.e. only top-level structure is considered). 341 static Type *getRetComponentType(const Function *F, unsigned Idx) { 342 Type *RetTy = F->getReturnType(); 343 assert(!RetTy->isVoidTy() && "void type has no subtype"); 344 345 if (StructType *STy = dyn_cast<StructType>(RetTy)) 346 return STy->getElementType(Idx); 347 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 348 return ATy->getElementType(); 349 else 350 return RetTy; 351 } 352 353 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not 354 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined 355 /// liveness of Use. 356 DeadArgumentEliminationPass::Liveness 357 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use, 358 UseVector &MaybeLiveUses) { 359 // We're live if our use or its Function is already marked as live. 360 if (IsLive(Use)) 361 return Live; 362 363 // We're maybe live otherwise, but remember that we must become live if 364 // Use becomes live. 365 MaybeLiveUses.push_back(Use); 366 return MaybeLive; 367 } 368 369 /// SurveyUse - This looks at a single use of an argument or return value 370 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses 371 /// if it causes the used value to become MaybeLive. 372 /// 373 /// RetValNum is the return value number to use when this use is used in a 374 /// return instruction. This is used in the recursion, you should always leave 375 /// it at 0. 376 DeadArgumentEliminationPass::Liveness 377 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses, 378 unsigned RetValNum) { 379 const User *V = U->getUser(); 380 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { 381 // The value is returned from a function. It's only live when the 382 // function's return value is live. We use RetValNum here, for the case 383 // that U is really a use of an insertvalue instruction that uses the 384 // original Use. 385 const Function *F = RI->getParent()->getParent(); 386 if (RetValNum != -1U) { 387 RetOrArg Use = CreateRet(F, RetValNum); 388 // We might be live, depending on the liveness of Use. 389 return MarkIfNotLive(Use, MaybeLiveUses); 390 } else { 391 DeadArgumentEliminationPass::Liveness Result = MaybeLive; 392 for (unsigned Ri = 0; Ri < NumRetVals(F); ++Ri) { 393 RetOrArg Use = CreateRet(F, Ri); 394 // We might be live, depending on the liveness of Use. If any 395 // sub-value is live, then the entire value is considered live. This 396 // is a conservative choice, and better tracking is possible. 397 DeadArgumentEliminationPass::Liveness SubResult = 398 MarkIfNotLive(Use, MaybeLiveUses); 399 if (Result != Live) 400 Result = SubResult; 401 } 402 return Result; 403 } 404 } 405 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { 406 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() 407 && IV->hasIndices()) 408 // The use we are examining is inserted into an aggregate. Our liveness 409 // depends on all uses of that aggregate, but if it is used as a return 410 // value, only index at which we were inserted counts. 411 RetValNum = *IV->idx_begin(); 412 413 // Note that if we are used as the aggregate operand to the insertvalue, 414 // we don't change RetValNum, but do survey all our uses. 415 416 Liveness Result = MaybeLive; 417 for (const Use &UU : IV->uses()) { 418 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum); 419 if (Result == Live) 420 break; 421 } 422 return Result; 423 } 424 425 if (const auto *CB = dyn_cast<CallBase>(V)) { 426 const Function *F = CB->getCalledFunction(); 427 if (F) { 428 // Used in a direct call. 429 430 // The function argument is live if it is used as a bundle operand. 431 if (CB->isBundleOperand(U)) 432 return Live; 433 434 // Find the argument number. We know for sure that this use is an 435 // argument, since if it was the function argument this would be an 436 // indirect call and the we know can't be looking at a value of the 437 // label type (for the invoke instruction). 438 unsigned ArgNo = CB->getArgOperandNo(U); 439 440 if (ArgNo >= F->getFunctionType()->getNumParams()) 441 // The value is passed in through a vararg! Must be live. 442 return Live; 443 444 assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) && 445 "Argument is not where we expected it"); 446 447 // Value passed to a normal call. It's only live when the corresponding 448 // argument to the called function turns out live. 449 RetOrArg Use = CreateArg(F, ArgNo); 450 return MarkIfNotLive(Use, MaybeLiveUses); 451 } 452 } 453 // Used in any other way? Value must be live. 454 return Live; 455 } 456 457 /// SurveyUses - This looks at all the uses of the given value 458 /// Returns the Liveness deduced from the uses of this value. 459 /// 460 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If 461 /// the result is Live, MaybeLiveUses might be modified but its content should 462 /// be ignored (since it might not be complete). 463 DeadArgumentEliminationPass::Liveness 464 DeadArgumentEliminationPass::SurveyUses(const Value *V, 465 UseVector &MaybeLiveUses) { 466 // Assume it's dead (which will only hold if there are no uses at all..). 467 Liveness Result = MaybeLive; 468 // Check each use. 469 for (const Use &U : V->uses()) { 470 Result = SurveyUse(&U, MaybeLiveUses); 471 if (Result == Live) 472 break; 473 } 474 return Result; 475 } 476 477 // SurveyFunction - This performs the initial survey of the specified function, 478 // checking out whether or not it uses any of its incoming arguments or whether 479 // any callers use the return value. This fills in the LiveValues set and Uses 480 // map. 481 // 482 // We consider arguments of non-internal functions to be intrinsically alive as 483 // well as arguments to functions which have their "address taken". 484 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) { 485 // Functions with inalloca/preallocated parameters are expecting args in a 486 // particular register and memory layout. 487 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 488 F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 489 MarkLive(F); 490 return; 491 } 492 493 // Don't touch naked functions. The assembly might be using an argument, or 494 // otherwise rely on the frame layout in a way that this analysis will not 495 // see. 496 if (F.hasFnAttribute(Attribute::Naked)) { 497 MarkLive(F); 498 return; 499 } 500 501 unsigned RetCount = NumRetVals(&F); 502 503 // Assume all return values are dead 504 using RetVals = SmallVector<Liveness, 5>; 505 506 RetVals RetValLiveness(RetCount, MaybeLive); 507 508 using RetUses = SmallVector<UseVector, 5>; 509 510 // These vectors map each return value to the uses that make it MaybeLive, so 511 // we can add those to the Uses map if the return value really turns out to be 512 // MaybeLive. Initialized to a list of RetCount empty lists. 513 RetUses MaybeLiveRetUses(RetCount); 514 515 bool HasMustTailCalls = false; 516 517 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 518 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 519 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() 520 != F.getFunctionType()->getReturnType()) { 521 // We don't support old style multiple return values. 522 MarkLive(F); 523 return; 524 } 525 } 526 527 // If we have any returns of `musttail` results - the signature can't 528 // change 529 if (BB->getTerminatingMustTailCall() != nullptr) 530 HasMustTailCalls = true; 531 } 532 533 if (HasMustTailCalls) { 534 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 535 << " has musttail calls\n"); 536 } 537 538 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { 539 MarkLive(F); 540 return; 541 } 542 543 LLVM_DEBUG( 544 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " 545 << F.getName() << "\n"); 546 // Keep track of the number of live retvals, so we can skip checks once all 547 // of them turn out to be live. 548 unsigned NumLiveRetVals = 0; 549 550 bool HasMustTailCallers = false; 551 552 // Loop all uses of the function. 553 for (const Use &U : F.uses()) { 554 // If the function is PASSED IN as an argument, its address has been 555 // taken. 556 const auto *CB = dyn_cast<CallBase>(U.getUser()); 557 if (!CB || !CB->isCallee(&U)) { 558 MarkLive(F); 559 return; 560 } 561 562 // The number of arguments for `musttail` call must match the number of 563 // arguments of the caller 564 if (CB->isMustTailCall()) 565 HasMustTailCallers = true; 566 567 // If we end up here, we are looking at a direct call to our function. 568 569 // Now, check how our return value(s) is/are used in this caller. Don't 570 // bother checking return values if all of them are live already. 571 if (NumLiveRetVals == RetCount) 572 continue; 573 574 // Check all uses of the return value. 575 for (const Use &U : CB->uses()) { 576 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) { 577 // This use uses a part of our return value, survey the uses of 578 // that part and store the results for this index only. 579 unsigned Idx = *Ext->idx_begin(); 580 if (RetValLiveness[Idx] != Live) { 581 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); 582 if (RetValLiveness[Idx] == Live) 583 NumLiveRetVals++; 584 } 585 } else { 586 // Used by something else than extractvalue. Survey, but assume that the 587 // result applies to all sub-values. 588 UseVector MaybeLiveAggregateUses; 589 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) { 590 NumLiveRetVals = RetCount; 591 RetValLiveness.assign(RetCount, Live); 592 break; 593 } else { 594 for (unsigned Ri = 0; Ri != RetCount; ++Ri) { 595 if (RetValLiveness[Ri] != Live) 596 MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(), 597 MaybeLiveAggregateUses.end()); 598 } 599 } 600 } 601 } 602 } 603 604 if (HasMustTailCallers) { 605 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 606 << " has musttail callers\n"); 607 } 608 609 // Now we've inspected all callers, record the liveness of our return values. 610 for (unsigned Ri = 0; Ri != RetCount; ++Ri) 611 MarkValue(CreateRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]); 612 613 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " 614 << F.getName() << "\n"); 615 616 // Now, check all of our arguments. 617 unsigned ArgI = 0; 618 UseVector MaybeLiveArgUses; 619 for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end(); 620 AI != E; ++AI, ++ArgI) { 621 Liveness Result; 622 if (F.getFunctionType()->isVarArg() || HasMustTailCallers || 623 HasMustTailCalls) { 624 // Variadic functions will already have a va_arg function expanded inside 625 // them, making them potentially very sensitive to ABI changes resulting 626 // from removing arguments entirely, so don't. For example AArch64 handles 627 // register and stack HFAs very differently, and this is reflected in the 628 // IR which has already been generated. 629 // 630 // `musttail` calls to this function restrict argument removal attempts. 631 // The signature of the caller must match the signature of the function. 632 // 633 // `musttail` calls in this function prevents us from changing its 634 // signature 635 Result = Live; 636 } else { 637 // See what the effect of this use is (recording any uses that cause 638 // MaybeLive in MaybeLiveArgUses). 639 Result = SurveyUses(&*AI, MaybeLiveArgUses); 640 } 641 642 // Mark the result. 643 MarkValue(CreateArg(&F, ArgI), Result, MaybeLiveArgUses); 644 // Clear the vector again for the next iteration. 645 MaybeLiveArgUses.clear(); 646 } 647 } 648 649 /// MarkValue - This function marks the liveness of RA depending on L. If L is 650 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, 651 /// such that RA will be marked live if any use in MaybeLiveUses gets marked 652 /// live later on. 653 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L, 654 const UseVector &MaybeLiveUses) { 655 switch (L) { 656 case Live: 657 MarkLive(RA); 658 break; 659 case MaybeLive: 660 assert(!IsLive(RA) && "Use is already live!"); 661 for (const auto &MaybeLiveUse : MaybeLiveUses) { 662 if (IsLive(MaybeLiveUse)) { 663 // A use is live, so this value is live. 664 MarkLive(RA); 665 break; 666 } else { 667 // Note any uses of this value, so this value can be 668 // marked live whenever one of the uses becomes live. 669 Uses.insert(std::make_pair(MaybeLiveUse, RA)); 670 } 671 } 672 break; 673 } 674 } 675 676 /// MarkLive - Mark the given Function as alive, meaning that it cannot be 677 /// changed in any way. Additionally, 678 /// mark any values that are used as this function's parameters or by its return 679 /// values (according to Uses) live as well. 680 void DeadArgumentEliminationPass::MarkLive(const Function &F) { 681 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: " 682 << F.getName() << "\n"); 683 // Mark the function as live. 684 LiveFunctions.insert(&F); 685 // Mark all arguments as live. 686 for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI) 687 PropagateLiveness(CreateArg(&F, ArgI)); 688 // Mark all return values as live. 689 for (unsigned Ri = 0, E = NumRetVals(&F); Ri != E; ++Ri) 690 PropagateLiveness(CreateRet(&F, Ri)); 691 } 692 693 /// MarkLive - Mark the given return value or argument as live. Additionally, 694 /// mark any values that are used by this value (according to Uses) live as 695 /// well. 696 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) { 697 if (IsLive(RA)) 698 return; // Already marked Live. 699 700 LiveValues.insert(RA); 701 702 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " 703 << RA.getDescription() << " live\n"); 704 PropagateLiveness(RA); 705 } 706 707 bool DeadArgumentEliminationPass::IsLive(const RetOrArg &RA) { 708 return LiveFunctions.count(RA.F) || LiveValues.count(RA); 709 } 710 711 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness 712 /// to any other values it uses (according to Uses). 713 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) { 714 // We don't use upper_bound (or equal_range) here, because our recursive call 715 // to ourselves is likely to cause the upper_bound (which is the first value 716 // not belonging to RA) to become erased and the iterator invalidated. 717 UseMap::iterator Begin = Uses.lower_bound(RA); 718 UseMap::iterator E = Uses.end(); 719 UseMap::iterator I; 720 for (I = Begin; I != E && I->first == RA; ++I) 721 MarkLive(I->second); 722 723 // Erase RA from the Uses map (from the lower bound to wherever we ended up 724 // after the loop). 725 Uses.erase(Begin, I); 726 } 727 728 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F 729 // that are not in LiveValues. Transform the function and all of the callees of 730 // the function to not have these arguments and return values. 731 // 732 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) { 733 // Don't modify fully live functions 734 if (LiveFunctions.count(F)) 735 return false; 736 737 // Start by computing a new prototype for the function, which is the same as 738 // the old function, but has fewer arguments and a different return type. 739 FunctionType *FTy = F->getFunctionType(); 740 std::vector<Type*> Params; 741 742 // Keep track of if we have a live 'returned' argument 743 bool HasLiveReturnedArg = false; 744 745 // Set up to build a new list of parameter attributes. 746 SmallVector<AttributeSet, 8> ArgAttrVec; 747 const AttributeList &PAL = F->getAttributes(); 748 749 // Remember which arguments are still alive. 750 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); 751 // Construct the new parameter list from non-dead arguments. Also construct 752 // a new set of parameter attributes to correspond. Skip the first parameter 753 // attribute, since that belongs to the return value. 754 unsigned ArgI = 0; 755 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 756 ++I, ++ArgI) { 757 RetOrArg Arg = CreateArg(F, ArgI); 758 if (LiveValues.erase(Arg)) { 759 Params.push_back(I->getType()); 760 ArgAlive[ArgI] = true; 761 ArgAttrVec.push_back(PAL.getParamAttributes(ArgI)); 762 HasLiveReturnedArg |= PAL.hasParamAttribute(ArgI, Attribute::Returned); 763 } else { 764 ++NumArgumentsEliminated; 765 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " 766 << ArgI << " (" << I->getName() << ") from " 767 << F->getName() << "\n"); 768 } 769 } 770 771 // Find out the new return value. 772 Type *RetTy = FTy->getReturnType(); 773 Type *NRetTy = nullptr; 774 unsigned RetCount = NumRetVals(F); 775 776 // -1 means unused, other numbers are the new index 777 SmallVector<int, 5> NewRetIdxs(RetCount, -1); 778 std::vector<Type*> RetTypes; 779 780 // If there is a function with a live 'returned' argument but a dead return 781 // value, then there are two possible actions: 782 // 1) Eliminate the return value and take off the 'returned' attribute on the 783 // argument. 784 // 2) Retain the 'returned' attribute and treat the return value (but not the 785 // entire function) as live so that it is not eliminated. 786 // 787 // It's not clear in the general case which option is more profitable because, 788 // even in the absence of explicit uses of the return value, code generation 789 // is free to use the 'returned' attribute to do things like eliding 790 // save/restores of registers across calls. Whether or not this happens is 791 // target and ABI-specific as well as depending on the amount of register 792 // pressure, so there's no good way for an IR-level pass to figure this out. 793 // 794 // Fortunately, the only places where 'returned' is currently generated by 795 // the FE are places where 'returned' is basically free and almost always a 796 // performance win, so the second option can just be used always for now. 797 // 798 // This should be revisited if 'returned' is ever applied more liberally. 799 if (RetTy->isVoidTy() || HasLiveReturnedArg) { 800 NRetTy = RetTy; 801 } else { 802 // Look at each of the original return values individually. 803 for (unsigned Ri = 0; Ri != RetCount; ++Ri) { 804 RetOrArg Ret = CreateRet(F, Ri); 805 if (LiveValues.erase(Ret)) { 806 RetTypes.push_back(getRetComponentType(F, Ri)); 807 NewRetIdxs[Ri] = RetTypes.size() - 1; 808 } else { 809 ++NumRetValsEliminated; 810 LLVM_DEBUG( 811 dbgs() << "DeadArgumentEliminationPass - Removing return value " 812 << Ri << " from " << F->getName() << "\n"); 813 } 814 } 815 if (RetTypes.size() > 1) { 816 // More than one return type? Reduce it down to size. 817 if (StructType *STy = dyn_cast<StructType>(RetTy)) { 818 // Make the new struct packed if we used to return a packed struct 819 // already. 820 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); 821 } else { 822 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return"); 823 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); 824 } 825 } else if (RetTypes.size() == 1) 826 // One return type? Just a simple value then, but only if we didn't use to 827 // return a struct with that simple value before. 828 NRetTy = RetTypes.front(); 829 else if (RetTypes.empty()) 830 // No return types? Make it void, but only if we didn't use to return {}. 831 NRetTy = Type::getVoidTy(F->getContext()); 832 } 833 834 assert(NRetTy && "No new return type found?"); 835 836 // The existing function return attributes. 837 AttrBuilder RAttrs(PAL.getRetAttributes()); 838 839 // Remove any incompatible attributes, but only if we removed all return 840 // values. Otherwise, ensure that we don't have any conflicting attributes 841 // here. Currently, this should not be possible, but special handling might be 842 // required when new return value attributes are added. 843 if (NRetTy->isVoidTy()) 844 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 845 else 846 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) && 847 "Return attributes no longer compatible?"); 848 849 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 850 851 // Strip allocsize attributes. They might refer to the deleted arguments. 852 AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute( 853 F->getContext(), Attribute::AllocSize); 854 855 // Reconstruct the AttributesList based on the vector we constructed. 856 assert(ArgAttrVec.size() == Params.size()); 857 AttributeList NewPAL = 858 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 859 860 // Create the new function type based on the recomputed parameters. 861 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); 862 863 // No change? 864 if (NFTy == FTy) 865 return false; 866 867 // Create the new function body and insert it into the module... 868 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace()); 869 NF->copyAttributesFrom(F); 870 NF->setComdat(F->getComdat()); 871 NF->setAttributes(NewPAL); 872 // Insert the new function before the old function, so we won't be processing 873 // it again. 874 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 875 NF->takeName(F); 876 877 // Loop over all of the callers of the function, transforming the call sites 878 // to pass in a smaller number of arguments into the new function. 879 std::vector<Value*> Args; 880 while (!F->use_empty()) { 881 CallBase &CB = cast<CallBase>(*F->user_back()); 882 883 ArgAttrVec.clear(); 884 const AttributeList &CallPAL = CB.getAttributes(); 885 886 // Adjust the call return attributes in case the function was changed to 887 // return void. 888 AttrBuilder RAttrs(CallPAL.getRetAttributes()); 889 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 890 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 891 892 // Declare these outside of the loops, so we can reuse them for the second 893 // loop, which loops the varargs. 894 auto I = CB.arg_begin(); 895 unsigned Pi = 0; 896 // Loop over those operands, corresponding to the normal arguments to the 897 // original function, and add those that are still alive. 898 for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi) 899 if (ArgAlive[Pi]) { 900 Args.push_back(*I); 901 // Get original parameter attributes, but skip return attributes. 902 AttributeSet Attrs = CallPAL.getParamAttributes(Pi); 903 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) { 904 // If the return type has changed, then get rid of 'returned' on the 905 // call site. The alternative is to make all 'returned' attributes on 906 // call sites keep the return value alive just like 'returned' 907 // attributes on function declaration but it's less clearly a win and 908 // this is not an expected case anyway 909 ArgAttrVec.push_back(AttributeSet::get( 910 F->getContext(), 911 AttrBuilder(Attrs).removeAttribute(Attribute::Returned))); 912 } else { 913 // Otherwise, use the original attributes. 914 ArgAttrVec.push_back(Attrs); 915 } 916 } 917 918 // Push any varargs arguments on the list. Don't forget their attributes. 919 for (auto E = CB.arg_end(); I != E; ++I, ++Pi) { 920 Args.push_back(*I); 921 ArgAttrVec.push_back(CallPAL.getParamAttributes(Pi)); 922 } 923 924 // Reconstruct the AttributesList based on the vector we constructed. 925 assert(ArgAttrVec.size() == Args.size()); 926 927 // Again, be sure to remove any allocsize attributes, since their indices 928 // may now be incorrect. 929 AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute( 930 F->getContext(), Attribute::AllocSize); 931 932 AttributeList NewCallPAL = AttributeList::get( 933 F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 934 935 SmallVector<OperandBundleDef, 1> OpBundles; 936 CB.getOperandBundlesAsDefs(OpBundles); 937 938 CallBase *NewCB = nullptr; 939 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 940 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 941 Args, OpBundles, "", CB.getParent()); 942 } else { 943 NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB); 944 cast<CallInst>(NewCB)->setTailCallKind( 945 cast<CallInst>(&CB)->getTailCallKind()); 946 } 947 NewCB->setCallingConv(CB.getCallingConv()); 948 NewCB->setAttributes(NewCallPAL); 949 NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 950 Args.clear(); 951 ArgAttrVec.clear(); 952 953 if (!CB.use_empty() || CB.isUsedByMetadata()) { 954 if (NewCB->getType() == CB.getType()) { 955 // Return type not changed? Just replace users then. 956 CB.replaceAllUsesWith(NewCB); 957 NewCB->takeName(&CB); 958 } else if (NewCB->getType()->isVoidTy()) { 959 // If the return value is dead, replace any uses of it with undef 960 // (any non-debug value uses will get removed later on). 961 if (!CB.getType()->isX86_MMXTy()) 962 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 963 } else { 964 assert((RetTy->isStructTy() || RetTy->isArrayTy()) && 965 "Return type changed, but not into a void. The old return type" 966 " must have been a struct or an array!"); 967 Instruction *InsertPt = &CB; 968 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 969 BasicBlock *NewEdge = 970 SplitEdge(NewCB->getParent(), II->getNormalDest()); 971 InsertPt = &*NewEdge->getFirstInsertionPt(); 972 } 973 974 // We used to return a struct or array. Instead of doing smart stuff 975 // with all the uses, we will just rebuild it using extract/insertvalue 976 // chaining and let instcombine clean that up. 977 // 978 // Start out building up our return value from undef 979 Value *RetVal = UndefValue::get(RetTy); 980 for (unsigned Ri = 0; Ri != RetCount; ++Ri) 981 if (NewRetIdxs[Ri] != -1) { 982 Value *V; 983 IRBuilder<NoFolder> IRB(InsertPt); 984 if (RetTypes.size() > 1) 985 // We are still returning a struct, so extract the value from our 986 // return value 987 V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret"); 988 else 989 // We are now returning a single element, so just insert that 990 V = NewCB; 991 // Insert the value at the old position 992 RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret"); 993 } 994 // Now, replace all uses of the old call instruction with the return 995 // struct we built 996 CB.replaceAllUsesWith(RetVal); 997 NewCB->takeName(&CB); 998 } 999 } 1000 1001 // Finally, remove the old call from the program, reducing the use-count of 1002 // F. 1003 CB.eraseFromParent(); 1004 } 1005 1006 // Since we have now created the new function, splice the body of the old 1007 // function right into the new function, leaving the old rotting hulk of the 1008 // function empty. 1009 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 1010 1011 // Loop over the argument list, transferring uses of the old arguments over to 1012 // the new arguments, also transferring over the names as well. 1013 ArgI = 0; 1014 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 1015 I2 = NF->arg_begin(); 1016 I != E; ++I, ++ArgI) 1017 if (ArgAlive[ArgI]) { 1018 // If this is a live argument, move the name and users over to the new 1019 // version. 1020 I->replaceAllUsesWith(&*I2); 1021 I2->takeName(&*I); 1022 ++I2; 1023 } else { 1024 // If this argument is dead, replace any uses of it with undef 1025 // (any non-debug value uses will get removed later on). 1026 if (!I->getType()->isX86_MMXTy()) 1027 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1028 } 1029 1030 // If we change the return value of the function we must rewrite any return 1031 // instructions. Check this now. 1032 if (F->getReturnType() != NF->getReturnType()) 1033 for (BasicBlock &BB : *NF) 1034 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 1035 IRBuilder<NoFolder> IRB(RI); 1036 Value *RetVal = nullptr; 1037 1038 if (!NFTy->getReturnType()->isVoidTy()) { 1039 assert(RetTy->isStructTy() || RetTy->isArrayTy()); 1040 // The original return value was a struct or array, insert 1041 // extractvalue/insertvalue chains to extract only the values we need 1042 // to return and insert them into our new result. 1043 // This does generate messy code, but we'll let it to instcombine to 1044 // clean that up. 1045 Value *OldRet = RI->getOperand(0); 1046 // Start out building up our return value from undef 1047 RetVal = UndefValue::get(NRetTy); 1048 for (unsigned RetI = 0; RetI != RetCount; ++RetI) 1049 if (NewRetIdxs[RetI] != -1) { 1050 Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret"); 1051 1052 if (RetTypes.size() > 1) { 1053 // We're still returning a struct, so reinsert the value into 1054 // our new return value at the new index 1055 1056 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI], 1057 "newret"); 1058 } else { 1059 // We are now only returning a simple value, so just return the 1060 // extracted value. 1061 RetVal = EV; 1062 } 1063 } 1064 } 1065 // Replace the return instruction with one returning the new return 1066 // value (possibly 0 if we became void). 1067 auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI); 1068 NewRet->setDebugLoc(RI->getDebugLoc()); 1069 BB.getInstList().erase(RI); 1070 } 1071 1072 // Clone metadatas from the old function, including debug info descriptor. 1073 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 1074 F->getAllMetadata(MDs); 1075 for (auto MD : MDs) 1076 NF->addMetadata(MD.first, *MD.second); 1077 1078 // Now that the old function is dead, delete it. 1079 F->eraseFromParent(); 1080 1081 return true; 1082 } 1083 1084 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, 1085 ModuleAnalysisManager &) { 1086 bool Changed = false; 1087 1088 // First pass: Do a simple check to see if any functions can have their "..." 1089 // removed. We can do this if they never call va_start. This loop cannot be 1090 // fused with the next loop, because deleting a function invalidates 1091 // information computed while surveying other functions. 1092 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n"); 1093 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1094 Function &F = *I++; 1095 if (F.getFunctionType()->isVarArg()) 1096 Changed |= DeleteDeadVarargs(F); 1097 } 1098 1099 // Second phase:loop through the module, determining which arguments are live. 1100 // We assume all arguments are dead unless proven otherwise (allowing us to 1101 // determine that dead arguments passed into recursive functions are dead). 1102 // 1103 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n"); 1104 for (auto &F : M) 1105 SurveyFunction(F); 1106 1107 // Now, remove all dead arguments and return values from each function in 1108 // turn. 1109 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1110 // Increment now, because the function will probably get removed (ie. 1111 // replaced by a new one). 1112 Function *F = &*I++; 1113 Changed |= RemoveDeadStuffFromFunction(F); 1114 } 1115 1116 // Finally, look for any unused parameters in functions with non-local 1117 // linkage and replace the passed in parameters with undef. 1118 for (auto &F : M) 1119 Changed |= RemoveDeadArgumentsFromCallers(F); 1120 1121 if (!Changed) 1122 return PreservedAnalyses::all(); 1123 return PreservedAnalyses::none(); 1124 } 1125