xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp (revision 56b17de1e8360fe131d425de20b5e75ff3ea897c)
1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions.  Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions.  This
12 // pass also deletes dead return values in a similar way.
13 //
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DIBuilder.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/NoFolder.h"
37 #include "llvm/IR/PassManager.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include <cassert>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "deadargelim"
56 
57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
58 STATISTIC(NumRetValsEliminated, "Number of unused return values removed");
59 STATISTIC(NumArgumentsReplacedWithPoison,
60           "Number of unread args replaced with poison");
61 
62 namespace {
63 
64 /// The dead argument elimination pass.
65 class DAE : public ModulePass {
66 protected:
67   // DAH uses this to specify a different ID.
68   explicit DAE(char &ID) : ModulePass(ID) {}
69 
70 public:
71   static char ID; // Pass identification, replacement for typeid
72 
73   DAE() : ModulePass(ID) {
74     initializeDAEPass(*PassRegistry::getPassRegistry());
75   }
76 
77   bool runOnModule(Module &M) override {
78     if (skipModule(M))
79       return false;
80     DeadArgumentEliminationPass DAEP(shouldHackArguments());
81     ModuleAnalysisManager DummyMAM;
82     PreservedAnalyses PA = DAEP.run(M, DummyMAM);
83     return !PA.areAllPreserved();
84   }
85 
86   virtual bool shouldHackArguments() const { return false; }
87 };
88 
89 bool isMustTailCalleeAnalyzable(const CallBase &CB) {
90   assert(CB.isMustTailCall());
91   return CB.getCalledFunction() && !CB.getCalledFunction()->isDeclaration();
92 }
93 
94 } // end anonymous namespace
95 
96 char DAE::ID = 0;
97 
98 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
99 
100 namespace {
101 
102 /// The DeadArgumentHacking pass, same as dead argument elimination, but deletes
103 /// arguments to functions which are external. This is only for use by bugpoint.
104 struct DAH : public DAE {
105   static char ID;
106 
107   DAH() : DAE(ID) {}
108 
109   bool shouldHackArguments() const override { return true; }
110 };
111 
112 } // end anonymous namespace
113 
114 char DAH::ID = 0;
115 
116 INITIALIZE_PASS(DAH, "deadarghaX0r",
117                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false,
118                 false)
119 
120 /// This pass removes arguments from functions which are not used by the body of
121 /// the function.
122 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
123 
124 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
125 
126 /// If this is an function that takes a ... list, and if llvm.vastart is never
127 /// called, the varargs list is dead for the function.
128 bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) {
129   assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!");
130   if (F.isDeclaration() || !F.hasLocalLinkage())
131     return false;
132 
133   // Ensure that the function is only directly called.
134   if (F.hasAddressTaken())
135     return false;
136 
137   // Don't touch naked functions. The assembly might be using an argument, or
138   // otherwise rely on the frame layout in a way that this analysis will not
139   // see.
140   if (F.hasFnAttribute(Attribute::Naked)) {
141     return false;
142   }
143 
144   // Okay, we know we can transform this function if safe.  Scan its body
145   // looking for calls marked musttail or calls to llvm.vastart.
146   for (BasicBlock &BB : F) {
147     for (Instruction &I : BB) {
148       CallInst *CI = dyn_cast<CallInst>(&I);
149       if (!CI)
150         continue;
151       if (CI->isMustTailCall())
152         return false;
153       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
154         if (II->getIntrinsicID() == Intrinsic::vastart)
155           return false;
156       }
157     }
158   }
159 
160   // If we get here, there are no calls to llvm.vastart in the function body,
161   // remove the "..." and adjust all the calls.
162 
163   // Start by computing a new prototype for the function, which is the same as
164   // the old function, but doesn't have isVarArg set.
165   FunctionType *FTy = F.getFunctionType();
166 
167   std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
168   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
169   unsigned NumArgs = Params.size();
170 
171   // Create the new function body and insert it into the module...
172   Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
173   NF->copyAttributesFrom(&F);
174   NF->setComdat(F.getComdat());
175   F.getParent()->getFunctionList().insert(F.getIterator(), NF);
176   NF->takeName(&F);
177   NF->IsNewDbgInfoFormat = F.IsNewDbgInfoFormat;
178 
179   // Loop over all the callers of the function, transforming the call sites
180   // to pass in a smaller number of arguments into the new function.
181   //
182   std::vector<Value *> Args;
183   for (User *U : llvm::make_early_inc_range(F.users())) {
184     CallBase *CB = dyn_cast<CallBase>(U);
185     if (!CB)
186       continue;
187 
188     // Pass all the same arguments.
189     Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
190 
191     // Drop any attributes that were on the vararg arguments.
192     AttributeList PAL = CB->getAttributes();
193     if (!PAL.isEmpty()) {
194       SmallVector<AttributeSet, 8> ArgAttrs;
195       for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
196         ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
197       PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(),
198                                PAL.getRetAttrs(), ArgAttrs);
199     }
200 
201     SmallVector<OperandBundleDef, 1> OpBundles;
202     CB->getOperandBundlesAsDefs(OpBundles);
203 
204     CallBase *NewCB = nullptr;
205     if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
206       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
207                                  Args, OpBundles, "", CB->getIterator());
208     } else {
209       NewCB = CallInst::Create(NF, Args, OpBundles, "", CB->getIterator());
210       cast<CallInst>(NewCB)->setTailCallKind(
211           cast<CallInst>(CB)->getTailCallKind());
212     }
213     NewCB->setCallingConv(CB->getCallingConv());
214     NewCB->setAttributes(PAL);
215     NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
216 
217     Args.clear();
218 
219     if (!CB->use_empty())
220       CB->replaceAllUsesWith(NewCB);
221 
222     NewCB->takeName(CB);
223 
224     // Finally, remove the old call from the program, reducing the use-count of
225     // F.
226     CB->eraseFromParent();
227   }
228 
229   // Since we have now created the new function, splice the body of the old
230   // function right into the new function, leaving the old rotting hulk of the
231   // function empty.
232   NF->splice(NF->begin(), &F);
233 
234   // Loop over the argument list, transferring uses of the old arguments over to
235   // the new arguments, also transferring over the names as well.  While we're
236   // at it, remove the dead arguments from the DeadArguments list.
237   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(),
238                               I2 = NF->arg_begin();
239        I != E; ++I, ++I2) {
240     // Move the name and users over to the new version.
241     I->replaceAllUsesWith(&*I2);
242     I2->takeName(&*I);
243   }
244 
245   // Clone metadata from the old function, including debug info descriptor.
246   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
247   F.getAllMetadata(MDs);
248   for (auto [KindID, Node] : MDs)
249     NF->addMetadata(KindID, *Node);
250 
251   // Fix up any BlockAddresses that refer to the function.
252   F.replaceAllUsesWith(NF);
253   // Delete the bitcast that we just created, so that NF does not
254   // appear to be address-taken.
255   NF->removeDeadConstantUsers();
256   // Finally, nuke the old function.
257   F.eraseFromParent();
258   return true;
259 }
260 
261 /// Checks if the given function has any arguments that are unused, and changes
262 /// the caller parameters to be poison instead.
263 bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) {
264   // We cannot change the arguments if this TU does not define the function or
265   // if the linker may choose a function body from another TU, even if the
266   // nominal linkage indicates that other copies of the function have the same
267   // semantics. In the below example, the dead load from %p may not have been
268   // eliminated from the linker-chosen copy of f, so replacing %p with poison
269   // in callers may introduce undefined behavior.
270   //
271   // define linkonce_odr void @f(i32* %p) {
272   //   %v = load i32 %p
273   //   ret void
274   // }
275   if (!F.hasExactDefinition())
276     return false;
277 
278   // Functions with local linkage should already have been handled, except if
279   // they are fully alive (e.g., called indirectly) and except for the fragile
280   // (variadic) ones. In these cases, we may still be able to improve their
281   // statically known call sites.
282   if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) &&
283       !F.getFunctionType()->isVarArg())
284     return false;
285 
286   // Don't touch naked functions. The assembly might be using an argument, or
287   // otherwise rely on the frame layout in a way that this analysis will not
288   // see.
289   if (F.hasFnAttribute(Attribute::Naked))
290     return false;
291 
292   if (F.use_empty())
293     return false;
294 
295   SmallVector<unsigned, 8> UnusedArgs;
296   bool Changed = false;
297 
298   AttributeMask UBImplyingAttributes =
299       AttributeFuncs::getUBImplyingAttributes();
300   for (Argument &Arg : F.args()) {
301     if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
302         !Arg.hasPassPointeeByValueCopyAttr()) {
303       if (Arg.isUsedByMetadata()) {
304         Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType()));
305         Changed = true;
306       }
307       UnusedArgs.push_back(Arg.getArgNo());
308       F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
309     }
310   }
311 
312   if (UnusedArgs.empty())
313     return false;
314 
315   for (Use &U : F.uses()) {
316     CallBase *CB = dyn_cast<CallBase>(U.getUser());
317     if (!CB || !CB->isCallee(&U) ||
318         CB->getFunctionType() != F.getFunctionType())
319       continue;
320 
321     // Now go through all unused args and replace them with poison.
322     for (unsigned ArgNo : UnusedArgs) {
323       Value *Arg = CB->getArgOperand(ArgNo);
324       CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType()));
325       CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
326 
327       ++NumArgumentsReplacedWithPoison;
328       Changed = true;
329     }
330   }
331 
332   return Changed;
333 }
334 
335 /// Convenience function that returns the number of return values. It returns 0
336 /// for void functions and 1 for functions not returning a struct. It returns
337 /// the number of struct elements for functions returning a struct.
338 static unsigned numRetVals(const Function *F) {
339   Type *RetTy = F->getReturnType();
340   if (RetTy->isVoidTy())
341     return 0;
342   if (StructType *STy = dyn_cast<StructType>(RetTy))
343     return STy->getNumElements();
344   if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
345     return ATy->getNumElements();
346   return 1;
347 }
348 
349 /// Returns the sub-type a function will return at a given Idx. Should
350 /// correspond to the result type of an ExtractValue instruction executed with
351 /// just that one Idx (i.e. only top-level structure is considered).
352 static Type *getRetComponentType(const Function *F, unsigned Idx) {
353   Type *RetTy = F->getReturnType();
354   assert(!RetTy->isVoidTy() && "void type has no subtype");
355 
356   if (StructType *STy = dyn_cast<StructType>(RetTy))
357     return STy->getElementType(Idx);
358   if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
359     return ATy->getElementType();
360   return RetTy;
361 }
362 
363 /// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to
364 /// the MaybeLiveUses argument. Returns the determined liveness of Use.
365 DeadArgumentEliminationPass::Liveness
366 DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use,
367                                            UseVector &MaybeLiveUses) {
368   // We're live if our use or its Function is already marked as live.
369   if (isLive(Use))
370     return Live;
371 
372   // We're maybe live otherwise, but remember that we must become live if
373   // Use becomes live.
374   MaybeLiveUses.push_back(Use);
375   return MaybeLive;
376 }
377 
378 /// Looks at a single use of an argument or return value and determines if it
379 /// should be alive or not. Adds this use to MaybeLiveUses if it causes the
380 /// used value to become MaybeLive.
381 ///
382 /// RetValNum is the return value number to use when this use is used in a
383 /// return instruction. This is used in the recursion, you should always leave
384 /// it at 0.
385 DeadArgumentEliminationPass::Liveness
386 DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses,
387                                        unsigned RetValNum) {
388   const User *V = U->getUser();
389   if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
390     // The value is returned from a function. It's only live when the
391     // function's return value is live. We use RetValNum here, for the case
392     // that U is really a use of an insertvalue instruction that uses the
393     // original Use.
394     const Function *F = RI->getParent()->getParent();
395     if (RetValNum != -1U) {
396       RetOrArg Use = createRet(F, RetValNum);
397       // We might be live, depending on the liveness of Use.
398       return markIfNotLive(Use, MaybeLiveUses);
399     }
400 
401     DeadArgumentEliminationPass::Liveness Result = MaybeLive;
402     for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) {
403       RetOrArg Use = createRet(F, Ri);
404       // We might be live, depending on the liveness of Use. If any
405       // sub-value is live, then the entire value is considered live. This
406       // is a conservative choice, and better tracking is possible.
407       DeadArgumentEliminationPass::Liveness SubResult =
408           markIfNotLive(Use, MaybeLiveUses);
409       if (Result != Live)
410         Result = SubResult;
411     }
412     return Result;
413   }
414 
415   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
416     if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() &&
417         IV->hasIndices())
418       // The use we are examining is inserted into an aggregate. Our liveness
419       // depends on all uses of that aggregate, but if it is used as a return
420       // value, only index at which we were inserted counts.
421       RetValNum = *IV->idx_begin();
422 
423     // Note that if we are used as the aggregate operand to the insertvalue,
424     // we don't change RetValNum, but do survey all our uses.
425 
426     Liveness Result = MaybeLive;
427     for (const Use &UU : IV->uses()) {
428       Result = surveyUse(&UU, MaybeLiveUses, RetValNum);
429       if (Result == Live)
430         break;
431     }
432     return Result;
433   }
434 
435   if (const auto *CB = dyn_cast<CallBase>(V)) {
436     const Function *F = CB->getCalledFunction();
437     if (F) {
438       // Used in a direct call.
439 
440       // The function argument is live if it is used as a bundle operand.
441       if (CB->isBundleOperand(U))
442         return Live;
443 
444       // Find the argument number. We know for sure that this use is an
445       // argument, since if it was the function argument this would be an
446       // indirect call and that we know can't be looking at a value of the
447       // label type (for the invoke instruction).
448       unsigned ArgNo = CB->getArgOperandNo(U);
449 
450       if (ArgNo >= F->getFunctionType()->getNumParams())
451         // The value is passed in through a vararg! Must be live.
452         return Live;
453 
454       assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
455              "Argument is not where we expected it");
456 
457       // Value passed to a normal call. It's only live when the corresponding
458       // argument to the called function turns out live.
459       RetOrArg Use = createArg(F, ArgNo);
460       return markIfNotLive(Use, MaybeLiveUses);
461     }
462   }
463   // Used in any other way? Value must be live.
464   return Live;
465 }
466 
467 /// Looks at all the uses of the given value
468 /// Returns the Liveness deduced from the uses of this value.
469 ///
470 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
471 /// the result is Live, MaybeLiveUses might be modified but its content should
472 /// be ignored (since it might not be complete).
473 DeadArgumentEliminationPass::Liveness
474 DeadArgumentEliminationPass::surveyUses(const Value *V,
475                                         UseVector &MaybeLiveUses) {
476   // Assume it's dead (which will only hold if there are no uses at all..).
477   Liveness Result = MaybeLive;
478   // Check each use.
479   for (const Use &U : V->uses()) {
480     Result = surveyUse(&U, MaybeLiveUses);
481     if (Result == Live)
482       break;
483   }
484   return Result;
485 }
486 
487 /// Performs the initial survey of the specified function, checking out whether
488 /// it uses any of its incoming arguments or whether any callers use the return
489 /// value. This fills in the LiveValues set and Uses map.
490 ///
491 /// We consider arguments of non-internal functions to be intrinsically alive as
492 /// well as arguments to functions which have their "address taken".
493 void DeadArgumentEliminationPass::surveyFunction(const Function &F) {
494   // Functions with inalloca/preallocated parameters are expecting args in a
495   // particular register and memory layout.
496   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
497       F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
498     markLive(F);
499     return;
500   }
501 
502   // Don't touch naked functions. The assembly might be using an argument, or
503   // otherwise rely on the frame layout in a way that this analysis will not
504   // see.
505   if (F.hasFnAttribute(Attribute::Naked)) {
506     markLive(F);
507     return;
508   }
509 
510   unsigned RetCount = numRetVals(&F);
511 
512   // Assume all return values are dead
513   using RetVals = SmallVector<Liveness, 5>;
514 
515   RetVals RetValLiveness(RetCount, MaybeLive);
516 
517   using RetUses = SmallVector<UseVector, 5>;
518 
519   // These vectors map each return value to the uses that make it MaybeLive, so
520   // we can add those to the Uses map if the return value really turns out to be
521   // MaybeLive. Initialized to a list of RetCount empty lists.
522   RetUses MaybeLiveRetUses(RetCount);
523 
524   bool HasMustTailCalls = false;
525   for (const BasicBlock &BB : F) {
526     // If we have any returns of `musttail` results - the signature can't
527     // change
528     if (const auto *TC = BB.getTerminatingMustTailCall()) {
529       HasMustTailCalls = true;
530       // In addition, if the called function is not locally defined (or unknown,
531       // if this is an indirect call), we can't change the callsite and thus
532       // can't change this function's signature either.
533       if (!isMustTailCalleeAnalyzable(*TC)) {
534         markLive(F);
535         return;
536       }
537     }
538   }
539 
540   if (HasMustTailCalls) {
541     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
542                       << " has musttail calls\n");
543   }
544 
545   if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
546     markLive(F);
547     return;
548   }
549 
550   LLVM_DEBUG(
551       dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
552              << F.getName() << "\n");
553   // Keep track of the number of live retvals, so we can skip checks once all
554   // of them turn out to be live.
555   unsigned NumLiveRetVals = 0;
556 
557   bool HasMustTailCallers = false;
558 
559   // Loop all uses of the function.
560   for (const Use &U : F.uses()) {
561     // If the function is PASSED IN as an argument, its address has been
562     // taken.
563     const auto *CB = dyn_cast<CallBase>(U.getUser());
564     if (!CB || !CB->isCallee(&U) ||
565         CB->getFunctionType() != F.getFunctionType()) {
566       markLive(F);
567       return;
568     }
569 
570     // The number of arguments for `musttail` call must match the number of
571     // arguments of the caller
572     if (CB->isMustTailCall())
573       HasMustTailCallers = true;
574 
575     // If we end up here, we are looking at a direct call to our function.
576 
577     // Now, check how our return value(s) is/are used in this caller. Don't
578     // bother checking return values if all of them are live already.
579     if (NumLiveRetVals == RetCount)
580       continue;
581 
582     // Check all uses of the return value.
583     for (const Use &UU : CB->uses()) {
584       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) {
585         // This use uses a part of our return value, survey the uses of
586         // that part and store the results for this index only.
587         unsigned Idx = *Ext->idx_begin();
588         if (RetValLiveness[Idx] != Live) {
589           RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]);
590           if (RetValLiveness[Idx] == Live)
591             NumLiveRetVals++;
592         }
593       } else {
594         // Used by something else than extractvalue. Survey, but assume that the
595         // result applies to all sub-values.
596         UseVector MaybeLiveAggregateUses;
597         if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) {
598           NumLiveRetVals = RetCount;
599           RetValLiveness.assign(RetCount, Live);
600           break;
601         }
602 
603         for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
604           if (RetValLiveness[Ri] != Live)
605             MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
606                                         MaybeLiveAggregateUses.end());
607         }
608       }
609     }
610   }
611 
612   if (HasMustTailCallers) {
613     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
614                       << " has musttail callers\n");
615   }
616 
617   // Now we've inspected all callers, record the liveness of our return values.
618   for (unsigned Ri = 0; Ri != RetCount; ++Ri)
619     markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
620 
621   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
622                     << F.getName() << "\n");
623 
624   // Now, check all of our arguments.
625   unsigned ArgI = 0;
626   UseVector MaybeLiveArgUses;
627   for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
628        AI != E; ++AI, ++ArgI) {
629     Liveness Result;
630     if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
631         HasMustTailCalls) {
632       // Variadic functions will already have a va_arg function expanded inside
633       // them, making them potentially very sensitive to ABI changes resulting
634       // from removing arguments entirely, so don't. For example AArch64 handles
635       // register and stack HFAs very differently, and this is reflected in the
636       // IR which has already been generated.
637       //
638       // `musttail` calls to this function restrict argument removal attempts.
639       // The signature of the caller must match the signature of the function.
640       //
641       // `musttail` calls in this function prevents us from changing its
642       // signature
643       Result = Live;
644     } else {
645       // See what the effect of this use is (recording any uses that cause
646       // MaybeLive in MaybeLiveArgUses).
647       Result = surveyUses(&*AI, MaybeLiveArgUses);
648     }
649 
650     // Mark the result.
651     markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses);
652     // Clear the vector again for the next iteration.
653     MaybeLiveArgUses.clear();
654   }
655 }
656 
657 /// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes
658 /// all uses in MaybeLiveUses and records them in Uses, such that RA will be
659 /// marked live if any use in MaybeLiveUses gets marked live later on.
660 void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L,
661                                             const UseVector &MaybeLiveUses) {
662   switch (L) {
663   case Live:
664     markLive(RA);
665     break;
666   case MaybeLive:
667     assert(!isLive(RA) && "Use is already live!");
668     for (const auto &MaybeLiveUse : MaybeLiveUses) {
669       if (isLive(MaybeLiveUse)) {
670         // A use is live, so this value is live.
671         markLive(RA);
672         break;
673       }
674       // Note any uses of this value, so this value can be
675       // marked live whenever one of the uses becomes live.
676       Uses.emplace(MaybeLiveUse, RA);
677     }
678     break;
679   }
680 }
681 
682 /// Mark the given Function as alive, meaning that it cannot be changed in any
683 /// way. Additionally, mark any values that are used as this function's
684 /// parameters or by its return values (according to Uses) live as well.
685 void DeadArgumentEliminationPass::markLive(const Function &F) {
686   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
687                     << F.getName() << "\n");
688   // Mark the function as live.
689   LiveFunctions.insert(&F);
690   // Mark all arguments as live.
691   for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
692     propagateLiveness(createArg(&F, ArgI));
693   // Mark all return values as live.
694   for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri)
695     propagateLiveness(createRet(&F, Ri));
696 }
697 
698 /// Mark the given return value or argument as live. Additionally, mark any
699 /// values that are used by this value (according to Uses) live as well.
700 void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) {
701   if (isLive(RA))
702     return; // Already marked Live.
703 
704   LiveValues.insert(RA);
705 
706   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
707                     << RA.getDescription() << " live\n");
708   propagateLiveness(RA);
709 }
710 
711 bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) {
712   return LiveFunctions.count(RA.F) || LiveValues.count(RA);
713 }
714 
715 /// Given that RA is a live value, propagate it's liveness to any other values
716 /// it uses (according to Uses).
717 void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) {
718   // We don't use upper_bound (or equal_range) here, because our recursive call
719   // to ourselves is likely to cause the upper_bound (which is the first value
720   // not belonging to RA) to become erased and the iterator invalidated.
721   UseMap::iterator Begin = Uses.lower_bound(RA);
722   UseMap::iterator E = Uses.end();
723   UseMap::iterator I;
724   for (I = Begin; I != E && I->first == RA; ++I)
725     markLive(I->second);
726 
727   // Erase RA from the Uses map (from the lower bound to wherever we ended up
728   // after the loop).
729   Uses.erase(Begin, I);
730 }
731 
732 /// Remove any arguments and return values from F that are not in LiveValues.
733 /// Transform the function and all the callees of the function to not have these
734 /// arguments and return values.
735 bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) {
736   // Don't modify fully live functions
737   if (LiveFunctions.count(F))
738     return false;
739 
740   // Start by computing a new prototype for the function, which is the same as
741   // the old function, but has fewer arguments and a different return type.
742   FunctionType *FTy = F->getFunctionType();
743   std::vector<Type *> Params;
744 
745   // Keep track of if we have a live 'returned' argument
746   bool HasLiveReturnedArg = false;
747 
748   // Set up to build a new list of parameter attributes.
749   SmallVector<AttributeSet, 8> ArgAttrVec;
750   const AttributeList &PAL = F->getAttributes();
751 
752   // Remember which arguments are still alive.
753   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
754   // Construct the new parameter list from non-dead arguments. Also construct
755   // a new set of parameter attributes to correspond. Skip the first parameter
756   // attribute, since that belongs to the return value.
757   unsigned ArgI = 0;
758   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
759        ++I, ++ArgI) {
760     RetOrArg Arg = createArg(F, ArgI);
761     if (LiveValues.erase(Arg)) {
762       Params.push_back(I->getType());
763       ArgAlive[ArgI] = true;
764       ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
765       HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
766     } else {
767       ++NumArgumentsEliminated;
768       LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
769                         << ArgI << " (" << I->getName() << ") from "
770                         << F->getName() << "\n");
771     }
772   }
773 
774   // Find out the new return value.
775   Type *RetTy = FTy->getReturnType();
776   Type *NRetTy = nullptr;
777   unsigned RetCount = numRetVals(F);
778 
779   // -1 means unused, other numbers are the new index
780   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
781   std::vector<Type *> RetTypes;
782 
783   // If there is a function with a live 'returned' argument but a dead return
784   // value, then there are two possible actions:
785   // 1) Eliminate the return value and take off the 'returned' attribute on the
786   //    argument.
787   // 2) Retain the 'returned' attribute and treat the return value (but not the
788   //    entire function) as live so that it is not eliminated.
789   //
790   // It's not clear in the general case which option is more profitable because,
791   // even in the absence of explicit uses of the return value, code generation
792   // is free to use the 'returned' attribute to do things like eliding
793   // save/restores of registers across calls. Whether this happens is target and
794   // ABI-specific as well as depending on the amount of register pressure, so
795   // there's no good way for an IR-level pass to figure this out.
796   //
797   // Fortunately, the only places where 'returned' is currently generated by
798   // the FE are places where 'returned' is basically free and almost always a
799   // performance win, so the second option can just be used always for now.
800   //
801   // This should be revisited if 'returned' is ever applied more liberally.
802   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
803     NRetTy = RetTy;
804   } else {
805     // Look at each of the original return values individually.
806     for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
807       RetOrArg Ret = createRet(F, Ri);
808       if (LiveValues.erase(Ret)) {
809         RetTypes.push_back(getRetComponentType(F, Ri));
810         NewRetIdxs[Ri] = RetTypes.size() - 1;
811       } else {
812         ++NumRetValsEliminated;
813         LLVM_DEBUG(
814             dbgs() << "DeadArgumentEliminationPass - Removing return value "
815                    << Ri << " from " << F->getName() << "\n");
816       }
817     }
818     if (RetTypes.size() > 1) {
819       // More than one return type? Reduce it down to size.
820       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
821         // Make the new struct packed if we used to return a packed struct
822         // already.
823         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
824       } else {
825         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
826         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
827       }
828     } else if (RetTypes.size() == 1)
829       // One return type? Just a simple value then, but only if we didn't use to
830       // return a struct with that simple value before.
831       NRetTy = RetTypes.front();
832     else if (RetTypes.empty())
833       // No return types? Make it void, but only if we didn't use to return {}.
834       NRetTy = Type::getVoidTy(F->getContext());
835   }
836 
837   assert(NRetTy && "No new return type found?");
838 
839   // The existing function return attributes.
840   AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs());
841 
842   // Remove any incompatible attributes, but only if we removed all return
843   // values. Otherwise, ensure that we don't have any conflicting attributes
844   // here. Currently, this should not be possible, but special handling might be
845   // required when new return value attributes are added.
846   if (NRetTy->isVoidTy())
847     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
848   else
849     assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
850            "Return attributes no longer compatible?");
851 
852   AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
853 
854   // Strip allocsize attributes. They might refer to the deleted arguments.
855   AttributeSet FnAttrs =
856       PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
857 
858   // Reconstruct the AttributesList based on the vector we constructed.
859   assert(ArgAttrVec.size() == Params.size());
860   AttributeList NewPAL =
861       AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
862 
863   // Create the new function type based on the recomputed parameters.
864   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
865 
866   // No change?
867   if (NFTy == FTy)
868     return false;
869 
870   // Create the new function body and insert it into the module...
871   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
872   NF->copyAttributesFrom(F);
873   NF->setComdat(F->getComdat());
874   NF->setAttributes(NewPAL);
875   // Insert the new function before the old function, so we won't be processing
876   // it again.
877   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
878   NF->takeName(F);
879   NF->IsNewDbgInfoFormat = F->IsNewDbgInfoFormat;
880 
881   // Loop over all the callers of the function, transforming the call sites to
882   // pass in a smaller number of arguments into the new function.
883   std::vector<Value *> Args;
884   while (!F->use_empty()) {
885     CallBase &CB = cast<CallBase>(*F->user_back());
886 
887     ArgAttrVec.clear();
888     const AttributeList &CallPAL = CB.getAttributes();
889 
890     // Adjust the call return attributes in case the function was changed to
891     // return void.
892     AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs());
893     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
894     AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
895 
896     // Declare these outside of the loops, so we can reuse them for the second
897     // loop, which loops the varargs.
898     auto *I = CB.arg_begin();
899     unsigned Pi = 0;
900     // Loop over those operands, corresponding to the normal arguments to the
901     // original function, and add those that are still alive.
902     for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
903       if (ArgAlive[Pi]) {
904         Args.push_back(*I);
905         // Get original parameter attributes, but skip return attributes.
906         AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
907         if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
908           // If the return type has changed, then get rid of 'returned' on the
909           // call site. The alternative is to make all 'returned' attributes on
910           // call sites keep the return value alive just like 'returned'
911           // attributes on function declaration, but it's less clearly a win and
912           // this is not an expected case anyway
913           ArgAttrVec.push_back(AttributeSet::get(
914               F->getContext(), AttrBuilder(F->getContext(), Attrs)
915                                    .removeAttribute(Attribute::Returned)));
916         } else {
917           // Otherwise, use the original attributes.
918           ArgAttrVec.push_back(Attrs);
919         }
920       }
921 
922     // Push any varargs arguments on the list. Don't forget their attributes.
923     for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) {
924       Args.push_back(*I);
925       ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
926     }
927 
928     // Reconstruct the AttributesList based on the vector we constructed.
929     assert(ArgAttrVec.size() == Args.size());
930 
931     // Again, be sure to remove any allocsize attributes, since their indices
932     // may now be incorrect.
933     AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
934         F->getContext(), Attribute::AllocSize);
935 
936     AttributeList NewCallPAL =
937         AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
938 
939     SmallVector<OperandBundleDef, 1> OpBundles;
940     CB.getOperandBundlesAsDefs(OpBundles);
941 
942     CallBase *NewCB = nullptr;
943     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
944       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
945                                  Args, OpBundles, "", CB.getParent());
946     } else {
947       NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", CB.getIterator());
948       cast<CallInst>(NewCB)->setTailCallKind(
949           cast<CallInst>(&CB)->getTailCallKind());
950     }
951     NewCB->setCallingConv(CB.getCallingConv());
952     NewCB->setAttributes(NewCallPAL);
953     NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
954     Args.clear();
955     ArgAttrVec.clear();
956 
957     if (!CB.use_empty() || CB.isUsedByMetadata()) {
958       if (NewCB->getType() == CB.getType()) {
959         // Return type not changed? Just replace users then.
960         CB.replaceAllUsesWith(NewCB);
961         NewCB->takeName(&CB);
962       } else if (NewCB->getType()->isVoidTy()) {
963         // If the return value is dead, replace any uses of it with poison
964         // (any non-debug value uses will get removed later on).
965         if (!CB.getType()->isX86_MMXTy())
966           CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
967       } else {
968         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
969                "Return type changed, but not into a void. The old return type"
970                " must have been a struct or an array!");
971         Instruction *InsertPt = &CB;
972         if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
973           BasicBlock *NewEdge =
974               SplitEdge(NewCB->getParent(), II->getNormalDest());
975           InsertPt = &*NewEdge->getFirstInsertionPt();
976         }
977 
978         // We used to return a struct or array. Instead of doing smart stuff
979         // with all the uses, we will just rebuild it using extract/insertvalue
980         // chaining and let instcombine clean that up.
981         //
982         // Start out building up our return value from poison
983         Value *RetVal = PoisonValue::get(RetTy);
984         for (unsigned Ri = 0; Ri != RetCount; ++Ri)
985           if (NewRetIdxs[Ri] != -1) {
986             Value *V;
987             IRBuilder<NoFolder> IRB(InsertPt);
988             if (RetTypes.size() > 1)
989               // We are still returning a struct, so extract the value from our
990               // return value
991               V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
992             else
993               // We are now returning a single element, so just insert that
994               V = NewCB;
995             // Insert the value at the old position
996             RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
997           }
998         // Now, replace all uses of the old call instruction with the return
999         // struct we built
1000         CB.replaceAllUsesWith(RetVal);
1001         NewCB->takeName(&CB);
1002       }
1003     }
1004 
1005     // Finally, remove the old call from the program, reducing the use-count of
1006     // F.
1007     CB.eraseFromParent();
1008   }
1009 
1010   // Since we have now created the new function, splice the body of the old
1011   // function right into the new function, leaving the old rotting hulk of the
1012   // function empty.
1013   NF->splice(NF->begin(), F);
1014 
1015   // Loop over the argument list, transferring uses of the old arguments over to
1016   // the new arguments, also transferring over the names as well.
1017   ArgI = 0;
1018   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1019                               I2 = NF->arg_begin();
1020        I != E; ++I, ++ArgI)
1021     if (ArgAlive[ArgI]) {
1022       // If this is a live argument, move the name and users over to the new
1023       // version.
1024       I->replaceAllUsesWith(&*I2);
1025       I2->takeName(&*I);
1026       ++I2;
1027     } else {
1028       // If this argument is dead, replace any uses of it with poison
1029       // (any non-debug value uses will get removed later on).
1030       if (!I->getType()->isX86_MMXTy())
1031         I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1032     }
1033 
1034   // If we change the return value of the function we must rewrite any return
1035   // instructions.  Check this now.
1036   if (F->getReturnType() != NF->getReturnType())
1037     for (BasicBlock &BB : *NF)
1038       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1039         IRBuilder<NoFolder> IRB(RI);
1040         Value *RetVal = nullptr;
1041 
1042         if (!NFTy->getReturnType()->isVoidTy()) {
1043           assert(RetTy->isStructTy() || RetTy->isArrayTy());
1044           // The original return value was a struct or array, insert
1045           // extractvalue/insertvalue chains to extract only the values we need
1046           // to return and insert them into our new result.
1047           // This does generate messy code, but we'll let it to instcombine to
1048           // clean that up.
1049           Value *OldRet = RI->getOperand(0);
1050           // Start out building up our return value from poison
1051           RetVal = PoisonValue::get(NRetTy);
1052           for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1053             if (NewRetIdxs[RetI] != -1) {
1054               Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1055 
1056               if (RetTypes.size() > 1) {
1057                 // We're still returning a struct, so reinsert the value into
1058                 // our new return value at the new index
1059 
1060                 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1061                                                "newret");
1062               } else {
1063                 // We are now only returning a simple value, so just return the
1064                 // extracted value.
1065                 RetVal = EV;
1066               }
1067             }
1068         }
1069         // Replace the return instruction with one returning the new return
1070         // value (possibly 0 if we became void).
1071         auto *NewRet =
1072             ReturnInst::Create(F->getContext(), RetVal, RI->getIterator());
1073         NewRet->setDebugLoc(RI->getDebugLoc());
1074         RI->eraseFromParent();
1075       }
1076 
1077   // Clone metadata from the old function, including debug info descriptor.
1078   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1079   F->getAllMetadata(MDs);
1080   for (auto [KindID, Node] : MDs)
1081     NF->addMetadata(KindID, *Node);
1082 
1083   // If either the return value(s) or argument(s) are removed, then probably the
1084   // function does not follow standard calling conventions anymore. Hence, add
1085   // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe
1086   // to call this function or try to interpret the return value.
1087   if (NFTy != FTy && NF->getSubprogram()) {
1088     DISubprogram *SP = NF->getSubprogram();
1089     auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall);
1090     SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp)));
1091   }
1092 
1093   // Now that the old function is dead, delete it.
1094   F->eraseFromParent();
1095 
1096   return true;
1097 }
1098 
1099 void DeadArgumentEliminationPass::propagateVirtMustcallLiveness(
1100     const Module &M) {
1101   // If a function was marked "live", and it has musttail callers, they in turn
1102   // can't change either.
1103   LiveFuncSet NewLiveFuncs(LiveFunctions);
1104   while (!NewLiveFuncs.empty()) {
1105     LiveFuncSet Temp;
1106     for (const auto *F : NewLiveFuncs)
1107       for (const auto *U : F->users())
1108         if (const auto *CB = dyn_cast<CallBase>(U))
1109           if (CB->isMustTailCall())
1110             if (!LiveFunctions.count(CB->getParent()->getParent()))
1111               Temp.insert(CB->getParent()->getParent());
1112     NewLiveFuncs.clear();
1113     NewLiveFuncs.insert(Temp.begin(), Temp.end());
1114     for (const auto *F : Temp)
1115       markLive(*F);
1116   }
1117 }
1118 
1119 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1120                                                    ModuleAnalysisManager &) {
1121   bool Changed = false;
1122 
1123   // First pass: Do a simple check to see if any functions can have their "..."
1124   // removed.  We can do this if they never call va_start.  This loop cannot be
1125   // fused with the next loop, because deleting a function invalidates
1126   // information computed while surveying other functions.
1127   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1128   for (Function &F : llvm::make_early_inc_range(M))
1129     if (F.getFunctionType()->isVarArg())
1130       Changed |= deleteDeadVarargs(F);
1131 
1132   // Second phase: Loop through the module, determining which arguments are
1133   // live. We assume all arguments are dead unless proven otherwise (allowing us
1134   // to determine that dead arguments passed into recursive functions are dead).
1135   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1136   for (auto &F : M)
1137     surveyFunction(F);
1138 
1139   propagateVirtMustcallLiveness(M);
1140 
1141   // Now, remove all dead arguments and return values from each function in
1142   // turn.  We use make_early_inc_range here because functions will probably get
1143   // removed (i.e. replaced by new ones).
1144   for (Function &F : llvm::make_early_inc_range(M))
1145     Changed |= removeDeadStuffFromFunction(&F);
1146 
1147   // Finally, look for any unused parameters in functions with non-local
1148   // linkage and replace the passed in parameters with poison.
1149   for (auto &F : M)
1150     Changed |= removeDeadArgumentsFromCallers(F);
1151 
1152   if (!Changed)
1153     return PreservedAnalyses::all();
1154   return PreservedAnalyses::none();
1155 }
1156