1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass deletes dead arguments from internal functions. Dead argument 10 // elimination removes arguments which are directly dead, as well as arguments 11 // only passed into function calls as dead arguments of other functions. This 12 // pass also deletes dead return values in a similar way. 13 // 14 // This pass is often useful as a cleanup pass to run after aggressive 15 // interprocedural passes, which add possibly-dead arguments or return values. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Use.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "deadargelim" 56 57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); 58 STATISTIC(NumRetValsEliminated , "Number of unused return values removed"); 59 STATISTIC(NumArgumentsReplacedWithUndef, 60 "Number of unread args replaced with undef"); 61 62 namespace { 63 64 /// DAE - The dead argument elimination pass. 65 class DAE : public ModulePass { 66 protected: 67 // DAH uses this to specify a different ID. 68 explicit DAE(char &ID) : ModulePass(ID) {} 69 70 public: 71 static char ID; // Pass identification, replacement for typeid 72 73 DAE() : ModulePass(ID) { 74 initializeDAEPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnModule(Module &M) override { 78 if (skipModule(M)) 79 return false; 80 DeadArgumentEliminationPass DAEP(ShouldHackArguments()); 81 ModuleAnalysisManager DummyMAM; 82 PreservedAnalyses PA = DAEP.run(M, DummyMAM); 83 return !PA.areAllPreserved(); 84 } 85 86 virtual bool ShouldHackArguments() const { return false; } 87 }; 88 89 } // end anonymous namespace 90 91 char DAE::ID = 0; 92 93 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) 94 95 namespace { 96 97 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but 98 /// deletes arguments to functions which are external. This is only for use 99 /// by bugpoint. 100 struct DAH : public DAE { 101 static char ID; 102 103 DAH() : DAE(ID) {} 104 105 bool ShouldHackArguments() const override { return true; } 106 }; 107 108 } // end anonymous namespace 109 110 char DAH::ID = 0; 111 112 INITIALIZE_PASS(DAH, "deadarghaX0r", 113 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", 114 false, false) 115 116 /// createDeadArgEliminationPass - This pass removes arguments from functions 117 /// which are not used by the body of the function. 118 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } 119 120 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } 121 122 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if 123 /// llvm.vastart is never called, the varargs list is dead for the function. 124 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) { 125 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); 126 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; 127 128 // Ensure that the function is only directly called. 129 if (Fn.hasAddressTaken()) 130 return false; 131 132 // Don't touch naked functions. The assembly might be using an argument, or 133 // otherwise rely on the frame layout in a way that this analysis will not 134 // see. 135 if (Fn.hasFnAttribute(Attribute::Naked)) { 136 return false; 137 } 138 139 // Okay, we know we can transform this function if safe. Scan its body 140 // looking for calls marked musttail or calls to llvm.vastart. 141 for (BasicBlock &BB : Fn) { 142 for (Instruction &I : BB) { 143 CallInst *CI = dyn_cast<CallInst>(&I); 144 if (!CI) 145 continue; 146 if (CI->isMustTailCall()) 147 return false; 148 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 149 if (II->getIntrinsicID() == Intrinsic::vastart) 150 return false; 151 } 152 } 153 } 154 155 // If we get here, there are no calls to llvm.vastart in the function body, 156 // remove the "..." and adjust all the calls. 157 158 // Start by computing a new prototype for the function, which is the same as 159 // the old function, but doesn't have isVarArg set. 160 FunctionType *FTy = Fn.getFunctionType(); 161 162 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end()); 163 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), 164 Params, false); 165 unsigned NumArgs = Params.size(); 166 167 // Create the new function body and insert it into the module... 168 Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace()); 169 NF->copyAttributesFrom(&Fn); 170 NF->setComdat(Fn.getComdat()); 171 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF); 172 NF->takeName(&Fn); 173 174 // Loop over all of the callers of the function, transforming the call sites 175 // to pass in a smaller number of arguments into the new function. 176 // 177 std::vector<Value *> Args; 178 for (User *U : llvm::make_early_inc_range(Fn.users())) { 179 CallBase *CB = dyn_cast<CallBase>(U); 180 if (!CB) 181 continue; 182 183 // Pass all the same arguments. 184 Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs); 185 186 // Drop any attributes that were on the vararg arguments. 187 AttributeList PAL = CB->getAttributes(); 188 if (!PAL.isEmpty()) { 189 SmallVector<AttributeSet, 8> ArgAttrs; 190 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) 191 ArgAttrs.push_back(PAL.getParamAttrs(ArgNo)); 192 PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttrs(), 193 PAL.getRetAttrs(), ArgAttrs); 194 } 195 196 SmallVector<OperandBundleDef, 1> OpBundles; 197 CB->getOperandBundlesAsDefs(OpBundles); 198 199 CallBase *NewCB = nullptr; 200 if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) { 201 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 202 Args, OpBundles, "", CB); 203 } else { 204 NewCB = CallInst::Create(NF, Args, OpBundles, "", CB); 205 cast<CallInst>(NewCB)->setTailCallKind( 206 cast<CallInst>(CB)->getTailCallKind()); 207 } 208 NewCB->setCallingConv(CB->getCallingConv()); 209 NewCB->setAttributes(PAL); 210 NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 211 212 Args.clear(); 213 214 if (!CB->use_empty()) 215 CB->replaceAllUsesWith(NewCB); 216 217 NewCB->takeName(CB); 218 219 // Finally, remove the old call from the program, reducing the use-count of 220 // F. 221 CB->eraseFromParent(); 222 } 223 224 // Since we have now created the new function, splice the body of the old 225 // function right into the new function, leaving the old rotting hulk of the 226 // function empty. 227 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); 228 229 // Loop over the argument list, transferring uses of the old arguments over to 230 // the new arguments, also transferring over the names as well. While we're at 231 // it, remove the dead arguments from the DeadArguments list. 232 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), 233 I2 = NF->arg_begin(); I != E; ++I, ++I2) { 234 // Move the name and users over to the new version. 235 I->replaceAllUsesWith(&*I2); 236 I2->takeName(&*I); 237 } 238 239 // Clone metadatas from the old function, including debug info descriptor. 240 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 241 Fn.getAllMetadata(MDs); 242 for (auto MD : MDs) 243 NF->addMetadata(MD.first, *MD.second); 244 245 // Fix up any BlockAddresses that refer to the function. 246 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType())); 247 // Delete the bitcast that we just created, so that NF does not 248 // appear to be address-taken. 249 NF->removeDeadConstantUsers(); 250 // Finally, nuke the old function. 251 Fn.eraseFromParent(); 252 return true; 253 } 254 255 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any 256 /// arguments that are unused, and changes the caller parameters to be undefined 257 /// instead. 258 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) { 259 // We cannot change the arguments if this TU does not define the function or 260 // if the linker may choose a function body from another TU, even if the 261 // nominal linkage indicates that other copies of the function have the same 262 // semantics. In the below example, the dead load from %p may not have been 263 // eliminated from the linker-chosen copy of f, so replacing %p with undef 264 // in callers may introduce undefined behavior. 265 // 266 // define linkonce_odr void @f(i32* %p) { 267 // %v = load i32 %p 268 // ret void 269 // } 270 if (!Fn.hasExactDefinition()) 271 return false; 272 273 // Functions with local linkage should already have been handled, except the 274 // fragile (variadic) ones which we can improve here. 275 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg()) 276 return false; 277 278 // Don't touch naked functions. The assembly might be using an argument, or 279 // otherwise rely on the frame layout in a way that this analysis will not 280 // see. 281 if (Fn.hasFnAttribute(Attribute::Naked)) 282 return false; 283 284 if (Fn.use_empty()) 285 return false; 286 287 SmallVector<unsigned, 8> UnusedArgs; 288 bool Changed = false; 289 290 AttributeMask UBImplyingAttributes = 291 AttributeFuncs::getUBImplyingAttributes(); 292 for (Argument &Arg : Fn.args()) { 293 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && 294 !Arg.hasPassPointeeByValueCopyAttr()) { 295 if (Arg.isUsedByMetadata()) { 296 Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); 297 Changed = true; 298 } 299 UnusedArgs.push_back(Arg.getArgNo()); 300 Fn.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes); 301 } 302 } 303 304 if (UnusedArgs.empty()) 305 return false; 306 307 for (Use &U : Fn.uses()) { 308 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 309 if (!CB || !CB->isCallee(&U)) 310 continue; 311 312 // Now go through all unused args and replace them with "undef". 313 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { 314 unsigned ArgNo = UnusedArgs[I]; 315 316 Value *Arg = CB->getArgOperand(ArgNo); 317 CB->setArgOperand(ArgNo, UndefValue::get(Arg->getType())); 318 CB->removeParamAttrs(ArgNo, UBImplyingAttributes); 319 320 ++NumArgumentsReplacedWithUndef; 321 Changed = true; 322 } 323 } 324 325 return Changed; 326 } 327 328 /// Convenience function that returns the number of return values. It returns 0 329 /// for void functions and 1 for functions not returning a struct. It returns 330 /// the number of struct elements for functions returning a struct. 331 static unsigned NumRetVals(const Function *F) { 332 Type *RetTy = F->getReturnType(); 333 if (RetTy->isVoidTy()) 334 return 0; 335 else if (StructType *STy = dyn_cast<StructType>(RetTy)) 336 return STy->getNumElements(); 337 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 338 return ATy->getNumElements(); 339 else 340 return 1; 341 } 342 343 /// Returns the sub-type a function will return at a given Idx. Should 344 /// correspond to the result type of an ExtractValue instruction executed with 345 /// just that one Idx (i.e. only top-level structure is considered). 346 static Type *getRetComponentType(const Function *F, unsigned Idx) { 347 Type *RetTy = F->getReturnType(); 348 assert(!RetTy->isVoidTy() && "void type has no subtype"); 349 350 if (StructType *STy = dyn_cast<StructType>(RetTy)) 351 return STy->getElementType(Idx); 352 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 353 return ATy->getElementType(); 354 else 355 return RetTy; 356 } 357 358 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not 359 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined 360 /// liveness of Use. 361 DeadArgumentEliminationPass::Liveness 362 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use, 363 UseVector &MaybeLiveUses) { 364 // We're live if our use or its Function is already marked as live. 365 if (IsLive(Use)) 366 return Live; 367 368 // We're maybe live otherwise, but remember that we must become live if 369 // Use becomes live. 370 MaybeLiveUses.push_back(Use); 371 return MaybeLive; 372 } 373 374 /// SurveyUse - This looks at a single use of an argument or return value 375 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses 376 /// if it causes the used value to become MaybeLive. 377 /// 378 /// RetValNum is the return value number to use when this use is used in a 379 /// return instruction. This is used in the recursion, you should always leave 380 /// it at 0. 381 DeadArgumentEliminationPass::Liveness 382 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses, 383 unsigned RetValNum) { 384 const User *V = U->getUser(); 385 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { 386 // The value is returned from a function. It's only live when the 387 // function's return value is live. We use RetValNum here, for the case 388 // that U is really a use of an insertvalue instruction that uses the 389 // original Use. 390 const Function *F = RI->getParent()->getParent(); 391 if (RetValNum != -1U) { 392 RetOrArg Use = CreateRet(F, RetValNum); 393 // We might be live, depending on the liveness of Use. 394 return MarkIfNotLive(Use, MaybeLiveUses); 395 } else { 396 DeadArgumentEliminationPass::Liveness Result = MaybeLive; 397 for (unsigned Ri = 0; Ri < NumRetVals(F); ++Ri) { 398 RetOrArg Use = CreateRet(F, Ri); 399 // We might be live, depending on the liveness of Use. If any 400 // sub-value is live, then the entire value is considered live. This 401 // is a conservative choice, and better tracking is possible. 402 DeadArgumentEliminationPass::Liveness SubResult = 403 MarkIfNotLive(Use, MaybeLiveUses); 404 if (Result != Live) 405 Result = SubResult; 406 } 407 return Result; 408 } 409 } 410 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { 411 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() 412 && IV->hasIndices()) 413 // The use we are examining is inserted into an aggregate. Our liveness 414 // depends on all uses of that aggregate, but if it is used as a return 415 // value, only index at which we were inserted counts. 416 RetValNum = *IV->idx_begin(); 417 418 // Note that if we are used as the aggregate operand to the insertvalue, 419 // we don't change RetValNum, but do survey all our uses. 420 421 Liveness Result = MaybeLive; 422 for (const Use &UU : IV->uses()) { 423 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum); 424 if (Result == Live) 425 break; 426 } 427 return Result; 428 } 429 430 if (const auto *CB = dyn_cast<CallBase>(V)) { 431 const Function *F = CB->getCalledFunction(); 432 if (F) { 433 // Used in a direct call. 434 435 // The function argument is live if it is used as a bundle operand. 436 if (CB->isBundleOperand(U)) 437 return Live; 438 439 // Find the argument number. We know for sure that this use is an 440 // argument, since if it was the function argument this would be an 441 // indirect call and the we know can't be looking at a value of the 442 // label type (for the invoke instruction). 443 unsigned ArgNo = CB->getArgOperandNo(U); 444 445 if (ArgNo >= F->getFunctionType()->getNumParams()) 446 // The value is passed in through a vararg! Must be live. 447 return Live; 448 449 assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) && 450 "Argument is not where we expected it"); 451 452 // Value passed to a normal call. It's only live when the corresponding 453 // argument to the called function turns out live. 454 RetOrArg Use = CreateArg(F, ArgNo); 455 return MarkIfNotLive(Use, MaybeLiveUses); 456 } 457 } 458 // Used in any other way? Value must be live. 459 return Live; 460 } 461 462 /// SurveyUses - This looks at all the uses of the given value 463 /// Returns the Liveness deduced from the uses of this value. 464 /// 465 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If 466 /// the result is Live, MaybeLiveUses might be modified but its content should 467 /// be ignored (since it might not be complete). 468 DeadArgumentEliminationPass::Liveness 469 DeadArgumentEliminationPass::SurveyUses(const Value *V, 470 UseVector &MaybeLiveUses) { 471 // Assume it's dead (which will only hold if there are no uses at all..). 472 Liveness Result = MaybeLive; 473 // Check each use. 474 for (const Use &U : V->uses()) { 475 Result = SurveyUse(&U, MaybeLiveUses); 476 if (Result == Live) 477 break; 478 } 479 return Result; 480 } 481 482 // SurveyFunction - This performs the initial survey of the specified function, 483 // checking out whether or not it uses any of its incoming arguments or whether 484 // any callers use the return value. This fills in the LiveValues set and Uses 485 // map. 486 // 487 // We consider arguments of non-internal functions to be intrinsically alive as 488 // well as arguments to functions which have their "address taken". 489 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) { 490 // Functions with inalloca/preallocated parameters are expecting args in a 491 // particular register and memory layout. 492 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 493 F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 494 MarkLive(F); 495 return; 496 } 497 498 // Don't touch naked functions. The assembly might be using an argument, or 499 // otherwise rely on the frame layout in a way that this analysis will not 500 // see. 501 if (F.hasFnAttribute(Attribute::Naked)) { 502 MarkLive(F); 503 return; 504 } 505 506 unsigned RetCount = NumRetVals(&F); 507 508 // Assume all return values are dead 509 using RetVals = SmallVector<Liveness, 5>; 510 511 RetVals RetValLiveness(RetCount, MaybeLive); 512 513 using RetUses = SmallVector<UseVector, 5>; 514 515 // These vectors map each return value to the uses that make it MaybeLive, so 516 // we can add those to the Uses map if the return value really turns out to be 517 // MaybeLive. Initialized to a list of RetCount empty lists. 518 RetUses MaybeLiveRetUses(RetCount); 519 520 bool HasMustTailCalls = false; 521 522 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 523 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 524 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() 525 != F.getFunctionType()->getReturnType()) { 526 // We don't support old style multiple return values. 527 MarkLive(F); 528 return; 529 } 530 } 531 532 // If we have any returns of `musttail` results - the signature can't 533 // change 534 if (BB->getTerminatingMustTailCall() != nullptr) 535 HasMustTailCalls = true; 536 } 537 538 if (HasMustTailCalls) { 539 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 540 << " has musttail calls\n"); 541 } 542 543 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { 544 MarkLive(F); 545 return; 546 } 547 548 LLVM_DEBUG( 549 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " 550 << F.getName() << "\n"); 551 // Keep track of the number of live retvals, so we can skip checks once all 552 // of them turn out to be live. 553 unsigned NumLiveRetVals = 0; 554 555 bool HasMustTailCallers = false; 556 557 // Loop all uses of the function. 558 for (const Use &U : F.uses()) { 559 // If the function is PASSED IN as an argument, its address has been 560 // taken. 561 const auto *CB = dyn_cast<CallBase>(U.getUser()); 562 if (!CB || !CB->isCallee(&U)) { 563 MarkLive(F); 564 return; 565 } 566 567 // The number of arguments for `musttail` call must match the number of 568 // arguments of the caller 569 if (CB->isMustTailCall()) 570 HasMustTailCallers = true; 571 572 // If we end up here, we are looking at a direct call to our function. 573 574 // Now, check how our return value(s) is/are used in this caller. Don't 575 // bother checking return values if all of them are live already. 576 if (NumLiveRetVals == RetCount) 577 continue; 578 579 // Check all uses of the return value. 580 for (const Use &U : CB->uses()) { 581 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) { 582 // This use uses a part of our return value, survey the uses of 583 // that part and store the results for this index only. 584 unsigned Idx = *Ext->idx_begin(); 585 if (RetValLiveness[Idx] != Live) { 586 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); 587 if (RetValLiveness[Idx] == Live) 588 NumLiveRetVals++; 589 } 590 } else { 591 // Used by something else than extractvalue. Survey, but assume that the 592 // result applies to all sub-values. 593 UseVector MaybeLiveAggregateUses; 594 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) { 595 NumLiveRetVals = RetCount; 596 RetValLiveness.assign(RetCount, Live); 597 break; 598 } else { 599 for (unsigned Ri = 0; Ri != RetCount; ++Ri) { 600 if (RetValLiveness[Ri] != Live) 601 MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(), 602 MaybeLiveAggregateUses.end()); 603 } 604 } 605 } 606 } 607 } 608 609 if (HasMustTailCallers) { 610 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 611 << " has musttail callers\n"); 612 } 613 614 // Now we've inspected all callers, record the liveness of our return values. 615 for (unsigned Ri = 0; Ri != RetCount; ++Ri) 616 MarkValue(CreateRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]); 617 618 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " 619 << F.getName() << "\n"); 620 621 // Now, check all of our arguments. 622 unsigned ArgI = 0; 623 UseVector MaybeLiveArgUses; 624 for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end(); 625 AI != E; ++AI, ++ArgI) { 626 Liveness Result; 627 if (F.getFunctionType()->isVarArg() || HasMustTailCallers || 628 HasMustTailCalls) { 629 // Variadic functions will already have a va_arg function expanded inside 630 // them, making them potentially very sensitive to ABI changes resulting 631 // from removing arguments entirely, so don't. For example AArch64 handles 632 // register and stack HFAs very differently, and this is reflected in the 633 // IR which has already been generated. 634 // 635 // `musttail` calls to this function restrict argument removal attempts. 636 // The signature of the caller must match the signature of the function. 637 // 638 // `musttail` calls in this function prevents us from changing its 639 // signature 640 Result = Live; 641 } else { 642 // See what the effect of this use is (recording any uses that cause 643 // MaybeLive in MaybeLiveArgUses). 644 Result = SurveyUses(&*AI, MaybeLiveArgUses); 645 } 646 647 // Mark the result. 648 MarkValue(CreateArg(&F, ArgI), Result, MaybeLiveArgUses); 649 // Clear the vector again for the next iteration. 650 MaybeLiveArgUses.clear(); 651 } 652 } 653 654 /// MarkValue - This function marks the liveness of RA depending on L. If L is 655 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, 656 /// such that RA will be marked live if any use in MaybeLiveUses gets marked 657 /// live later on. 658 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L, 659 const UseVector &MaybeLiveUses) { 660 switch (L) { 661 case Live: 662 MarkLive(RA); 663 break; 664 case MaybeLive: 665 assert(!IsLive(RA) && "Use is already live!"); 666 for (const auto &MaybeLiveUse : MaybeLiveUses) { 667 if (IsLive(MaybeLiveUse)) { 668 // A use is live, so this value is live. 669 MarkLive(RA); 670 break; 671 } else { 672 // Note any uses of this value, so this value can be 673 // marked live whenever one of the uses becomes live. 674 Uses.insert(std::make_pair(MaybeLiveUse, RA)); 675 } 676 } 677 break; 678 } 679 } 680 681 /// MarkLive - Mark the given Function as alive, meaning that it cannot be 682 /// changed in any way. Additionally, 683 /// mark any values that are used as this function's parameters or by its return 684 /// values (according to Uses) live as well. 685 void DeadArgumentEliminationPass::MarkLive(const Function &F) { 686 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: " 687 << F.getName() << "\n"); 688 // Mark the function as live. 689 LiveFunctions.insert(&F); 690 // Mark all arguments as live. 691 for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI) 692 PropagateLiveness(CreateArg(&F, ArgI)); 693 // Mark all return values as live. 694 for (unsigned Ri = 0, E = NumRetVals(&F); Ri != E; ++Ri) 695 PropagateLiveness(CreateRet(&F, Ri)); 696 } 697 698 /// MarkLive - Mark the given return value or argument as live. Additionally, 699 /// mark any values that are used by this value (according to Uses) live as 700 /// well. 701 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) { 702 if (IsLive(RA)) 703 return; // Already marked Live. 704 705 LiveValues.insert(RA); 706 707 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " 708 << RA.getDescription() << " live\n"); 709 PropagateLiveness(RA); 710 } 711 712 bool DeadArgumentEliminationPass::IsLive(const RetOrArg &RA) { 713 return LiveFunctions.count(RA.F) || LiveValues.count(RA); 714 } 715 716 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness 717 /// to any other values it uses (according to Uses). 718 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) { 719 // We don't use upper_bound (or equal_range) here, because our recursive call 720 // to ourselves is likely to cause the upper_bound (which is the first value 721 // not belonging to RA) to become erased and the iterator invalidated. 722 UseMap::iterator Begin = Uses.lower_bound(RA); 723 UseMap::iterator E = Uses.end(); 724 UseMap::iterator I; 725 for (I = Begin; I != E && I->first == RA; ++I) 726 MarkLive(I->second); 727 728 // Erase RA from the Uses map (from the lower bound to wherever we ended up 729 // after the loop). 730 Uses.erase(Begin, I); 731 } 732 733 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F 734 // that are not in LiveValues. Transform the function and all of the callees of 735 // the function to not have these arguments and return values. 736 // 737 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) { 738 // Don't modify fully live functions 739 if (LiveFunctions.count(F)) 740 return false; 741 742 // Start by computing a new prototype for the function, which is the same as 743 // the old function, but has fewer arguments and a different return type. 744 FunctionType *FTy = F->getFunctionType(); 745 std::vector<Type*> Params; 746 747 // Keep track of if we have a live 'returned' argument 748 bool HasLiveReturnedArg = false; 749 750 // Set up to build a new list of parameter attributes. 751 SmallVector<AttributeSet, 8> ArgAttrVec; 752 const AttributeList &PAL = F->getAttributes(); 753 754 // Remember which arguments are still alive. 755 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); 756 // Construct the new parameter list from non-dead arguments. Also construct 757 // a new set of parameter attributes to correspond. Skip the first parameter 758 // attribute, since that belongs to the return value. 759 unsigned ArgI = 0; 760 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 761 ++I, ++ArgI) { 762 RetOrArg Arg = CreateArg(F, ArgI); 763 if (LiveValues.erase(Arg)) { 764 Params.push_back(I->getType()); 765 ArgAlive[ArgI] = true; 766 ArgAttrVec.push_back(PAL.getParamAttrs(ArgI)); 767 HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned); 768 } else { 769 ++NumArgumentsEliminated; 770 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " 771 << ArgI << " (" << I->getName() << ") from " 772 << F->getName() << "\n"); 773 } 774 } 775 776 // Find out the new return value. 777 Type *RetTy = FTy->getReturnType(); 778 Type *NRetTy = nullptr; 779 unsigned RetCount = NumRetVals(F); 780 781 // -1 means unused, other numbers are the new index 782 SmallVector<int, 5> NewRetIdxs(RetCount, -1); 783 std::vector<Type*> RetTypes; 784 785 // If there is a function with a live 'returned' argument but a dead return 786 // value, then there are two possible actions: 787 // 1) Eliminate the return value and take off the 'returned' attribute on the 788 // argument. 789 // 2) Retain the 'returned' attribute and treat the return value (but not the 790 // entire function) as live so that it is not eliminated. 791 // 792 // It's not clear in the general case which option is more profitable because, 793 // even in the absence of explicit uses of the return value, code generation 794 // is free to use the 'returned' attribute to do things like eliding 795 // save/restores of registers across calls. Whether or not this happens is 796 // target and ABI-specific as well as depending on the amount of register 797 // pressure, so there's no good way for an IR-level pass to figure this out. 798 // 799 // Fortunately, the only places where 'returned' is currently generated by 800 // the FE are places where 'returned' is basically free and almost always a 801 // performance win, so the second option can just be used always for now. 802 // 803 // This should be revisited if 'returned' is ever applied more liberally. 804 if (RetTy->isVoidTy() || HasLiveReturnedArg) { 805 NRetTy = RetTy; 806 } else { 807 // Look at each of the original return values individually. 808 for (unsigned Ri = 0; Ri != RetCount; ++Ri) { 809 RetOrArg Ret = CreateRet(F, Ri); 810 if (LiveValues.erase(Ret)) { 811 RetTypes.push_back(getRetComponentType(F, Ri)); 812 NewRetIdxs[Ri] = RetTypes.size() - 1; 813 } else { 814 ++NumRetValsEliminated; 815 LLVM_DEBUG( 816 dbgs() << "DeadArgumentEliminationPass - Removing return value " 817 << Ri << " from " << F->getName() << "\n"); 818 } 819 } 820 if (RetTypes.size() > 1) { 821 // More than one return type? Reduce it down to size. 822 if (StructType *STy = dyn_cast<StructType>(RetTy)) { 823 // Make the new struct packed if we used to return a packed struct 824 // already. 825 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); 826 } else { 827 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return"); 828 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); 829 } 830 } else if (RetTypes.size() == 1) 831 // One return type? Just a simple value then, but only if we didn't use to 832 // return a struct with that simple value before. 833 NRetTy = RetTypes.front(); 834 else if (RetTypes.empty()) 835 // No return types? Make it void, but only if we didn't use to return {}. 836 NRetTy = Type::getVoidTy(F->getContext()); 837 } 838 839 assert(NRetTy && "No new return type found?"); 840 841 // The existing function return attributes. 842 AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs()); 843 844 // Remove any incompatible attributes, but only if we removed all return 845 // values. Otherwise, ensure that we don't have any conflicting attributes 846 // here. Currently, this should not be possible, but special handling might be 847 // required when new return value attributes are added. 848 if (NRetTy->isVoidTy()) 849 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 850 else 851 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) && 852 "Return attributes no longer compatible?"); 853 854 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 855 856 // Strip allocsize attributes. They might refer to the deleted arguments. 857 AttributeSet FnAttrs = 858 PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize); 859 860 // Reconstruct the AttributesList based on the vector we constructed. 861 assert(ArgAttrVec.size() == Params.size()); 862 AttributeList NewPAL = 863 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 864 865 // Create the new function type based on the recomputed parameters. 866 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); 867 868 // No change? 869 if (NFTy == FTy) 870 return false; 871 872 // Create the new function body and insert it into the module... 873 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace()); 874 NF->copyAttributesFrom(F); 875 NF->setComdat(F->getComdat()); 876 NF->setAttributes(NewPAL); 877 // Insert the new function before the old function, so we won't be processing 878 // it again. 879 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 880 NF->takeName(F); 881 882 // Loop over all of the callers of the function, transforming the call sites 883 // to pass in a smaller number of arguments into the new function. 884 std::vector<Value*> Args; 885 while (!F->use_empty()) { 886 CallBase &CB = cast<CallBase>(*F->user_back()); 887 888 ArgAttrVec.clear(); 889 const AttributeList &CallPAL = CB.getAttributes(); 890 891 // Adjust the call return attributes in case the function was changed to 892 // return void. 893 AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs()); 894 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 895 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 896 897 // Declare these outside of the loops, so we can reuse them for the second 898 // loop, which loops the varargs. 899 auto I = CB.arg_begin(); 900 unsigned Pi = 0; 901 // Loop over those operands, corresponding to the normal arguments to the 902 // original function, and add those that are still alive. 903 for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi) 904 if (ArgAlive[Pi]) { 905 Args.push_back(*I); 906 // Get original parameter attributes, but skip return attributes. 907 AttributeSet Attrs = CallPAL.getParamAttrs(Pi); 908 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) { 909 // If the return type has changed, then get rid of 'returned' on the 910 // call site. The alternative is to make all 'returned' attributes on 911 // call sites keep the return value alive just like 'returned' 912 // attributes on function declaration but it's less clearly a win and 913 // this is not an expected case anyway 914 ArgAttrVec.push_back(AttributeSet::get( 915 F->getContext(), 916 AttrBuilder(F->getContext(), Attrs).removeAttribute(Attribute::Returned))); 917 } else { 918 // Otherwise, use the original attributes. 919 ArgAttrVec.push_back(Attrs); 920 } 921 } 922 923 // Push any varargs arguments on the list. Don't forget their attributes. 924 for (auto E = CB.arg_end(); I != E; ++I, ++Pi) { 925 Args.push_back(*I); 926 ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi)); 927 } 928 929 // Reconstruct the AttributesList based on the vector we constructed. 930 assert(ArgAttrVec.size() == Args.size()); 931 932 // Again, be sure to remove any allocsize attributes, since their indices 933 // may now be incorrect. 934 AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute( 935 F->getContext(), Attribute::AllocSize); 936 937 AttributeList NewCallPAL = AttributeList::get( 938 F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 939 940 SmallVector<OperandBundleDef, 1> OpBundles; 941 CB.getOperandBundlesAsDefs(OpBundles); 942 943 CallBase *NewCB = nullptr; 944 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 945 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 946 Args, OpBundles, "", CB.getParent()); 947 } else { 948 NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB); 949 cast<CallInst>(NewCB)->setTailCallKind( 950 cast<CallInst>(&CB)->getTailCallKind()); 951 } 952 NewCB->setCallingConv(CB.getCallingConv()); 953 NewCB->setAttributes(NewCallPAL); 954 NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 955 Args.clear(); 956 ArgAttrVec.clear(); 957 958 if (!CB.use_empty() || CB.isUsedByMetadata()) { 959 if (NewCB->getType() == CB.getType()) { 960 // Return type not changed? Just replace users then. 961 CB.replaceAllUsesWith(NewCB); 962 NewCB->takeName(&CB); 963 } else if (NewCB->getType()->isVoidTy()) { 964 // If the return value is dead, replace any uses of it with undef 965 // (any non-debug value uses will get removed later on). 966 if (!CB.getType()->isX86_MMXTy()) 967 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 968 } else { 969 assert((RetTy->isStructTy() || RetTy->isArrayTy()) && 970 "Return type changed, but not into a void. The old return type" 971 " must have been a struct or an array!"); 972 Instruction *InsertPt = &CB; 973 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 974 BasicBlock *NewEdge = 975 SplitEdge(NewCB->getParent(), II->getNormalDest()); 976 InsertPt = &*NewEdge->getFirstInsertionPt(); 977 } 978 979 // We used to return a struct or array. Instead of doing smart stuff 980 // with all the uses, we will just rebuild it using extract/insertvalue 981 // chaining and let instcombine clean that up. 982 // 983 // Start out building up our return value from undef 984 Value *RetVal = UndefValue::get(RetTy); 985 for (unsigned Ri = 0; Ri != RetCount; ++Ri) 986 if (NewRetIdxs[Ri] != -1) { 987 Value *V; 988 IRBuilder<NoFolder> IRB(InsertPt); 989 if (RetTypes.size() > 1) 990 // We are still returning a struct, so extract the value from our 991 // return value 992 V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret"); 993 else 994 // We are now returning a single element, so just insert that 995 V = NewCB; 996 // Insert the value at the old position 997 RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret"); 998 } 999 // Now, replace all uses of the old call instruction with the return 1000 // struct we built 1001 CB.replaceAllUsesWith(RetVal); 1002 NewCB->takeName(&CB); 1003 } 1004 } 1005 1006 // Finally, remove the old call from the program, reducing the use-count of 1007 // F. 1008 CB.eraseFromParent(); 1009 } 1010 1011 // Since we have now created the new function, splice the body of the old 1012 // function right into the new function, leaving the old rotting hulk of the 1013 // function empty. 1014 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 1015 1016 // Loop over the argument list, transferring uses of the old arguments over to 1017 // the new arguments, also transferring over the names as well. 1018 ArgI = 0; 1019 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 1020 I2 = NF->arg_begin(); 1021 I != E; ++I, ++ArgI) 1022 if (ArgAlive[ArgI]) { 1023 // If this is a live argument, move the name and users over to the new 1024 // version. 1025 I->replaceAllUsesWith(&*I2); 1026 I2->takeName(&*I); 1027 ++I2; 1028 } else { 1029 // If this argument is dead, replace any uses of it with undef 1030 // (any non-debug value uses will get removed later on). 1031 if (!I->getType()->isX86_MMXTy()) 1032 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1033 } 1034 1035 // If we change the return value of the function we must rewrite any return 1036 // instructions. Check this now. 1037 if (F->getReturnType() != NF->getReturnType()) 1038 for (BasicBlock &BB : *NF) 1039 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 1040 IRBuilder<NoFolder> IRB(RI); 1041 Value *RetVal = nullptr; 1042 1043 if (!NFTy->getReturnType()->isVoidTy()) { 1044 assert(RetTy->isStructTy() || RetTy->isArrayTy()); 1045 // The original return value was a struct or array, insert 1046 // extractvalue/insertvalue chains to extract only the values we need 1047 // to return and insert them into our new result. 1048 // This does generate messy code, but we'll let it to instcombine to 1049 // clean that up. 1050 Value *OldRet = RI->getOperand(0); 1051 // Start out building up our return value from undef 1052 RetVal = UndefValue::get(NRetTy); 1053 for (unsigned RetI = 0; RetI != RetCount; ++RetI) 1054 if (NewRetIdxs[RetI] != -1) { 1055 Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret"); 1056 1057 if (RetTypes.size() > 1) { 1058 // We're still returning a struct, so reinsert the value into 1059 // our new return value at the new index 1060 1061 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI], 1062 "newret"); 1063 } else { 1064 // We are now only returning a simple value, so just return the 1065 // extracted value. 1066 RetVal = EV; 1067 } 1068 } 1069 } 1070 // Replace the return instruction with one returning the new return 1071 // value (possibly 0 if we became void). 1072 auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI); 1073 NewRet->setDebugLoc(RI->getDebugLoc()); 1074 BB.getInstList().erase(RI); 1075 } 1076 1077 // Clone metadatas from the old function, including debug info descriptor. 1078 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 1079 F->getAllMetadata(MDs); 1080 for (auto MD : MDs) 1081 NF->addMetadata(MD.first, *MD.second); 1082 1083 // Now that the old function is dead, delete it. 1084 F->eraseFromParent(); 1085 1086 return true; 1087 } 1088 1089 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, 1090 ModuleAnalysisManager &) { 1091 bool Changed = false; 1092 1093 // First pass: Do a simple check to see if any functions can have their "..." 1094 // removed. We can do this if they never call va_start. This loop cannot be 1095 // fused with the next loop, because deleting a function invalidates 1096 // information computed while surveying other functions. 1097 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n"); 1098 for (Function &F : llvm::make_early_inc_range(M)) 1099 if (F.getFunctionType()->isVarArg()) 1100 Changed |= DeleteDeadVarargs(F); 1101 1102 // Second phase:loop through the module, determining which arguments are live. 1103 // We assume all arguments are dead unless proven otherwise (allowing us to 1104 // determine that dead arguments passed into recursive functions are dead). 1105 // 1106 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n"); 1107 for (auto &F : M) 1108 SurveyFunction(F); 1109 1110 // Now, remove all dead arguments and return values from each function in 1111 // turn. We use make_early_inc_range here because functions will probably get 1112 // removed (i.e. replaced by new ones). 1113 for (Function &F : llvm::make_early_inc_range(M)) 1114 Changed |= RemoveDeadStuffFromFunction(&F); 1115 1116 // Finally, look for any unused parameters in functions with non-local 1117 // linkage and replace the passed in parameters with undef. 1118 for (auto &F : M) 1119 Changed |= RemoveDeadArgumentsFromCallers(F); 1120 1121 if (!Changed) 1122 return PreservedAnalyses::all(); 1123 return PreservedAnalyses::none(); 1124 } 1125