xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp (revision 278d6950943a9fec2bddb037b547c04a847c54ba)
1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions.  Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions.  This
12 // pass also deletes dead return values in a similar way.
13 //
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DIBuilder.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/NoFolder.h"
37 #include "llvm/IR/PassManager.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include <cassert>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "deadargelim"
56 
57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
58 STATISTIC(NumRetValsEliminated, "Number of unused return values removed");
59 STATISTIC(NumArgumentsReplacedWithPoison,
60           "Number of unread args replaced with poison");
61 
62 namespace {
63 
64 /// The dead argument elimination pass.
65 class DAE : public ModulePass {
66 protected:
67   // DAH uses this to specify a different ID.
68   explicit DAE(char &ID) : ModulePass(ID) {}
69 
70 public:
71   static char ID; // Pass identification, replacement for typeid
72 
73   DAE() : ModulePass(ID) {
74     initializeDAEPass(*PassRegistry::getPassRegistry());
75   }
76 
77   bool runOnModule(Module &M) override {
78     if (skipModule(M))
79       return false;
80     DeadArgumentEliminationPass DAEP(shouldHackArguments());
81     ModuleAnalysisManager DummyMAM;
82     PreservedAnalyses PA = DAEP.run(M, DummyMAM);
83     return !PA.areAllPreserved();
84   }
85 
86   virtual bool shouldHackArguments() const { return false; }
87 };
88 
89 bool isMustTailCalleeAnalyzable(const CallBase &CB) {
90   assert(CB.isMustTailCall());
91   return CB.getCalledFunction() && !CB.getCalledFunction()->isDeclaration();
92 }
93 
94 } // end anonymous namespace
95 
96 char DAE::ID = 0;
97 
98 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
99 
100 namespace {
101 
102 /// The DeadArgumentHacking pass, same as dead argument elimination, but deletes
103 /// arguments to functions which are external. This is only for use by bugpoint.
104 struct DAH : public DAE {
105   static char ID;
106 
107   DAH() : DAE(ID) {}
108 
109   bool shouldHackArguments() const override { return true; }
110 };
111 
112 } // end anonymous namespace
113 
114 char DAH::ID = 0;
115 
116 INITIALIZE_PASS(DAH, "deadarghaX0r",
117                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false,
118                 false)
119 
120 /// This pass removes arguments from functions which are not used by the body of
121 /// the function.
122 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
123 
124 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
125 
126 /// If this is an function that takes a ... list, and if llvm.vastart is never
127 /// called, the varargs list is dead for the function.
128 bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) {
129   assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!");
130   if (F.isDeclaration() || !F.hasLocalLinkage())
131     return false;
132 
133   // Ensure that the function is only directly called.
134   if (F.hasAddressTaken())
135     return false;
136 
137   // Don't touch naked functions. The assembly might be using an argument, or
138   // otherwise rely on the frame layout in a way that this analysis will not
139   // see.
140   if (F.hasFnAttribute(Attribute::Naked)) {
141     return false;
142   }
143 
144   // Okay, we know we can transform this function if safe.  Scan its body
145   // looking for calls marked musttail or calls to llvm.vastart.
146   for (BasicBlock &BB : F) {
147     for (Instruction &I : BB) {
148       CallInst *CI = dyn_cast<CallInst>(&I);
149       if (!CI)
150         continue;
151       if (CI->isMustTailCall())
152         return false;
153       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
154         if (II->getIntrinsicID() == Intrinsic::vastart)
155           return false;
156       }
157     }
158   }
159 
160   // If we get here, there are no calls to llvm.vastart in the function body,
161   // remove the "..." and adjust all the calls.
162 
163   // Start by computing a new prototype for the function, which is the same as
164   // the old function, but doesn't have isVarArg set.
165   FunctionType *FTy = F.getFunctionType();
166 
167   std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
168   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
169   unsigned NumArgs = Params.size();
170 
171   // Create the new function body and insert it into the module...
172   Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
173   NF->copyAttributesFrom(&F);
174   NF->setComdat(F.getComdat());
175   F.getParent()->getFunctionList().insert(F.getIterator(), NF);
176   NF->takeName(&F);
177   NF->IsNewDbgInfoFormat = F.IsNewDbgInfoFormat;
178 
179   // Loop over all the callers of the function, transforming the call sites
180   // to pass in a smaller number of arguments into the new function.
181   //
182   std::vector<Value *> Args;
183   for (User *U : llvm::make_early_inc_range(F.users())) {
184     CallBase *CB = dyn_cast<CallBase>(U);
185     if (!CB)
186       continue;
187 
188     // Pass all the same arguments.
189     Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
190 
191     // Drop any attributes that were on the vararg arguments.
192     AttributeList PAL = CB->getAttributes();
193     if (!PAL.isEmpty()) {
194       SmallVector<AttributeSet, 8> ArgAttrs;
195       for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
196         ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
197       PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(),
198                                PAL.getRetAttrs(), ArgAttrs);
199     }
200 
201     SmallVector<OperandBundleDef, 1> OpBundles;
202     CB->getOperandBundlesAsDefs(OpBundles);
203 
204     CallBase *NewCB = nullptr;
205     if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
206       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
207                                  Args, OpBundles, "", CB);
208     } else {
209       NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
210       cast<CallInst>(NewCB)->setTailCallKind(
211           cast<CallInst>(CB)->getTailCallKind());
212     }
213     NewCB->setCallingConv(CB->getCallingConv());
214     NewCB->setAttributes(PAL);
215     NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
216 
217     Args.clear();
218 
219     if (!CB->use_empty())
220       CB->replaceAllUsesWith(NewCB);
221 
222     NewCB->takeName(CB);
223 
224     // Finally, remove the old call from the program, reducing the use-count of
225     // F.
226     CB->eraseFromParent();
227   }
228 
229   // Since we have now created the new function, splice the body of the old
230   // function right into the new function, leaving the old rotting hulk of the
231   // function empty.
232   NF->splice(NF->begin(), &F);
233 
234   // Loop over the argument list, transferring uses of the old arguments over to
235   // the new arguments, also transferring over the names as well.  While we're
236   // at it, remove the dead arguments from the DeadArguments list.
237   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(),
238                               I2 = NF->arg_begin();
239        I != E; ++I, ++I2) {
240     // Move the name and users over to the new version.
241     I->replaceAllUsesWith(&*I2);
242     I2->takeName(&*I);
243   }
244 
245   // Clone metadata from the old function, including debug info descriptor.
246   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
247   F.getAllMetadata(MDs);
248   for (auto [KindID, Node] : MDs)
249     NF->addMetadata(KindID, *Node);
250 
251   // Fix up any BlockAddresses that refer to the function.
252   F.replaceAllUsesWith(NF);
253   // Delete the bitcast that we just created, so that NF does not
254   // appear to be address-taken.
255   NF->removeDeadConstantUsers();
256   // Finally, nuke the old function.
257   F.eraseFromParent();
258   return true;
259 }
260 
261 /// Checks if the given function has any arguments that are unused, and changes
262 /// the caller parameters to be poison instead.
263 bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) {
264   // We cannot change the arguments if this TU does not define the function or
265   // if the linker may choose a function body from another TU, even if the
266   // nominal linkage indicates that other copies of the function have the same
267   // semantics. In the below example, the dead load from %p may not have been
268   // eliminated from the linker-chosen copy of f, so replacing %p with poison
269   // in callers may introduce undefined behavior.
270   //
271   // define linkonce_odr void @f(i32* %p) {
272   //   %v = load i32 %p
273   //   ret void
274   // }
275   if (!F.hasExactDefinition())
276     return false;
277 
278   // Functions with local linkage should already have been handled, except if
279   // they are fully alive (e.g., called indirectly) and except for the fragile
280   // (variadic) ones. In these cases, we may still be able to improve their
281   // statically known call sites.
282   if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) &&
283       !F.getFunctionType()->isVarArg())
284     return false;
285 
286   // Don't touch naked functions. The assembly might be using an argument, or
287   // otherwise rely on the frame layout in a way that this analysis will not
288   // see.
289   if (F.hasFnAttribute(Attribute::Naked))
290     return false;
291 
292   if (F.use_empty())
293     return false;
294 
295   SmallVector<unsigned, 8> UnusedArgs;
296   bool Changed = false;
297 
298   AttributeMask UBImplyingAttributes =
299       AttributeFuncs::getUBImplyingAttributes();
300   for (Argument &Arg : F.args()) {
301     if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
302         !Arg.hasPassPointeeByValueCopyAttr()) {
303       if (Arg.isUsedByMetadata()) {
304         Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType()));
305         Changed = true;
306       }
307       UnusedArgs.push_back(Arg.getArgNo());
308       F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
309     }
310   }
311 
312   if (UnusedArgs.empty())
313     return false;
314 
315   for (Use &U : F.uses()) {
316     CallBase *CB = dyn_cast<CallBase>(U.getUser());
317     if (!CB || !CB->isCallee(&U) ||
318         CB->getFunctionType() != F.getFunctionType())
319       continue;
320 
321     // Now go through all unused args and replace them with poison.
322     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
323       unsigned ArgNo = UnusedArgs[I];
324 
325       Value *Arg = CB->getArgOperand(ArgNo);
326       CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType()));
327       CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
328 
329       ++NumArgumentsReplacedWithPoison;
330       Changed = true;
331     }
332   }
333 
334   return Changed;
335 }
336 
337 /// Convenience function that returns the number of return values. It returns 0
338 /// for void functions and 1 for functions not returning a struct. It returns
339 /// the number of struct elements for functions returning a struct.
340 static unsigned numRetVals(const Function *F) {
341   Type *RetTy = F->getReturnType();
342   if (RetTy->isVoidTy())
343     return 0;
344   if (StructType *STy = dyn_cast<StructType>(RetTy))
345     return STy->getNumElements();
346   if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
347     return ATy->getNumElements();
348   return 1;
349 }
350 
351 /// Returns the sub-type a function will return at a given Idx. Should
352 /// correspond to the result type of an ExtractValue instruction executed with
353 /// just that one Idx (i.e. only top-level structure is considered).
354 static Type *getRetComponentType(const Function *F, unsigned Idx) {
355   Type *RetTy = F->getReturnType();
356   assert(!RetTy->isVoidTy() && "void type has no subtype");
357 
358   if (StructType *STy = dyn_cast<StructType>(RetTy))
359     return STy->getElementType(Idx);
360   if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
361     return ATy->getElementType();
362   return RetTy;
363 }
364 
365 /// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to
366 /// the MaybeLiveUses argument. Returns the determined liveness of Use.
367 DeadArgumentEliminationPass::Liveness
368 DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use,
369                                            UseVector &MaybeLiveUses) {
370   // We're live if our use or its Function is already marked as live.
371   if (isLive(Use))
372     return Live;
373 
374   // We're maybe live otherwise, but remember that we must become live if
375   // Use becomes live.
376   MaybeLiveUses.push_back(Use);
377   return MaybeLive;
378 }
379 
380 /// Looks at a single use of an argument or return value and determines if it
381 /// should be alive or not. Adds this use to MaybeLiveUses if it causes the
382 /// used value to become MaybeLive.
383 ///
384 /// RetValNum is the return value number to use when this use is used in a
385 /// return instruction. This is used in the recursion, you should always leave
386 /// it at 0.
387 DeadArgumentEliminationPass::Liveness
388 DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses,
389                                        unsigned RetValNum) {
390   const User *V = U->getUser();
391   if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
392     // The value is returned from a function. It's only live when the
393     // function's return value is live. We use RetValNum here, for the case
394     // that U is really a use of an insertvalue instruction that uses the
395     // original Use.
396     const Function *F = RI->getParent()->getParent();
397     if (RetValNum != -1U) {
398       RetOrArg Use = createRet(F, RetValNum);
399       // We might be live, depending on the liveness of Use.
400       return markIfNotLive(Use, MaybeLiveUses);
401     }
402 
403     DeadArgumentEliminationPass::Liveness Result = MaybeLive;
404     for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) {
405       RetOrArg Use = createRet(F, Ri);
406       // We might be live, depending on the liveness of Use. If any
407       // sub-value is live, then the entire value is considered live. This
408       // is a conservative choice, and better tracking is possible.
409       DeadArgumentEliminationPass::Liveness SubResult =
410           markIfNotLive(Use, MaybeLiveUses);
411       if (Result != Live)
412         Result = SubResult;
413     }
414     return Result;
415   }
416 
417   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
418     if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() &&
419         IV->hasIndices())
420       // The use we are examining is inserted into an aggregate. Our liveness
421       // depends on all uses of that aggregate, but if it is used as a return
422       // value, only index at which we were inserted counts.
423       RetValNum = *IV->idx_begin();
424 
425     // Note that if we are used as the aggregate operand to the insertvalue,
426     // we don't change RetValNum, but do survey all our uses.
427 
428     Liveness Result = MaybeLive;
429     for (const Use &UU : IV->uses()) {
430       Result = surveyUse(&UU, MaybeLiveUses, RetValNum);
431       if (Result == Live)
432         break;
433     }
434     return Result;
435   }
436 
437   if (const auto *CB = dyn_cast<CallBase>(V)) {
438     const Function *F = CB->getCalledFunction();
439     if (F) {
440       // Used in a direct call.
441 
442       // The function argument is live if it is used as a bundle operand.
443       if (CB->isBundleOperand(U))
444         return Live;
445 
446       // Find the argument number. We know for sure that this use is an
447       // argument, since if it was the function argument this would be an
448       // indirect call and that we know can't be looking at a value of the
449       // label type (for the invoke instruction).
450       unsigned ArgNo = CB->getArgOperandNo(U);
451 
452       if (ArgNo >= F->getFunctionType()->getNumParams())
453         // The value is passed in through a vararg! Must be live.
454         return Live;
455 
456       assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
457              "Argument is not where we expected it");
458 
459       // Value passed to a normal call. It's only live when the corresponding
460       // argument to the called function turns out live.
461       RetOrArg Use = createArg(F, ArgNo);
462       return markIfNotLive(Use, MaybeLiveUses);
463     }
464   }
465   // Used in any other way? Value must be live.
466   return Live;
467 }
468 
469 /// Looks at all the uses of the given value
470 /// Returns the Liveness deduced from the uses of this value.
471 ///
472 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
473 /// the result is Live, MaybeLiveUses might be modified but its content should
474 /// be ignored (since it might not be complete).
475 DeadArgumentEliminationPass::Liveness
476 DeadArgumentEliminationPass::surveyUses(const Value *V,
477                                         UseVector &MaybeLiveUses) {
478   // Assume it's dead (which will only hold if there are no uses at all..).
479   Liveness Result = MaybeLive;
480   // Check each use.
481   for (const Use &U : V->uses()) {
482     Result = surveyUse(&U, MaybeLiveUses);
483     if (Result == Live)
484       break;
485   }
486   return Result;
487 }
488 
489 /// Performs the initial survey of the specified function, checking out whether
490 /// it uses any of its incoming arguments or whether any callers use the return
491 /// value. This fills in the LiveValues set and Uses map.
492 ///
493 /// We consider arguments of non-internal functions to be intrinsically alive as
494 /// well as arguments to functions which have their "address taken".
495 void DeadArgumentEliminationPass::surveyFunction(const Function &F) {
496   // Functions with inalloca/preallocated parameters are expecting args in a
497   // particular register and memory layout.
498   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
499       F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
500     markLive(F);
501     return;
502   }
503 
504   // Don't touch naked functions. The assembly might be using an argument, or
505   // otherwise rely on the frame layout in a way that this analysis will not
506   // see.
507   if (F.hasFnAttribute(Attribute::Naked)) {
508     markLive(F);
509     return;
510   }
511 
512   unsigned RetCount = numRetVals(&F);
513 
514   // Assume all return values are dead
515   using RetVals = SmallVector<Liveness, 5>;
516 
517   RetVals RetValLiveness(RetCount, MaybeLive);
518 
519   using RetUses = SmallVector<UseVector, 5>;
520 
521   // These vectors map each return value to the uses that make it MaybeLive, so
522   // we can add those to the Uses map if the return value really turns out to be
523   // MaybeLive. Initialized to a list of RetCount empty lists.
524   RetUses MaybeLiveRetUses(RetCount);
525 
526   bool HasMustTailCalls = false;
527   for (const BasicBlock &BB : F) {
528     // If we have any returns of `musttail` results - the signature can't
529     // change
530     if (const auto *TC = BB.getTerminatingMustTailCall()) {
531       HasMustTailCalls = true;
532       // In addition, if the called function is not locally defined (or unknown,
533       // if this is an indirect call), we can't change the callsite and thus
534       // can't change this function's signature either.
535       if (!isMustTailCalleeAnalyzable(*TC)) {
536         markLive(F);
537         return;
538       }
539     }
540   }
541 
542   if (HasMustTailCalls) {
543     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
544                       << " has musttail calls\n");
545   }
546 
547   if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
548     markLive(F);
549     return;
550   }
551 
552   LLVM_DEBUG(
553       dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
554              << F.getName() << "\n");
555   // Keep track of the number of live retvals, so we can skip checks once all
556   // of them turn out to be live.
557   unsigned NumLiveRetVals = 0;
558 
559   bool HasMustTailCallers = false;
560 
561   // Loop all uses of the function.
562   for (const Use &U : F.uses()) {
563     // If the function is PASSED IN as an argument, its address has been
564     // taken.
565     const auto *CB = dyn_cast<CallBase>(U.getUser());
566     if (!CB || !CB->isCallee(&U) ||
567         CB->getFunctionType() != F.getFunctionType()) {
568       markLive(F);
569       return;
570     }
571 
572     // The number of arguments for `musttail` call must match the number of
573     // arguments of the caller
574     if (CB->isMustTailCall())
575       HasMustTailCallers = true;
576 
577     // If we end up here, we are looking at a direct call to our function.
578 
579     // Now, check how our return value(s) is/are used in this caller. Don't
580     // bother checking return values if all of them are live already.
581     if (NumLiveRetVals == RetCount)
582       continue;
583 
584     // Check all uses of the return value.
585     for (const Use &UU : CB->uses()) {
586       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) {
587         // This use uses a part of our return value, survey the uses of
588         // that part and store the results for this index only.
589         unsigned Idx = *Ext->idx_begin();
590         if (RetValLiveness[Idx] != Live) {
591           RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]);
592           if (RetValLiveness[Idx] == Live)
593             NumLiveRetVals++;
594         }
595       } else {
596         // Used by something else than extractvalue. Survey, but assume that the
597         // result applies to all sub-values.
598         UseVector MaybeLiveAggregateUses;
599         if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) {
600           NumLiveRetVals = RetCount;
601           RetValLiveness.assign(RetCount, Live);
602           break;
603         }
604 
605         for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
606           if (RetValLiveness[Ri] != Live)
607             MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
608                                         MaybeLiveAggregateUses.end());
609         }
610       }
611     }
612   }
613 
614   if (HasMustTailCallers) {
615     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
616                       << " has musttail callers\n");
617   }
618 
619   // Now we've inspected all callers, record the liveness of our return values.
620   for (unsigned Ri = 0; Ri != RetCount; ++Ri)
621     markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
622 
623   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
624                     << F.getName() << "\n");
625 
626   // Now, check all of our arguments.
627   unsigned ArgI = 0;
628   UseVector MaybeLiveArgUses;
629   for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
630        AI != E; ++AI, ++ArgI) {
631     Liveness Result;
632     if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
633         HasMustTailCalls) {
634       // Variadic functions will already have a va_arg function expanded inside
635       // them, making them potentially very sensitive to ABI changes resulting
636       // from removing arguments entirely, so don't. For example AArch64 handles
637       // register and stack HFAs very differently, and this is reflected in the
638       // IR which has already been generated.
639       //
640       // `musttail` calls to this function restrict argument removal attempts.
641       // The signature of the caller must match the signature of the function.
642       //
643       // `musttail` calls in this function prevents us from changing its
644       // signature
645       Result = Live;
646     } else {
647       // See what the effect of this use is (recording any uses that cause
648       // MaybeLive in MaybeLiveArgUses).
649       Result = surveyUses(&*AI, MaybeLiveArgUses);
650     }
651 
652     // Mark the result.
653     markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses);
654     // Clear the vector again for the next iteration.
655     MaybeLiveArgUses.clear();
656   }
657 }
658 
659 /// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes
660 /// all uses in MaybeLiveUses and records them in Uses, such that RA will be
661 /// marked live if any use in MaybeLiveUses gets marked live later on.
662 void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L,
663                                             const UseVector &MaybeLiveUses) {
664   switch (L) {
665   case Live:
666     markLive(RA);
667     break;
668   case MaybeLive:
669     assert(!isLive(RA) && "Use is already live!");
670     for (const auto &MaybeLiveUse : MaybeLiveUses) {
671       if (isLive(MaybeLiveUse)) {
672         // A use is live, so this value is live.
673         markLive(RA);
674         break;
675       }
676       // Note any uses of this value, so this value can be
677       // marked live whenever one of the uses becomes live.
678       Uses.emplace(MaybeLiveUse, RA);
679     }
680     break;
681   }
682 }
683 
684 /// Mark the given Function as alive, meaning that it cannot be changed in any
685 /// way. Additionally, mark any values that are used as this function's
686 /// parameters or by its return values (according to Uses) live as well.
687 void DeadArgumentEliminationPass::markLive(const Function &F) {
688   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
689                     << F.getName() << "\n");
690   // Mark the function as live.
691   LiveFunctions.insert(&F);
692   // Mark all arguments as live.
693   for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
694     propagateLiveness(createArg(&F, ArgI));
695   // Mark all return values as live.
696   for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri)
697     propagateLiveness(createRet(&F, Ri));
698 }
699 
700 /// Mark the given return value or argument as live. Additionally, mark any
701 /// values that are used by this value (according to Uses) live as well.
702 void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) {
703   if (isLive(RA))
704     return; // Already marked Live.
705 
706   LiveValues.insert(RA);
707 
708   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
709                     << RA.getDescription() << " live\n");
710   propagateLiveness(RA);
711 }
712 
713 bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) {
714   return LiveFunctions.count(RA.F) || LiveValues.count(RA);
715 }
716 
717 /// Given that RA is a live value, propagate it's liveness to any other values
718 /// it uses (according to Uses).
719 void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) {
720   // We don't use upper_bound (or equal_range) here, because our recursive call
721   // to ourselves is likely to cause the upper_bound (which is the first value
722   // not belonging to RA) to become erased and the iterator invalidated.
723   UseMap::iterator Begin = Uses.lower_bound(RA);
724   UseMap::iterator E = Uses.end();
725   UseMap::iterator I;
726   for (I = Begin; I != E && I->first == RA; ++I)
727     markLive(I->second);
728 
729   // Erase RA from the Uses map (from the lower bound to wherever we ended up
730   // after the loop).
731   Uses.erase(Begin, I);
732 }
733 
734 /// Remove any arguments and return values from F that are not in LiveValues.
735 /// Transform the function and all the callees of the function to not have these
736 /// arguments and return values.
737 bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) {
738   // Don't modify fully live functions
739   if (LiveFunctions.count(F))
740     return false;
741 
742   // Start by computing a new prototype for the function, which is the same as
743   // the old function, but has fewer arguments and a different return type.
744   FunctionType *FTy = F->getFunctionType();
745   std::vector<Type *> Params;
746 
747   // Keep track of if we have a live 'returned' argument
748   bool HasLiveReturnedArg = false;
749 
750   // Set up to build a new list of parameter attributes.
751   SmallVector<AttributeSet, 8> ArgAttrVec;
752   const AttributeList &PAL = F->getAttributes();
753 
754   // Remember which arguments are still alive.
755   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
756   // Construct the new parameter list from non-dead arguments. Also construct
757   // a new set of parameter attributes to correspond. Skip the first parameter
758   // attribute, since that belongs to the return value.
759   unsigned ArgI = 0;
760   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
761        ++I, ++ArgI) {
762     RetOrArg Arg = createArg(F, ArgI);
763     if (LiveValues.erase(Arg)) {
764       Params.push_back(I->getType());
765       ArgAlive[ArgI] = true;
766       ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
767       HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
768     } else {
769       ++NumArgumentsEliminated;
770       LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
771                         << ArgI << " (" << I->getName() << ") from "
772                         << F->getName() << "\n");
773     }
774   }
775 
776   // Find out the new return value.
777   Type *RetTy = FTy->getReturnType();
778   Type *NRetTy = nullptr;
779   unsigned RetCount = numRetVals(F);
780 
781   // -1 means unused, other numbers are the new index
782   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
783   std::vector<Type *> RetTypes;
784 
785   // If there is a function with a live 'returned' argument but a dead return
786   // value, then there are two possible actions:
787   // 1) Eliminate the return value and take off the 'returned' attribute on the
788   //    argument.
789   // 2) Retain the 'returned' attribute and treat the return value (but not the
790   //    entire function) as live so that it is not eliminated.
791   //
792   // It's not clear in the general case which option is more profitable because,
793   // even in the absence of explicit uses of the return value, code generation
794   // is free to use the 'returned' attribute to do things like eliding
795   // save/restores of registers across calls. Whether this happens is target and
796   // ABI-specific as well as depending on the amount of register pressure, so
797   // there's no good way for an IR-level pass to figure this out.
798   //
799   // Fortunately, the only places where 'returned' is currently generated by
800   // the FE are places where 'returned' is basically free and almost always a
801   // performance win, so the second option can just be used always for now.
802   //
803   // This should be revisited if 'returned' is ever applied more liberally.
804   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
805     NRetTy = RetTy;
806   } else {
807     // Look at each of the original return values individually.
808     for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
809       RetOrArg Ret = createRet(F, Ri);
810       if (LiveValues.erase(Ret)) {
811         RetTypes.push_back(getRetComponentType(F, Ri));
812         NewRetIdxs[Ri] = RetTypes.size() - 1;
813       } else {
814         ++NumRetValsEliminated;
815         LLVM_DEBUG(
816             dbgs() << "DeadArgumentEliminationPass - Removing return value "
817                    << Ri << " from " << F->getName() << "\n");
818       }
819     }
820     if (RetTypes.size() > 1) {
821       // More than one return type? Reduce it down to size.
822       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
823         // Make the new struct packed if we used to return a packed struct
824         // already.
825         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
826       } else {
827         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
828         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
829       }
830     } else if (RetTypes.size() == 1)
831       // One return type? Just a simple value then, but only if we didn't use to
832       // return a struct with that simple value before.
833       NRetTy = RetTypes.front();
834     else if (RetTypes.empty())
835       // No return types? Make it void, but only if we didn't use to return {}.
836       NRetTy = Type::getVoidTy(F->getContext());
837   }
838 
839   assert(NRetTy && "No new return type found?");
840 
841   // The existing function return attributes.
842   AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs());
843 
844   // Remove any incompatible attributes, but only if we removed all return
845   // values. Otherwise, ensure that we don't have any conflicting attributes
846   // here. Currently, this should not be possible, but special handling might be
847   // required when new return value attributes are added.
848   if (NRetTy->isVoidTy())
849     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
850   else
851     assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
852            "Return attributes no longer compatible?");
853 
854   AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
855 
856   // Strip allocsize attributes. They might refer to the deleted arguments.
857   AttributeSet FnAttrs =
858       PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
859 
860   // Reconstruct the AttributesList based on the vector we constructed.
861   assert(ArgAttrVec.size() == Params.size());
862   AttributeList NewPAL =
863       AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
864 
865   // Create the new function type based on the recomputed parameters.
866   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
867 
868   // No change?
869   if (NFTy == FTy)
870     return false;
871 
872   // Create the new function body and insert it into the module...
873   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
874   NF->copyAttributesFrom(F);
875   NF->setComdat(F->getComdat());
876   NF->setAttributes(NewPAL);
877   // Insert the new function before the old function, so we won't be processing
878   // it again.
879   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
880   NF->takeName(F);
881   NF->IsNewDbgInfoFormat = F->IsNewDbgInfoFormat;
882 
883   // Loop over all the callers of the function, transforming the call sites to
884   // pass in a smaller number of arguments into the new function.
885   std::vector<Value *> Args;
886   while (!F->use_empty()) {
887     CallBase &CB = cast<CallBase>(*F->user_back());
888 
889     ArgAttrVec.clear();
890     const AttributeList &CallPAL = CB.getAttributes();
891 
892     // Adjust the call return attributes in case the function was changed to
893     // return void.
894     AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs());
895     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
896     AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
897 
898     // Declare these outside of the loops, so we can reuse them for the second
899     // loop, which loops the varargs.
900     auto *I = CB.arg_begin();
901     unsigned Pi = 0;
902     // Loop over those operands, corresponding to the normal arguments to the
903     // original function, and add those that are still alive.
904     for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
905       if (ArgAlive[Pi]) {
906         Args.push_back(*I);
907         // Get original parameter attributes, but skip return attributes.
908         AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
909         if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
910           // If the return type has changed, then get rid of 'returned' on the
911           // call site. The alternative is to make all 'returned' attributes on
912           // call sites keep the return value alive just like 'returned'
913           // attributes on function declaration, but it's less clearly a win and
914           // this is not an expected case anyway
915           ArgAttrVec.push_back(AttributeSet::get(
916               F->getContext(), AttrBuilder(F->getContext(), Attrs)
917                                    .removeAttribute(Attribute::Returned)));
918         } else {
919           // Otherwise, use the original attributes.
920           ArgAttrVec.push_back(Attrs);
921         }
922       }
923 
924     // Push any varargs arguments on the list. Don't forget their attributes.
925     for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) {
926       Args.push_back(*I);
927       ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
928     }
929 
930     // Reconstruct the AttributesList based on the vector we constructed.
931     assert(ArgAttrVec.size() == Args.size());
932 
933     // Again, be sure to remove any allocsize attributes, since their indices
934     // may now be incorrect.
935     AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
936         F->getContext(), Attribute::AllocSize);
937 
938     AttributeList NewCallPAL =
939         AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
940 
941     SmallVector<OperandBundleDef, 1> OpBundles;
942     CB.getOperandBundlesAsDefs(OpBundles);
943 
944     CallBase *NewCB = nullptr;
945     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
946       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
947                                  Args, OpBundles, "", CB.getParent());
948     } else {
949       NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
950       cast<CallInst>(NewCB)->setTailCallKind(
951           cast<CallInst>(&CB)->getTailCallKind());
952     }
953     NewCB->setCallingConv(CB.getCallingConv());
954     NewCB->setAttributes(NewCallPAL);
955     NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
956     Args.clear();
957     ArgAttrVec.clear();
958 
959     if (!CB.use_empty() || CB.isUsedByMetadata()) {
960       if (NewCB->getType() == CB.getType()) {
961         // Return type not changed? Just replace users then.
962         CB.replaceAllUsesWith(NewCB);
963         NewCB->takeName(&CB);
964       } else if (NewCB->getType()->isVoidTy()) {
965         // If the return value is dead, replace any uses of it with poison
966         // (any non-debug value uses will get removed later on).
967         if (!CB.getType()->isX86_MMXTy())
968           CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
969       } else {
970         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
971                "Return type changed, but not into a void. The old return type"
972                " must have been a struct or an array!");
973         Instruction *InsertPt = &CB;
974         if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
975           BasicBlock *NewEdge =
976               SplitEdge(NewCB->getParent(), II->getNormalDest());
977           InsertPt = &*NewEdge->getFirstInsertionPt();
978         }
979 
980         // We used to return a struct or array. Instead of doing smart stuff
981         // with all the uses, we will just rebuild it using extract/insertvalue
982         // chaining and let instcombine clean that up.
983         //
984         // Start out building up our return value from poison
985         Value *RetVal = PoisonValue::get(RetTy);
986         for (unsigned Ri = 0; Ri != RetCount; ++Ri)
987           if (NewRetIdxs[Ri] != -1) {
988             Value *V;
989             IRBuilder<NoFolder> IRB(InsertPt);
990             if (RetTypes.size() > 1)
991               // We are still returning a struct, so extract the value from our
992               // return value
993               V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
994             else
995               // We are now returning a single element, so just insert that
996               V = NewCB;
997             // Insert the value at the old position
998             RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
999           }
1000         // Now, replace all uses of the old call instruction with the return
1001         // struct we built
1002         CB.replaceAllUsesWith(RetVal);
1003         NewCB->takeName(&CB);
1004       }
1005     }
1006 
1007     // Finally, remove the old call from the program, reducing the use-count of
1008     // F.
1009     CB.eraseFromParent();
1010   }
1011 
1012   // Since we have now created the new function, splice the body of the old
1013   // function right into the new function, leaving the old rotting hulk of the
1014   // function empty.
1015   NF->splice(NF->begin(), F);
1016 
1017   // Loop over the argument list, transferring uses of the old arguments over to
1018   // the new arguments, also transferring over the names as well.
1019   ArgI = 0;
1020   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1021                               I2 = NF->arg_begin();
1022        I != E; ++I, ++ArgI)
1023     if (ArgAlive[ArgI]) {
1024       // If this is a live argument, move the name and users over to the new
1025       // version.
1026       I->replaceAllUsesWith(&*I2);
1027       I2->takeName(&*I);
1028       ++I2;
1029     } else {
1030       // If this argument is dead, replace any uses of it with poison
1031       // (any non-debug value uses will get removed later on).
1032       if (!I->getType()->isX86_MMXTy())
1033         I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1034     }
1035 
1036   // If we change the return value of the function we must rewrite any return
1037   // instructions.  Check this now.
1038   if (F->getReturnType() != NF->getReturnType())
1039     for (BasicBlock &BB : *NF)
1040       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1041         IRBuilder<NoFolder> IRB(RI);
1042         Value *RetVal = nullptr;
1043 
1044         if (!NFTy->getReturnType()->isVoidTy()) {
1045           assert(RetTy->isStructTy() || RetTy->isArrayTy());
1046           // The original return value was a struct or array, insert
1047           // extractvalue/insertvalue chains to extract only the values we need
1048           // to return and insert them into our new result.
1049           // This does generate messy code, but we'll let it to instcombine to
1050           // clean that up.
1051           Value *OldRet = RI->getOperand(0);
1052           // Start out building up our return value from poison
1053           RetVal = PoisonValue::get(NRetTy);
1054           for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1055             if (NewRetIdxs[RetI] != -1) {
1056               Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1057 
1058               if (RetTypes.size() > 1) {
1059                 // We're still returning a struct, so reinsert the value into
1060                 // our new return value at the new index
1061 
1062                 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1063                                                "newret");
1064               } else {
1065                 // We are now only returning a simple value, so just return the
1066                 // extracted value.
1067                 RetVal = EV;
1068               }
1069             }
1070         }
1071         // Replace the return instruction with one returning the new return
1072         // value (possibly 0 if we became void).
1073         auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1074         NewRet->setDebugLoc(RI->getDebugLoc());
1075         RI->eraseFromParent();
1076       }
1077 
1078   // Clone metadata from the old function, including debug info descriptor.
1079   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1080   F->getAllMetadata(MDs);
1081   for (auto [KindID, Node] : MDs)
1082     NF->addMetadata(KindID, *Node);
1083 
1084   // If either the return value(s) or argument(s) are removed, then probably the
1085   // function does not follow standard calling conventions anymore. Hence, add
1086   // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe
1087   // to call this function or try to interpret the return value.
1088   if (NFTy != FTy && NF->getSubprogram()) {
1089     DISubprogram *SP = NF->getSubprogram();
1090     auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall);
1091     SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp)));
1092   }
1093 
1094   // Now that the old function is dead, delete it.
1095   F->eraseFromParent();
1096 
1097   return true;
1098 }
1099 
1100 void DeadArgumentEliminationPass::propagateVirtMustcallLiveness(
1101     const Module &M) {
1102   // If a function was marked "live", and it has musttail callers, they in turn
1103   // can't change either.
1104   LiveFuncSet NewLiveFuncs(LiveFunctions);
1105   while (!NewLiveFuncs.empty()) {
1106     LiveFuncSet Temp;
1107     for (const auto *F : NewLiveFuncs)
1108       for (const auto *U : F->users())
1109         if (const auto *CB = dyn_cast<CallBase>(U))
1110           if (CB->isMustTailCall())
1111             if (!LiveFunctions.count(CB->getParent()->getParent()))
1112               Temp.insert(CB->getParent()->getParent());
1113     NewLiveFuncs.clear();
1114     NewLiveFuncs.insert(Temp.begin(), Temp.end());
1115     for (const auto *F : Temp)
1116       markLive(*F);
1117   }
1118 }
1119 
1120 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1121                                                    ModuleAnalysisManager &) {
1122   bool Changed = false;
1123 
1124   // First pass: Do a simple check to see if any functions can have their "..."
1125   // removed.  We can do this if they never call va_start.  This loop cannot be
1126   // fused with the next loop, because deleting a function invalidates
1127   // information computed while surveying other functions.
1128   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1129   for (Function &F : llvm::make_early_inc_range(M))
1130     if (F.getFunctionType()->isVarArg())
1131       Changed |= deleteDeadVarargs(F);
1132 
1133   // Second phase: Loop through the module, determining which arguments are
1134   // live. We assume all arguments are dead unless proven otherwise (allowing us
1135   // to determine that dead arguments passed into recursive functions are dead).
1136   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1137   for (auto &F : M)
1138     surveyFunction(F);
1139 
1140   propagateVirtMustcallLiveness(M);
1141 
1142   // Now, remove all dead arguments and return values from each function in
1143   // turn.  We use make_early_inc_range here because functions will probably get
1144   // removed (i.e. replaced by new ones).
1145   for (Function &F : llvm::make_early_inc_range(M))
1146     Changed |= removeDeadStuffFromFunction(&F);
1147 
1148   // Finally, look for any unused parameters in functions with non-local
1149   // linkage and replace the passed in parameters with poison.
1150   for (auto &F : M)
1151     Changed |= removeDeadArgumentsFromCallers(F);
1152 
1153   if (!Changed)
1154     return PreservedAnalyses::all();
1155   return PreservedAnalyses::none();
1156 }
1157