1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a transformation that attaches !callees metadata to 10 // indirect call sites. For a given call site, the metadata, if present, 11 // indicates the set of functions the call site could possibly target at 12 // run-time. This metadata is added to indirect call sites when the set of 13 // possible targets can be determined by analysis and is known to be small. The 14 // analysis driving the transformation is similar to constant propagation and 15 // makes uses of the generic sparse propagation solver. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/IPO/CalledValuePropagation.h" 20 #include "llvm/Analysis/SparsePropagation.h" 21 #include "llvm/Analysis/ValueLatticeUtils.h" 22 #include "llvm/IR/InstVisitor.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Transforms/IPO.h" 27 using namespace llvm; 28 29 #define DEBUG_TYPE "called-value-propagation" 30 31 /// The maximum number of functions to track per lattice value. Once the number 32 /// of functions a call site can possibly target exceeds this threshold, it's 33 /// lattice value becomes overdefined. The number of possible lattice values is 34 /// bounded by Ch(F, M), where F is the number of functions in the module and M 35 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We 36 /// likely can't do anything useful for call sites with a large number of 37 /// possible targets, anyway. 38 static cl::opt<unsigned> MaxFunctionsPerValue( 39 "cvp-max-functions-per-value", cl::Hidden, cl::init(4), 40 cl::desc("The maximum number of functions to track per lattice value")); 41 42 namespace { 43 /// To enable interprocedural analysis, we assign LLVM values to the following 44 /// groups. The register group represents SSA registers, the return group 45 /// represents the return values of functions, and the memory group represents 46 /// in-memory values. An LLVM Value can technically be in more than one group. 47 /// It's necessary to distinguish these groups so we can, for example, track a 48 /// global variable separately from the value stored at its location. 49 enum class IPOGrouping { Register, Return, Memory }; 50 51 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. 52 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; 53 54 /// The lattice value type used by our custom lattice function. It holds the 55 /// lattice state, and a set of functions. 56 class CVPLatticeVal { 57 public: 58 /// The states of the lattice values. Only the FunctionSet state is 59 /// interesting. It indicates the set of functions to which an LLVM value may 60 /// refer. 61 enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; 62 63 /// Comparator for sorting the functions set. We want to keep the order 64 /// deterministic for testing, etc. 65 struct Compare { 66 bool operator()(const Function *LHS, const Function *RHS) const { 67 return LHS->getName() < RHS->getName(); 68 } 69 }; 70 71 CVPLatticeVal() : LatticeState(Undefined) {} 72 CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} 73 CVPLatticeVal(std::vector<Function *> &&Functions) 74 : LatticeState(FunctionSet), Functions(std::move(Functions)) { 75 assert(std::is_sorted(this->Functions.begin(), this->Functions.end(), 76 Compare())); 77 } 78 79 /// Get a reference to the functions held by this lattice value. The number 80 /// of functions will be zero for states other than FunctionSet. 81 const std::vector<Function *> &getFunctions() const { 82 return Functions; 83 } 84 85 /// Returns true if the lattice value is in the FunctionSet state. 86 bool isFunctionSet() const { return LatticeState == FunctionSet; } 87 88 bool operator==(const CVPLatticeVal &RHS) const { 89 return LatticeState == RHS.LatticeState && Functions == RHS.Functions; 90 } 91 92 bool operator!=(const CVPLatticeVal &RHS) const { 93 return LatticeState != RHS.LatticeState || Functions != RHS.Functions; 94 } 95 96 private: 97 /// Holds the state this lattice value is in. 98 CVPLatticeStateTy LatticeState; 99 100 /// Holds functions indicating the possible targets of call sites. This set 101 /// is empty for lattice values in the undefined, overdefined, and untracked 102 /// states. The maximum size of the set is controlled by 103 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in 104 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be 105 /// small and efficiently copyable. 106 // FIXME: This could be a TinyPtrVector and/or merge with LatticeState. 107 std::vector<Function *> Functions; 108 }; 109 110 /// The custom lattice function used by the generic sparse propagation solver. 111 /// It handles merging lattice values and computing new lattice values for 112 /// constants, arguments, values returned from trackable functions, and values 113 /// located in trackable global variables. It also computes the lattice values 114 /// that change as a result of executing instructions. 115 class CVPLatticeFunc 116 : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { 117 public: 118 CVPLatticeFunc() 119 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), 120 CVPLatticeVal(CVPLatticeVal::Overdefined), 121 CVPLatticeVal(CVPLatticeVal::Untracked)) {} 122 123 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. 124 CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { 125 switch (Key.getInt()) { 126 case IPOGrouping::Register: 127 if (isa<Instruction>(Key.getPointer())) { 128 return getUndefVal(); 129 } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { 130 if (canTrackArgumentsInterprocedurally(A->getParent())) 131 return getUndefVal(); 132 } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { 133 return computeConstant(C); 134 } 135 return getOverdefinedVal(); 136 case IPOGrouping::Memory: 137 case IPOGrouping::Return: 138 if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { 139 if (canTrackGlobalVariableInterprocedurally(GV)) 140 return computeConstant(GV->getInitializer()); 141 } else if (auto *F = cast<Function>(Key.getPointer())) 142 if (canTrackReturnsInterprocedurally(F)) 143 return getUndefVal(); 144 } 145 return getOverdefinedVal(); 146 } 147 148 /// Merge the two given lattice values. The interesting cases are merging two 149 /// FunctionSet values and a FunctionSet value with an Undefined value. For 150 /// these cases, we simply union the function sets. If the size of the union 151 /// is greater than the maximum functions we track, the merged value is 152 /// overdefined. 153 CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { 154 if (X == getOverdefinedVal() || Y == getOverdefinedVal()) 155 return getOverdefinedVal(); 156 if (X == getUndefVal() && Y == getUndefVal()) 157 return getUndefVal(); 158 std::vector<Function *> Union; 159 std::set_union(X.getFunctions().begin(), X.getFunctions().end(), 160 Y.getFunctions().begin(), Y.getFunctions().end(), 161 std::back_inserter(Union), CVPLatticeVal::Compare{}); 162 if (Union.size() > MaxFunctionsPerValue) 163 return getOverdefinedVal(); 164 return CVPLatticeVal(std::move(Union)); 165 } 166 167 /// Compute the lattice values that change as a result of executing the given 168 /// instruction. The changed values are stored in \p ChangedValues. We handle 169 /// just a few kinds of instructions since we're only propagating values that 170 /// can be called. 171 void ComputeInstructionState( 172 Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 173 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { 174 switch (I.getOpcode()) { 175 case Instruction::Call: 176 return visitCallSite(cast<CallInst>(&I), ChangedValues, SS); 177 case Instruction::Invoke: 178 return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS); 179 case Instruction::Load: 180 return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); 181 case Instruction::Ret: 182 return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); 183 case Instruction::Select: 184 return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); 185 case Instruction::Store: 186 return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); 187 default: 188 return visitInst(I, ChangedValues, SS); 189 } 190 } 191 192 /// Print the given CVPLatticeVal to the specified stream. 193 void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { 194 if (LV == getUndefVal()) 195 OS << "Undefined "; 196 else if (LV == getOverdefinedVal()) 197 OS << "Overdefined"; 198 else if (LV == getUntrackedVal()) 199 OS << "Untracked "; 200 else 201 OS << "FunctionSet"; 202 } 203 204 /// Print the given CVPLatticeKey to the specified stream. 205 void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { 206 if (Key.getInt() == IPOGrouping::Register) 207 OS << "<reg> "; 208 else if (Key.getInt() == IPOGrouping::Memory) 209 OS << "<mem> "; 210 else if (Key.getInt() == IPOGrouping::Return) 211 OS << "<ret> "; 212 if (isa<Function>(Key.getPointer())) 213 OS << Key.getPointer()->getName(); 214 else 215 OS << *Key.getPointer(); 216 } 217 218 /// We collect a set of indirect calls when visiting call sites. This method 219 /// returns a reference to that set. 220 SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; } 221 222 private: 223 /// Holds the indirect calls we encounter during the analysis. We will attach 224 /// metadata to these calls after the analysis indicating the functions the 225 /// calls can possibly target. 226 SmallPtrSet<Instruction *, 32> IndirectCalls; 227 228 /// Compute a new lattice value for the given constant. The constant, after 229 /// stripping any pointer casts, should be a Function. We ignore null 230 /// pointers as an optimization, since calling these values is undefined 231 /// behavior. 232 CVPLatticeVal computeConstant(Constant *C) { 233 if (isa<ConstantPointerNull>(C)) 234 return CVPLatticeVal(CVPLatticeVal::FunctionSet); 235 if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) 236 return CVPLatticeVal({F}); 237 return getOverdefinedVal(); 238 } 239 240 /// Handle return instructions. The function's return state is the merge of 241 /// the returned value state and the function's return state. 242 void visitReturn(ReturnInst &I, 243 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 244 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 245 Function *F = I.getParent()->getParent(); 246 if (F->getReturnType()->isVoidTy()) 247 return; 248 auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); 249 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 250 ChangedValues[RetF] = 251 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 252 } 253 254 /// Handle call sites. The state of a called function's formal arguments is 255 /// the merge of the argument state with the call sites corresponding actual 256 /// argument state. The call site state is the merge of the call site state 257 /// with the returned value state of the called function. 258 void visitCallSite(CallSite CS, 259 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 260 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 261 Function *F = CS.getCalledFunction(); 262 Instruction *I = CS.getInstruction(); 263 auto RegI = CVPLatticeKey(I, IPOGrouping::Register); 264 265 // If this is an indirect call, save it so we can quickly revisit it when 266 // attaching metadata. 267 if (!F) 268 IndirectCalls.insert(I); 269 270 // If we can't track the function's return values, there's nothing to do. 271 if (!F || !canTrackReturnsInterprocedurally(F)) { 272 // Void return, No need to create and update CVPLattice state as no one 273 // can use it. 274 if (I->getType()->isVoidTy()) 275 return; 276 ChangedValues[RegI] = getOverdefinedVal(); 277 return; 278 } 279 280 // Inform the solver that the called function is executable, and perform 281 // the merges for the arguments and return value. 282 SS.MarkBlockExecutable(&F->front()); 283 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 284 for (Argument &A : F->args()) { 285 auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); 286 auto RegActual = 287 CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); 288 ChangedValues[RegFormal] = 289 MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); 290 } 291 292 // Void return, No need to create and update CVPLattice state as no one can 293 // use it. 294 if (I->getType()->isVoidTy()) 295 return; 296 297 ChangedValues[RegI] = 298 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 299 } 300 301 /// Handle select instructions. The select instruction state is the merge the 302 /// true and false value states. 303 void visitSelect(SelectInst &I, 304 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 305 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 306 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 307 auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); 308 auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); 309 ChangedValues[RegI] = 310 MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); 311 } 312 313 /// Handle load instructions. If the pointer operand of the load is a global 314 /// variable, we attempt to track the value. The loaded value state is the 315 /// merge of the loaded value state with the global variable state. 316 void visitLoad(LoadInst &I, 317 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 318 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 319 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 320 if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { 321 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 322 ChangedValues[RegI] = 323 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 324 } else { 325 ChangedValues[RegI] = getOverdefinedVal(); 326 } 327 } 328 329 /// Handle store instructions. If the pointer operand of the store is a 330 /// global variable, we attempt to track the value. The global variable state 331 /// is the merge of the stored value state with the global variable state. 332 void visitStore(StoreInst &I, 333 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 334 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 335 auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); 336 if (!GV) 337 return; 338 auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); 339 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 340 ChangedValues[MemGV] = 341 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 342 } 343 344 /// Handle all other instructions. All other instructions are marked 345 /// overdefined. 346 void visitInst(Instruction &I, 347 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 348 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 349 // Simply bail if this instruction has no user. 350 if (I.use_empty()) 351 return; 352 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 353 ChangedValues[RegI] = getOverdefinedVal(); 354 } 355 }; 356 } // namespace 357 358 namespace llvm { 359 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver 360 /// must translate between LatticeKeys and LLVM Values when adding Values to 361 /// its work list and inspecting the state of control-flow related values. 362 template <> struct LatticeKeyInfo<CVPLatticeKey> { 363 static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { 364 return Key.getPointer(); 365 } 366 static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { 367 return CVPLatticeKey(V, IPOGrouping::Register); 368 } 369 }; 370 } // namespace llvm 371 372 static bool runCVP(Module &M) { 373 // Our custom lattice function and generic sparse propagation solver. 374 CVPLatticeFunc Lattice; 375 SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); 376 377 // For each function in the module, if we can't track its arguments, let the 378 // generic solver assume it is executable. 379 for (Function &F : M) 380 if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) 381 Solver.MarkBlockExecutable(&F.front()); 382 383 // Solver our custom lattice. In doing so, we will also build a set of 384 // indirect call sites. 385 Solver.Solve(); 386 387 // Attach metadata to the indirect call sites that were collected indicating 388 // the set of functions they can possibly target. 389 bool Changed = false; 390 MDBuilder MDB(M.getContext()); 391 for (Instruction *C : Lattice.getIndirectCalls()) { 392 CallSite CS(C); 393 auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); 394 CVPLatticeVal LV = Solver.getExistingValueState(RegI); 395 if (!LV.isFunctionSet() || LV.getFunctions().empty()) 396 continue; 397 MDNode *Callees = MDB.createCallees(LV.getFunctions()); 398 C->setMetadata(LLVMContext::MD_callees, Callees); 399 Changed = true; 400 } 401 402 return Changed; 403 } 404 405 PreservedAnalyses CalledValuePropagationPass::run(Module &M, 406 ModuleAnalysisManager &) { 407 runCVP(M); 408 return PreservedAnalyses::all(); 409 } 410 411 namespace { 412 class CalledValuePropagationLegacyPass : public ModulePass { 413 public: 414 static char ID; 415 416 void getAnalysisUsage(AnalysisUsage &AU) const override { 417 AU.setPreservesAll(); 418 } 419 420 CalledValuePropagationLegacyPass() : ModulePass(ID) { 421 initializeCalledValuePropagationLegacyPassPass( 422 *PassRegistry::getPassRegistry()); 423 } 424 425 bool runOnModule(Module &M) override { 426 if (skipModule(M)) 427 return false; 428 return runCVP(M); 429 } 430 }; 431 } // namespace 432 433 char CalledValuePropagationLegacyPass::ID = 0; 434 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", 435 "Called Value Propagation", false, false) 436 437 ModulePass *llvm::createCalledValuePropagationPass() { 438 return new CalledValuePropagationLegacyPass(); 439 } 440