1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass deletes dead arguments from internal functions. Dead argument 10 // elimination removes arguments which are directly dead, as well as arguments 11 // only passed into function calls as dead arguments of other functions. This 12 // pass also deletes dead return values in a similar way. 13 // 14 // This pass is often useful as a cleanup pass to run after aggressive 15 // interprocedural passes, which add possibly-dead arguments or return values. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Use.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/IPO.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include <cassert> 48 #include <cstdint> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "deadargelim" 55 56 STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); 57 STATISTIC(NumRetValsEliminated , "Number of unused return values removed"); 58 STATISTIC(NumArgumentsReplacedWithUndef, 59 "Number of unread args replaced with undef"); 60 61 namespace { 62 63 /// DAE - The dead argument elimination pass. 64 class DAE : public ModulePass { 65 protected: 66 // DAH uses this to specify a different ID. 67 explicit DAE(char &ID) : ModulePass(ID) {} 68 69 public: 70 static char ID; // Pass identification, replacement for typeid 71 72 DAE() : ModulePass(ID) { 73 initializeDAEPass(*PassRegistry::getPassRegistry()); 74 } 75 76 bool runOnModule(Module &M) override { 77 if (skipModule(M)) 78 return false; 79 DeadArgumentEliminationPass DAEP(ShouldHackArguments()); 80 ModuleAnalysisManager DummyMAM; 81 PreservedAnalyses PA = DAEP.run(M, DummyMAM); 82 return !PA.areAllPreserved(); 83 } 84 85 virtual bool ShouldHackArguments() const { return false; } 86 }; 87 88 } // end anonymous namespace 89 90 char DAE::ID = 0; 91 92 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) 93 94 namespace { 95 96 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but 97 /// deletes arguments to functions which are external. This is only for use 98 /// by bugpoint. 99 struct DAH : public DAE { 100 static char ID; 101 102 DAH() : DAE(ID) {} 103 104 bool ShouldHackArguments() const override { return true; } 105 }; 106 107 } // end anonymous namespace 108 109 char DAH::ID = 0; 110 111 INITIALIZE_PASS(DAH, "deadarghaX0r", 112 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", 113 false, false) 114 115 /// createDeadArgEliminationPass - This pass removes arguments from functions 116 /// which are not used by the body of the function. 117 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } 118 119 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } 120 121 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if 122 /// llvm.vastart is never called, the varargs list is dead for the function. 123 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) { 124 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); 125 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; 126 127 // Ensure that the function is only directly called. 128 if (Fn.hasAddressTaken()) 129 return false; 130 131 // Don't touch naked functions. The assembly might be using an argument, or 132 // otherwise rely on the frame layout in a way that this analysis will not 133 // see. 134 if (Fn.hasFnAttribute(Attribute::Naked)) { 135 return false; 136 } 137 138 // Okay, we know we can transform this function if safe. Scan its body 139 // looking for calls marked musttail or calls to llvm.vastart. 140 for (BasicBlock &BB : Fn) { 141 for (Instruction &I : BB) { 142 CallInst *CI = dyn_cast<CallInst>(&I); 143 if (!CI) 144 continue; 145 if (CI->isMustTailCall()) 146 return false; 147 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 148 if (II->getIntrinsicID() == Intrinsic::vastart) 149 return false; 150 } 151 } 152 } 153 154 // If we get here, there are no calls to llvm.vastart in the function body, 155 // remove the "..." and adjust all the calls. 156 157 // Start by computing a new prototype for the function, which is the same as 158 // the old function, but doesn't have isVarArg set. 159 FunctionType *FTy = Fn.getFunctionType(); 160 161 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end()); 162 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), 163 Params, false); 164 unsigned NumArgs = Params.size(); 165 166 // Create the new function body and insert it into the module... 167 Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace()); 168 NF->copyAttributesFrom(&Fn); 169 NF->setComdat(Fn.getComdat()); 170 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF); 171 NF->takeName(&Fn); 172 173 // Loop over all of the callers of the function, transforming the call sites 174 // to pass in a smaller number of arguments into the new function. 175 // 176 std::vector<Value *> Args; 177 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) { 178 CallSite CS(*I++); 179 if (!CS) 180 continue; 181 Instruction *Call = CS.getInstruction(); 182 183 // Pass all the same arguments. 184 Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs); 185 186 // Drop any attributes that were on the vararg arguments. 187 AttributeList PAL = CS.getAttributes(); 188 if (!PAL.isEmpty()) { 189 SmallVector<AttributeSet, 8> ArgAttrs; 190 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) 191 ArgAttrs.push_back(PAL.getParamAttributes(ArgNo)); 192 PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(), 193 PAL.getRetAttributes(), ArgAttrs); 194 } 195 196 SmallVector<OperandBundleDef, 1> OpBundles; 197 CS.getOperandBundlesAsDefs(OpBundles); 198 199 CallSite NewCS; 200 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 201 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 202 Args, OpBundles, "", Call); 203 } else { 204 NewCS = CallInst::Create(NF, Args, OpBundles, "", Call); 205 cast<CallInst>(NewCS.getInstruction()) 206 ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); 207 } 208 NewCS.setCallingConv(CS.getCallingConv()); 209 NewCS.setAttributes(PAL); 210 NewCS->setDebugLoc(Call->getDebugLoc()); 211 uint64_t W; 212 if (Call->extractProfTotalWeight(W)) 213 NewCS->setProfWeight(W); 214 215 Args.clear(); 216 217 if (!Call->use_empty()) 218 Call->replaceAllUsesWith(NewCS.getInstruction()); 219 220 NewCS->takeName(Call); 221 222 // Finally, remove the old call from the program, reducing the use-count of 223 // F. 224 Call->eraseFromParent(); 225 } 226 227 // Since we have now created the new function, splice the body of the old 228 // function right into the new function, leaving the old rotting hulk of the 229 // function empty. 230 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); 231 232 // Loop over the argument list, transferring uses of the old arguments over to 233 // the new arguments, also transferring over the names as well. While we're at 234 // it, remove the dead arguments from the DeadArguments list. 235 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), 236 I2 = NF->arg_begin(); I != E; ++I, ++I2) { 237 // Move the name and users over to the new version. 238 I->replaceAllUsesWith(&*I2); 239 I2->takeName(&*I); 240 } 241 242 // Clone metadatas from the old function, including debug info descriptor. 243 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 244 Fn.getAllMetadata(MDs); 245 for (auto MD : MDs) 246 NF->addMetadata(MD.first, *MD.second); 247 248 // Fix up any BlockAddresses that refer to the function. 249 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType())); 250 // Delete the bitcast that we just created, so that NF does not 251 // appear to be address-taken. 252 NF->removeDeadConstantUsers(); 253 // Finally, nuke the old function. 254 Fn.eraseFromParent(); 255 return true; 256 } 257 258 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any 259 /// arguments that are unused, and changes the caller parameters to be undefined 260 /// instead. 261 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) { 262 // We cannot change the arguments if this TU does not define the function or 263 // if the linker may choose a function body from another TU, even if the 264 // nominal linkage indicates that other copies of the function have the same 265 // semantics. In the below example, the dead load from %p may not have been 266 // eliminated from the linker-chosen copy of f, so replacing %p with undef 267 // in callers may introduce undefined behavior. 268 // 269 // define linkonce_odr void @f(i32* %p) { 270 // %v = load i32 %p 271 // ret void 272 // } 273 if (!Fn.hasExactDefinition()) 274 return false; 275 276 // Functions with local linkage should already have been handled, except the 277 // fragile (variadic) ones which we can improve here. 278 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg()) 279 return false; 280 281 // Don't touch naked functions. The assembly might be using an argument, or 282 // otherwise rely on the frame layout in a way that this analysis will not 283 // see. 284 if (Fn.hasFnAttribute(Attribute::Naked)) 285 return false; 286 287 if (Fn.use_empty()) 288 return false; 289 290 SmallVector<unsigned, 8> UnusedArgs; 291 bool Changed = false; 292 293 for (Argument &Arg : Fn.args()) { 294 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && !Arg.hasByValOrInAllocaAttr()) { 295 if (Arg.isUsedByMetadata()) { 296 Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); 297 Changed = true; 298 } 299 UnusedArgs.push_back(Arg.getArgNo()); 300 } 301 } 302 303 if (UnusedArgs.empty()) 304 return false; 305 306 for (Use &U : Fn.uses()) { 307 CallSite CS(U.getUser()); 308 if (!CS || !CS.isCallee(&U)) 309 continue; 310 311 // Now go through all unused args and replace them with "undef". 312 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { 313 unsigned ArgNo = UnusedArgs[I]; 314 315 Value *Arg = CS.getArgument(ArgNo); 316 CS.setArgument(ArgNo, UndefValue::get(Arg->getType())); 317 ++NumArgumentsReplacedWithUndef; 318 Changed = true; 319 } 320 } 321 322 return Changed; 323 } 324 325 /// Convenience function that returns the number of return values. It returns 0 326 /// for void functions and 1 for functions not returning a struct. It returns 327 /// the number of struct elements for functions returning a struct. 328 static unsigned NumRetVals(const Function *F) { 329 Type *RetTy = F->getReturnType(); 330 if (RetTy->isVoidTy()) 331 return 0; 332 else if (StructType *STy = dyn_cast<StructType>(RetTy)) 333 return STy->getNumElements(); 334 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 335 return ATy->getNumElements(); 336 else 337 return 1; 338 } 339 340 /// Returns the sub-type a function will return at a given Idx. Should 341 /// correspond to the result type of an ExtractValue instruction executed with 342 /// just that one Idx (i.e. only top-level structure is considered). 343 static Type *getRetComponentType(const Function *F, unsigned Idx) { 344 Type *RetTy = F->getReturnType(); 345 assert(!RetTy->isVoidTy() && "void type has no subtype"); 346 347 if (StructType *STy = dyn_cast<StructType>(RetTy)) 348 return STy->getElementType(Idx); 349 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 350 return ATy->getElementType(); 351 else 352 return RetTy; 353 } 354 355 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not 356 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined 357 /// liveness of Use. 358 DeadArgumentEliminationPass::Liveness 359 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use, 360 UseVector &MaybeLiveUses) { 361 // We're live if our use or its Function is already marked as live. 362 if (LiveFunctions.count(Use.F) || LiveValues.count(Use)) 363 return Live; 364 365 // We're maybe live otherwise, but remember that we must become live if 366 // Use becomes live. 367 MaybeLiveUses.push_back(Use); 368 return MaybeLive; 369 } 370 371 /// SurveyUse - This looks at a single use of an argument or return value 372 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses 373 /// if it causes the used value to become MaybeLive. 374 /// 375 /// RetValNum is the return value number to use when this use is used in a 376 /// return instruction. This is used in the recursion, you should always leave 377 /// it at 0. 378 DeadArgumentEliminationPass::Liveness 379 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses, 380 unsigned RetValNum) { 381 const User *V = U->getUser(); 382 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { 383 // The value is returned from a function. It's only live when the 384 // function's return value is live. We use RetValNum here, for the case 385 // that U is really a use of an insertvalue instruction that uses the 386 // original Use. 387 const Function *F = RI->getParent()->getParent(); 388 if (RetValNum != -1U) { 389 RetOrArg Use = CreateRet(F, RetValNum); 390 // We might be live, depending on the liveness of Use. 391 return MarkIfNotLive(Use, MaybeLiveUses); 392 } else { 393 DeadArgumentEliminationPass::Liveness Result = MaybeLive; 394 for (unsigned i = 0; i < NumRetVals(F); ++i) { 395 RetOrArg Use = CreateRet(F, i); 396 // We might be live, depending on the liveness of Use. If any 397 // sub-value is live, then the entire value is considered live. This 398 // is a conservative choice, and better tracking is possible. 399 DeadArgumentEliminationPass::Liveness SubResult = 400 MarkIfNotLive(Use, MaybeLiveUses); 401 if (Result != Live) 402 Result = SubResult; 403 } 404 return Result; 405 } 406 } 407 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { 408 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() 409 && IV->hasIndices()) 410 // The use we are examining is inserted into an aggregate. Our liveness 411 // depends on all uses of that aggregate, but if it is used as a return 412 // value, only index at which we were inserted counts. 413 RetValNum = *IV->idx_begin(); 414 415 // Note that if we are used as the aggregate operand to the insertvalue, 416 // we don't change RetValNum, but do survey all our uses. 417 418 Liveness Result = MaybeLive; 419 for (const Use &UU : IV->uses()) { 420 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum); 421 if (Result == Live) 422 break; 423 } 424 return Result; 425 } 426 427 if (auto CS = ImmutableCallSite(V)) { 428 const Function *F = CS.getCalledFunction(); 429 if (F) { 430 // Used in a direct call. 431 432 // The function argument is live if it is used as a bundle operand. 433 if (CS.isBundleOperand(U)) 434 return Live; 435 436 // Find the argument number. We know for sure that this use is an 437 // argument, since if it was the function argument this would be an 438 // indirect call and the we know can't be looking at a value of the 439 // label type (for the invoke instruction). 440 unsigned ArgNo = CS.getArgumentNo(U); 441 442 if (ArgNo >= F->getFunctionType()->getNumParams()) 443 // The value is passed in through a vararg! Must be live. 444 return Live; 445 446 assert(CS.getArgument(ArgNo) 447 == CS->getOperand(U->getOperandNo()) 448 && "Argument is not where we expected it"); 449 450 // Value passed to a normal call. It's only live when the corresponding 451 // argument to the called function turns out live. 452 RetOrArg Use = CreateArg(F, ArgNo); 453 return MarkIfNotLive(Use, MaybeLiveUses); 454 } 455 } 456 // Used in any other way? Value must be live. 457 return Live; 458 } 459 460 /// SurveyUses - This looks at all the uses of the given value 461 /// Returns the Liveness deduced from the uses of this value. 462 /// 463 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If 464 /// the result is Live, MaybeLiveUses might be modified but its content should 465 /// be ignored (since it might not be complete). 466 DeadArgumentEliminationPass::Liveness 467 DeadArgumentEliminationPass::SurveyUses(const Value *V, 468 UseVector &MaybeLiveUses) { 469 // Assume it's dead (which will only hold if there are no uses at all..). 470 Liveness Result = MaybeLive; 471 // Check each use. 472 for (const Use &U : V->uses()) { 473 Result = SurveyUse(&U, MaybeLiveUses); 474 if (Result == Live) 475 break; 476 } 477 return Result; 478 } 479 480 // SurveyFunction - This performs the initial survey of the specified function, 481 // checking out whether or not it uses any of its incoming arguments or whether 482 // any callers use the return value. This fills in the LiveValues set and Uses 483 // map. 484 // 485 // We consider arguments of non-internal functions to be intrinsically alive as 486 // well as arguments to functions which have their "address taken". 487 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) { 488 // Functions with inalloca parameters are expecting args in a particular 489 // register and memory layout. 490 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) { 491 MarkLive(F); 492 return; 493 } 494 495 // Don't touch naked functions. The assembly might be using an argument, or 496 // otherwise rely on the frame layout in a way that this analysis will not 497 // see. 498 if (F.hasFnAttribute(Attribute::Naked)) { 499 MarkLive(F); 500 return; 501 } 502 503 unsigned RetCount = NumRetVals(&F); 504 505 // Assume all return values are dead 506 using RetVals = SmallVector<Liveness, 5>; 507 508 RetVals RetValLiveness(RetCount, MaybeLive); 509 510 using RetUses = SmallVector<UseVector, 5>; 511 512 // These vectors map each return value to the uses that make it MaybeLive, so 513 // we can add those to the Uses map if the return value really turns out to be 514 // MaybeLive. Initialized to a list of RetCount empty lists. 515 RetUses MaybeLiveRetUses(RetCount); 516 517 bool HasMustTailCalls = false; 518 519 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 520 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 521 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() 522 != F.getFunctionType()->getReturnType()) { 523 // We don't support old style multiple return values. 524 MarkLive(F); 525 return; 526 } 527 } 528 529 // If we have any returns of `musttail` results - the signature can't 530 // change 531 if (BB->getTerminatingMustTailCall() != nullptr) 532 HasMustTailCalls = true; 533 } 534 535 if (HasMustTailCalls) { 536 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 537 << " has musttail calls\n"); 538 } 539 540 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { 541 MarkLive(F); 542 return; 543 } 544 545 LLVM_DEBUG( 546 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " 547 << F.getName() << "\n"); 548 // Keep track of the number of live retvals, so we can skip checks once all 549 // of them turn out to be live. 550 unsigned NumLiveRetVals = 0; 551 552 bool HasMustTailCallers = false; 553 554 // Loop all uses of the function. 555 for (const Use &U : F.uses()) { 556 // If the function is PASSED IN as an argument, its address has been 557 // taken. 558 ImmutableCallSite CS(U.getUser()); 559 if (!CS || !CS.isCallee(&U)) { 560 MarkLive(F); 561 return; 562 } 563 564 // The number of arguments for `musttail` call must match the number of 565 // arguments of the caller 566 if (CS.isMustTailCall()) 567 HasMustTailCallers = true; 568 569 // If this use is anything other than a call site, the function is alive. 570 const Instruction *TheCall = CS.getInstruction(); 571 if (!TheCall) { // Not a direct call site? 572 MarkLive(F); 573 return; 574 } 575 576 // If we end up here, we are looking at a direct call to our function. 577 578 // Now, check how our return value(s) is/are used in this caller. Don't 579 // bother checking return values if all of them are live already. 580 if (NumLiveRetVals == RetCount) 581 continue; 582 583 // Check all uses of the return value. 584 for (const Use &U : TheCall->uses()) { 585 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) { 586 // This use uses a part of our return value, survey the uses of 587 // that part and store the results for this index only. 588 unsigned Idx = *Ext->idx_begin(); 589 if (RetValLiveness[Idx] != Live) { 590 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); 591 if (RetValLiveness[Idx] == Live) 592 NumLiveRetVals++; 593 } 594 } else { 595 // Used by something else than extractvalue. Survey, but assume that the 596 // result applies to all sub-values. 597 UseVector MaybeLiveAggregateUses; 598 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) { 599 NumLiveRetVals = RetCount; 600 RetValLiveness.assign(RetCount, Live); 601 break; 602 } else { 603 for (unsigned i = 0; i != RetCount; ++i) { 604 if (RetValLiveness[i] != Live) 605 MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(), 606 MaybeLiveAggregateUses.end()); 607 } 608 } 609 } 610 } 611 } 612 613 if (HasMustTailCallers) { 614 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 615 << " has musttail callers\n"); 616 } 617 618 // Now we've inspected all callers, record the liveness of our return values. 619 for (unsigned i = 0; i != RetCount; ++i) 620 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]); 621 622 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " 623 << F.getName() << "\n"); 624 625 // Now, check all of our arguments. 626 unsigned i = 0; 627 UseVector MaybeLiveArgUses; 628 for (Function::const_arg_iterator AI = F.arg_begin(), 629 E = F.arg_end(); AI != E; ++AI, ++i) { 630 Liveness Result; 631 if (F.getFunctionType()->isVarArg() || HasMustTailCallers || 632 HasMustTailCalls) { 633 // Variadic functions will already have a va_arg function expanded inside 634 // them, making them potentially very sensitive to ABI changes resulting 635 // from removing arguments entirely, so don't. For example AArch64 handles 636 // register and stack HFAs very differently, and this is reflected in the 637 // IR which has already been generated. 638 // 639 // `musttail` calls to this function restrict argument removal attempts. 640 // The signature of the caller must match the signature of the function. 641 // 642 // `musttail` calls in this function prevents us from changing its 643 // signature 644 Result = Live; 645 } else { 646 // See what the effect of this use is (recording any uses that cause 647 // MaybeLive in MaybeLiveArgUses). 648 Result = SurveyUses(&*AI, MaybeLiveArgUses); 649 } 650 651 // Mark the result. 652 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses); 653 // Clear the vector again for the next iteration. 654 MaybeLiveArgUses.clear(); 655 } 656 } 657 658 /// MarkValue - This function marks the liveness of RA depending on L. If L is 659 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, 660 /// such that RA will be marked live if any use in MaybeLiveUses gets marked 661 /// live later on. 662 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L, 663 const UseVector &MaybeLiveUses) { 664 switch (L) { 665 case Live: 666 MarkLive(RA); 667 break; 668 case MaybeLive: 669 // Note any uses of this value, so this return value can be 670 // marked live whenever one of the uses becomes live. 671 for (const auto &MaybeLiveUse : MaybeLiveUses) 672 Uses.insert(std::make_pair(MaybeLiveUse, RA)); 673 break; 674 } 675 } 676 677 /// MarkLive - Mark the given Function as alive, meaning that it cannot be 678 /// changed in any way. Additionally, 679 /// mark any values that are used as this function's parameters or by its return 680 /// values (according to Uses) live as well. 681 void DeadArgumentEliminationPass::MarkLive(const Function &F) { 682 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: " 683 << F.getName() << "\n"); 684 // Mark the function as live. 685 LiveFunctions.insert(&F); 686 // Mark all arguments as live. 687 for (unsigned i = 0, e = F.arg_size(); i != e; ++i) 688 PropagateLiveness(CreateArg(&F, i)); 689 // Mark all return values as live. 690 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i) 691 PropagateLiveness(CreateRet(&F, i)); 692 } 693 694 /// MarkLive - Mark the given return value or argument as live. Additionally, 695 /// mark any values that are used by this value (according to Uses) live as 696 /// well. 697 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) { 698 if (LiveFunctions.count(RA.F)) 699 return; // Function was already marked Live. 700 701 if (!LiveValues.insert(RA).second) 702 return; // We were already marked Live. 703 704 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " 705 << RA.getDescription() << " live\n"); 706 PropagateLiveness(RA); 707 } 708 709 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness 710 /// to any other values it uses (according to Uses). 711 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) { 712 // We don't use upper_bound (or equal_range) here, because our recursive call 713 // to ourselves is likely to cause the upper_bound (which is the first value 714 // not belonging to RA) to become erased and the iterator invalidated. 715 UseMap::iterator Begin = Uses.lower_bound(RA); 716 UseMap::iterator E = Uses.end(); 717 UseMap::iterator I; 718 for (I = Begin; I != E && I->first == RA; ++I) 719 MarkLive(I->second); 720 721 // Erase RA from the Uses map (from the lower bound to wherever we ended up 722 // after the loop). 723 Uses.erase(Begin, I); 724 } 725 726 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F 727 // that are not in LiveValues. Transform the function and all of the callees of 728 // the function to not have these arguments and return values. 729 // 730 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) { 731 // Don't modify fully live functions 732 if (LiveFunctions.count(F)) 733 return false; 734 735 // Start by computing a new prototype for the function, which is the same as 736 // the old function, but has fewer arguments and a different return type. 737 FunctionType *FTy = F->getFunctionType(); 738 std::vector<Type*> Params; 739 740 // Keep track of if we have a live 'returned' argument 741 bool HasLiveReturnedArg = false; 742 743 // Set up to build a new list of parameter attributes. 744 SmallVector<AttributeSet, 8> ArgAttrVec; 745 const AttributeList &PAL = F->getAttributes(); 746 747 // Remember which arguments are still alive. 748 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); 749 // Construct the new parameter list from non-dead arguments. Also construct 750 // a new set of parameter attributes to correspond. Skip the first parameter 751 // attribute, since that belongs to the return value. 752 unsigned i = 0; 753 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 754 I != E; ++I, ++i) { 755 RetOrArg Arg = CreateArg(F, i); 756 if (LiveValues.erase(Arg)) { 757 Params.push_back(I->getType()); 758 ArgAlive[i] = true; 759 ArgAttrVec.push_back(PAL.getParamAttributes(i)); 760 HasLiveReturnedArg |= PAL.hasParamAttribute(i, Attribute::Returned); 761 } else { 762 ++NumArgumentsEliminated; 763 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " 764 << i << " (" << I->getName() << ") from " 765 << F->getName() << "\n"); 766 } 767 } 768 769 // Find out the new return value. 770 Type *RetTy = FTy->getReturnType(); 771 Type *NRetTy = nullptr; 772 unsigned RetCount = NumRetVals(F); 773 774 // -1 means unused, other numbers are the new index 775 SmallVector<int, 5> NewRetIdxs(RetCount, -1); 776 std::vector<Type*> RetTypes; 777 778 // If there is a function with a live 'returned' argument but a dead return 779 // value, then there are two possible actions: 780 // 1) Eliminate the return value and take off the 'returned' attribute on the 781 // argument. 782 // 2) Retain the 'returned' attribute and treat the return value (but not the 783 // entire function) as live so that it is not eliminated. 784 // 785 // It's not clear in the general case which option is more profitable because, 786 // even in the absence of explicit uses of the return value, code generation 787 // is free to use the 'returned' attribute to do things like eliding 788 // save/restores of registers across calls. Whether or not this happens is 789 // target and ABI-specific as well as depending on the amount of register 790 // pressure, so there's no good way for an IR-level pass to figure this out. 791 // 792 // Fortunately, the only places where 'returned' is currently generated by 793 // the FE are places where 'returned' is basically free and almost always a 794 // performance win, so the second option can just be used always for now. 795 // 796 // This should be revisited if 'returned' is ever applied more liberally. 797 if (RetTy->isVoidTy() || HasLiveReturnedArg) { 798 NRetTy = RetTy; 799 } else { 800 // Look at each of the original return values individually. 801 for (unsigned i = 0; i != RetCount; ++i) { 802 RetOrArg Ret = CreateRet(F, i); 803 if (LiveValues.erase(Ret)) { 804 RetTypes.push_back(getRetComponentType(F, i)); 805 NewRetIdxs[i] = RetTypes.size() - 1; 806 } else { 807 ++NumRetValsEliminated; 808 LLVM_DEBUG( 809 dbgs() << "DeadArgumentEliminationPass - Removing return value " 810 << i << " from " << F->getName() << "\n"); 811 } 812 } 813 if (RetTypes.size() > 1) { 814 // More than one return type? Reduce it down to size. 815 if (StructType *STy = dyn_cast<StructType>(RetTy)) { 816 // Make the new struct packed if we used to return a packed struct 817 // already. 818 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); 819 } else { 820 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return"); 821 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); 822 } 823 } else if (RetTypes.size() == 1) 824 // One return type? Just a simple value then, but only if we didn't use to 825 // return a struct with that simple value before. 826 NRetTy = RetTypes.front(); 827 else if (RetTypes.empty()) 828 // No return types? Make it void, but only if we didn't use to return {}. 829 NRetTy = Type::getVoidTy(F->getContext()); 830 } 831 832 assert(NRetTy && "No new return type found?"); 833 834 // The existing function return attributes. 835 AttrBuilder RAttrs(PAL.getRetAttributes()); 836 837 // Remove any incompatible attributes, but only if we removed all return 838 // values. Otherwise, ensure that we don't have any conflicting attributes 839 // here. Currently, this should not be possible, but special handling might be 840 // required when new return value attributes are added. 841 if (NRetTy->isVoidTy()) 842 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 843 else 844 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) && 845 "Return attributes no longer compatible?"); 846 847 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 848 849 // Strip allocsize attributes. They might refer to the deleted arguments. 850 AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute( 851 F->getContext(), Attribute::AllocSize); 852 853 // Reconstruct the AttributesList based on the vector we constructed. 854 assert(ArgAttrVec.size() == Params.size()); 855 AttributeList NewPAL = 856 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 857 858 // Create the new function type based on the recomputed parameters. 859 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); 860 861 // No change? 862 if (NFTy == FTy) 863 return false; 864 865 // Create the new function body and insert it into the module... 866 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace()); 867 NF->copyAttributesFrom(F); 868 NF->setComdat(F->getComdat()); 869 NF->setAttributes(NewPAL); 870 // Insert the new function before the old function, so we won't be processing 871 // it again. 872 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 873 NF->takeName(F); 874 875 // Loop over all of the callers of the function, transforming the call sites 876 // to pass in a smaller number of arguments into the new function. 877 std::vector<Value*> Args; 878 while (!F->use_empty()) { 879 CallSite CS(F->user_back()); 880 Instruction *Call = CS.getInstruction(); 881 882 ArgAttrVec.clear(); 883 const AttributeList &CallPAL = CS.getAttributes(); 884 885 // Adjust the call return attributes in case the function was changed to 886 // return void. 887 AttrBuilder RAttrs(CallPAL.getRetAttributes()); 888 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 889 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 890 891 // Declare these outside of the loops, so we can reuse them for the second 892 // loop, which loops the varargs. 893 CallSite::arg_iterator I = CS.arg_begin(); 894 unsigned i = 0; 895 // Loop over those operands, corresponding to the normal arguments to the 896 // original function, and add those that are still alive. 897 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) 898 if (ArgAlive[i]) { 899 Args.push_back(*I); 900 // Get original parameter attributes, but skip return attributes. 901 AttributeSet Attrs = CallPAL.getParamAttributes(i); 902 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) { 903 // If the return type has changed, then get rid of 'returned' on the 904 // call site. The alternative is to make all 'returned' attributes on 905 // call sites keep the return value alive just like 'returned' 906 // attributes on function declaration but it's less clearly a win and 907 // this is not an expected case anyway 908 ArgAttrVec.push_back(AttributeSet::get( 909 F->getContext(), 910 AttrBuilder(Attrs).removeAttribute(Attribute::Returned))); 911 } else { 912 // Otherwise, use the original attributes. 913 ArgAttrVec.push_back(Attrs); 914 } 915 } 916 917 // Push any varargs arguments on the list. Don't forget their attributes. 918 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { 919 Args.push_back(*I); 920 ArgAttrVec.push_back(CallPAL.getParamAttributes(i)); 921 } 922 923 // Reconstruct the AttributesList based on the vector we constructed. 924 assert(ArgAttrVec.size() == Args.size()); 925 926 // Again, be sure to remove any allocsize attributes, since their indices 927 // may now be incorrect. 928 AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute( 929 F->getContext(), Attribute::AllocSize); 930 931 AttributeList NewCallPAL = AttributeList::get( 932 F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 933 934 SmallVector<OperandBundleDef, 1> OpBundles; 935 CS.getOperandBundlesAsDefs(OpBundles); 936 937 CallSite NewCS; 938 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 939 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 940 Args, OpBundles, "", Call->getParent()); 941 } else { 942 NewCS = CallInst::Create(NFTy, NF, Args, OpBundles, "", Call); 943 cast<CallInst>(NewCS.getInstruction()) 944 ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); 945 } 946 NewCS.setCallingConv(CS.getCallingConv()); 947 NewCS.setAttributes(NewCallPAL); 948 NewCS->setDebugLoc(Call->getDebugLoc()); 949 uint64_t W; 950 if (Call->extractProfTotalWeight(W)) 951 NewCS->setProfWeight(W); 952 Args.clear(); 953 ArgAttrVec.clear(); 954 955 Instruction *New = NewCS.getInstruction(); 956 if (!Call->use_empty() || Call->isUsedByMetadata()) { 957 if (New->getType() == Call->getType()) { 958 // Return type not changed? Just replace users then. 959 Call->replaceAllUsesWith(New); 960 New->takeName(Call); 961 } else if (New->getType()->isVoidTy()) { 962 // If the return value is dead, replace any uses of it with undef 963 // (any non-debug value uses will get removed later on). 964 if (!Call->getType()->isX86_MMXTy()) 965 Call->replaceAllUsesWith(UndefValue::get(Call->getType())); 966 } else { 967 assert((RetTy->isStructTy() || RetTy->isArrayTy()) && 968 "Return type changed, but not into a void. The old return type" 969 " must have been a struct or an array!"); 970 Instruction *InsertPt = Call; 971 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 972 BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest()); 973 InsertPt = &*NewEdge->getFirstInsertionPt(); 974 } 975 976 // We used to return a struct or array. Instead of doing smart stuff 977 // with all the uses, we will just rebuild it using extract/insertvalue 978 // chaining and let instcombine clean that up. 979 // 980 // Start out building up our return value from undef 981 Value *RetVal = UndefValue::get(RetTy); 982 for (unsigned i = 0; i != RetCount; ++i) 983 if (NewRetIdxs[i] != -1) { 984 Value *V; 985 if (RetTypes.size() > 1) 986 // We are still returning a struct, so extract the value from our 987 // return value 988 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret", 989 InsertPt); 990 else 991 // We are now returning a single element, so just insert that 992 V = New; 993 // Insert the value at the old position 994 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt); 995 } 996 // Now, replace all uses of the old call instruction with the return 997 // struct we built 998 Call->replaceAllUsesWith(RetVal); 999 New->takeName(Call); 1000 } 1001 } 1002 1003 // Finally, remove the old call from the program, reducing the use-count of 1004 // F. 1005 Call->eraseFromParent(); 1006 } 1007 1008 // Since we have now created the new function, splice the body of the old 1009 // function right into the new function, leaving the old rotting hulk of the 1010 // function empty. 1011 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 1012 1013 // Loop over the argument list, transferring uses of the old arguments over to 1014 // the new arguments, also transferring over the names as well. 1015 i = 0; 1016 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 1017 I2 = NF->arg_begin(); I != E; ++I, ++i) 1018 if (ArgAlive[i]) { 1019 // If this is a live argument, move the name and users over to the new 1020 // version. 1021 I->replaceAllUsesWith(&*I2); 1022 I2->takeName(&*I); 1023 ++I2; 1024 } else { 1025 // If this argument is dead, replace any uses of it with undef 1026 // (any non-debug value uses will get removed later on). 1027 if (!I->getType()->isX86_MMXTy()) 1028 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1029 } 1030 1031 // If we change the return value of the function we must rewrite any return 1032 // instructions. Check this now. 1033 if (F->getReturnType() != NF->getReturnType()) 1034 for (BasicBlock &BB : *NF) 1035 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 1036 Value *RetVal; 1037 1038 if (NFTy->getReturnType()->isVoidTy()) { 1039 RetVal = nullptr; 1040 } else { 1041 assert(RetTy->isStructTy() || RetTy->isArrayTy()); 1042 // The original return value was a struct or array, insert 1043 // extractvalue/insertvalue chains to extract only the values we need 1044 // to return and insert them into our new result. 1045 // This does generate messy code, but we'll let it to instcombine to 1046 // clean that up. 1047 Value *OldRet = RI->getOperand(0); 1048 // Start out building up our return value from undef 1049 RetVal = UndefValue::get(NRetTy); 1050 for (unsigned i = 0; i != RetCount; ++i) 1051 if (NewRetIdxs[i] != -1) { 1052 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, 1053 "oldret", RI); 1054 if (RetTypes.size() > 1) { 1055 // We're still returning a struct, so reinsert the value into 1056 // our new return value at the new index 1057 1058 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], 1059 "newret", RI); 1060 } else { 1061 // We are now only returning a simple value, so just return the 1062 // extracted value. 1063 RetVal = EV; 1064 } 1065 } 1066 } 1067 // Replace the return instruction with one returning the new return 1068 // value (possibly 0 if we became void). 1069 ReturnInst::Create(F->getContext(), RetVal, RI); 1070 BB.getInstList().erase(RI); 1071 } 1072 1073 // Clone metadatas from the old function, including debug info descriptor. 1074 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 1075 F->getAllMetadata(MDs); 1076 for (auto MD : MDs) 1077 NF->addMetadata(MD.first, *MD.second); 1078 1079 // Now that the old function is dead, delete it. 1080 F->eraseFromParent(); 1081 1082 return true; 1083 } 1084 1085 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, 1086 ModuleAnalysisManager &) { 1087 bool Changed = false; 1088 1089 // First pass: Do a simple check to see if any functions can have their "..." 1090 // removed. We can do this if they never call va_start. This loop cannot be 1091 // fused with the next loop, because deleting a function invalidates 1092 // information computed while surveying other functions. 1093 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n"); 1094 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1095 Function &F = *I++; 1096 if (F.getFunctionType()->isVarArg()) 1097 Changed |= DeleteDeadVarargs(F); 1098 } 1099 1100 // Second phase:loop through the module, determining which arguments are live. 1101 // We assume all arguments are dead unless proven otherwise (allowing us to 1102 // determine that dead arguments passed into recursive functions are dead). 1103 // 1104 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n"); 1105 for (auto &F : M) 1106 SurveyFunction(F); 1107 1108 // Now, remove all dead arguments and return values from each function in 1109 // turn. 1110 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1111 // Increment now, because the function will probably get removed (ie. 1112 // replaced by a new one). 1113 Function *F = &*I++; 1114 Changed |= RemoveDeadStuffFromFunction(F); 1115 } 1116 1117 // Finally, look for any unused parameters in functions with non-local 1118 // linkage and replace the passed in parameters with undef. 1119 for (auto &F : M) 1120 Changed |= RemoveDeadArgumentsFromCallers(F); 1121 1122 if (!Changed) 1123 return PreservedAnalyses::all(); 1124 return PreservedAnalyses::none(); 1125 } 1126