1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass deletes dead arguments from internal functions. Dead argument 10 // elimination removes arguments which are directly dead, as well as arguments 11 // only passed into function calls as dead arguments of other functions. This 12 // pass also deletes dead return values in a similar way. 13 // 14 // This pass is often useful as a cleanup pass to run after aggressive 15 // interprocedural passes, which add possibly-dead arguments or return values. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AttributeMask.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DIBuilder.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/NoFolder.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Use.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/IPO.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include <cassert> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "deadargelim" 56 57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); 58 STATISTIC(NumRetValsEliminated, "Number of unused return values removed"); 59 STATISTIC(NumArgumentsReplacedWithPoison, 60 "Number of unread args replaced with poison"); 61 62 namespace { 63 64 /// The dead argument elimination pass. 65 class DAE : public ModulePass { 66 protected: 67 // DAH uses this to specify a different ID. 68 explicit DAE(char &ID) : ModulePass(ID) {} 69 70 public: 71 static char ID; // Pass identification, replacement for typeid 72 73 DAE() : ModulePass(ID) { 74 initializeDAEPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnModule(Module &M) override { 78 if (skipModule(M)) 79 return false; 80 DeadArgumentEliminationPass DAEP(shouldHackArguments()); 81 ModuleAnalysisManager DummyMAM; 82 PreservedAnalyses PA = DAEP.run(M, DummyMAM); 83 return !PA.areAllPreserved(); 84 } 85 86 virtual bool shouldHackArguments() const { return false; } 87 }; 88 89 bool isMustTailCalleeAnalyzable(const CallBase &CB) { 90 assert(CB.isMustTailCall()); 91 return CB.getCalledFunction() && !CB.getCalledFunction()->isDeclaration(); 92 } 93 94 } // end anonymous namespace 95 96 char DAE::ID = 0; 97 98 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) 99 100 namespace { 101 102 /// The DeadArgumentHacking pass, same as dead argument elimination, but deletes 103 /// arguments to functions which are external. This is only for use by bugpoint. 104 struct DAH : public DAE { 105 static char ID; 106 107 DAH() : DAE(ID) {} 108 109 bool shouldHackArguments() const override { return true; } 110 }; 111 112 } // end anonymous namespace 113 114 char DAH::ID = 0; 115 116 INITIALIZE_PASS(DAH, "deadarghaX0r", 117 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false, 118 false) 119 120 /// This pass removes arguments from functions which are not used by the body of 121 /// the function. 122 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } 123 124 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } 125 126 /// If this is an function that takes a ... list, and if llvm.vastart is never 127 /// called, the varargs list is dead for the function. 128 bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) { 129 assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!"); 130 if (F.isDeclaration() || !F.hasLocalLinkage()) 131 return false; 132 133 // Ensure that the function is only directly called. 134 if (F.hasAddressTaken()) 135 return false; 136 137 // Don't touch naked functions. The assembly might be using an argument, or 138 // otherwise rely on the frame layout in a way that this analysis will not 139 // see. 140 if (F.hasFnAttribute(Attribute::Naked)) { 141 return false; 142 } 143 144 // Okay, we know we can transform this function if safe. Scan its body 145 // looking for calls marked musttail or calls to llvm.vastart. 146 for (BasicBlock &BB : F) { 147 for (Instruction &I : BB) { 148 CallInst *CI = dyn_cast<CallInst>(&I); 149 if (!CI) 150 continue; 151 if (CI->isMustTailCall()) 152 return false; 153 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 154 if (II->getIntrinsicID() == Intrinsic::vastart) 155 return false; 156 } 157 } 158 } 159 160 // If we get here, there are no calls to llvm.vastart in the function body, 161 // remove the "..." and adjust all the calls. 162 163 // Start by computing a new prototype for the function, which is the same as 164 // the old function, but doesn't have isVarArg set. 165 FunctionType *FTy = F.getFunctionType(); 166 167 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end()); 168 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false); 169 unsigned NumArgs = Params.size(); 170 171 // Create the new function body and insert it into the module... 172 Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace()); 173 NF->copyAttributesFrom(&F); 174 NF->setComdat(F.getComdat()); 175 F.getParent()->getFunctionList().insert(F.getIterator(), NF); 176 NF->takeName(&F); 177 178 // Loop over all the callers of the function, transforming the call sites 179 // to pass in a smaller number of arguments into the new function. 180 // 181 std::vector<Value *> Args; 182 for (User *U : llvm::make_early_inc_range(F.users())) { 183 CallBase *CB = dyn_cast<CallBase>(U); 184 if (!CB) 185 continue; 186 187 // Pass all the same arguments. 188 Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs); 189 190 // Drop any attributes that were on the vararg arguments. 191 AttributeList PAL = CB->getAttributes(); 192 if (!PAL.isEmpty()) { 193 SmallVector<AttributeSet, 8> ArgAttrs; 194 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) 195 ArgAttrs.push_back(PAL.getParamAttrs(ArgNo)); 196 PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(), 197 PAL.getRetAttrs(), ArgAttrs); 198 } 199 200 SmallVector<OperandBundleDef, 1> OpBundles; 201 CB->getOperandBundlesAsDefs(OpBundles); 202 203 CallBase *NewCB = nullptr; 204 if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) { 205 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 206 Args, OpBundles, "", CB); 207 } else { 208 NewCB = CallInst::Create(NF, Args, OpBundles, "", CB); 209 cast<CallInst>(NewCB)->setTailCallKind( 210 cast<CallInst>(CB)->getTailCallKind()); 211 } 212 NewCB->setCallingConv(CB->getCallingConv()); 213 NewCB->setAttributes(PAL); 214 NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 215 216 Args.clear(); 217 218 if (!CB->use_empty()) 219 CB->replaceAllUsesWith(NewCB); 220 221 NewCB->takeName(CB); 222 223 // Finally, remove the old call from the program, reducing the use-count of 224 // F. 225 CB->eraseFromParent(); 226 } 227 228 // Since we have now created the new function, splice the body of the old 229 // function right into the new function, leaving the old rotting hulk of the 230 // function empty. 231 NF->splice(NF->begin(), &F); 232 233 // Loop over the argument list, transferring uses of the old arguments over to 234 // the new arguments, also transferring over the names as well. While we're 235 // at it, remove the dead arguments from the DeadArguments list. 236 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(), 237 I2 = NF->arg_begin(); 238 I != E; ++I, ++I2) { 239 // Move the name and users over to the new version. 240 I->replaceAllUsesWith(&*I2); 241 I2->takeName(&*I); 242 } 243 244 // Clone metadata from the old function, including debug info descriptor. 245 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 246 F.getAllMetadata(MDs); 247 for (auto [KindID, Node] : MDs) 248 NF->addMetadata(KindID, *Node); 249 250 // Fix up any BlockAddresses that refer to the function. 251 F.replaceAllUsesWith(ConstantExpr::getBitCast(NF, F.getType())); 252 // Delete the bitcast that we just created, so that NF does not 253 // appear to be address-taken. 254 NF->removeDeadConstantUsers(); 255 // Finally, nuke the old function. 256 F.eraseFromParent(); 257 return true; 258 } 259 260 /// Checks if the given function has any arguments that are unused, and changes 261 /// the caller parameters to be poison instead. 262 bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) { 263 // We cannot change the arguments if this TU does not define the function or 264 // if the linker may choose a function body from another TU, even if the 265 // nominal linkage indicates that other copies of the function have the same 266 // semantics. In the below example, the dead load from %p may not have been 267 // eliminated from the linker-chosen copy of f, so replacing %p with poison 268 // in callers may introduce undefined behavior. 269 // 270 // define linkonce_odr void @f(i32* %p) { 271 // %v = load i32 %p 272 // ret void 273 // } 274 if (!F.hasExactDefinition()) 275 return false; 276 277 // Functions with local linkage should already have been handled, except if 278 // they are fully alive (e.g., called indirectly) and except for the fragile 279 // (variadic) ones. In these cases, we may still be able to improve their 280 // statically known call sites. 281 if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) && 282 !F.getFunctionType()->isVarArg()) 283 return false; 284 285 // Don't touch naked functions. The assembly might be using an argument, or 286 // otherwise rely on the frame layout in a way that this analysis will not 287 // see. 288 if (F.hasFnAttribute(Attribute::Naked)) 289 return false; 290 291 if (F.use_empty()) 292 return false; 293 294 SmallVector<unsigned, 8> UnusedArgs; 295 bool Changed = false; 296 297 AttributeMask UBImplyingAttributes = 298 AttributeFuncs::getUBImplyingAttributes(); 299 for (Argument &Arg : F.args()) { 300 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && 301 !Arg.hasPassPointeeByValueCopyAttr()) { 302 if (Arg.isUsedByMetadata()) { 303 Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType())); 304 Changed = true; 305 } 306 UnusedArgs.push_back(Arg.getArgNo()); 307 F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes); 308 } 309 } 310 311 if (UnusedArgs.empty()) 312 return false; 313 314 for (Use &U : F.uses()) { 315 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 316 if (!CB || !CB->isCallee(&U) || 317 CB->getFunctionType() != F.getFunctionType()) 318 continue; 319 320 // Now go through all unused args and replace them with poison. 321 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { 322 unsigned ArgNo = UnusedArgs[I]; 323 324 Value *Arg = CB->getArgOperand(ArgNo); 325 CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType())); 326 CB->removeParamAttrs(ArgNo, UBImplyingAttributes); 327 328 ++NumArgumentsReplacedWithPoison; 329 Changed = true; 330 } 331 } 332 333 return Changed; 334 } 335 336 /// Convenience function that returns the number of return values. It returns 0 337 /// for void functions and 1 for functions not returning a struct. It returns 338 /// the number of struct elements for functions returning a struct. 339 static unsigned numRetVals(const Function *F) { 340 Type *RetTy = F->getReturnType(); 341 if (RetTy->isVoidTy()) 342 return 0; 343 if (StructType *STy = dyn_cast<StructType>(RetTy)) 344 return STy->getNumElements(); 345 if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 346 return ATy->getNumElements(); 347 return 1; 348 } 349 350 /// Returns the sub-type a function will return at a given Idx. Should 351 /// correspond to the result type of an ExtractValue instruction executed with 352 /// just that one Idx (i.e. only top-level structure is considered). 353 static Type *getRetComponentType(const Function *F, unsigned Idx) { 354 Type *RetTy = F->getReturnType(); 355 assert(!RetTy->isVoidTy() && "void type has no subtype"); 356 357 if (StructType *STy = dyn_cast<StructType>(RetTy)) 358 return STy->getElementType(Idx); 359 if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 360 return ATy->getElementType(); 361 return RetTy; 362 } 363 364 /// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to 365 /// the MaybeLiveUses argument. Returns the determined liveness of Use. 366 DeadArgumentEliminationPass::Liveness 367 DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use, 368 UseVector &MaybeLiveUses) { 369 // We're live if our use or its Function is already marked as live. 370 if (isLive(Use)) 371 return Live; 372 373 // We're maybe live otherwise, but remember that we must become live if 374 // Use becomes live. 375 MaybeLiveUses.push_back(Use); 376 return MaybeLive; 377 } 378 379 /// Looks at a single use of an argument or return value and determines if it 380 /// should be alive or not. Adds this use to MaybeLiveUses if it causes the 381 /// used value to become MaybeLive. 382 /// 383 /// RetValNum is the return value number to use when this use is used in a 384 /// return instruction. This is used in the recursion, you should always leave 385 /// it at 0. 386 DeadArgumentEliminationPass::Liveness 387 DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses, 388 unsigned RetValNum) { 389 const User *V = U->getUser(); 390 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { 391 // The value is returned from a function. It's only live when the 392 // function's return value is live. We use RetValNum here, for the case 393 // that U is really a use of an insertvalue instruction that uses the 394 // original Use. 395 const Function *F = RI->getParent()->getParent(); 396 if (RetValNum != -1U) { 397 RetOrArg Use = createRet(F, RetValNum); 398 // We might be live, depending on the liveness of Use. 399 return markIfNotLive(Use, MaybeLiveUses); 400 } 401 402 DeadArgumentEliminationPass::Liveness Result = MaybeLive; 403 for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) { 404 RetOrArg Use = createRet(F, Ri); 405 // We might be live, depending on the liveness of Use. If any 406 // sub-value is live, then the entire value is considered live. This 407 // is a conservative choice, and better tracking is possible. 408 DeadArgumentEliminationPass::Liveness SubResult = 409 markIfNotLive(Use, MaybeLiveUses); 410 if (Result != Live) 411 Result = SubResult; 412 } 413 return Result; 414 } 415 416 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { 417 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() && 418 IV->hasIndices()) 419 // The use we are examining is inserted into an aggregate. Our liveness 420 // depends on all uses of that aggregate, but if it is used as a return 421 // value, only index at which we were inserted counts. 422 RetValNum = *IV->idx_begin(); 423 424 // Note that if we are used as the aggregate operand to the insertvalue, 425 // we don't change RetValNum, but do survey all our uses. 426 427 Liveness Result = MaybeLive; 428 for (const Use &UU : IV->uses()) { 429 Result = surveyUse(&UU, MaybeLiveUses, RetValNum); 430 if (Result == Live) 431 break; 432 } 433 return Result; 434 } 435 436 if (const auto *CB = dyn_cast<CallBase>(V)) { 437 const Function *F = CB->getCalledFunction(); 438 if (F) { 439 // Used in a direct call. 440 441 // The function argument is live if it is used as a bundle operand. 442 if (CB->isBundleOperand(U)) 443 return Live; 444 445 // Find the argument number. We know for sure that this use is an 446 // argument, since if it was the function argument this would be an 447 // indirect call and that we know can't be looking at a value of the 448 // label type (for the invoke instruction). 449 unsigned ArgNo = CB->getArgOperandNo(U); 450 451 if (ArgNo >= F->getFunctionType()->getNumParams()) 452 // The value is passed in through a vararg! Must be live. 453 return Live; 454 455 assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) && 456 "Argument is not where we expected it"); 457 458 // Value passed to a normal call. It's only live when the corresponding 459 // argument to the called function turns out live. 460 RetOrArg Use = createArg(F, ArgNo); 461 return markIfNotLive(Use, MaybeLiveUses); 462 } 463 } 464 // Used in any other way? Value must be live. 465 return Live; 466 } 467 468 /// Looks at all the uses of the given value 469 /// Returns the Liveness deduced from the uses of this value. 470 /// 471 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If 472 /// the result is Live, MaybeLiveUses might be modified but its content should 473 /// be ignored (since it might not be complete). 474 DeadArgumentEliminationPass::Liveness 475 DeadArgumentEliminationPass::surveyUses(const Value *V, 476 UseVector &MaybeLiveUses) { 477 // Assume it's dead (which will only hold if there are no uses at all..). 478 Liveness Result = MaybeLive; 479 // Check each use. 480 for (const Use &U : V->uses()) { 481 Result = surveyUse(&U, MaybeLiveUses); 482 if (Result == Live) 483 break; 484 } 485 return Result; 486 } 487 488 /// Performs the initial survey of the specified function, checking out whether 489 /// it uses any of its incoming arguments or whether any callers use the return 490 /// value. This fills in the LiveValues set and Uses map. 491 /// 492 /// We consider arguments of non-internal functions to be intrinsically alive as 493 /// well as arguments to functions which have their "address taken". 494 void DeadArgumentEliminationPass::surveyFunction(const Function &F) { 495 // Functions with inalloca/preallocated parameters are expecting args in a 496 // particular register and memory layout. 497 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 498 F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 499 markLive(F); 500 return; 501 } 502 503 // Don't touch naked functions. The assembly might be using an argument, or 504 // otherwise rely on the frame layout in a way that this analysis will not 505 // see. 506 if (F.hasFnAttribute(Attribute::Naked)) { 507 markLive(F); 508 return; 509 } 510 511 unsigned RetCount = numRetVals(&F); 512 513 // Assume all return values are dead 514 using RetVals = SmallVector<Liveness, 5>; 515 516 RetVals RetValLiveness(RetCount, MaybeLive); 517 518 using RetUses = SmallVector<UseVector, 5>; 519 520 // These vectors map each return value to the uses that make it MaybeLive, so 521 // we can add those to the Uses map if the return value really turns out to be 522 // MaybeLive. Initialized to a list of RetCount empty lists. 523 RetUses MaybeLiveRetUses(RetCount); 524 525 bool HasMustTailCalls = false; 526 for (const BasicBlock &BB : F) { 527 // If we have any returns of `musttail` results - the signature can't 528 // change 529 if (const auto *TC = BB.getTerminatingMustTailCall()) { 530 HasMustTailCalls = true; 531 // In addition, if the called function is not locally defined (or unknown, 532 // if this is an indirect call), we can't change the callsite and thus 533 // can't change this function's signature either. 534 if (!isMustTailCalleeAnalyzable(*TC)) { 535 markLive(F); 536 return; 537 } 538 } 539 } 540 541 if (HasMustTailCalls) { 542 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 543 << " has musttail calls\n"); 544 } 545 546 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { 547 markLive(F); 548 return; 549 } 550 551 LLVM_DEBUG( 552 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " 553 << F.getName() << "\n"); 554 // Keep track of the number of live retvals, so we can skip checks once all 555 // of them turn out to be live. 556 unsigned NumLiveRetVals = 0; 557 558 bool HasMustTailCallers = false; 559 560 // Loop all uses of the function. 561 for (const Use &U : F.uses()) { 562 // If the function is PASSED IN as an argument, its address has been 563 // taken. 564 const auto *CB = dyn_cast<CallBase>(U.getUser()); 565 if (!CB || !CB->isCallee(&U) || 566 CB->getFunctionType() != F.getFunctionType()) { 567 markLive(F); 568 return; 569 } 570 571 // The number of arguments for `musttail` call must match the number of 572 // arguments of the caller 573 if (CB->isMustTailCall()) 574 HasMustTailCallers = true; 575 576 // If we end up here, we are looking at a direct call to our function. 577 578 // Now, check how our return value(s) is/are used in this caller. Don't 579 // bother checking return values if all of them are live already. 580 if (NumLiveRetVals == RetCount) 581 continue; 582 583 // Check all uses of the return value. 584 for (const Use &UU : CB->uses()) { 585 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) { 586 // This use uses a part of our return value, survey the uses of 587 // that part and store the results for this index only. 588 unsigned Idx = *Ext->idx_begin(); 589 if (RetValLiveness[Idx] != Live) { 590 RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]); 591 if (RetValLiveness[Idx] == Live) 592 NumLiveRetVals++; 593 } 594 } else { 595 // Used by something else than extractvalue. Survey, but assume that the 596 // result applies to all sub-values. 597 UseVector MaybeLiveAggregateUses; 598 if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) { 599 NumLiveRetVals = RetCount; 600 RetValLiveness.assign(RetCount, Live); 601 break; 602 } 603 604 for (unsigned Ri = 0; Ri != RetCount; ++Ri) { 605 if (RetValLiveness[Ri] != Live) 606 MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(), 607 MaybeLiveAggregateUses.end()); 608 } 609 } 610 } 611 } 612 613 if (HasMustTailCallers) { 614 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 615 << " has musttail callers\n"); 616 } 617 618 // Now we've inspected all callers, record the liveness of our return values. 619 for (unsigned Ri = 0; Ri != RetCount; ++Ri) 620 markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]); 621 622 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " 623 << F.getName() << "\n"); 624 625 // Now, check all of our arguments. 626 unsigned ArgI = 0; 627 UseVector MaybeLiveArgUses; 628 for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end(); 629 AI != E; ++AI, ++ArgI) { 630 Liveness Result; 631 if (F.getFunctionType()->isVarArg() || HasMustTailCallers || 632 HasMustTailCalls) { 633 // Variadic functions will already have a va_arg function expanded inside 634 // them, making them potentially very sensitive to ABI changes resulting 635 // from removing arguments entirely, so don't. For example AArch64 handles 636 // register and stack HFAs very differently, and this is reflected in the 637 // IR which has already been generated. 638 // 639 // `musttail` calls to this function restrict argument removal attempts. 640 // The signature of the caller must match the signature of the function. 641 // 642 // `musttail` calls in this function prevents us from changing its 643 // signature 644 Result = Live; 645 } else { 646 // See what the effect of this use is (recording any uses that cause 647 // MaybeLive in MaybeLiveArgUses). 648 Result = surveyUses(&*AI, MaybeLiveArgUses); 649 } 650 651 // Mark the result. 652 markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses); 653 // Clear the vector again for the next iteration. 654 MaybeLiveArgUses.clear(); 655 } 656 } 657 658 /// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes 659 /// all uses in MaybeLiveUses and records them in Uses, such that RA will be 660 /// marked live if any use in MaybeLiveUses gets marked live later on. 661 void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L, 662 const UseVector &MaybeLiveUses) { 663 switch (L) { 664 case Live: 665 markLive(RA); 666 break; 667 case MaybeLive: 668 assert(!isLive(RA) && "Use is already live!"); 669 for (const auto &MaybeLiveUse : MaybeLiveUses) { 670 if (isLive(MaybeLiveUse)) { 671 // A use is live, so this value is live. 672 markLive(RA); 673 break; 674 } 675 // Note any uses of this value, so this value can be 676 // marked live whenever one of the uses becomes live. 677 Uses.emplace(MaybeLiveUse, RA); 678 } 679 break; 680 } 681 } 682 683 /// Mark the given Function as alive, meaning that it cannot be changed in any 684 /// way. Additionally, mark any values that are used as this function's 685 /// parameters or by its return values (according to Uses) live as well. 686 void DeadArgumentEliminationPass::markLive(const Function &F) { 687 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: " 688 << F.getName() << "\n"); 689 // Mark the function as live. 690 LiveFunctions.insert(&F); 691 // Mark all arguments as live. 692 for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI) 693 propagateLiveness(createArg(&F, ArgI)); 694 // Mark all return values as live. 695 for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri) 696 propagateLiveness(createRet(&F, Ri)); 697 } 698 699 /// Mark the given return value or argument as live. Additionally, mark any 700 /// values that are used by this value (according to Uses) live as well. 701 void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) { 702 if (isLive(RA)) 703 return; // Already marked Live. 704 705 LiveValues.insert(RA); 706 707 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " 708 << RA.getDescription() << " live\n"); 709 propagateLiveness(RA); 710 } 711 712 bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) { 713 return LiveFunctions.count(RA.F) || LiveValues.count(RA); 714 } 715 716 /// Given that RA is a live value, propagate it's liveness to any other values 717 /// it uses (according to Uses). 718 void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) { 719 // We don't use upper_bound (or equal_range) here, because our recursive call 720 // to ourselves is likely to cause the upper_bound (which is the first value 721 // not belonging to RA) to become erased and the iterator invalidated. 722 UseMap::iterator Begin = Uses.lower_bound(RA); 723 UseMap::iterator E = Uses.end(); 724 UseMap::iterator I; 725 for (I = Begin; I != E && I->first == RA; ++I) 726 markLive(I->second); 727 728 // Erase RA from the Uses map (from the lower bound to wherever we ended up 729 // after the loop). 730 Uses.erase(Begin, I); 731 } 732 733 /// Remove any arguments and return values from F that are not in LiveValues. 734 /// Transform the function and all the callees of the function to not have these 735 /// arguments and return values. 736 bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) { 737 // Don't modify fully live functions 738 if (LiveFunctions.count(F)) 739 return false; 740 741 // Start by computing a new prototype for the function, which is the same as 742 // the old function, but has fewer arguments and a different return type. 743 FunctionType *FTy = F->getFunctionType(); 744 std::vector<Type *> Params; 745 746 // Keep track of if we have a live 'returned' argument 747 bool HasLiveReturnedArg = false; 748 749 // Set up to build a new list of parameter attributes. 750 SmallVector<AttributeSet, 8> ArgAttrVec; 751 const AttributeList &PAL = F->getAttributes(); 752 753 // Remember which arguments are still alive. 754 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); 755 // Construct the new parameter list from non-dead arguments. Also construct 756 // a new set of parameter attributes to correspond. Skip the first parameter 757 // attribute, since that belongs to the return value. 758 unsigned ArgI = 0; 759 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 760 ++I, ++ArgI) { 761 RetOrArg Arg = createArg(F, ArgI); 762 if (LiveValues.erase(Arg)) { 763 Params.push_back(I->getType()); 764 ArgAlive[ArgI] = true; 765 ArgAttrVec.push_back(PAL.getParamAttrs(ArgI)); 766 HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned); 767 } else { 768 ++NumArgumentsEliminated; 769 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " 770 << ArgI << " (" << I->getName() << ") from " 771 << F->getName() << "\n"); 772 } 773 } 774 775 // Find out the new return value. 776 Type *RetTy = FTy->getReturnType(); 777 Type *NRetTy = nullptr; 778 unsigned RetCount = numRetVals(F); 779 780 // -1 means unused, other numbers are the new index 781 SmallVector<int, 5> NewRetIdxs(RetCount, -1); 782 std::vector<Type *> RetTypes; 783 784 // If there is a function with a live 'returned' argument but a dead return 785 // value, then there are two possible actions: 786 // 1) Eliminate the return value and take off the 'returned' attribute on the 787 // argument. 788 // 2) Retain the 'returned' attribute and treat the return value (but not the 789 // entire function) as live so that it is not eliminated. 790 // 791 // It's not clear in the general case which option is more profitable because, 792 // even in the absence of explicit uses of the return value, code generation 793 // is free to use the 'returned' attribute to do things like eliding 794 // save/restores of registers across calls. Whether this happens is target and 795 // ABI-specific as well as depending on the amount of register pressure, so 796 // there's no good way for an IR-level pass to figure this out. 797 // 798 // Fortunately, the only places where 'returned' is currently generated by 799 // the FE are places where 'returned' is basically free and almost always a 800 // performance win, so the second option can just be used always for now. 801 // 802 // This should be revisited if 'returned' is ever applied more liberally. 803 if (RetTy->isVoidTy() || HasLiveReturnedArg) { 804 NRetTy = RetTy; 805 } else { 806 // Look at each of the original return values individually. 807 for (unsigned Ri = 0; Ri != RetCount; ++Ri) { 808 RetOrArg Ret = createRet(F, Ri); 809 if (LiveValues.erase(Ret)) { 810 RetTypes.push_back(getRetComponentType(F, Ri)); 811 NewRetIdxs[Ri] = RetTypes.size() - 1; 812 } else { 813 ++NumRetValsEliminated; 814 LLVM_DEBUG( 815 dbgs() << "DeadArgumentEliminationPass - Removing return value " 816 << Ri << " from " << F->getName() << "\n"); 817 } 818 } 819 if (RetTypes.size() > 1) { 820 // More than one return type? Reduce it down to size. 821 if (StructType *STy = dyn_cast<StructType>(RetTy)) { 822 // Make the new struct packed if we used to return a packed struct 823 // already. 824 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); 825 } else { 826 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return"); 827 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); 828 } 829 } else if (RetTypes.size() == 1) 830 // One return type? Just a simple value then, but only if we didn't use to 831 // return a struct with that simple value before. 832 NRetTy = RetTypes.front(); 833 else if (RetTypes.empty()) 834 // No return types? Make it void, but only if we didn't use to return {}. 835 NRetTy = Type::getVoidTy(F->getContext()); 836 } 837 838 assert(NRetTy && "No new return type found?"); 839 840 // The existing function return attributes. 841 AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs()); 842 843 // Remove any incompatible attributes, but only if we removed all return 844 // values. Otherwise, ensure that we don't have any conflicting attributes 845 // here. Currently, this should not be possible, but special handling might be 846 // required when new return value attributes are added. 847 if (NRetTy->isVoidTy()) 848 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 849 else 850 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) && 851 "Return attributes no longer compatible?"); 852 853 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 854 855 // Strip allocsize attributes. They might refer to the deleted arguments. 856 AttributeSet FnAttrs = 857 PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize); 858 859 // Reconstruct the AttributesList based on the vector we constructed. 860 assert(ArgAttrVec.size() == Params.size()); 861 AttributeList NewPAL = 862 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 863 864 // Create the new function type based on the recomputed parameters. 865 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); 866 867 // No change? 868 if (NFTy == FTy) 869 return false; 870 871 // Create the new function body and insert it into the module... 872 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace()); 873 NF->copyAttributesFrom(F); 874 NF->setComdat(F->getComdat()); 875 NF->setAttributes(NewPAL); 876 // Insert the new function before the old function, so we won't be processing 877 // it again. 878 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 879 NF->takeName(F); 880 881 // Loop over all the callers of the function, transforming the call sites to 882 // pass in a smaller number of arguments into the new function. 883 std::vector<Value *> Args; 884 while (!F->use_empty()) { 885 CallBase &CB = cast<CallBase>(*F->user_back()); 886 887 ArgAttrVec.clear(); 888 const AttributeList &CallPAL = CB.getAttributes(); 889 890 // Adjust the call return attributes in case the function was changed to 891 // return void. 892 AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs()); 893 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); 894 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 895 896 // Declare these outside of the loops, so we can reuse them for the second 897 // loop, which loops the varargs. 898 auto *I = CB.arg_begin(); 899 unsigned Pi = 0; 900 // Loop over those operands, corresponding to the normal arguments to the 901 // original function, and add those that are still alive. 902 for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi) 903 if (ArgAlive[Pi]) { 904 Args.push_back(*I); 905 // Get original parameter attributes, but skip return attributes. 906 AttributeSet Attrs = CallPAL.getParamAttrs(Pi); 907 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) { 908 // If the return type has changed, then get rid of 'returned' on the 909 // call site. The alternative is to make all 'returned' attributes on 910 // call sites keep the return value alive just like 'returned' 911 // attributes on function declaration, but it's less clearly a win and 912 // this is not an expected case anyway 913 ArgAttrVec.push_back(AttributeSet::get( 914 F->getContext(), AttrBuilder(F->getContext(), Attrs) 915 .removeAttribute(Attribute::Returned))); 916 } else { 917 // Otherwise, use the original attributes. 918 ArgAttrVec.push_back(Attrs); 919 } 920 } 921 922 // Push any varargs arguments on the list. Don't forget their attributes. 923 for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) { 924 Args.push_back(*I); 925 ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi)); 926 } 927 928 // Reconstruct the AttributesList based on the vector we constructed. 929 assert(ArgAttrVec.size() == Args.size()); 930 931 // Again, be sure to remove any allocsize attributes, since their indices 932 // may now be incorrect. 933 AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute( 934 F->getContext(), Attribute::AllocSize); 935 936 AttributeList NewCallPAL = 937 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 938 939 SmallVector<OperandBundleDef, 1> OpBundles; 940 CB.getOperandBundlesAsDefs(OpBundles); 941 942 CallBase *NewCB = nullptr; 943 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 944 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 945 Args, OpBundles, "", CB.getParent()); 946 } else { 947 NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB); 948 cast<CallInst>(NewCB)->setTailCallKind( 949 cast<CallInst>(&CB)->getTailCallKind()); 950 } 951 NewCB->setCallingConv(CB.getCallingConv()); 952 NewCB->setAttributes(NewCallPAL); 953 NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 954 Args.clear(); 955 ArgAttrVec.clear(); 956 957 if (!CB.use_empty() || CB.isUsedByMetadata()) { 958 if (NewCB->getType() == CB.getType()) { 959 // Return type not changed? Just replace users then. 960 CB.replaceAllUsesWith(NewCB); 961 NewCB->takeName(&CB); 962 } else if (NewCB->getType()->isVoidTy()) { 963 // If the return value is dead, replace any uses of it with poison 964 // (any non-debug value uses will get removed later on). 965 if (!CB.getType()->isX86_MMXTy()) 966 CB.replaceAllUsesWith(PoisonValue::get(CB.getType())); 967 } else { 968 assert((RetTy->isStructTy() || RetTy->isArrayTy()) && 969 "Return type changed, but not into a void. The old return type" 970 " must have been a struct or an array!"); 971 Instruction *InsertPt = &CB; 972 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 973 BasicBlock *NewEdge = 974 SplitEdge(NewCB->getParent(), II->getNormalDest()); 975 InsertPt = &*NewEdge->getFirstInsertionPt(); 976 } 977 978 // We used to return a struct or array. Instead of doing smart stuff 979 // with all the uses, we will just rebuild it using extract/insertvalue 980 // chaining and let instcombine clean that up. 981 // 982 // Start out building up our return value from poison 983 Value *RetVal = PoisonValue::get(RetTy); 984 for (unsigned Ri = 0; Ri != RetCount; ++Ri) 985 if (NewRetIdxs[Ri] != -1) { 986 Value *V; 987 IRBuilder<NoFolder> IRB(InsertPt); 988 if (RetTypes.size() > 1) 989 // We are still returning a struct, so extract the value from our 990 // return value 991 V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret"); 992 else 993 // We are now returning a single element, so just insert that 994 V = NewCB; 995 // Insert the value at the old position 996 RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret"); 997 } 998 // Now, replace all uses of the old call instruction with the return 999 // struct we built 1000 CB.replaceAllUsesWith(RetVal); 1001 NewCB->takeName(&CB); 1002 } 1003 } 1004 1005 // Finally, remove the old call from the program, reducing the use-count of 1006 // F. 1007 CB.eraseFromParent(); 1008 } 1009 1010 // Since we have now created the new function, splice the body of the old 1011 // function right into the new function, leaving the old rotting hulk of the 1012 // function empty. 1013 NF->splice(NF->begin(), F); 1014 1015 // Loop over the argument list, transferring uses of the old arguments over to 1016 // the new arguments, also transferring over the names as well. 1017 ArgI = 0; 1018 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 1019 I2 = NF->arg_begin(); 1020 I != E; ++I, ++ArgI) 1021 if (ArgAlive[ArgI]) { 1022 // If this is a live argument, move the name and users over to the new 1023 // version. 1024 I->replaceAllUsesWith(&*I2); 1025 I2->takeName(&*I); 1026 ++I2; 1027 } else { 1028 // If this argument is dead, replace any uses of it with poison 1029 // (any non-debug value uses will get removed later on). 1030 if (!I->getType()->isX86_MMXTy()) 1031 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 1032 } 1033 1034 // If we change the return value of the function we must rewrite any return 1035 // instructions. Check this now. 1036 if (F->getReturnType() != NF->getReturnType()) 1037 for (BasicBlock &BB : *NF) 1038 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 1039 IRBuilder<NoFolder> IRB(RI); 1040 Value *RetVal = nullptr; 1041 1042 if (!NFTy->getReturnType()->isVoidTy()) { 1043 assert(RetTy->isStructTy() || RetTy->isArrayTy()); 1044 // The original return value was a struct or array, insert 1045 // extractvalue/insertvalue chains to extract only the values we need 1046 // to return and insert them into our new result. 1047 // This does generate messy code, but we'll let it to instcombine to 1048 // clean that up. 1049 Value *OldRet = RI->getOperand(0); 1050 // Start out building up our return value from poison 1051 RetVal = PoisonValue::get(NRetTy); 1052 for (unsigned RetI = 0; RetI != RetCount; ++RetI) 1053 if (NewRetIdxs[RetI] != -1) { 1054 Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret"); 1055 1056 if (RetTypes.size() > 1) { 1057 // We're still returning a struct, so reinsert the value into 1058 // our new return value at the new index 1059 1060 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI], 1061 "newret"); 1062 } else { 1063 // We are now only returning a simple value, so just return the 1064 // extracted value. 1065 RetVal = EV; 1066 } 1067 } 1068 } 1069 // Replace the return instruction with one returning the new return 1070 // value (possibly 0 if we became void). 1071 auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI); 1072 NewRet->setDebugLoc(RI->getDebugLoc()); 1073 RI->eraseFromParent(); 1074 } 1075 1076 // Clone metadata from the old function, including debug info descriptor. 1077 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 1078 F->getAllMetadata(MDs); 1079 for (auto [KindID, Node] : MDs) 1080 NF->addMetadata(KindID, *Node); 1081 1082 // If either the return value(s) or argument(s) are removed, then probably the 1083 // function does not follow standard calling conventions anymore. Hence, add 1084 // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe 1085 // to call this function or try to interpret the return value. 1086 if (NFTy != FTy && NF->getSubprogram()) { 1087 DISubprogram *SP = NF->getSubprogram(); 1088 auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall); 1089 SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp))); 1090 } 1091 1092 // Now that the old function is dead, delete it. 1093 F->eraseFromParent(); 1094 1095 return true; 1096 } 1097 1098 void DeadArgumentEliminationPass::propagateVirtMustcallLiveness( 1099 const Module &M) { 1100 // If a function was marked "live", and it has musttail callers, they in turn 1101 // can't change either. 1102 LiveFuncSet NewLiveFuncs(LiveFunctions); 1103 while (!NewLiveFuncs.empty()) { 1104 LiveFuncSet Temp; 1105 for (const auto *F : NewLiveFuncs) 1106 for (const auto *U : F->users()) 1107 if (const auto *CB = dyn_cast<CallBase>(U)) 1108 if (CB->isMustTailCall()) 1109 if (!LiveFunctions.count(CB->getParent()->getParent())) 1110 Temp.insert(CB->getParent()->getParent()); 1111 NewLiveFuncs.clear(); 1112 NewLiveFuncs.insert(Temp.begin(), Temp.end()); 1113 for (const auto *F : Temp) 1114 markLive(*F); 1115 } 1116 } 1117 1118 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, 1119 ModuleAnalysisManager &) { 1120 bool Changed = false; 1121 1122 // First pass: Do a simple check to see if any functions can have their "..." 1123 // removed. We can do this if they never call va_start. This loop cannot be 1124 // fused with the next loop, because deleting a function invalidates 1125 // information computed while surveying other functions. 1126 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n"); 1127 for (Function &F : llvm::make_early_inc_range(M)) 1128 if (F.getFunctionType()->isVarArg()) 1129 Changed |= deleteDeadVarargs(F); 1130 1131 // Second phase: Loop through the module, determining which arguments are 1132 // live. We assume all arguments are dead unless proven otherwise (allowing us 1133 // to determine that dead arguments passed into recursive functions are dead). 1134 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n"); 1135 for (auto &F : M) 1136 surveyFunction(F); 1137 1138 propagateVirtMustcallLiveness(M); 1139 1140 // Now, remove all dead arguments and return values from each function in 1141 // turn. We use make_early_inc_range here because functions will probably get 1142 // removed (i.e. replaced by new ones). 1143 for (Function &F : llvm::make_early_inc_range(M)) 1144 Changed |= removeDeadStuffFromFunction(&F); 1145 1146 // Finally, look for any unused parameters in functions with non-local 1147 // linkage and replace the passed in parameters with poison. 1148 for (auto &F : M) 1149 Changed |= removeDeadArgumentsFromCallers(F); 1150 1151 if (!Changed) 1152 return PreservedAnalyses::all(); 1153 return PreservedAnalyses::none(); 1154 } 1155