1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass deletes dead arguments from internal functions. Dead argument 10 // elimination removes arguments which are directly dead, as well as arguments 11 // only passed into function calls as dead arguments of other functions. This 12 // pass also deletes dead return values in a similar way. 13 // 14 // This pass is often useful as a cleanup pass to run after aggressive 15 // interprocedural passes, which add possibly-dead arguments or return values. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Use.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/IPO.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <utility> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "deadargelim" 54 55 STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); 56 STATISTIC(NumRetValsEliminated , "Number of unused return values removed"); 57 STATISTIC(NumArgumentsReplacedWithUndef, 58 "Number of unread args replaced with undef"); 59 60 namespace { 61 62 /// DAE - The dead argument elimination pass. 63 class DAE : public ModulePass { 64 protected: 65 // DAH uses this to specify a different ID. 66 explicit DAE(char &ID) : ModulePass(ID) {} 67 68 public: 69 static char ID; // Pass identification, replacement for typeid 70 71 DAE() : ModulePass(ID) { 72 initializeDAEPass(*PassRegistry::getPassRegistry()); 73 } 74 75 bool runOnModule(Module &M) override { 76 if (skipModule(M)) 77 return false; 78 DeadArgumentEliminationPass DAEP(ShouldHackArguments()); 79 ModuleAnalysisManager DummyMAM; 80 PreservedAnalyses PA = DAEP.run(M, DummyMAM); 81 return !PA.areAllPreserved(); 82 } 83 84 virtual bool ShouldHackArguments() const { return false; } 85 }; 86 87 } // end anonymous namespace 88 89 char DAE::ID = 0; 90 91 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) 92 93 namespace { 94 95 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but 96 /// deletes arguments to functions which are external. This is only for use 97 /// by bugpoint. 98 struct DAH : public DAE { 99 static char ID; 100 101 DAH() : DAE(ID) {} 102 103 bool ShouldHackArguments() const override { return true; } 104 }; 105 106 } // end anonymous namespace 107 108 char DAH::ID = 0; 109 110 INITIALIZE_PASS(DAH, "deadarghaX0r", 111 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", 112 false, false) 113 114 /// createDeadArgEliminationPass - This pass removes arguments from functions 115 /// which are not used by the body of the function. 116 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } 117 118 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } 119 120 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if 121 /// llvm.vastart is never called, the varargs list is dead for the function. 122 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) { 123 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); 124 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; 125 126 // Ensure that the function is only directly called. 127 if (Fn.hasAddressTaken()) 128 return false; 129 130 // Don't touch naked functions. The assembly might be using an argument, or 131 // otherwise rely on the frame layout in a way that this analysis will not 132 // see. 133 if (Fn.hasFnAttribute(Attribute::Naked)) { 134 return false; 135 } 136 137 // Okay, we know we can transform this function if safe. Scan its body 138 // looking for calls marked musttail or calls to llvm.vastart. 139 for (BasicBlock &BB : Fn) { 140 for (Instruction &I : BB) { 141 CallInst *CI = dyn_cast<CallInst>(&I); 142 if (!CI) 143 continue; 144 if (CI->isMustTailCall()) 145 return false; 146 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 147 if (II->getIntrinsicID() == Intrinsic::vastart) 148 return false; 149 } 150 } 151 } 152 153 // If we get here, there are no calls to llvm.vastart in the function body, 154 // remove the "..." and adjust all the calls. 155 156 // Start by computing a new prototype for the function, which is the same as 157 // the old function, but doesn't have isVarArg set. 158 FunctionType *FTy = Fn.getFunctionType(); 159 160 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end()); 161 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), 162 Params, false); 163 unsigned NumArgs = Params.size(); 164 165 // Create the new function body and insert it into the module... 166 Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace()); 167 NF->copyAttributesFrom(&Fn); 168 NF->setComdat(Fn.getComdat()); 169 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF); 170 NF->takeName(&Fn); 171 172 // Loop over all of the callers of the function, transforming the call sites 173 // to pass in a smaller number of arguments into the new function. 174 // 175 std::vector<Value *> Args; 176 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) { 177 CallSite CS(*I++); 178 if (!CS) 179 continue; 180 Instruction *Call = CS.getInstruction(); 181 182 // Pass all the same arguments. 183 Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs); 184 185 // Drop any attributes that were on the vararg arguments. 186 AttributeList PAL = CS.getAttributes(); 187 if (!PAL.isEmpty()) { 188 SmallVector<AttributeSet, 8> ArgAttrs; 189 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) 190 ArgAttrs.push_back(PAL.getParamAttributes(ArgNo)); 191 PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(), 192 PAL.getRetAttributes(), ArgAttrs); 193 } 194 195 SmallVector<OperandBundleDef, 1> OpBundles; 196 CS.getOperandBundlesAsDefs(OpBundles); 197 198 CallSite NewCS; 199 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 200 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 201 Args, OpBundles, "", Call); 202 } else { 203 NewCS = CallInst::Create(NF, Args, OpBundles, "", Call); 204 cast<CallInst>(NewCS.getInstruction()) 205 ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); 206 } 207 NewCS.setCallingConv(CS.getCallingConv()); 208 NewCS.setAttributes(PAL); 209 NewCS->setDebugLoc(Call->getDebugLoc()); 210 uint64_t W; 211 if (Call->extractProfTotalWeight(W)) 212 NewCS->setProfWeight(W); 213 214 Args.clear(); 215 216 if (!Call->use_empty()) 217 Call->replaceAllUsesWith(NewCS.getInstruction()); 218 219 NewCS->takeName(Call); 220 221 // Finally, remove the old call from the program, reducing the use-count of 222 // F. 223 Call->eraseFromParent(); 224 } 225 226 // Since we have now created the new function, splice the body of the old 227 // function right into the new function, leaving the old rotting hulk of the 228 // function empty. 229 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); 230 231 // Loop over the argument list, transferring uses of the old arguments over to 232 // the new arguments, also transferring over the names as well. While we're at 233 // it, remove the dead arguments from the DeadArguments list. 234 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), 235 I2 = NF->arg_begin(); I != E; ++I, ++I2) { 236 // Move the name and users over to the new version. 237 I->replaceAllUsesWith(&*I2); 238 I2->takeName(&*I); 239 } 240 241 // Clone metadatas from the old function, including debug info descriptor. 242 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 243 Fn.getAllMetadata(MDs); 244 for (auto MD : MDs) 245 NF->addMetadata(MD.first, *MD.second); 246 247 // Fix up any BlockAddresses that refer to the function. 248 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType())); 249 // Delete the bitcast that we just created, so that NF does not 250 // appear to be address-taken. 251 NF->removeDeadConstantUsers(); 252 // Finally, nuke the old function. 253 Fn.eraseFromParent(); 254 return true; 255 } 256 257 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any 258 /// arguments that are unused, and changes the caller parameters to be undefined 259 /// instead. 260 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) { 261 // We cannot change the arguments if this TU does not define the function or 262 // if the linker may choose a function body from another TU, even if the 263 // nominal linkage indicates that other copies of the function have the same 264 // semantics. In the below example, the dead load from %p may not have been 265 // eliminated from the linker-chosen copy of f, so replacing %p with undef 266 // in callers may introduce undefined behavior. 267 // 268 // define linkonce_odr void @f(i32* %p) { 269 // %v = load i32 %p 270 // ret void 271 // } 272 if (!Fn.hasExactDefinition()) 273 return false; 274 275 // Functions with local linkage should already have been handled, except the 276 // fragile (variadic) ones which we can improve here. 277 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg()) 278 return false; 279 280 // Don't touch naked functions. The assembly might be using an argument, or 281 // otherwise rely on the frame layout in a way that this analysis will not 282 // see. 283 if (Fn.hasFnAttribute(Attribute::Naked)) 284 return false; 285 286 if (Fn.use_empty()) 287 return false; 288 289 SmallVector<unsigned, 8> UnusedArgs; 290 bool Changed = false; 291 292 for (Argument &Arg : Fn.args()) { 293 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && !Arg.hasByValOrInAllocaAttr()) { 294 if (Arg.isUsedByMetadata()) { 295 Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); 296 Changed = true; 297 } 298 UnusedArgs.push_back(Arg.getArgNo()); 299 } 300 } 301 302 if (UnusedArgs.empty()) 303 return false; 304 305 for (Use &U : Fn.uses()) { 306 CallSite CS(U.getUser()); 307 if (!CS || !CS.isCallee(&U)) 308 continue; 309 310 // Now go through all unused args and replace them with "undef". 311 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { 312 unsigned ArgNo = UnusedArgs[I]; 313 314 Value *Arg = CS.getArgument(ArgNo); 315 CS.setArgument(ArgNo, UndefValue::get(Arg->getType())); 316 ++NumArgumentsReplacedWithUndef; 317 Changed = true; 318 } 319 } 320 321 return Changed; 322 } 323 324 /// Convenience function that returns the number of return values. It returns 0 325 /// for void functions and 1 for functions not returning a struct. It returns 326 /// the number of struct elements for functions returning a struct. 327 static unsigned NumRetVals(const Function *F) { 328 Type *RetTy = F->getReturnType(); 329 if (RetTy->isVoidTy()) 330 return 0; 331 else if (StructType *STy = dyn_cast<StructType>(RetTy)) 332 return STy->getNumElements(); 333 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 334 return ATy->getNumElements(); 335 else 336 return 1; 337 } 338 339 /// Returns the sub-type a function will return at a given Idx. Should 340 /// correspond to the result type of an ExtractValue instruction executed with 341 /// just that one Idx (i.e. only top-level structure is considered). 342 static Type *getRetComponentType(const Function *F, unsigned Idx) { 343 Type *RetTy = F->getReturnType(); 344 assert(!RetTy->isVoidTy() && "void type has no subtype"); 345 346 if (StructType *STy = dyn_cast<StructType>(RetTy)) 347 return STy->getElementType(Idx); 348 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 349 return ATy->getElementType(); 350 else 351 return RetTy; 352 } 353 354 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not 355 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined 356 /// liveness of Use. 357 DeadArgumentEliminationPass::Liveness 358 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use, 359 UseVector &MaybeLiveUses) { 360 // We're live if our use or its Function is already marked as live. 361 if (LiveFunctions.count(Use.F) || LiveValues.count(Use)) 362 return Live; 363 364 // We're maybe live otherwise, but remember that we must become live if 365 // Use becomes live. 366 MaybeLiveUses.push_back(Use); 367 return MaybeLive; 368 } 369 370 /// SurveyUse - This looks at a single use of an argument or return value 371 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses 372 /// if it causes the used value to become MaybeLive. 373 /// 374 /// RetValNum is the return value number to use when this use is used in a 375 /// return instruction. This is used in the recursion, you should always leave 376 /// it at 0. 377 DeadArgumentEliminationPass::Liveness 378 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses, 379 unsigned RetValNum) { 380 const User *V = U->getUser(); 381 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { 382 // The value is returned from a function. It's only live when the 383 // function's return value is live. We use RetValNum here, for the case 384 // that U is really a use of an insertvalue instruction that uses the 385 // original Use. 386 const Function *F = RI->getParent()->getParent(); 387 if (RetValNum != -1U) { 388 RetOrArg Use = CreateRet(F, RetValNum); 389 // We might be live, depending on the liveness of Use. 390 return MarkIfNotLive(Use, MaybeLiveUses); 391 } else { 392 DeadArgumentEliminationPass::Liveness Result = MaybeLive; 393 for (unsigned i = 0; i < NumRetVals(F); ++i) { 394 RetOrArg Use = CreateRet(F, i); 395 // We might be live, depending on the liveness of Use. If any 396 // sub-value is live, then the entire value is considered live. This 397 // is a conservative choice, and better tracking is possible. 398 DeadArgumentEliminationPass::Liveness SubResult = 399 MarkIfNotLive(Use, MaybeLiveUses); 400 if (Result != Live) 401 Result = SubResult; 402 } 403 return Result; 404 } 405 } 406 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { 407 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() 408 && IV->hasIndices()) 409 // The use we are examining is inserted into an aggregate. Our liveness 410 // depends on all uses of that aggregate, but if it is used as a return 411 // value, only index at which we were inserted counts. 412 RetValNum = *IV->idx_begin(); 413 414 // Note that if we are used as the aggregate operand to the insertvalue, 415 // we don't change RetValNum, but do survey all our uses. 416 417 Liveness Result = MaybeLive; 418 for (const Use &UU : IV->uses()) { 419 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum); 420 if (Result == Live) 421 break; 422 } 423 return Result; 424 } 425 426 if (auto CS = ImmutableCallSite(V)) { 427 const Function *F = CS.getCalledFunction(); 428 if (F) { 429 // Used in a direct call. 430 431 // The function argument is live if it is used as a bundle operand. 432 if (CS.isBundleOperand(U)) 433 return Live; 434 435 // Find the argument number. We know for sure that this use is an 436 // argument, since if it was the function argument this would be an 437 // indirect call and the we know can't be looking at a value of the 438 // label type (for the invoke instruction). 439 unsigned ArgNo = CS.getArgumentNo(U); 440 441 if (ArgNo >= F->getFunctionType()->getNumParams()) 442 // The value is passed in through a vararg! Must be live. 443 return Live; 444 445 assert(CS.getArgument(ArgNo) 446 == CS->getOperand(U->getOperandNo()) 447 && "Argument is not where we expected it"); 448 449 // Value passed to a normal call. It's only live when the corresponding 450 // argument to the called function turns out live. 451 RetOrArg Use = CreateArg(F, ArgNo); 452 return MarkIfNotLive(Use, MaybeLiveUses); 453 } 454 } 455 // Used in any other way? Value must be live. 456 return Live; 457 } 458 459 /// SurveyUses - This looks at all the uses of the given value 460 /// Returns the Liveness deduced from the uses of this value. 461 /// 462 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If 463 /// the result is Live, MaybeLiveUses might be modified but its content should 464 /// be ignored (since it might not be complete). 465 DeadArgumentEliminationPass::Liveness 466 DeadArgumentEliminationPass::SurveyUses(const Value *V, 467 UseVector &MaybeLiveUses) { 468 // Assume it's dead (which will only hold if there are no uses at all..). 469 Liveness Result = MaybeLive; 470 // Check each use. 471 for (const Use &U : V->uses()) { 472 Result = SurveyUse(&U, MaybeLiveUses); 473 if (Result == Live) 474 break; 475 } 476 return Result; 477 } 478 479 // SurveyFunction - This performs the initial survey of the specified function, 480 // checking out whether or not it uses any of its incoming arguments or whether 481 // any callers use the return value. This fills in the LiveValues set and Uses 482 // map. 483 // 484 // We consider arguments of non-internal functions to be intrinsically alive as 485 // well as arguments to functions which have their "address taken". 486 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) { 487 // Functions with inalloca parameters are expecting args in a particular 488 // register and memory layout. 489 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) { 490 MarkLive(F); 491 return; 492 } 493 494 // Don't touch naked functions. The assembly might be using an argument, or 495 // otherwise rely on the frame layout in a way that this analysis will not 496 // see. 497 if (F.hasFnAttribute(Attribute::Naked)) { 498 MarkLive(F); 499 return; 500 } 501 502 unsigned RetCount = NumRetVals(&F); 503 504 // Assume all return values are dead 505 using RetVals = SmallVector<Liveness, 5>; 506 507 RetVals RetValLiveness(RetCount, MaybeLive); 508 509 using RetUses = SmallVector<UseVector, 5>; 510 511 // These vectors map each return value to the uses that make it MaybeLive, so 512 // we can add those to the Uses map if the return value really turns out to be 513 // MaybeLive. Initialized to a list of RetCount empty lists. 514 RetUses MaybeLiveRetUses(RetCount); 515 516 bool HasMustTailCalls = false; 517 518 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 519 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 520 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() 521 != F.getFunctionType()->getReturnType()) { 522 // We don't support old style multiple return values. 523 MarkLive(F); 524 return; 525 } 526 } 527 528 // If we have any returns of `musttail` results - the signature can't 529 // change 530 if (BB->getTerminatingMustTailCall() != nullptr) 531 HasMustTailCalls = true; 532 } 533 534 if (HasMustTailCalls) { 535 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 536 << " has musttail calls\n"); 537 } 538 539 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { 540 MarkLive(F); 541 return; 542 } 543 544 LLVM_DEBUG( 545 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " 546 << F.getName() << "\n"); 547 // Keep track of the number of live retvals, so we can skip checks once all 548 // of them turn out to be live. 549 unsigned NumLiveRetVals = 0; 550 551 bool HasMustTailCallers = false; 552 553 // Loop all uses of the function. 554 for (const Use &U : F.uses()) { 555 // If the function is PASSED IN as an argument, its address has been 556 // taken. 557 ImmutableCallSite CS(U.getUser()); 558 if (!CS || !CS.isCallee(&U)) { 559 MarkLive(F); 560 return; 561 } 562 563 // The number of arguments for `musttail` call must match the number of 564 // arguments of the caller 565 if (CS.isMustTailCall()) 566 HasMustTailCallers = true; 567 568 // If this use is anything other than a call site, the function is alive. 569 const Instruction *TheCall = CS.getInstruction(); 570 if (!TheCall) { // Not a direct call site? 571 MarkLive(F); 572 return; 573 } 574 575 // If we end up here, we are looking at a direct call to our function. 576 577 // Now, check how our return value(s) is/are used in this caller. Don't 578 // bother checking return values if all of them are live already. 579 if (NumLiveRetVals == RetCount) 580 continue; 581 582 // Check all uses of the return value. 583 for (const Use &U : TheCall->uses()) { 584 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) { 585 // This use uses a part of our return value, survey the uses of 586 // that part and store the results for this index only. 587 unsigned Idx = *Ext->idx_begin(); 588 if (RetValLiveness[Idx] != Live) { 589 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); 590 if (RetValLiveness[Idx] == Live) 591 NumLiveRetVals++; 592 } 593 } else { 594 // Used by something else than extractvalue. Survey, but assume that the 595 // result applies to all sub-values. 596 UseVector MaybeLiveAggregateUses; 597 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) { 598 NumLiveRetVals = RetCount; 599 RetValLiveness.assign(RetCount, Live); 600 break; 601 } else { 602 for (unsigned i = 0; i != RetCount; ++i) { 603 if (RetValLiveness[i] != Live) 604 MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(), 605 MaybeLiveAggregateUses.end()); 606 } 607 } 608 } 609 } 610 } 611 612 if (HasMustTailCallers) { 613 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 614 << " has musttail callers\n"); 615 } 616 617 // Now we've inspected all callers, record the liveness of our return values. 618 for (unsigned i = 0; i != RetCount; ++i) 619 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]); 620 621 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " 622 << F.getName() << "\n"); 623 624 // Now, check all of our arguments. 625 unsigned i = 0; 626 UseVector MaybeLiveArgUses; 627 for (Function::const_arg_iterator AI = F.arg_begin(), 628 E = F.arg_end(); AI != E; ++AI, ++i) { 629 Liveness Result; 630 if (F.getFunctionType()->isVarArg() || HasMustTailCallers || 631 HasMustTailCalls) { 632 // Variadic functions will already have a va_arg function expanded inside 633 // them, making them potentially very sensitive to ABI changes resulting 634 // from removing arguments entirely, so don't. For example AArch64 handles 635 // register and stack HFAs very differently, and this is reflected in the 636 // IR which has already been generated. 637 // 638 // `musttail` calls to this function restrict argument removal attempts. 639 // The signature of the caller must match the signature of the function. 640 // 641 // `musttail` calls in this function prevents us from changing its 642 // signature 643 Result = Live; 644 } else { 645 // See what the effect of this use is (recording any uses that cause 646 // MaybeLive in MaybeLiveArgUses). 647 Result = SurveyUses(&*AI, MaybeLiveArgUses); 648 } 649 650 // Mark the result. 651 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses); 652 // Clear the vector again for the next iteration. 653 MaybeLiveArgUses.clear(); 654 } 655 } 656 657 /// MarkValue - This function marks the liveness of RA depending on L. If L is 658 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, 659 /// such that RA will be marked live if any use in MaybeLiveUses gets marked 660 /// live later on. 661 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L, 662 const UseVector &MaybeLiveUses) { 663 switch (L) { 664 case Live: 665 MarkLive(RA); 666 break; 667 case MaybeLive: 668 // Note any uses of this value, so this return value can be 669 // marked live whenever one of the uses becomes live. 670 for (const auto &MaybeLiveUse : MaybeLiveUses) 671 Uses.insert(std::make_pair(MaybeLiveUse, RA)); 672 break; 673 } 674 } 675 676 /// MarkLive - Mark the given Function as alive, meaning that it cannot be 677 /// changed in any way. Additionally, 678 /// mark any values that are used as this function's parameters or by its return 679 /// values (according to Uses) live as well. 680 void DeadArgumentEliminationPass::MarkLive(const Function &F) { 681 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: " 682 << F.getName() << "\n"); 683 // Mark the function as live. 684 LiveFunctions.insert(&F); 685 // Mark all arguments as live. 686 for (unsigned i = 0, e = F.arg_size(); i != e; ++i) 687 PropagateLiveness(CreateArg(&F, i)); 688 // Mark all return values as live. 689 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i) 690 PropagateLiveness(CreateRet(&F, i)); 691 } 692 693 /// MarkLive - Mark the given return value or argument as live. Additionally, 694 /// mark any values that are used by this value (according to Uses) live as 695 /// well. 696 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) { 697 if (LiveFunctions.count(RA.F)) 698 return; // Function was already marked Live. 699 700 if (!LiveValues.insert(RA).second) 701 return; // We were already marked Live. 702 703 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " 704 << RA.getDescription() << " live\n"); 705 PropagateLiveness(RA); 706 } 707 708 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness 709 /// to any other values it uses (according to Uses). 710 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) { 711 // We don't use upper_bound (or equal_range) here, because our recursive call 712 // to ourselves is likely to cause the upper_bound (which is the first value 713 // not belonging to RA) to become erased and the iterator invalidated. 714 UseMap::iterator Begin = Uses.lower_bound(RA); 715 UseMap::iterator E = Uses.end(); 716 UseMap::iterator I; 717 for (I = Begin; I != E && I->first == RA; ++I) 718 MarkLive(I->second); 719 720 // Erase RA from the Uses map (from the lower bound to wherever we ended up 721 // after the loop). 722 Uses.erase(Begin, I); 723 } 724 725 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F 726 // that are not in LiveValues. Transform the function and all of the callees of 727 // the function to not have these arguments and return values. 728 // 729 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) { 730 // Don't modify fully live functions 731 if (LiveFunctions.count(F)) 732 return false; 733 734 // Start by computing a new prototype for the function, which is the same as 735 // the old function, but has fewer arguments and a different return type. 736 FunctionType *FTy = F->getFunctionType(); 737 std::vector<Type*> Params; 738 739 // Keep track of if we have a live 'returned' argument 740 bool HasLiveReturnedArg = false; 741 742 // Set up to build a new list of parameter attributes. 743 SmallVector<AttributeSet, 8> ArgAttrVec; 744 const AttributeList &PAL = F->getAttributes(); 745 746 // Remember which arguments are still alive. 747 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); 748 // Construct the new parameter list from non-dead arguments. Also construct 749 // a new set of parameter attributes to correspond. Skip the first parameter 750 // attribute, since that belongs to the return value. 751 unsigned i = 0; 752 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 753 I != E; ++I, ++i) { 754 RetOrArg Arg = CreateArg(F, i); 755 if (LiveValues.erase(Arg)) { 756 Params.push_back(I->getType()); 757 ArgAlive[i] = true; 758 ArgAttrVec.push_back(PAL.getParamAttributes(i)); 759 HasLiveReturnedArg |= PAL.hasParamAttribute(i, Attribute::Returned); 760 } else { 761 ++NumArgumentsEliminated; 762 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " 763 << i << " (" << I->getName() << ") from " 764 << F->getName() << "\n"); 765 } 766 } 767 768 // Find out the new return value. 769 Type *RetTy = FTy->getReturnType(); 770 Type *NRetTy = nullptr; 771 unsigned RetCount = NumRetVals(F); 772 773 // -1 means unused, other numbers are the new index 774 SmallVector<int, 5> NewRetIdxs(RetCount, -1); 775 std::vector<Type*> RetTypes; 776 777 // If there is a function with a live 'returned' argument but a dead return 778 // value, then there are two possible actions: 779 // 1) Eliminate the return value and take off the 'returned' attribute on the 780 // argument. 781 // 2) Retain the 'returned' attribute and treat the return value (but not the 782 // entire function) as live so that it is not eliminated. 783 // 784 // It's not clear in the general case which option is more profitable because, 785 // even in the absence of explicit uses of the return value, code generation 786 // is free to use the 'returned' attribute to do things like eliding 787 // save/restores of registers across calls. Whether or not this happens is 788 // target and ABI-specific as well as depending on the amount of register 789 // pressure, so there's no good way for an IR-level pass to figure this out. 790 // 791 // Fortunately, the only places where 'returned' is currently generated by 792 // the FE are places where 'returned' is basically free and almost always a 793 // performance win, so the second option can just be used always for now. 794 // 795 // This should be revisited if 'returned' is ever applied more liberally. 796 if (RetTy->isVoidTy() || HasLiveReturnedArg) { 797 NRetTy = RetTy; 798 } else { 799 // Look at each of the original return values individually. 800 for (unsigned i = 0; i != RetCount; ++i) { 801 RetOrArg Ret = CreateRet(F, i); 802 if (LiveValues.erase(Ret)) { 803 RetTypes.push_back(getRetComponentType(F, i)); 804 NewRetIdxs[i] = RetTypes.size() - 1; 805 } else { 806 ++NumRetValsEliminated; 807 LLVM_DEBUG( 808 dbgs() << "DeadArgumentEliminationPass - Removing return value " 809 << i << " from " << F->getName() << "\n"); 810 } 811 } 812 if (RetTypes.size() > 1) { 813 // More than one return type? Reduce it down to size. 814 if (StructType *STy = dyn_cast<StructType>(RetTy)) { 815 // Make the new struct packed if we used to return a packed struct 816 // already. 817 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); 818 } else { 819 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return"); 820 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); 821 } 822 } else if (RetTypes.size() == 1) 823 // One return type? Just a simple value then, but only if we didn't use to 824 // return a struct with that simple value before. 825 NRetTy = RetTypes.front(); 826 else if (RetTypes.empty()) 827 // No return types? Make it void, but only if we didn't use to return {}. 828 NRetTy = Type::getVoidTy(F->getContext()); 829 } 830 831 assert(NRetTy && "No new return type found?"); 832 833 // The existing function return attributes. 834 AttrBuilder RAttrs(PAL.getRetAttributes()); 835 836 // Remove any incompatible attributes, but only if we removed all return 837 // values. Otherwise, ensure that we don't have any conflicting attributes 838 // here. Currently, this should not be possible, but special handling might be 839 // required when new return value attributes are added. 840 if (NRetTy->isVoidTy()) 841 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 842 else 843 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) && 844 "Return attributes no longer compatible?"); 845 846 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 847 848 // Strip allocsize attributes. They might refer to the deleted arguments. 849 AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute( 850 F->getContext(), Attribute::AllocSize); 851 852 // Reconstruct the AttributesList based on the vector we constructed. 853 assert(ArgAttrVec.size() == Params.size()); 854 AttributeList NewPAL = 855 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 856 857 // Create the new function type based on the recomputed parameters. 858 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); 859 860 // No change? 861 if (NFTy == FTy) 862 return false; 863 864 // Create the new function body and insert it into the module... 865 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace()); 866 NF->copyAttributesFrom(F); 867 NF->setComdat(F->getComdat()); 868 NF->setAttributes(NewPAL); 869 // Insert the new function before the old function, so we won't be processing 870 // it again. 871 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 872 NF->takeName(F); 873 874 // Loop over all of the callers of the function, transforming the call sites 875 // to pass in a smaller number of arguments into the new function. 876 std::vector<Value*> Args; 877 while (!F->use_empty()) { 878 CallSite CS(F->user_back()); 879 Instruction *Call = CS.getInstruction(); 880 881 ArgAttrVec.clear(); 882 const AttributeList &CallPAL = CS.getAttributes(); 883 884 // Adjust the call return attributes in case the function was changed to 885 // return void. 886 AttrBuilder RAttrs(CallPAL.getRetAttributes()); 887 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 888 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 889 890 // Declare these outside of the loops, so we can reuse them for the second 891 // loop, which loops the varargs. 892 CallSite::arg_iterator I = CS.arg_begin(); 893 unsigned i = 0; 894 // Loop over those operands, corresponding to the normal arguments to the 895 // original function, and add those that are still alive. 896 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) 897 if (ArgAlive[i]) { 898 Args.push_back(*I); 899 // Get original parameter attributes, but skip return attributes. 900 AttributeSet Attrs = CallPAL.getParamAttributes(i); 901 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) { 902 // If the return type has changed, then get rid of 'returned' on the 903 // call site. The alternative is to make all 'returned' attributes on 904 // call sites keep the return value alive just like 'returned' 905 // attributes on function declaration but it's less clearly a win and 906 // this is not an expected case anyway 907 ArgAttrVec.push_back(AttributeSet::get( 908 F->getContext(), 909 AttrBuilder(Attrs).removeAttribute(Attribute::Returned))); 910 } else { 911 // Otherwise, use the original attributes. 912 ArgAttrVec.push_back(Attrs); 913 } 914 } 915 916 // Push any varargs arguments on the list. Don't forget their attributes. 917 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { 918 Args.push_back(*I); 919 ArgAttrVec.push_back(CallPAL.getParamAttributes(i)); 920 } 921 922 // Reconstruct the AttributesList based on the vector we constructed. 923 assert(ArgAttrVec.size() == Args.size()); 924 925 // Again, be sure to remove any allocsize attributes, since their indices 926 // may now be incorrect. 927 AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute( 928 F->getContext(), Attribute::AllocSize); 929 930 AttributeList NewCallPAL = AttributeList::get( 931 F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 932 933 SmallVector<OperandBundleDef, 1> OpBundles; 934 CS.getOperandBundlesAsDefs(OpBundles); 935 936 CallSite NewCS; 937 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 938 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 939 Args, OpBundles, "", Call->getParent()); 940 } else { 941 NewCS = CallInst::Create(NFTy, NF, Args, OpBundles, "", Call); 942 cast<CallInst>(NewCS.getInstruction()) 943 ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); 944 } 945 NewCS.setCallingConv(CS.getCallingConv()); 946 NewCS.setAttributes(NewCallPAL); 947 NewCS->setDebugLoc(Call->getDebugLoc()); 948 uint64_t W; 949 if (Call->extractProfTotalWeight(W)) 950 NewCS->setProfWeight(W); 951 Args.clear(); 952 ArgAttrVec.clear(); 953 954 Instruction *New = NewCS.getInstruction(); 955 if (!Call->use_empty() || Call->isUsedByMetadata()) { 956 if (New->getType() == Call->getType()) { 957 // Return type not changed? Just replace users then. 958 Call->replaceAllUsesWith(New); 959 New->takeName(Call); 960 } else if (New->getType()->isVoidTy()) { 961 // If the return value is dead, replace any uses of it with undef 962 // (any non-debug value uses will get removed later on). 963 if (!Call->getType()->isX86_MMXTy()) 964 Call->replaceAllUsesWith(UndefValue::get(Call->getType())); 965 } else { 966 assert((RetTy->isStructTy() || RetTy->isArrayTy()) && 967 "Return type changed, but not into a void. The old return type" 968 " must have been a struct or an array!"); 969 Instruction *InsertPt = Call; 970 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 971 BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest()); 972 InsertPt = &*NewEdge->getFirstInsertionPt(); 973 } 974 975 // We used to return a struct or array. Instead of doing smart stuff 976 // with all the uses, we will just rebuild it using extract/insertvalue 977 // chaining and let instcombine clean that up. 978 // 979 // Start out building up our return value from undef 980 Value *RetVal = UndefValue::get(RetTy); 981 for (unsigned i = 0; i != RetCount; ++i) 982 if (NewRetIdxs[i] != -1) { 983 Value *V; 984 if (RetTypes.size() > 1) 985 // We are still returning a struct, so extract the value from our 986 // return value 987 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret", 988 InsertPt); 989 else 990 // We are now returning a single element, so just insert that 991 V = New; 992 // Insert the value at the old position 993 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt); 994 } 995 // Now, replace all uses of the old call instruction with the return 996 // struct we built 997 Call->replaceAllUsesWith(RetVal); 998 New->takeName(Call); 999 } 1000 } 1001 1002 // Finally, remove the old call from the program, reducing the use-count of 1003 // F. 1004 Call->eraseFromParent(); 1005 } 1006 1007 // Since we have now created the new function, splice the body of the old 1008 // function right into the new function, leaving the old rotting hulk of the 1009 // function empty. 1010 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 1011 1012 // Loop over the argument list, transferring uses of the old arguments over to 1013 // the new arguments, also transferring over the names as well. 1014 i = 0; 1015 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 1016 I2 = NF->arg_begin(); I != E; ++I, ++i) 1017 if (ArgAlive[i]) { 1018 // If this is a live argument, move the name and users over to the new 1019 // version. 1020 I->replaceAllUsesWith(&*I2); 1021 I2->takeName(&*I); 1022 ++I2; 1023 } else { 1024 // If this argument is dead, replace any uses of it with undef 1025 // (any non-debug value uses will get removed later on). 1026 if (!I->getType()->isX86_MMXTy()) 1027 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1028 } 1029 1030 // If we change the return value of the function we must rewrite any return 1031 // instructions. Check this now. 1032 if (F->getReturnType() != NF->getReturnType()) 1033 for (BasicBlock &BB : *NF) 1034 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 1035 Value *RetVal; 1036 1037 if (NFTy->getReturnType()->isVoidTy()) { 1038 RetVal = nullptr; 1039 } else { 1040 assert(RetTy->isStructTy() || RetTy->isArrayTy()); 1041 // The original return value was a struct or array, insert 1042 // extractvalue/insertvalue chains to extract only the values we need 1043 // to return and insert them into our new result. 1044 // This does generate messy code, but we'll let it to instcombine to 1045 // clean that up. 1046 Value *OldRet = RI->getOperand(0); 1047 // Start out building up our return value from undef 1048 RetVal = UndefValue::get(NRetTy); 1049 for (unsigned i = 0; i != RetCount; ++i) 1050 if (NewRetIdxs[i] != -1) { 1051 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, 1052 "oldret", RI); 1053 if (RetTypes.size() > 1) { 1054 // We're still returning a struct, so reinsert the value into 1055 // our new return value at the new index 1056 1057 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], 1058 "newret", RI); 1059 } else { 1060 // We are now only returning a simple value, so just return the 1061 // extracted value. 1062 RetVal = EV; 1063 } 1064 } 1065 } 1066 // Replace the return instruction with one returning the new return 1067 // value (possibly 0 if we became void). 1068 ReturnInst::Create(F->getContext(), RetVal, RI); 1069 BB.getInstList().erase(RI); 1070 } 1071 1072 // Clone metadatas from the old function, including debug info descriptor. 1073 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 1074 F->getAllMetadata(MDs); 1075 for (auto MD : MDs) 1076 NF->addMetadata(MD.first, *MD.second); 1077 1078 // Now that the old function is dead, delete it. 1079 F->eraseFromParent(); 1080 1081 return true; 1082 } 1083 1084 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, 1085 ModuleAnalysisManager &) { 1086 bool Changed = false; 1087 1088 // First pass: Do a simple check to see if any functions can have their "..." 1089 // removed. We can do this if they never call va_start. This loop cannot be 1090 // fused with the next loop, because deleting a function invalidates 1091 // information computed while surveying other functions. 1092 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n"); 1093 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1094 Function &F = *I++; 1095 if (F.getFunctionType()->isVarArg()) 1096 Changed |= DeleteDeadVarargs(F); 1097 } 1098 1099 // Second phase:loop through the module, determining which arguments are live. 1100 // We assume all arguments are dead unless proven otherwise (allowing us to 1101 // determine that dead arguments passed into recursive functions are dead). 1102 // 1103 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n"); 1104 for (auto &F : M) 1105 SurveyFunction(F); 1106 1107 // Now, remove all dead arguments and return values from each function in 1108 // turn. 1109 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1110 // Increment now, because the function will probably get removed (ie. 1111 // replaced by a new one). 1112 Function *F = &*I++; 1113 Changed |= RemoveDeadStuffFromFunction(F); 1114 } 1115 1116 // Finally, look for any unused parameters in functions with non-local 1117 // linkage and replace the passed in parameters with undef. 1118 for (auto &F : M) 1119 Changed |= RemoveDeadArgumentsFromCallers(F); 1120 1121 if (!Changed) 1122 return PreservedAnalyses::all(); 1123 return PreservedAnalyses::none(); 1124 } 1125