xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp (revision 562894f0dc310f658284863ff329906e7737a0a0)
1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions.  Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions.  This
12 // pass also deletes dead return values in a similar way.
13 //
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include <cassert>
48 #include <cstdint>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "deadargelim"
55 
56 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
57 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
58 STATISTIC(NumArgumentsReplacedWithUndef,
59           "Number of unread args replaced with undef");
60 
61 namespace {
62 
63   /// DAE - The dead argument elimination pass.
64   class DAE : public ModulePass {
65   protected:
66     // DAH uses this to specify a different ID.
67     explicit DAE(char &ID) : ModulePass(ID) {}
68 
69   public:
70     static char ID; // Pass identification, replacement for typeid
71 
72     DAE() : ModulePass(ID) {
73       initializeDAEPass(*PassRegistry::getPassRegistry());
74     }
75 
76     bool runOnModule(Module &M) override {
77       if (skipModule(M))
78         return false;
79       DeadArgumentEliminationPass DAEP(ShouldHackArguments());
80       ModuleAnalysisManager DummyMAM;
81       PreservedAnalyses PA = DAEP.run(M, DummyMAM);
82       return !PA.areAllPreserved();
83     }
84 
85     virtual bool ShouldHackArguments() const { return false; }
86   };
87 
88 } // end anonymous namespace
89 
90 char DAE::ID = 0;
91 
92 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
93 
94 namespace {
95 
96   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
97   /// deletes arguments to functions which are external.  This is only for use
98   /// by bugpoint.
99   struct DAH : public DAE {
100     static char ID;
101 
102     DAH() : DAE(ID) {}
103 
104     bool ShouldHackArguments() const override { return true; }
105   };
106 
107 } // end anonymous namespace
108 
109 char DAH::ID = 0;
110 
111 INITIALIZE_PASS(DAH, "deadarghaX0r",
112                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
113                 false, false)
114 
115 /// createDeadArgEliminationPass - This pass removes arguments from functions
116 /// which are not used by the body of the function.
117 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
118 
119 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
120 
121 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
122 /// llvm.vastart is never called, the varargs list is dead for the function.
123 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
124   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
125   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
126 
127   // Ensure that the function is only directly called.
128   if (Fn.hasAddressTaken())
129     return false;
130 
131   // Don't touch naked functions. The assembly might be using an argument, or
132   // otherwise rely on the frame layout in a way that this analysis will not
133   // see.
134   if (Fn.hasFnAttribute(Attribute::Naked)) {
135     return false;
136   }
137 
138   // Okay, we know we can transform this function if safe.  Scan its body
139   // looking for calls marked musttail or calls to llvm.vastart.
140   for (BasicBlock &BB : Fn) {
141     for (Instruction &I : BB) {
142       CallInst *CI = dyn_cast<CallInst>(&I);
143       if (!CI)
144         continue;
145       if (CI->isMustTailCall())
146         return false;
147       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
148         if (II->getIntrinsicID() == Intrinsic::vastart)
149           return false;
150       }
151     }
152   }
153 
154   // If we get here, there are no calls to llvm.vastart in the function body,
155   // remove the "..." and adjust all the calls.
156 
157   // Start by computing a new prototype for the function, which is the same as
158   // the old function, but doesn't have isVarArg set.
159   FunctionType *FTy = Fn.getFunctionType();
160 
161   std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
162   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
163                                                 Params, false);
164   unsigned NumArgs = Params.size();
165 
166   // Create the new function body and insert it into the module...
167   Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
168   NF->copyAttributesFrom(&Fn);
169   NF->setComdat(Fn.getComdat());
170   Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
171   NF->takeName(&Fn);
172 
173   // Loop over all of the callers of the function, transforming the call sites
174   // to pass in a smaller number of arguments into the new function.
175   //
176   std::vector<Value *> Args;
177   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
178     CallSite CS(*I++);
179     if (!CS)
180       continue;
181     Instruction *Call = CS.getInstruction();
182 
183     // Pass all the same arguments.
184     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
185 
186     // Drop any attributes that were on the vararg arguments.
187     AttributeList PAL = CS.getAttributes();
188     if (!PAL.isEmpty()) {
189       SmallVector<AttributeSet, 8> ArgAttrs;
190       for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
191         ArgAttrs.push_back(PAL.getParamAttributes(ArgNo));
192       PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(),
193                                PAL.getRetAttributes(), ArgAttrs);
194     }
195 
196     SmallVector<OperandBundleDef, 1> OpBundles;
197     CS.getOperandBundlesAsDefs(OpBundles);
198 
199     CallSite NewCS;
200     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
201       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
202                                  Args, OpBundles, "", Call);
203     } else {
204       NewCS = CallInst::Create(NF, Args, OpBundles, "", Call);
205       cast<CallInst>(NewCS.getInstruction())
206           ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
207     }
208     NewCS.setCallingConv(CS.getCallingConv());
209     NewCS.setAttributes(PAL);
210     NewCS->setDebugLoc(Call->getDebugLoc());
211     uint64_t W;
212     if (Call->extractProfTotalWeight(W))
213       NewCS->setProfWeight(W);
214 
215     Args.clear();
216 
217     if (!Call->use_empty())
218       Call->replaceAllUsesWith(NewCS.getInstruction());
219 
220     NewCS->takeName(Call);
221 
222     // Finally, remove the old call from the program, reducing the use-count of
223     // F.
224     Call->eraseFromParent();
225   }
226 
227   // Since we have now created the new function, splice the body of the old
228   // function right into the new function, leaving the old rotting hulk of the
229   // function empty.
230   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
231 
232   // Loop over the argument list, transferring uses of the old arguments over to
233   // the new arguments, also transferring over the names as well.  While we're at
234   // it, remove the dead arguments from the DeadArguments list.
235   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
236        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
237     // Move the name and users over to the new version.
238     I->replaceAllUsesWith(&*I2);
239     I2->takeName(&*I);
240   }
241 
242   // Clone metadatas from the old function, including debug info descriptor.
243   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
244   Fn.getAllMetadata(MDs);
245   for (auto MD : MDs)
246     NF->addMetadata(MD.first, *MD.second);
247 
248   // Fix up any BlockAddresses that refer to the function.
249   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
250   // Delete the bitcast that we just created, so that NF does not
251   // appear to be address-taken.
252   NF->removeDeadConstantUsers();
253   // Finally, nuke the old function.
254   Fn.eraseFromParent();
255   return true;
256 }
257 
258 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
259 /// arguments that are unused, and changes the caller parameters to be undefined
260 /// instead.
261 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
262   // We cannot change the arguments if this TU does not define the function or
263   // if the linker may choose a function body from another TU, even if the
264   // nominal linkage indicates that other copies of the function have the same
265   // semantics. In the below example, the dead load from %p may not have been
266   // eliminated from the linker-chosen copy of f, so replacing %p with undef
267   // in callers may introduce undefined behavior.
268   //
269   // define linkonce_odr void @f(i32* %p) {
270   //   %v = load i32 %p
271   //   ret void
272   // }
273   if (!Fn.hasExactDefinition())
274     return false;
275 
276   // Functions with local linkage should already have been handled, except the
277   // fragile (variadic) ones which we can improve here.
278   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
279     return false;
280 
281   // Don't touch naked functions. The assembly might be using an argument, or
282   // otherwise rely on the frame layout in a way that this analysis will not
283   // see.
284   if (Fn.hasFnAttribute(Attribute::Naked))
285     return false;
286 
287   if (Fn.use_empty())
288     return false;
289 
290   SmallVector<unsigned, 8> UnusedArgs;
291   bool Changed = false;
292 
293   for (Argument &Arg : Fn.args()) {
294     if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && !Arg.hasByValOrInAllocaAttr()) {
295       if (Arg.isUsedByMetadata()) {
296         Arg.replaceAllUsesWith(UndefValue::get(Arg.getType()));
297         Changed = true;
298       }
299       UnusedArgs.push_back(Arg.getArgNo());
300     }
301   }
302 
303   if (UnusedArgs.empty())
304     return false;
305 
306   for (Use &U : Fn.uses()) {
307     CallSite CS(U.getUser());
308     if (!CS || !CS.isCallee(&U))
309       continue;
310 
311     // Now go through all unused args and replace them with "undef".
312     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
313       unsigned ArgNo = UnusedArgs[I];
314 
315       Value *Arg = CS.getArgument(ArgNo);
316       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
317       ++NumArgumentsReplacedWithUndef;
318       Changed = true;
319     }
320   }
321 
322   return Changed;
323 }
324 
325 /// Convenience function that returns the number of return values. It returns 0
326 /// for void functions and 1 for functions not returning a struct. It returns
327 /// the number of struct elements for functions returning a struct.
328 static unsigned NumRetVals(const Function *F) {
329   Type *RetTy = F->getReturnType();
330   if (RetTy->isVoidTy())
331     return 0;
332   else if (StructType *STy = dyn_cast<StructType>(RetTy))
333     return STy->getNumElements();
334   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
335     return ATy->getNumElements();
336   else
337     return 1;
338 }
339 
340 /// Returns the sub-type a function will return at a given Idx. Should
341 /// correspond to the result type of an ExtractValue instruction executed with
342 /// just that one Idx (i.e. only top-level structure is considered).
343 static Type *getRetComponentType(const Function *F, unsigned Idx) {
344   Type *RetTy = F->getReturnType();
345   assert(!RetTy->isVoidTy() && "void type has no subtype");
346 
347   if (StructType *STy = dyn_cast<StructType>(RetTy))
348     return STy->getElementType(Idx);
349   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
350     return ATy->getElementType();
351   else
352     return RetTy;
353 }
354 
355 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
356 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
357 /// liveness of Use.
358 DeadArgumentEliminationPass::Liveness
359 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
360                                            UseVector &MaybeLiveUses) {
361   // We're live if our use or its Function is already marked as live.
362   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
363     return Live;
364 
365   // We're maybe live otherwise, but remember that we must become live if
366   // Use becomes live.
367   MaybeLiveUses.push_back(Use);
368   return MaybeLive;
369 }
370 
371 /// SurveyUse - This looks at a single use of an argument or return value
372 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
373 /// if it causes the used value to become MaybeLive.
374 ///
375 /// RetValNum is the return value number to use when this use is used in a
376 /// return instruction. This is used in the recursion, you should always leave
377 /// it at 0.
378 DeadArgumentEliminationPass::Liveness
379 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
380                                        unsigned RetValNum) {
381     const User *V = U->getUser();
382     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
383       // The value is returned from a function. It's only live when the
384       // function's return value is live. We use RetValNum here, for the case
385       // that U is really a use of an insertvalue instruction that uses the
386       // original Use.
387       const Function *F = RI->getParent()->getParent();
388       if (RetValNum != -1U) {
389         RetOrArg Use = CreateRet(F, RetValNum);
390         // We might be live, depending on the liveness of Use.
391         return MarkIfNotLive(Use, MaybeLiveUses);
392       } else {
393         DeadArgumentEliminationPass::Liveness Result = MaybeLive;
394         for (unsigned i = 0; i < NumRetVals(F); ++i) {
395           RetOrArg Use = CreateRet(F, i);
396           // We might be live, depending on the liveness of Use. If any
397           // sub-value is live, then the entire value is considered live. This
398           // is a conservative choice, and better tracking is possible.
399           DeadArgumentEliminationPass::Liveness SubResult =
400               MarkIfNotLive(Use, MaybeLiveUses);
401           if (Result != Live)
402             Result = SubResult;
403         }
404         return Result;
405       }
406     }
407     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
408       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
409           && IV->hasIndices())
410         // The use we are examining is inserted into an aggregate. Our liveness
411         // depends on all uses of that aggregate, but if it is used as a return
412         // value, only index at which we were inserted counts.
413         RetValNum = *IV->idx_begin();
414 
415       // Note that if we are used as the aggregate operand to the insertvalue,
416       // we don't change RetValNum, but do survey all our uses.
417 
418       Liveness Result = MaybeLive;
419       for (const Use &UU : IV->uses()) {
420         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
421         if (Result == Live)
422           break;
423       }
424       return Result;
425     }
426 
427     if (auto CS = ImmutableCallSite(V)) {
428       const Function *F = CS.getCalledFunction();
429       if (F) {
430         // Used in a direct call.
431 
432         // The function argument is live if it is used as a bundle operand.
433         if (CS.isBundleOperand(U))
434           return Live;
435 
436         // Find the argument number. We know for sure that this use is an
437         // argument, since if it was the function argument this would be an
438         // indirect call and the we know can't be looking at a value of the
439         // label type (for the invoke instruction).
440         unsigned ArgNo = CS.getArgumentNo(U);
441 
442         if (ArgNo >= F->getFunctionType()->getNumParams())
443           // The value is passed in through a vararg! Must be live.
444           return Live;
445 
446         assert(CS.getArgument(ArgNo)
447                == CS->getOperand(U->getOperandNo())
448                && "Argument is not where we expected it");
449 
450         // Value passed to a normal call. It's only live when the corresponding
451         // argument to the called function turns out live.
452         RetOrArg Use = CreateArg(F, ArgNo);
453         return MarkIfNotLive(Use, MaybeLiveUses);
454       }
455     }
456     // Used in any other way? Value must be live.
457     return Live;
458 }
459 
460 /// SurveyUses - This looks at all the uses of the given value
461 /// Returns the Liveness deduced from the uses of this value.
462 ///
463 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
464 /// the result is Live, MaybeLiveUses might be modified but its content should
465 /// be ignored (since it might not be complete).
466 DeadArgumentEliminationPass::Liveness
467 DeadArgumentEliminationPass::SurveyUses(const Value *V,
468                                         UseVector &MaybeLiveUses) {
469   // Assume it's dead (which will only hold if there are no uses at all..).
470   Liveness Result = MaybeLive;
471   // Check each use.
472   for (const Use &U : V->uses()) {
473     Result = SurveyUse(&U, MaybeLiveUses);
474     if (Result == Live)
475       break;
476   }
477   return Result;
478 }
479 
480 // SurveyFunction - This performs the initial survey of the specified function,
481 // checking out whether or not it uses any of its incoming arguments or whether
482 // any callers use the return value.  This fills in the LiveValues set and Uses
483 // map.
484 //
485 // We consider arguments of non-internal functions to be intrinsically alive as
486 // well as arguments to functions which have their "address taken".
487 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
488   // Functions with inalloca parameters are expecting args in a particular
489   // register and memory layout.
490   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
491     MarkLive(F);
492     return;
493   }
494 
495   // Don't touch naked functions. The assembly might be using an argument, or
496   // otherwise rely on the frame layout in a way that this analysis will not
497   // see.
498   if (F.hasFnAttribute(Attribute::Naked)) {
499     MarkLive(F);
500     return;
501   }
502 
503   unsigned RetCount = NumRetVals(&F);
504 
505   // Assume all return values are dead
506   using RetVals = SmallVector<Liveness, 5>;
507 
508   RetVals RetValLiveness(RetCount, MaybeLive);
509 
510   using RetUses = SmallVector<UseVector, 5>;
511 
512   // These vectors map each return value to the uses that make it MaybeLive, so
513   // we can add those to the Uses map if the return value really turns out to be
514   // MaybeLive. Initialized to a list of RetCount empty lists.
515   RetUses MaybeLiveRetUses(RetCount);
516 
517   bool HasMustTailCalls = false;
518 
519   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
520     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
521       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
522           != F.getFunctionType()->getReturnType()) {
523         // We don't support old style multiple return values.
524         MarkLive(F);
525         return;
526       }
527     }
528 
529     // If we have any returns of `musttail` results - the signature can't
530     // change
531     if (BB->getTerminatingMustTailCall() != nullptr)
532       HasMustTailCalls = true;
533   }
534 
535   if (HasMustTailCalls) {
536     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
537                       << " has musttail calls\n");
538   }
539 
540   if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
541     MarkLive(F);
542     return;
543   }
544 
545   LLVM_DEBUG(
546       dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
547              << F.getName() << "\n");
548   // Keep track of the number of live retvals, so we can skip checks once all
549   // of them turn out to be live.
550   unsigned NumLiveRetVals = 0;
551 
552   bool HasMustTailCallers = false;
553 
554   // Loop all uses of the function.
555   for (const Use &U : F.uses()) {
556     // If the function is PASSED IN as an argument, its address has been
557     // taken.
558     ImmutableCallSite CS(U.getUser());
559     if (!CS || !CS.isCallee(&U)) {
560       MarkLive(F);
561       return;
562     }
563 
564     // The number of arguments for `musttail` call must match the number of
565     // arguments of the caller
566     if (CS.isMustTailCall())
567       HasMustTailCallers = true;
568 
569     // If this use is anything other than a call site, the function is alive.
570     const Instruction *TheCall = CS.getInstruction();
571     if (!TheCall) {   // Not a direct call site?
572       MarkLive(F);
573       return;
574     }
575 
576     // If we end up here, we are looking at a direct call to our function.
577 
578     // Now, check how our return value(s) is/are used in this caller. Don't
579     // bother checking return values if all of them are live already.
580     if (NumLiveRetVals == RetCount)
581       continue;
582 
583     // Check all uses of the return value.
584     for (const Use &U : TheCall->uses()) {
585       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
586         // This use uses a part of our return value, survey the uses of
587         // that part and store the results for this index only.
588         unsigned Idx = *Ext->idx_begin();
589         if (RetValLiveness[Idx] != Live) {
590           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
591           if (RetValLiveness[Idx] == Live)
592             NumLiveRetVals++;
593         }
594       } else {
595         // Used by something else than extractvalue. Survey, but assume that the
596         // result applies to all sub-values.
597         UseVector MaybeLiveAggregateUses;
598         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
599           NumLiveRetVals = RetCount;
600           RetValLiveness.assign(RetCount, Live);
601           break;
602         } else {
603           for (unsigned i = 0; i != RetCount; ++i) {
604             if (RetValLiveness[i] != Live)
605               MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
606                                          MaybeLiveAggregateUses.end());
607           }
608         }
609       }
610     }
611   }
612 
613   if (HasMustTailCallers) {
614     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
615                       << " has musttail callers\n");
616   }
617 
618   // Now we've inspected all callers, record the liveness of our return values.
619   for (unsigned i = 0; i != RetCount; ++i)
620     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
621 
622   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
623                     << F.getName() << "\n");
624 
625   // Now, check all of our arguments.
626   unsigned i = 0;
627   UseVector MaybeLiveArgUses;
628   for (Function::const_arg_iterator AI = F.arg_begin(),
629        E = F.arg_end(); AI != E; ++AI, ++i) {
630     Liveness Result;
631     if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
632         HasMustTailCalls) {
633       // Variadic functions will already have a va_arg function expanded inside
634       // them, making them potentially very sensitive to ABI changes resulting
635       // from removing arguments entirely, so don't. For example AArch64 handles
636       // register and stack HFAs very differently, and this is reflected in the
637       // IR which has already been generated.
638       //
639       // `musttail` calls to this function restrict argument removal attempts.
640       // The signature of the caller must match the signature of the function.
641       //
642       // `musttail` calls in this function prevents us from changing its
643       // signature
644       Result = Live;
645     } else {
646       // See what the effect of this use is (recording any uses that cause
647       // MaybeLive in MaybeLiveArgUses).
648       Result = SurveyUses(&*AI, MaybeLiveArgUses);
649     }
650 
651     // Mark the result.
652     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
653     // Clear the vector again for the next iteration.
654     MaybeLiveArgUses.clear();
655   }
656 }
657 
658 /// MarkValue - This function marks the liveness of RA depending on L. If L is
659 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
660 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
661 /// live later on.
662 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
663                                             const UseVector &MaybeLiveUses) {
664   switch (L) {
665     case Live:
666       MarkLive(RA);
667       break;
668     case MaybeLive:
669       // Note any uses of this value, so this return value can be
670       // marked live whenever one of the uses becomes live.
671       for (const auto &MaybeLiveUse : MaybeLiveUses)
672         Uses.insert(std::make_pair(MaybeLiveUse, RA));
673       break;
674   }
675 }
676 
677 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
678 /// changed in any way. Additionally,
679 /// mark any values that are used as this function's parameters or by its return
680 /// values (according to Uses) live as well.
681 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
682   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
683                     << F.getName() << "\n");
684   // Mark the function as live.
685   LiveFunctions.insert(&F);
686   // Mark all arguments as live.
687   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
688     PropagateLiveness(CreateArg(&F, i));
689   // Mark all return values as live.
690   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
691     PropagateLiveness(CreateRet(&F, i));
692 }
693 
694 /// MarkLive - Mark the given return value or argument as live. Additionally,
695 /// mark any values that are used by this value (according to Uses) live as
696 /// well.
697 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
698   if (LiveFunctions.count(RA.F))
699     return; // Function was already marked Live.
700 
701   if (!LiveValues.insert(RA).second)
702     return; // We were already marked Live.
703 
704   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
705                     << RA.getDescription() << " live\n");
706   PropagateLiveness(RA);
707 }
708 
709 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
710 /// to any other values it uses (according to Uses).
711 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
712   // We don't use upper_bound (or equal_range) here, because our recursive call
713   // to ourselves is likely to cause the upper_bound (which is the first value
714   // not belonging to RA) to become erased and the iterator invalidated.
715   UseMap::iterator Begin = Uses.lower_bound(RA);
716   UseMap::iterator E = Uses.end();
717   UseMap::iterator I;
718   for (I = Begin; I != E && I->first == RA; ++I)
719     MarkLive(I->second);
720 
721   // Erase RA from the Uses map (from the lower bound to wherever we ended up
722   // after the loop).
723   Uses.erase(Begin, I);
724 }
725 
726 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
727 // that are not in LiveValues. Transform the function and all of the callees of
728 // the function to not have these arguments and return values.
729 //
730 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
731   // Don't modify fully live functions
732   if (LiveFunctions.count(F))
733     return false;
734 
735   // Start by computing a new prototype for the function, which is the same as
736   // the old function, but has fewer arguments and a different return type.
737   FunctionType *FTy = F->getFunctionType();
738   std::vector<Type*> Params;
739 
740   // Keep track of if we have a live 'returned' argument
741   bool HasLiveReturnedArg = false;
742 
743   // Set up to build a new list of parameter attributes.
744   SmallVector<AttributeSet, 8> ArgAttrVec;
745   const AttributeList &PAL = F->getAttributes();
746 
747   // Remember which arguments are still alive.
748   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
749   // Construct the new parameter list from non-dead arguments. Also construct
750   // a new set of parameter attributes to correspond. Skip the first parameter
751   // attribute, since that belongs to the return value.
752   unsigned i = 0;
753   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
754        I != E; ++I, ++i) {
755     RetOrArg Arg = CreateArg(F, i);
756     if (LiveValues.erase(Arg)) {
757       Params.push_back(I->getType());
758       ArgAlive[i] = true;
759       ArgAttrVec.push_back(PAL.getParamAttributes(i));
760       HasLiveReturnedArg |= PAL.hasParamAttribute(i, Attribute::Returned);
761     } else {
762       ++NumArgumentsEliminated;
763       LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
764                         << i << " (" << I->getName() << ") from "
765                         << F->getName() << "\n");
766     }
767   }
768 
769   // Find out the new return value.
770   Type *RetTy = FTy->getReturnType();
771   Type *NRetTy = nullptr;
772   unsigned RetCount = NumRetVals(F);
773 
774   // -1 means unused, other numbers are the new index
775   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
776   std::vector<Type*> RetTypes;
777 
778   // If there is a function with a live 'returned' argument but a dead return
779   // value, then there are two possible actions:
780   // 1) Eliminate the return value and take off the 'returned' attribute on the
781   //    argument.
782   // 2) Retain the 'returned' attribute and treat the return value (but not the
783   //    entire function) as live so that it is not eliminated.
784   //
785   // It's not clear in the general case which option is more profitable because,
786   // even in the absence of explicit uses of the return value, code generation
787   // is free to use the 'returned' attribute to do things like eliding
788   // save/restores of registers across calls. Whether or not this happens is
789   // target and ABI-specific as well as depending on the amount of register
790   // pressure, so there's no good way for an IR-level pass to figure this out.
791   //
792   // Fortunately, the only places where 'returned' is currently generated by
793   // the FE are places where 'returned' is basically free and almost always a
794   // performance win, so the second option can just be used always for now.
795   //
796   // This should be revisited if 'returned' is ever applied more liberally.
797   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
798     NRetTy = RetTy;
799   } else {
800     // Look at each of the original return values individually.
801     for (unsigned i = 0; i != RetCount; ++i) {
802       RetOrArg Ret = CreateRet(F, i);
803       if (LiveValues.erase(Ret)) {
804         RetTypes.push_back(getRetComponentType(F, i));
805         NewRetIdxs[i] = RetTypes.size() - 1;
806       } else {
807         ++NumRetValsEliminated;
808         LLVM_DEBUG(
809             dbgs() << "DeadArgumentEliminationPass - Removing return value "
810                    << i << " from " << F->getName() << "\n");
811       }
812     }
813     if (RetTypes.size() > 1) {
814       // More than one return type? Reduce it down to size.
815       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
816         // Make the new struct packed if we used to return a packed struct
817         // already.
818         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
819       } else {
820         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
821         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
822       }
823     } else if (RetTypes.size() == 1)
824       // One return type? Just a simple value then, but only if we didn't use to
825       // return a struct with that simple value before.
826       NRetTy = RetTypes.front();
827     else if (RetTypes.empty())
828       // No return types? Make it void, but only if we didn't use to return {}.
829       NRetTy = Type::getVoidTy(F->getContext());
830   }
831 
832   assert(NRetTy && "No new return type found?");
833 
834   // The existing function return attributes.
835   AttrBuilder RAttrs(PAL.getRetAttributes());
836 
837   // Remove any incompatible attributes, but only if we removed all return
838   // values. Otherwise, ensure that we don't have any conflicting attributes
839   // here. Currently, this should not be possible, but special handling might be
840   // required when new return value attributes are added.
841   if (NRetTy->isVoidTy())
842     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
843   else
844     assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
845            "Return attributes no longer compatible?");
846 
847   AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
848 
849   // Strip allocsize attributes. They might refer to the deleted arguments.
850   AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute(
851       F->getContext(), Attribute::AllocSize);
852 
853   // Reconstruct the AttributesList based on the vector we constructed.
854   assert(ArgAttrVec.size() == Params.size());
855   AttributeList NewPAL =
856       AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
857 
858   // Create the new function type based on the recomputed parameters.
859   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
860 
861   // No change?
862   if (NFTy == FTy)
863     return false;
864 
865   // Create the new function body and insert it into the module...
866   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
867   NF->copyAttributesFrom(F);
868   NF->setComdat(F->getComdat());
869   NF->setAttributes(NewPAL);
870   // Insert the new function before the old function, so we won't be processing
871   // it again.
872   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
873   NF->takeName(F);
874 
875   // Loop over all of the callers of the function, transforming the call sites
876   // to pass in a smaller number of arguments into the new function.
877   std::vector<Value*> Args;
878   while (!F->use_empty()) {
879     CallSite CS(F->user_back());
880     Instruction *Call = CS.getInstruction();
881 
882     ArgAttrVec.clear();
883     const AttributeList &CallPAL = CS.getAttributes();
884 
885     // Adjust the call return attributes in case the function was changed to
886     // return void.
887     AttrBuilder RAttrs(CallPAL.getRetAttributes());
888     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
889     AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
890 
891     // Declare these outside of the loops, so we can reuse them for the second
892     // loop, which loops the varargs.
893     CallSite::arg_iterator I = CS.arg_begin();
894     unsigned i = 0;
895     // Loop over those operands, corresponding to the normal arguments to the
896     // original function, and add those that are still alive.
897     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
898       if (ArgAlive[i]) {
899         Args.push_back(*I);
900         // Get original parameter attributes, but skip return attributes.
901         AttributeSet Attrs = CallPAL.getParamAttributes(i);
902         if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
903           // If the return type has changed, then get rid of 'returned' on the
904           // call site. The alternative is to make all 'returned' attributes on
905           // call sites keep the return value alive just like 'returned'
906           // attributes on function declaration but it's less clearly a win and
907           // this is not an expected case anyway
908           ArgAttrVec.push_back(AttributeSet::get(
909               F->getContext(),
910               AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
911         } else {
912           // Otherwise, use the original attributes.
913           ArgAttrVec.push_back(Attrs);
914         }
915       }
916 
917     // Push any varargs arguments on the list. Don't forget their attributes.
918     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
919       Args.push_back(*I);
920       ArgAttrVec.push_back(CallPAL.getParamAttributes(i));
921     }
922 
923     // Reconstruct the AttributesList based on the vector we constructed.
924     assert(ArgAttrVec.size() == Args.size());
925 
926     // Again, be sure to remove any allocsize attributes, since their indices
927     // may now be incorrect.
928     AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute(
929         F->getContext(), Attribute::AllocSize);
930 
931     AttributeList NewCallPAL = AttributeList::get(
932         F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
933 
934     SmallVector<OperandBundleDef, 1> OpBundles;
935     CS.getOperandBundlesAsDefs(OpBundles);
936 
937     CallSite NewCS;
938     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
939       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
940                                  Args, OpBundles, "", Call->getParent());
941     } else {
942       NewCS = CallInst::Create(NFTy, NF, Args, OpBundles, "", Call);
943       cast<CallInst>(NewCS.getInstruction())
944           ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
945     }
946     NewCS.setCallingConv(CS.getCallingConv());
947     NewCS.setAttributes(NewCallPAL);
948     NewCS->setDebugLoc(Call->getDebugLoc());
949     uint64_t W;
950     if (Call->extractProfTotalWeight(W))
951       NewCS->setProfWeight(W);
952     Args.clear();
953     ArgAttrVec.clear();
954 
955     Instruction *New = NewCS.getInstruction();
956     if (!Call->use_empty() || Call->isUsedByMetadata()) {
957       if (New->getType() == Call->getType()) {
958         // Return type not changed? Just replace users then.
959         Call->replaceAllUsesWith(New);
960         New->takeName(Call);
961       } else if (New->getType()->isVoidTy()) {
962         // If the return value is dead, replace any uses of it with undef
963         // (any non-debug value uses will get removed later on).
964         if (!Call->getType()->isX86_MMXTy())
965           Call->replaceAllUsesWith(UndefValue::get(Call->getType()));
966       } else {
967         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
968                "Return type changed, but not into a void. The old return type"
969                " must have been a struct or an array!");
970         Instruction *InsertPt = Call;
971         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
972           BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
973           InsertPt = &*NewEdge->getFirstInsertionPt();
974         }
975 
976         // We used to return a struct or array. Instead of doing smart stuff
977         // with all the uses, we will just rebuild it using extract/insertvalue
978         // chaining and let instcombine clean that up.
979         //
980         // Start out building up our return value from undef
981         Value *RetVal = UndefValue::get(RetTy);
982         for (unsigned i = 0; i != RetCount; ++i)
983           if (NewRetIdxs[i] != -1) {
984             Value *V;
985             if (RetTypes.size() > 1)
986               // We are still returning a struct, so extract the value from our
987               // return value
988               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
989                                            InsertPt);
990             else
991               // We are now returning a single element, so just insert that
992               V = New;
993             // Insert the value at the old position
994             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
995           }
996         // Now, replace all uses of the old call instruction with the return
997         // struct we built
998         Call->replaceAllUsesWith(RetVal);
999         New->takeName(Call);
1000       }
1001     }
1002 
1003     // Finally, remove the old call from the program, reducing the use-count of
1004     // F.
1005     Call->eraseFromParent();
1006   }
1007 
1008   // Since we have now created the new function, splice the body of the old
1009   // function right into the new function, leaving the old rotting hulk of the
1010   // function empty.
1011   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1012 
1013   // Loop over the argument list, transferring uses of the old arguments over to
1014   // the new arguments, also transferring over the names as well.
1015   i = 0;
1016   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1017        I2 = NF->arg_begin(); I != E; ++I, ++i)
1018     if (ArgAlive[i]) {
1019       // If this is a live argument, move the name and users over to the new
1020       // version.
1021       I->replaceAllUsesWith(&*I2);
1022       I2->takeName(&*I);
1023       ++I2;
1024     } else {
1025       // If this argument is dead, replace any uses of it with undef
1026       // (any non-debug value uses will get removed later on).
1027       if (!I->getType()->isX86_MMXTy())
1028         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1029     }
1030 
1031   // If we change the return value of the function we must rewrite any return
1032   // instructions.  Check this now.
1033   if (F->getReturnType() != NF->getReturnType())
1034     for (BasicBlock &BB : *NF)
1035       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1036         Value *RetVal;
1037 
1038         if (NFTy->getReturnType()->isVoidTy()) {
1039           RetVal = nullptr;
1040         } else {
1041           assert(RetTy->isStructTy() || RetTy->isArrayTy());
1042           // The original return value was a struct or array, insert
1043           // extractvalue/insertvalue chains to extract only the values we need
1044           // to return and insert them into our new result.
1045           // This does generate messy code, but we'll let it to instcombine to
1046           // clean that up.
1047           Value *OldRet = RI->getOperand(0);
1048           // Start out building up our return value from undef
1049           RetVal = UndefValue::get(NRetTy);
1050           for (unsigned i = 0; i != RetCount; ++i)
1051             if (NewRetIdxs[i] != -1) {
1052               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1053                                                               "oldret", RI);
1054               if (RetTypes.size() > 1) {
1055                 // We're still returning a struct, so reinsert the value into
1056                 // our new return value at the new index
1057 
1058                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1059                                                  "newret", RI);
1060               } else {
1061                 // We are now only returning a simple value, so just return the
1062                 // extracted value.
1063                 RetVal = EV;
1064               }
1065             }
1066         }
1067         // Replace the return instruction with one returning the new return
1068         // value (possibly 0 if we became void).
1069         ReturnInst::Create(F->getContext(), RetVal, RI);
1070         BB.getInstList().erase(RI);
1071       }
1072 
1073   // Clone metadatas from the old function, including debug info descriptor.
1074   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1075   F->getAllMetadata(MDs);
1076   for (auto MD : MDs)
1077     NF->addMetadata(MD.first, *MD.second);
1078 
1079   // Now that the old function is dead, delete it.
1080   F->eraseFromParent();
1081 
1082   return true;
1083 }
1084 
1085 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1086                                                    ModuleAnalysisManager &) {
1087   bool Changed = false;
1088 
1089   // First pass: Do a simple check to see if any functions can have their "..."
1090   // removed.  We can do this if they never call va_start.  This loop cannot be
1091   // fused with the next loop, because deleting a function invalidates
1092   // information computed while surveying other functions.
1093   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1094   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1095     Function &F = *I++;
1096     if (F.getFunctionType()->isVarArg())
1097       Changed |= DeleteDeadVarargs(F);
1098   }
1099 
1100   // Second phase:loop through the module, determining which arguments are live.
1101   // We assume all arguments are dead unless proven otherwise (allowing us to
1102   // determine that dead arguments passed into recursive functions are dead).
1103   //
1104   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1105   for (auto &F : M)
1106     SurveyFunction(F);
1107 
1108   // Now, remove all dead arguments and return values from each function in
1109   // turn.
1110   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1111     // Increment now, because the function will probably get removed (ie.
1112     // replaced by a new one).
1113     Function *F = &*I++;
1114     Changed |= RemoveDeadStuffFromFunction(F);
1115   }
1116 
1117   // Finally, look for any unused parameters in functions with non-local
1118   // linkage and replace the passed in parameters with undef.
1119   for (auto &F : M)
1120     Changed |= RemoveDeadArgumentsFromCallers(F);
1121 
1122   if (!Changed)
1123     return PreservedAnalyses::all();
1124   return PreservedAnalyses::none();
1125 }
1126