1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a transformation that attaches !callees metadata to 10 // indirect call sites. For a given call site, the metadata, if present, 11 // indicates the set of functions the call site could possibly target at 12 // run-time. This metadata is added to indirect call sites when the set of 13 // possible targets can be determined by analysis and is known to be small. The 14 // analysis driving the transformation is similar to constant propagation and 15 // makes uses of the generic sparse propagation solver. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/IPO/CalledValuePropagation.h" 20 #include "llvm/Analysis/SparsePropagation.h" 21 #include "llvm/Analysis/ValueLatticeUtils.h" 22 #include "llvm/IR/MDBuilder.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Transforms/IPO.h" 27 using namespace llvm; 28 29 #define DEBUG_TYPE "called-value-propagation" 30 31 /// The maximum number of functions to track per lattice value. Once the number 32 /// of functions a call site can possibly target exceeds this threshold, it's 33 /// lattice value becomes overdefined. The number of possible lattice values is 34 /// bounded by Ch(F, M), where F is the number of functions in the module and M 35 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We 36 /// likely can't do anything useful for call sites with a large number of 37 /// possible targets, anyway. 38 static cl::opt<unsigned> MaxFunctionsPerValue( 39 "cvp-max-functions-per-value", cl::Hidden, cl::init(4), 40 cl::desc("The maximum number of functions to track per lattice value")); 41 42 namespace { 43 /// To enable interprocedural analysis, we assign LLVM values to the following 44 /// groups. The register group represents SSA registers, the return group 45 /// represents the return values of functions, and the memory group represents 46 /// in-memory values. An LLVM Value can technically be in more than one group. 47 /// It's necessary to distinguish these groups so we can, for example, track a 48 /// global variable separately from the value stored at its location. 49 enum class IPOGrouping { Register, Return, Memory }; 50 51 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. 52 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; 53 54 /// The lattice value type used by our custom lattice function. It holds the 55 /// lattice state, and a set of functions. 56 class CVPLatticeVal { 57 public: 58 /// The states of the lattice values. Only the FunctionSet state is 59 /// interesting. It indicates the set of functions to which an LLVM value may 60 /// refer. 61 enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; 62 63 /// Comparator for sorting the functions set. We want to keep the order 64 /// deterministic for testing, etc. 65 struct Compare { 66 bool operator()(const Function *LHS, const Function *RHS) const { 67 return LHS->getName() < RHS->getName(); 68 } 69 }; 70 71 CVPLatticeVal() : LatticeState(Undefined) {} 72 CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} 73 CVPLatticeVal(std::vector<Function *> &&Functions) 74 : LatticeState(FunctionSet), Functions(std::move(Functions)) { 75 assert(llvm::is_sorted(this->Functions, Compare())); 76 } 77 78 /// Get a reference to the functions held by this lattice value. The number 79 /// of functions will be zero for states other than FunctionSet. 80 const std::vector<Function *> &getFunctions() const { 81 return Functions; 82 } 83 84 /// Returns true if the lattice value is in the FunctionSet state. 85 bool isFunctionSet() const { return LatticeState == FunctionSet; } 86 87 bool operator==(const CVPLatticeVal &RHS) const { 88 return LatticeState == RHS.LatticeState && Functions == RHS.Functions; 89 } 90 91 bool operator!=(const CVPLatticeVal &RHS) const { 92 return LatticeState != RHS.LatticeState || Functions != RHS.Functions; 93 } 94 95 private: 96 /// Holds the state this lattice value is in. 97 CVPLatticeStateTy LatticeState; 98 99 /// Holds functions indicating the possible targets of call sites. This set 100 /// is empty for lattice values in the undefined, overdefined, and untracked 101 /// states. The maximum size of the set is controlled by 102 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in 103 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be 104 /// small and efficiently copyable. 105 // FIXME: This could be a TinyPtrVector and/or merge with LatticeState. 106 std::vector<Function *> Functions; 107 }; 108 109 /// The custom lattice function used by the generic sparse propagation solver. 110 /// It handles merging lattice values and computing new lattice values for 111 /// constants, arguments, values returned from trackable functions, and values 112 /// located in trackable global variables. It also computes the lattice values 113 /// that change as a result of executing instructions. 114 class CVPLatticeFunc 115 : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { 116 public: 117 CVPLatticeFunc() 118 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), 119 CVPLatticeVal(CVPLatticeVal::Overdefined), 120 CVPLatticeVal(CVPLatticeVal::Untracked)) {} 121 122 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. 123 CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { 124 switch (Key.getInt()) { 125 case IPOGrouping::Register: 126 if (isa<Instruction>(Key.getPointer())) { 127 return getUndefVal(); 128 } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { 129 if (canTrackArgumentsInterprocedurally(A->getParent())) 130 return getUndefVal(); 131 } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { 132 return computeConstant(C); 133 } 134 return getOverdefinedVal(); 135 case IPOGrouping::Memory: 136 case IPOGrouping::Return: 137 if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { 138 if (canTrackGlobalVariableInterprocedurally(GV)) 139 return computeConstant(GV->getInitializer()); 140 } else if (auto *F = cast<Function>(Key.getPointer())) 141 if (canTrackReturnsInterprocedurally(F)) 142 return getUndefVal(); 143 } 144 return getOverdefinedVal(); 145 } 146 147 /// Merge the two given lattice values. The interesting cases are merging two 148 /// FunctionSet values and a FunctionSet value with an Undefined value. For 149 /// these cases, we simply union the function sets. If the size of the union 150 /// is greater than the maximum functions we track, the merged value is 151 /// overdefined. 152 CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { 153 if (X == getOverdefinedVal() || Y == getOverdefinedVal()) 154 return getOverdefinedVal(); 155 if (X == getUndefVal() && Y == getUndefVal()) 156 return getUndefVal(); 157 std::vector<Function *> Union; 158 std::set_union(X.getFunctions().begin(), X.getFunctions().end(), 159 Y.getFunctions().begin(), Y.getFunctions().end(), 160 std::back_inserter(Union), CVPLatticeVal::Compare{}); 161 if (Union.size() > MaxFunctionsPerValue) 162 return getOverdefinedVal(); 163 return CVPLatticeVal(std::move(Union)); 164 } 165 166 /// Compute the lattice values that change as a result of executing the given 167 /// instruction. The changed values are stored in \p ChangedValues. We handle 168 /// just a few kinds of instructions since we're only propagating values that 169 /// can be called. 170 void ComputeInstructionState( 171 Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 172 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { 173 switch (I.getOpcode()) { 174 case Instruction::Call: 175 case Instruction::Invoke: 176 return visitCallBase(cast<CallBase>(I), ChangedValues, SS); 177 case Instruction::Load: 178 return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); 179 case Instruction::Ret: 180 return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); 181 case Instruction::Select: 182 return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); 183 case Instruction::Store: 184 return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); 185 default: 186 return visitInst(I, ChangedValues, SS); 187 } 188 } 189 190 /// Print the given CVPLatticeVal to the specified stream. 191 void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { 192 if (LV == getUndefVal()) 193 OS << "Undefined "; 194 else if (LV == getOverdefinedVal()) 195 OS << "Overdefined"; 196 else if (LV == getUntrackedVal()) 197 OS << "Untracked "; 198 else 199 OS << "FunctionSet"; 200 } 201 202 /// Print the given CVPLatticeKey to the specified stream. 203 void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { 204 if (Key.getInt() == IPOGrouping::Register) 205 OS << "<reg> "; 206 else if (Key.getInt() == IPOGrouping::Memory) 207 OS << "<mem> "; 208 else if (Key.getInt() == IPOGrouping::Return) 209 OS << "<ret> "; 210 if (isa<Function>(Key.getPointer())) 211 OS << Key.getPointer()->getName(); 212 else 213 OS << *Key.getPointer(); 214 } 215 216 /// We collect a set of indirect calls when visiting call sites. This method 217 /// returns a reference to that set. 218 SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; } 219 220 private: 221 /// Holds the indirect calls we encounter during the analysis. We will attach 222 /// metadata to these calls after the analysis indicating the functions the 223 /// calls can possibly target. 224 SmallPtrSet<CallBase *, 32> IndirectCalls; 225 226 /// Compute a new lattice value for the given constant. The constant, after 227 /// stripping any pointer casts, should be a Function. We ignore null 228 /// pointers as an optimization, since calling these values is undefined 229 /// behavior. 230 CVPLatticeVal computeConstant(Constant *C) { 231 if (isa<ConstantPointerNull>(C)) 232 return CVPLatticeVal(CVPLatticeVal::FunctionSet); 233 if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) 234 return CVPLatticeVal({F}); 235 return getOverdefinedVal(); 236 } 237 238 /// Handle return instructions. The function's return state is the merge of 239 /// the returned value state and the function's return state. 240 void visitReturn(ReturnInst &I, 241 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 242 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 243 Function *F = I.getParent()->getParent(); 244 if (F->getReturnType()->isVoidTy()) 245 return; 246 auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); 247 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 248 ChangedValues[RetF] = 249 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 250 } 251 252 /// Handle call sites. The state of a called function's formal arguments is 253 /// the merge of the argument state with the call sites corresponding actual 254 /// argument state. The call site state is the merge of the call site state 255 /// with the returned value state of the called function. 256 void visitCallBase(CallBase &CB, 257 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 258 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 259 Function *F = CB.getCalledFunction(); 260 auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register); 261 262 // If this is an indirect call, save it so we can quickly revisit it when 263 // attaching metadata. 264 if (!F) 265 IndirectCalls.insert(&CB); 266 267 // If we can't track the function's return values, there's nothing to do. 268 if (!F || !canTrackReturnsInterprocedurally(F)) { 269 // Void return, No need to create and update CVPLattice state as no one 270 // can use it. 271 if (CB.getType()->isVoidTy()) 272 return; 273 ChangedValues[RegI] = getOverdefinedVal(); 274 return; 275 } 276 277 // Inform the solver that the called function is executable, and perform 278 // the merges for the arguments and return value. 279 SS.MarkBlockExecutable(&F->front()); 280 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 281 for (Argument &A : F->args()) { 282 auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); 283 auto RegActual = 284 CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register); 285 ChangedValues[RegFormal] = 286 MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); 287 } 288 289 // Void return, No need to create and update CVPLattice state as no one can 290 // use it. 291 if (CB.getType()->isVoidTy()) 292 return; 293 294 ChangedValues[RegI] = 295 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 296 } 297 298 /// Handle select instructions. The select instruction state is the merge the 299 /// true and false value states. 300 void visitSelect(SelectInst &I, 301 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 302 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 303 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 304 auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); 305 auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); 306 ChangedValues[RegI] = 307 MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); 308 } 309 310 /// Handle load instructions. If the pointer operand of the load is a global 311 /// variable, we attempt to track the value. The loaded value state is the 312 /// merge of the loaded value state with the global variable state. 313 void visitLoad(LoadInst &I, 314 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 315 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 316 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 317 if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { 318 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 319 ChangedValues[RegI] = 320 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 321 } else { 322 ChangedValues[RegI] = getOverdefinedVal(); 323 } 324 } 325 326 /// Handle store instructions. If the pointer operand of the store is a 327 /// global variable, we attempt to track the value. The global variable state 328 /// is the merge of the stored value state with the global variable state. 329 void visitStore(StoreInst &I, 330 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 331 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 332 auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); 333 if (!GV) 334 return; 335 auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); 336 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 337 ChangedValues[MemGV] = 338 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 339 } 340 341 /// Handle all other instructions. All other instructions are marked 342 /// overdefined. 343 void visitInst(Instruction &I, 344 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 345 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 346 // Simply bail if this instruction has no user. 347 if (I.use_empty()) 348 return; 349 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 350 ChangedValues[RegI] = getOverdefinedVal(); 351 } 352 }; 353 } // namespace 354 355 namespace llvm { 356 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver 357 /// must translate between LatticeKeys and LLVM Values when adding Values to 358 /// its work list and inspecting the state of control-flow related values. 359 template <> struct LatticeKeyInfo<CVPLatticeKey> { 360 static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { 361 return Key.getPointer(); 362 } 363 static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { 364 return CVPLatticeKey(V, IPOGrouping::Register); 365 } 366 }; 367 } // namespace llvm 368 369 static bool runCVP(Module &M) { 370 // Our custom lattice function and generic sparse propagation solver. 371 CVPLatticeFunc Lattice; 372 SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); 373 374 // For each function in the module, if we can't track its arguments, let the 375 // generic solver assume it is executable. 376 for (Function &F : M) 377 if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) 378 Solver.MarkBlockExecutable(&F.front()); 379 380 // Solver our custom lattice. In doing so, we will also build a set of 381 // indirect call sites. 382 Solver.Solve(); 383 384 // Attach metadata to the indirect call sites that were collected indicating 385 // the set of functions they can possibly target. 386 bool Changed = false; 387 MDBuilder MDB(M.getContext()); 388 for (CallBase *C : Lattice.getIndirectCalls()) { 389 auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register); 390 CVPLatticeVal LV = Solver.getExistingValueState(RegI); 391 if (!LV.isFunctionSet() || LV.getFunctions().empty()) 392 continue; 393 MDNode *Callees = MDB.createCallees(LV.getFunctions()); 394 C->setMetadata(LLVMContext::MD_callees, Callees); 395 Changed = true; 396 } 397 398 return Changed; 399 } 400 401 PreservedAnalyses CalledValuePropagationPass::run(Module &M, 402 ModuleAnalysisManager &) { 403 runCVP(M); 404 return PreservedAnalyses::all(); 405 } 406 407 namespace { 408 class CalledValuePropagationLegacyPass : public ModulePass { 409 public: 410 static char ID; 411 412 void getAnalysisUsage(AnalysisUsage &AU) const override { 413 AU.setPreservesAll(); 414 } 415 416 CalledValuePropagationLegacyPass() : ModulePass(ID) { 417 initializeCalledValuePropagationLegacyPassPass( 418 *PassRegistry::getPassRegistry()); 419 } 420 421 bool runOnModule(Module &M) override { 422 if (skipModule(M)) 423 return false; 424 return runCVP(M); 425 } 426 }; 427 } // namespace 428 429 char CalledValuePropagationLegacyPass::ID = 0; 430 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", 431 "Called Value Propagation", false, false) 432 433 ModulePass *llvm::createCalledValuePropagationPass() { 434 return new CalledValuePropagationLegacyPass(); 435 } 436