xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp (revision 68d75eff68281c1b445e3010bb975eae07aac225)
1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/InstVisitor.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/Transforms/IPO.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "called-value-propagation"
28 
29 /// The maximum number of functions to track per lattice value. Once the number
30 /// of functions a call site can possibly target exceeds this threshold, it's
31 /// lattice value becomes overdefined. The number of possible lattice values is
32 /// bounded by Ch(F, M), where F is the number of functions in the module and M
33 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
34 /// likely can't do anything useful for call sites with a large number of
35 /// possible targets, anyway.
36 static cl::opt<unsigned> MaxFunctionsPerValue(
37     "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
38     cl::desc("The maximum number of functions to track per lattice value"));
39 
40 namespace {
41 /// To enable interprocedural analysis, we assign LLVM values to the following
42 /// groups. The register group represents SSA registers, the return group
43 /// represents the return values of functions, and the memory group represents
44 /// in-memory values. An LLVM Value can technically be in more than one group.
45 /// It's necessary to distinguish these groups so we can, for example, track a
46 /// global variable separately from the value stored at its location.
47 enum class IPOGrouping { Register, Return, Memory };
48 
49 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
50 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
51 
52 /// The lattice value type used by our custom lattice function. It holds the
53 /// lattice state, and a set of functions.
54 class CVPLatticeVal {
55 public:
56   /// The states of the lattice values. Only the FunctionSet state is
57   /// interesting. It indicates the set of functions to which an LLVM value may
58   /// refer.
59   enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
60 
61   /// Comparator for sorting the functions set. We want to keep the order
62   /// deterministic for testing, etc.
63   struct Compare {
64     bool operator()(const Function *LHS, const Function *RHS) const {
65       return LHS->getName() < RHS->getName();
66     }
67   };
68 
69   CVPLatticeVal() : LatticeState(Undefined) {}
70   CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
71   CVPLatticeVal(std::vector<Function *> &&Functions)
72       : LatticeState(FunctionSet), Functions(std::move(Functions)) {
73     assert(std::is_sorted(this->Functions.begin(), this->Functions.end(),
74                           Compare()));
75   }
76 
77   /// Get a reference to the functions held by this lattice value. The number
78   /// of functions will be zero for states other than FunctionSet.
79   const std::vector<Function *> &getFunctions() const {
80     return Functions;
81   }
82 
83   /// Returns true if the lattice value is in the FunctionSet state.
84   bool isFunctionSet() const { return LatticeState == FunctionSet; }
85 
86   bool operator==(const CVPLatticeVal &RHS) const {
87     return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
88   }
89 
90   bool operator!=(const CVPLatticeVal &RHS) const {
91     return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
92   }
93 
94 private:
95   /// Holds the state this lattice value is in.
96   CVPLatticeStateTy LatticeState;
97 
98   /// Holds functions indicating the possible targets of call sites. This set
99   /// is empty for lattice values in the undefined, overdefined, and untracked
100   /// states. The maximum size of the set is controlled by
101   /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
102   /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
103   /// small and efficiently copyable.
104   // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
105   std::vector<Function *> Functions;
106 };
107 
108 /// The custom lattice function used by the generic sparse propagation solver.
109 /// It handles merging lattice values and computing new lattice values for
110 /// constants, arguments, values returned from trackable functions, and values
111 /// located in trackable global variables. It also computes the lattice values
112 /// that change as a result of executing instructions.
113 class CVPLatticeFunc
114     : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
115 public:
116   CVPLatticeFunc()
117       : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
118                                 CVPLatticeVal(CVPLatticeVal::Overdefined),
119                                 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
120 
121   /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
122   CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
123     switch (Key.getInt()) {
124     case IPOGrouping::Register:
125       if (isa<Instruction>(Key.getPointer())) {
126         return getUndefVal();
127       } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
128         if (canTrackArgumentsInterprocedurally(A->getParent()))
129           return getUndefVal();
130       } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
131         return computeConstant(C);
132       }
133       return getOverdefinedVal();
134     case IPOGrouping::Memory:
135     case IPOGrouping::Return:
136       if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
137         if (canTrackGlobalVariableInterprocedurally(GV))
138           return computeConstant(GV->getInitializer());
139       } else if (auto *F = cast<Function>(Key.getPointer()))
140         if (canTrackReturnsInterprocedurally(F))
141           return getUndefVal();
142     }
143     return getOverdefinedVal();
144   }
145 
146   /// Merge the two given lattice values. The interesting cases are merging two
147   /// FunctionSet values and a FunctionSet value with an Undefined value. For
148   /// these cases, we simply union the function sets. If the size of the union
149   /// is greater than the maximum functions we track, the merged value is
150   /// overdefined.
151   CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
152     if (X == getOverdefinedVal() || Y == getOverdefinedVal())
153       return getOverdefinedVal();
154     if (X == getUndefVal() && Y == getUndefVal())
155       return getUndefVal();
156     std::vector<Function *> Union;
157     std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
158                    Y.getFunctions().begin(), Y.getFunctions().end(),
159                    std::back_inserter(Union), CVPLatticeVal::Compare{});
160     if (Union.size() > MaxFunctionsPerValue)
161       return getOverdefinedVal();
162     return CVPLatticeVal(std::move(Union));
163   }
164 
165   /// Compute the lattice values that change as a result of executing the given
166   /// instruction. The changed values are stored in \p ChangedValues. We handle
167   /// just a few kinds of instructions since we're only propagating values that
168   /// can be called.
169   void ComputeInstructionState(
170       Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
171       SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
172     switch (I.getOpcode()) {
173     case Instruction::Call:
174       return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
175     case Instruction::Invoke:
176       return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS);
177     case Instruction::Load:
178       return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
179     case Instruction::Ret:
180       return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
181     case Instruction::Select:
182       return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
183     case Instruction::Store:
184       return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
185     default:
186       return visitInst(I, ChangedValues, SS);
187     }
188   }
189 
190   /// Print the given CVPLatticeVal to the specified stream.
191   void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
192     if (LV == getUndefVal())
193       OS << "Undefined  ";
194     else if (LV == getOverdefinedVal())
195       OS << "Overdefined";
196     else if (LV == getUntrackedVal())
197       OS << "Untracked  ";
198     else
199       OS << "FunctionSet";
200   }
201 
202   /// Print the given CVPLatticeKey to the specified stream.
203   void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
204     if (Key.getInt() == IPOGrouping::Register)
205       OS << "<reg> ";
206     else if (Key.getInt() == IPOGrouping::Memory)
207       OS << "<mem> ";
208     else if (Key.getInt() == IPOGrouping::Return)
209       OS << "<ret> ";
210     if (isa<Function>(Key.getPointer()))
211       OS << Key.getPointer()->getName();
212     else
213       OS << *Key.getPointer();
214   }
215 
216   /// We collect a set of indirect calls when visiting call sites. This method
217   /// returns a reference to that set.
218   SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; }
219 
220 private:
221   /// Holds the indirect calls we encounter during the analysis. We will attach
222   /// metadata to these calls after the analysis indicating the functions the
223   /// calls can possibly target.
224   SmallPtrSet<Instruction *, 32> IndirectCalls;
225 
226   /// Compute a new lattice value for the given constant. The constant, after
227   /// stripping any pointer casts, should be a Function. We ignore null
228   /// pointers as an optimization, since calling these values is undefined
229   /// behavior.
230   CVPLatticeVal computeConstant(Constant *C) {
231     if (isa<ConstantPointerNull>(C))
232       return CVPLatticeVal(CVPLatticeVal::FunctionSet);
233     if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
234       return CVPLatticeVal({F});
235     return getOverdefinedVal();
236   }
237 
238   /// Handle return instructions. The function's return state is the merge of
239   /// the returned value state and the function's return state.
240   void visitReturn(ReturnInst &I,
241                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
242                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
243     Function *F = I.getParent()->getParent();
244     if (F->getReturnType()->isVoidTy())
245       return;
246     auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
247     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
248     ChangedValues[RetF] =
249         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
250   }
251 
252   /// Handle call sites. The state of a called function's formal arguments is
253   /// the merge of the argument state with the call sites corresponding actual
254   /// argument state. The call site state is the merge of the call site state
255   /// with the returned value state of the called function.
256   void visitCallSite(CallSite CS,
257                      DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
258                      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
259     Function *F = CS.getCalledFunction();
260     Instruction *I = CS.getInstruction();
261     auto RegI = CVPLatticeKey(I, IPOGrouping::Register);
262 
263     // If this is an indirect call, save it so we can quickly revisit it when
264     // attaching metadata.
265     if (!F)
266       IndirectCalls.insert(I);
267 
268     // If we can't track the function's return values, there's nothing to do.
269     if (!F || !canTrackReturnsInterprocedurally(F)) {
270       // Void return, No need to create and update CVPLattice state as no one
271       // can use it.
272       if (I->getType()->isVoidTy())
273         return;
274       ChangedValues[RegI] = getOverdefinedVal();
275       return;
276     }
277 
278     // Inform the solver that the called function is executable, and perform
279     // the merges for the arguments and return value.
280     SS.MarkBlockExecutable(&F->front());
281     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
282     for (Argument &A : F->args()) {
283       auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
284       auto RegActual =
285           CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
286       ChangedValues[RegFormal] =
287           MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
288     }
289 
290     // Void return, No need to create and update CVPLattice state as no one can
291     // use it.
292     if (I->getType()->isVoidTy())
293       return;
294 
295     ChangedValues[RegI] =
296         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
297   }
298 
299   /// Handle select instructions. The select instruction state is the merge the
300   /// true and false value states.
301   void visitSelect(SelectInst &I,
302                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
303                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
304     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
305     auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
306     auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
307     ChangedValues[RegI] =
308         MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
309   }
310 
311   /// Handle load instructions. If the pointer operand of the load is a global
312   /// variable, we attempt to track the value. The loaded value state is the
313   /// merge of the loaded value state with the global variable state.
314   void visitLoad(LoadInst &I,
315                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
316                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
317     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
318     if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
319       auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
320       ChangedValues[RegI] =
321           MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
322     } else {
323       ChangedValues[RegI] = getOverdefinedVal();
324     }
325   }
326 
327   /// Handle store instructions. If the pointer operand of the store is a
328   /// global variable, we attempt to track the value. The global variable state
329   /// is the merge of the stored value state with the global variable state.
330   void visitStore(StoreInst &I,
331                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
332                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
333     auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
334     if (!GV)
335       return;
336     auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
337     auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
338     ChangedValues[MemGV] =
339         MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
340   }
341 
342   /// Handle all other instructions. All other instructions are marked
343   /// overdefined.
344   void visitInst(Instruction &I,
345                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
346                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
347     // Simply bail if this instruction has no user.
348     if (I.use_empty())
349       return;
350     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
351     ChangedValues[RegI] = getOverdefinedVal();
352   }
353 };
354 } // namespace
355 
356 namespace llvm {
357 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
358 /// must translate between LatticeKeys and LLVM Values when adding Values to
359 /// its work list and inspecting the state of control-flow related values.
360 template <> struct LatticeKeyInfo<CVPLatticeKey> {
361   static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
362     return Key.getPointer();
363   }
364   static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
365     return CVPLatticeKey(V, IPOGrouping::Register);
366   }
367 };
368 } // namespace llvm
369 
370 static bool runCVP(Module &M) {
371   // Our custom lattice function and generic sparse propagation solver.
372   CVPLatticeFunc Lattice;
373   SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
374 
375   // For each function in the module, if we can't track its arguments, let the
376   // generic solver assume it is executable.
377   for (Function &F : M)
378     if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
379       Solver.MarkBlockExecutable(&F.front());
380 
381   // Solver our custom lattice. In doing so, we will also build a set of
382   // indirect call sites.
383   Solver.Solve();
384 
385   // Attach metadata to the indirect call sites that were collected indicating
386   // the set of functions they can possibly target.
387   bool Changed = false;
388   MDBuilder MDB(M.getContext());
389   for (Instruction *C : Lattice.getIndirectCalls()) {
390     CallSite CS(C);
391     auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register);
392     CVPLatticeVal LV = Solver.getExistingValueState(RegI);
393     if (!LV.isFunctionSet() || LV.getFunctions().empty())
394       continue;
395     MDNode *Callees = MDB.createCallees(LV.getFunctions());
396     C->setMetadata(LLVMContext::MD_callees, Callees);
397     Changed = true;
398   }
399 
400   return Changed;
401 }
402 
403 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
404                                                   ModuleAnalysisManager &) {
405   runCVP(M);
406   return PreservedAnalyses::all();
407 }
408 
409 namespace {
410 class CalledValuePropagationLegacyPass : public ModulePass {
411 public:
412   static char ID;
413 
414   void getAnalysisUsage(AnalysisUsage &AU) const override {
415     AU.setPreservesAll();
416   }
417 
418   CalledValuePropagationLegacyPass() : ModulePass(ID) {
419     initializeCalledValuePropagationLegacyPassPass(
420         *PassRegistry::getPassRegistry());
421   }
422 
423   bool runOnModule(Module &M) override {
424     if (skipModule(M))
425       return false;
426     return runCVP(M);
427   }
428 };
429 } // namespace
430 
431 char CalledValuePropagationLegacyPass::ID = 0;
432 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
433                 "Called Value Propagation", false, false)
434 
435 ModulePass *llvm::createCalledValuePropagationPass() {
436   return new CalledValuePropagationLegacyPass();
437 }
438