1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a transformation that attaches !callees metadata to 10 // indirect call sites. For a given call site, the metadata, if present, 11 // indicates the set of functions the call site could possibly target at 12 // run-time. This metadata is added to indirect call sites when the set of 13 // possible targets can be determined by analysis and is known to be small. The 14 // analysis driving the transformation is similar to constant propagation and 15 // makes uses of the generic sparse propagation solver. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/IPO/CalledValuePropagation.h" 20 #include "llvm/Analysis/SparsePropagation.h" 21 #include "llvm/Analysis/ValueLatticeUtils.h" 22 #include "llvm/IR/InstVisitor.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/Transforms/IPO.h" 25 using namespace llvm; 26 27 #define DEBUG_TYPE "called-value-propagation" 28 29 /// The maximum number of functions to track per lattice value. Once the number 30 /// of functions a call site can possibly target exceeds this threshold, it's 31 /// lattice value becomes overdefined. The number of possible lattice values is 32 /// bounded by Ch(F, M), where F is the number of functions in the module and M 33 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We 34 /// likely can't do anything useful for call sites with a large number of 35 /// possible targets, anyway. 36 static cl::opt<unsigned> MaxFunctionsPerValue( 37 "cvp-max-functions-per-value", cl::Hidden, cl::init(4), 38 cl::desc("The maximum number of functions to track per lattice value")); 39 40 namespace { 41 /// To enable interprocedural analysis, we assign LLVM values to the following 42 /// groups. The register group represents SSA registers, the return group 43 /// represents the return values of functions, and the memory group represents 44 /// in-memory values. An LLVM Value can technically be in more than one group. 45 /// It's necessary to distinguish these groups so we can, for example, track a 46 /// global variable separately from the value stored at its location. 47 enum class IPOGrouping { Register, Return, Memory }; 48 49 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. 50 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; 51 52 /// The lattice value type used by our custom lattice function. It holds the 53 /// lattice state, and a set of functions. 54 class CVPLatticeVal { 55 public: 56 /// The states of the lattice values. Only the FunctionSet state is 57 /// interesting. It indicates the set of functions to which an LLVM value may 58 /// refer. 59 enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; 60 61 /// Comparator for sorting the functions set. We want to keep the order 62 /// deterministic for testing, etc. 63 struct Compare { 64 bool operator()(const Function *LHS, const Function *RHS) const { 65 return LHS->getName() < RHS->getName(); 66 } 67 }; 68 69 CVPLatticeVal() : LatticeState(Undefined) {} 70 CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} 71 CVPLatticeVal(std::vector<Function *> &&Functions) 72 : LatticeState(FunctionSet), Functions(std::move(Functions)) { 73 assert(std::is_sorted(this->Functions.begin(), this->Functions.end(), 74 Compare())); 75 } 76 77 /// Get a reference to the functions held by this lattice value. The number 78 /// of functions will be zero for states other than FunctionSet. 79 const std::vector<Function *> &getFunctions() const { 80 return Functions; 81 } 82 83 /// Returns true if the lattice value is in the FunctionSet state. 84 bool isFunctionSet() const { return LatticeState == FunctionSet; } 85 86 bool operator==(const CVPLatticeVal &RHS) const { 87 return LatticeState == RHS.LatticeState && Functions == RHS.Functions; 88 } 89 90 bool operator!=(const CVPLatticeVal &RHS) const { 91 return LatticeState != RHS.LatticeState || Functions != RHS.Functions; 92 } 93 94 private: 95 /// Holds the state this lattice value is in. 96 CVPLatticeStateTy LatticeState; 97 98 /// Holds functions indicating the possible targets of call sites. This set 99 /// is empty for lattice values in the undefined, overdefined, and untracked 100 /// states. The maximum size of the set is controlled by 101 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in 102 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be 103 /// small and efficiently copyable. 104 // FIXME: This could be a TinyPtrVector and/or merge with LatticeState. 105 std::vector<Function *> Functions; 106 }; 107 108 /// The custom lattice function used by the generic sparse propagation solver. 109 /// It handles merging lattice values and computing new lattice values for 110 /// constants, arguments, values returned from trackable functions, and values 111 /// located in trackable global variables. It also computes the lattice values 112 /// that change as a result of executing instructions. 113 class CVPLatticeFunc 114 : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { 115 public: 116 CVPLatticeFunc() 117 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), 118 CVPLatticeVal(CVPLatticeVal::Overdefined), 119 CVPLatticeVal(CVPLatticeVal::Untracked)) {} 120 121 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. 122 CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { 123 switch (Key.getInt()) { 124 case IPOGrouping::Register: 125 if (isa<Instruction>(Key.getPointer())) { 126 return getUndefVal(); 127 } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { 128 if (canTrackArgumentsInterprocedurally(A->getParent())) 129 return getUndefVal(); 130 } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { 131 return computeConstant(C); 132 } 133 return getOverdefinedVal(); 134 case IPOGrouping::Memory: 135 case IPOGrouping::Return: 136 if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { 137 if (canTrackGlobalVariableInterprocedurally(GV)) 138 return computeConstant(GV->getInitializer()); 139 } else if (auto *F = cast<Function>(Key.getPointer())) 140 if (canTrackReturnsInterprocedurally(F)) 141 return getUndefVal(); 142 } 143 return getOverdefinedVal(); 144 } 145 146 /// Merge the two given lattice values. The interesting cases are merging two 147 /// FunctionSet values and a FunctionSet value with an Undefined value. For 148 /// these cases, we simply union the function sets. If the size of the union 149 /// is greater than the maximum functions we track, the merged value is 150 /// overdefined. 151 CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { 152 if (X == getOverdefinedVal() || Y == getOverdefinedVal()) 153 return getOverdefinedVal(); 154 if (X == getUndefVal() && Y == getUndefVal()) 155 return getUndefVal(); 156 std::vector<Function *> Union; 157 std::set_union(X.getFunctions().begin(), X.getFunctions().end(), 158 Y.getFunctions().begin(), Y.getFunctions().end(), 159 std::back_inserter(Union), CVPLatticeVal::Compare{}); 160 if (Union.size() > MaxFunctionsPerValue) 161 return getOverdefinedVal(); 162 return CVPLatticeVal(std::move(Union)); 163 } 164 165 /// Compute the lattice values that change as a result of executing the given 166 /// instruction. The changed values are stored in \p ChangedValues. We handle 167 /// just a few kinds of instructions since we're only propagating values that 168 /// can be called. 169 void ComputeInstructionState( 170 Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 171 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { 172 switch (I.getOpcode()) { 173 case Instruction::Call: 174 return visitCallSite(cast<CallInst>(&I), ChangedValues, SS); 175 case Instruction::Invoke: 176 return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS); 177 case Instruction::Load: 178 return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); 179 case Instruction::Ret: 180 return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); 181 case Instruction::Select: 182 return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); 183 case Instruction::Store: 184 return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); 185 default: 186 return visitInst(I, ChangedValues, SS); 187 } 188 } 189 190 /// Print the given CVPLatticeVal to the specified stream. 191 void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { 192 if (LV == getUndefVal()) 193 OS << "Undefined "; 194 else if (LV == getOverdefinedVal()) 195 OS << "Overdefined"; 196 else if (LV == getUntrackedVal()) 197 OS << "Untracked "; 198 else 199 OS << "FunctionSet"; 200 } 201 202 /// Print the given CVPLatticeKey to the specified stream. 203 void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { 204 if (Key.getInt() == IPOGrouping::Register) 205 OS << "<reg> "; 206 else if (Key.getInt() == IPOGrouping::Memory) 207 OS << "<mem> "; 208 else if (Key.getInt() == IPOGrouping::Return) 209 OS << "<ret> "; 210 if (isa<Function>(Key.getPointer())) 211 OS << Key.getPointer()->getName(); 212 else 213 OS << *Key.getPointer(); 214 } 215 216 /// We collect a set of indirect calls when visiting call sites. This method 217 /// returns a reference to that set. 218 SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; } 219 220 private: 221 /// Holds the indirect calls we encounter during the analysis. We will attach 222 /// metadata to these calls after the analysis indicating the functions the 223 /// calls can possibly target. 224 SmallPtrSet<Instruction *, 32> IndirectCalls; 225 226 /// Compute a new lattice value for the given constant. The constant, after 227 /// stripping any pointer casts, should be a Function. We ignore null 228 /// pointers as an optimization, since calling these values is undefined 229 /// behavior. 230 CVPLatticeVal computeConstant(Constant *C) { 231 if (isa<ConstantPointerNull>(C)) 232 return CVPLatticeVal(CVPLatticeVal::FunctionSet); 233 if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) 234 return CVPLatticeVal({F}); 235 return getOverdefinedVal(); 236 } 237 238 /// Handle return instructions. The function's return state is the merge of 239 /// the returned value state and the function's return state. 240 void visitReturn(ReturnInst &I, 241 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 242 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 243 Function *F = I.getParent()->getParent(); 244 if (F->getReturnType()->isVoidTy()) 245 return; 246 auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); 247 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 248 ChangedValues[RetF] = 249 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 250 } 251 252 /// Handle call sites. The state of a called function's formal arguments is 253 /// the merge of the argument state with the call sites corresponding actual 254 /// argument state. The call site state is the merge of the call site state 255 /// with the returned value state of the called function. 256 void visitCallSite(CallSite CS, 257 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 258 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 259 Function *F = CS.getCalledFunction(); 260 Instruction *I = CS.getInstruction(); 261 auto RegI = CVPLatticeKey(I, IPOGrouping::Register); 262 263 // If this is an indirect call, save it so we can quickly revisit it when 264 // attaching metadata. 265 if (!F) 266 IndirectCalls.insert(I); 267 268 // If we can't track the function's return values, there's nothing to do. 269 if (!F || !canTrackReturnsInterprocedurally(F)) { 270 // Void return, No need to create and update CVPLattice state as no one 271 // can use it. 272 if (I->getType()->isVoidTy()) 273 return; 274 ChangedValues[RegI] = getOverdefinedVal(); 275 return; 276 } 277 278 // Inform the solver that the called function is executable, and perform 279 // the merges for the arguments and return value. 280 SS.MarkBlockExecutable(&F->front()); 281 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 282 for (Argument &A : F->args()) { 283 auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); 284 auto RegActual = 285 CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); 286 ChangedValues[RegFormal] = 287 MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); 288 } 289 290 // Void return, No need to create and update CVPLattice state as no one can 291 // use it. 292 if (I->getType()->isVoidTy()) 293 return; 294 295 ChangedValues[RegI] = 296 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 297 } 298 299 /// Handle select instructions. The select instruction state is the merge the 300 /// true and false value states. 301 void visitSelect(SelectInst &I, 302 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 303 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 304 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 305 auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); 306 auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); 307 ChangedValues[RegI] = 308 MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); 309 } 310 311 /// Handle load instructions. If the pointer operand of the load is a global 312 /// variable, we attempt to track the value. The loaded value state is the 313 /// merge of the loaded value state with the global variable state. 314 void visitLoad(LoadInst &I, 315 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 316 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 317 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 318 if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { 319 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 320 ChangedValues[RegI] = 321 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 322 } else { 323 ChangedValues[RegI] = getOverdefinedVal(); 324 } 325 } 326 327 /// Handle store instructions. If the pointer operand of the store is a 328 /// global variable, we attempt to track the value. The global variable state 329 /// is the merge of the stored value state with the global variable state. 330 void visitStore(StoreInst &I, 331 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 332 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 333 auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); 334 if (!GV) 335 return; 336 auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); 337 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 338 ChangedValues[MemGV] = 339 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 340 } 341 342 /// Handle all other instructions. All other instructions are marked 343 /// overdefined. 344 void visitInst(Instruction &I, 345 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 346 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 347 // Simply bail if this instruction has no user. 348 if (I.use_empty()) 349 return; 350 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 351 ChangedValues[RegI] = getOverdefinedVal(); 352 } 353 }; 354 } // namespace 355 356 namespace llvm { 357 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver 358 /// must translate between LatticeKeys and LLVM Values when adding Values to 359 /// its work list and inspecting the state of control-flow related values. 360 template <> struct LatticeKeyInfo<CVPLatticeKey> { 361 static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { 362 return Key.getPointer(); 363 } 364 static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { 365 return CVPLatticeKey(V, IPOGrouping::Register); 366 } 367 }; 368 } // namespace llvm 369 370 static bool runCVP(Module &M) { 371 // Our custom lattice function and generic sparse propagation solver. 372 CVPLatticeFunc Lattice; 373 SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); 374 375 // For each function in the module, if we can't track its arguments, let the 376 // generic solver assume it is executable. 377 for (Function &F : M) 378 if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) 379 Solver.MarkBlockExecutable(&F.front()); 380 381 // Solver our custom lattice. In doing so, we will also build a set of 382 // indirect call sites. 383 Solver.Solve(); 384 385 // Attach metadata to the indirect call sites that were collected indicating 386 // the set of functions they can possibly target. 387 bool Changed = false; 388 MDBuilder MDB(M.getContext()); 389 for (Instruction *C : Lattice.getIndirectCalls()) { 390 CallSite CS(C); 391 auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); 392 CVPLatticeVal LV = Solver.getExistingValueState(RegI); 393 if (!LV.isFunctionSet() || LV.getFunctions().empty()) 394 continue; 395 MDNode *Callees = MDB.createCallees(LV.getFunctions()); 396 C->setMetadata(LLVMContext::MD_callees, Callees); 397 Changed = true; 398 } 399 400 return Changed; 401 } 402 403 PreservedAnalyses CalledValuePropagationPass::run(Module &M, 404 ModuleAnalysisManager &) { 405 runCVP(M); 406 return PreservedAnalyses::all(); 407 } 408 409 namespace { 410 class CalledValuePropagationLegacyPass : public ModulePass { 411 public: 412 static char ID; 413 414 void getAnalysisUsage(AnalysisUsage &AU) const override { 415 AU.setPreservesAll(); 416 } 417 418 CalledValuePropagationLegacyPass() : ModulePass(ID) { 419 initializeCalledValuePropagationLegacyPassPass( 420 *PassRegistry::getPassRegistry()); 421 } 422 423 bool runOnModule(Module &M) override { 424 if (skipModule(M)) 425 return false; 426 return runCVP(M); 427 } 428 }; 429 } // namespace 430 431 char CalledValuePropagationLegacyPass::ID = 0; 432 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", 433 "Called Value Propagation", false, false) 434 435 ModulePass *llvm::createCalledValuePropagationPass() { 436 return new CalledValuePropagationLegacyPass(); 437 } 438