xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/MDBuilder.h"
23 #include "llvm/InitializePasses.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Transforms/IPO.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "called-value-propagation"
29 
30 /// The maximum number of functions to track per lattice value. Once the number
31 /// of functions a call site can possibly target exceeds this threshold, it's
32 /// lattice value becomes overdefined. The number of possible lattice values is
33 /// bounded by Ch(F, M), where F is the number of functions in the module and M
34 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
35 /// likely can't do anything useful for call sites with a large number of
36 /// possible targets, anyway.
37 static cl::opt<unsigned> MaxFunctionsPerValue(
38     "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
39     cl::desc("The maximum number of functions to track per lattice value"));
40 
41 namespace {
42 /// To enable interprocedural analysis, we assign LLVM values to the following
43 /// groups. The register group represents SSA registers, the return group
44 /// represents the return values of functions, and the memory group represents
45 /// in-memory values. An LLVM Value can technically be in more than one group.
46 /// It's necessary to distinguish these groups so we can, for example, track a
47 /// global variable separately from the value stored at its location.
48 enum class IPOGrouping { Register, Return, Memory };
49 
50 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
51 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
52 
53 /// The lattice value type used by our custom lattice function. It holds the
54 /// lattice state, and a set of functions.
55 class CVPLatticeVal {
56 public:
57   /// The states of the lattice values. Only the FunctionSet state is
58   /// interesting. It indicates the set of functions to which an LLVM value may
59   /// refer.
60   enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
61 
62   /// Comparator for sorting the functions set. We want to keep the order
63   /// deterministic for testing, etc.
64   struct Compare {
65     bool operator()(const Function *LHS, const Function *RHS) const {
66       return LHS->getName() < RHS->getName();
67     }
68   };
69 
70   CVPLatticeVal() : LatticeState(Undefined) {}
71   CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
72   CVPLatticeVal(std::vector<Function *> &&Functions)
73       : LatticeState(FunctionSet), Functions(std::move(Functions)) {
74     assert(llvm::is_sorted(this->Functions, Compare()));
75   }
76 
77   /// Get a reference to the functions held by this lattice value. The number
78   /// of functions will be zero for states other than FunctionSet.
79   const std::vector<Function *> &getFunctions() const {
80     return Functions;
81   }
82 
83   /// Returns true if the lattice value is in the FunctionSet state.
84   bool isFunctionSet() const { return LatticeState == FunctionSet; }
85 
86   bool operator==(const CVPLatticeVal &RHS) const {
87     return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
88   }
89 
90   bool operator!=(const CVPLatticeVal &RHS) const {
91     return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
92   }
93 
94 private:
95   /// Holds the state this lattice value is in.
96   CVPLatticeStateTy LatticeState;
97 
98   /// Holds functions indicating the possible targets of call sites. This set
99   /// is empty for lattice values in the undefined, overdefined, and untracked
100   /// states. The maximum size of the set is controlled by
101   /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
102   /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
103   /// small and efficiently copyable.
104   // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
105   std::vector<Function *> Functions;
106 };
107 
108 /// The custom lattice function used by the generic sparse propagation solver.
109 /// It handles merging lattice values and computing new lattice values for
110 /// constants, arguments, values returned from trackable functions, and values
111 /// located in trackable global variables. It also computes the lattice values
112 /// that change as a result of executing instructions.
113 class CVPLatticeFunc
114     : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
115 public:
116   CVPLatticeFunc()
117       : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
118                                 CVPLatticeVal(CVPLatticeVal::Overdefined),
119                                 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
120 
121   /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
122   CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
123     switch (Key.getInt()) {
124     case IPOGrouping::Register:
125       if (isa<Instruction>(Key.getPointer())) {
126         return getUndefVal();
127       } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
128         if (canTrackArgumentsInterprocedurally(A->getParent()))
129           return getUndefVal();
130       } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
131         return computeConstant(C);
132       }
133       return getOverdefinedVal();
134     case IPOGrouping::Memory:
135     case IPOGrouping::Return:
136       if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
137         if (canTrackGlobalVariableInterprocedurally(GV))
138           return computeConstant(GV->getInitializer());
139       } else if (auto *F = cast<Function>(Key.getPointer()))
140         if (canTrackReturnsInterprocedurally(F))
141           return getUndefVal();
142     }
143     return getOverdefinedVal();
144   }
145 
146   /// Merge the two given lattice values. The interesting cases are merging two
147   /// FunctionSet values and a FunctionSet value with an Undefined value. For
148   /// these cases, we simply union the function sets. If the size of the union
149   /// is greater than the maximum functions we track, the merged value is
150   /// overdefined.
151   CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
152     if (X == getOverdefinedVal() || Y == getOverdefinedVal())
153       return getOverdefinedVal();
154     if (X == getUndefVal() && Y == getUndefVal())
155       return getUndefVal();
156     std::vector<Function *> Union;
157     std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
158                    Y.getFunctions().begin(), Y.getFunctions().end(),
159                    std::back_inserter(Union), CVPLatticeVal::Compare{});
160     if (Union.size() > MaxFunctionsPerValue)
161       return getOverdefinedVal();
162     return CVPLatticeVal(std::move(Union));
163   }
164 
165   /// Compute the lattice values that change as a result of executing the given
166   /// instruction. The changed values are stored in \p ChangedValues. We handle
167   /// just a few kinds of instructions since we're only propagating values that
168   /// can be called.
169   void ComputeInstructionState(
170       Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
171       SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
172     switch (I.getOpcode()) {
173     case Instruction::Call:
174     case Instruction::Invoke:
175       return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
176     case Instruction::Load:
177       return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
178     case Instruction::Ret:
179       return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
180     case Instruction::Select:
181       return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
182     case Instruction::Store:
183       return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
184     default:
185       return visitInst(I, ChangedValues, SS);
186     }
187   }
188 
189   /// Print the given CVPLatticeVal to the specified stream.
190   void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
191     if (LV == getUndefVal())
192       OS << "Undefined  ";
193     else if (LV == getOverdefinedVal())
194       OS << "Overdefined";
195     else if (LV == getUntrackedVal())
196       OS << "Untracked  ";
197     else
198       OS << "FunctionSet";
199   }
200 
201   /// Print the given CVPLatticeKey to the specified stream.
202   void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
203     if (Key.getInt() == IPOGrouping::Register)
204       OS << "<reg> ";
205     else if (Key.getInt() == IPOGrouping::Memory)
206       OS << "<mem> ";
207     else if (Key.getInt() == IPOGrouping::Return)
208       OS << "<ret> ";
209     if (isa<Function>(Key.getPointer()))
210       OS << Key.getPointer()->getName();
211     else
212       OS << *Key.getPointer();
213   }
214 
215   /// We collect a set of indirect calls when visiting call sites. This method
216   /// returns a reference to that set.
217   SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
218 
219 private:
220   /// Holds the indirect calls we encounter during the analysis. We will attach
221   /// metadata to these calls after the analysis indicating the functions the
222   /// calls can possibly target.
223   SmallPtrSet<CallBase *, 32> IndirectCalls;
224 
225   /// Compute a new lattice value for the given constant. The constant, after
226   /// stripping any pointer casts, should be a Function. We ignore null
227   /// pointers as an optimization, since calling these values is undefined
228   /// behavior.
229   CVPLatticeVal computeConstant(Constant *C) {
230     if (isa<ConstantPointerNull>(C))
231       return CVPLatticeVal(CVPLatticeVal::FunctionSet);
232     if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
233       return CVPLatticeVal({F});
234     return getOverdefinedVal();
235   }
236 
237   /// Handle return instructions. The function's return state is the merge of
238   /// the returned value state and the function's return state.
239   void visitReturn(ReturnInst &I,
240                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
241                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
242     Function *F = I.getParent()->getParent();
243     if (F->getReturnType()->isVoidTy())
244       return;
245     auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
246     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
247     ChangedValues[RetF] =
248         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
249   }
250 
251   /// Handle call sites. The state of a called function's formal arguments is
252   /// the merge of the argument state with the call sites corresponding actual
253   /// argument state. The call site state is the merge of the call site state
254   /// with the returned value state of the called function.
255   void visitCallBase(CallBase &CB,
256                      DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
257                      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
258     Function *F = CB.getCalledFunction();
259     auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
260 
261     // If this is an indirect call, save it so we can quickly revisit it when
262     // attaching metadata.
263     if (!F)
264       IndirectCalls.insert(&CB);
265 
266     // If we can't track the function's return values, there's nothing to do.
267     if (!F || !canTrackReturnsInterprocedurally(F)) {
268       // Void return, No need to create and update CVPLattice state as no one
269       // can use it.
270       if (CB.getType()->isVoidTy())
271         return;
272       ChangedValues[RegI] = getOverdefinedVal();
273       return;
274     }
275 
276     // Inform the solver that the called function is executable, and perform
277     // the merges for the arguments and return value.
278     SS.MarkBlockExecutable(&F->front());
279     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
280     for (Argument &A : F->args()) {
281       auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
282       auto RegActual =
283           CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
284       ChangedValues[RegFormal] =
285           MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
286     }
287 
288     // Void return, No need to create and update CVPLattice state as no one can
289     // use it.
290     if (CB.getType()->isVoidTy())
291       return;
292 
293     ChangedValues[RegI] =
294         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
295   }
296 
297   /// Handle select instructions. The select instruction state is the merge the
298   /// true and false value states.
299   void visitSelect(SelectInst &I,
300                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
301                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
302     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
303     auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
304     auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
305     ChangedValues[RegI] =
306         MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
307   }
308 
309   /// Handle load instructions. If the pointer operand of the load is a global
310   /// variable, we attempt to track the value. The loaded value state is the
311   /// merge of the loaded value state with the global variable state.
312   void visitLoad(LoadInst &I,
313                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
314                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
315     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
316     if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
317       auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
318       ChangedValues[RegI] =
319           MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
320     } else {
321       ChangedValues[RegI] = getOverdefinedVal();
322     }
323   }
324 
325   /// Handle store instructions. If the pointer operand of the store is a
326   /// global variable, we attempt to track the value. The global variable state
327   /// is the merge of the stored value state with the global variable state.
328   void visitStore(StoreInst &I,
329                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
330                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
331     auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
332     if (!GV)
333       return;
334     auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
335     auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
336     ChangedValues[MemGV] =
337         MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
338   }
339 
340   /// Handle all other instructions. All other instructions are marked
341   /// overdefined.
342   void visitInst(Instruction &I,
343                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
344                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
345     // Simply bail if this instruction has no user.
346     if (I.use_empty())
347       return;
348     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
349     ChangedValues[RegI] = getOverdefinedVal();
350   }
351 };
352 } // namespace
353 
354 namespace llvm {
355 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
356 /// must translate between LatticeKeys and LLVM Values when adding Values to
357 /// its work list and inspecting the state of control-flow related values.
358 template <> struct LatticeKeyInfo<CVPLatticeKey> {
359   static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
360     return Key.getPointer();
361   }
362   static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
363     return CVPLatticeKey(V, IPOGrouping::Register);
364   }
365 };
366 } // namespace llvm
367 
368 static bool runCVP(Module &M) {
369   // Our custom lattice function and generic sparse propagation solver.
370   CVPLatticeFunc Lattice;
371   SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
372 
373   // For each function in the module, if we can't track its arguments, let the
374   // generic solver assume it is executable.
375   for (Function &F : M)
376     if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
377       Solver.MarkBlockExecutable(&F.front());
378 
379   // Solver our custom lattice. In doing so, we will also build a set of
380   // indirect call sites.
381   Solver.Solve();
382 
383   // Attach metadata to the indirect call sites that were collected indicating
384   // the set of functions they can possibly target.
385   bool Changed = false;
386   MDBuilder MDB(M.getContext());
387   for (CallBase *C : Lattice.getIndirectCalls()) {
388     auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
389     CVPLatticeVal LV = Solver.getExistingValueState(RegI);
390     if (!LV.isFunctionSet() || LV.getFunctions().empty())
391       continue;
392     MDNode *Callees = MDB.createCallees(LV.getFunctions());
393     C->setMetadata(LLVMContext::MD_callees, Callees);
394     Changed = true;
395   }
396 
397   return Changed;
398 }
399 
400 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
401                                                   ModuleAnalysisManager &) {
402   runCVP(M);
403   return PreservedAnalyses::all();
404 }
405 
406 namespace {
407 class CalledValuePropagationLegacyPass : public ModulePass {
408 public:
409   static char ID;
410 
411   void getAnalysisUsage(AnalysisUsage &AU) const override {
412     AU.setPreservesAll();
413   }
414 
415   CalledValuePropagationLegacyPass() : ModulePass(ID) {
416     initializeCalledValuePropagationLegacyPassPass(
417         *PassRegistry::getPassRegistry());
418   }
419 
420   bool runOnModule(Module &M) override {
421     if (skipModule(M))
422       return false;
423     return runCVP(M);
424   }
425 };
426 } // namespace
427 
428 char CalledValuePropagationLegacyPass::ID = 0;
429 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
430                 "Called Value Propagation", false, false)
431 
432 ModulePass *llvm::createCalledValuePropagationPass() {
433   return new CalledValuePropagationLegacyPass();
434 }
435