xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Transforms/IPO.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "called-value-propagation"
31 
32 /// The maximum number of functions to track per lattice value. Once the number
33 /// of functions a call site can possibly target exceeds this threshold, it's
34 /// lattice value becomes overdefined. The number of possible lattice values is
35 /// bounded by Ch(F, M), where F is the number of functions in the module and M
36 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
37 /// likely can't do anything useful for call sites with a large number of
38 /// possible targets, anyway.
39 static cl::opt<unsigned> MaxFunctionsPerValue(
40     "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
41     cl::desc("The maximum number of functions to track per lattice value"));
42 
43 namespace {
44 /// To enable interprocedural analysis, we assign LLVM values to the following
45 /// groups. The register group represents SSA registers, the return group
46 /// represents the return values of functions, and the memory group represents
47 /// in-memory values. An LLVM Value can technically be in more than one group.
48 /// It's necessary to distinguish these groups so we can, for example, track a
49 /// global variable separately from the value stored at its location.
50 enum class IPOGrouping { Register, Return, Memory };
51 
52 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
53 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
54 
55 /// The lattice value type used by our custom lattice function. It holds the
56 /// lattice state, and a set of functions.
57 class CVPLatticeVal {
58 public:
59   /// The states of the lattice values. Only the FunctionSet state is
60   /// interesting. It indicates the set of functions to which an LLVM value may
61   /// refer.
62   enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
63 
64   /// Comparator for sorting the functions set. We want to keep the order
65   /// deterministic for testing, etc.
66   struct Compare {
67     bool operator()(const Function *LHS, const Function *RHS) const {
68       return LHS->getName() < RHS->getName();
69     }
70   };
71 
72   CVPLatticeVal() = default;
73   CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
74   CVPLatticeVal(std::vector<Function *> &&Functions)
75       : LatticeState(FunctionSet), Functions(std::move(Functions)) {
76     assert(llvm::is_sorted(this->Functions, Compare()));
77   }
78 
79   /// Get a reference to the functions held by this lattice value. The number
80   /// of functions will be zero for states other than FunctionSet.
81   const std::vector<Function *> &getFunctions() const {
82     return Functions;
83   }
84 
85   /// Returns true if the lattice value is in the FunctionSet state.
86   bool isFunctionSet() const { return LatticeState == FunctionSet; }
87 
88   bool operator==(const CVPLatticeVal &RHS) const {
89     return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
90   }
91 
92   bool operator!=(const CVPLatticeVal &RHS) const {
93     return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
94   }
95 
96 private:
97   /// Holds the state this lattice value is in.
98   CVPLatticeStateTy LatticeState = Undefined;
99 
100   /// Holds functions indicating the possible targets of call sites. This set
101   /// is empty for lattice values in the undefined, overdefined, and untracked
102   /// states. The maximum size of the set is controlled by
103   /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
104   /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
105   /// small and efficiently copyable.
106   // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
107   std::vector<Function *> Functions;
108 };
109 
110 /// The custom lattice function used by the generic sparse propagation solver.
111 /// It handles merging lattice values and computing new lattice values for
112 /// constants, arguments, values returned from trackable functions, and values
113 /// located in trackable global variables. It also computes the lattice values
114 /// that change as a result of executing instructions.
115 class CVPLatticeFunc
116     : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
117 public:
118   CVPLatticeFunc()
119       : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
120                                 CVPLatticeVal(CVPLatticeVal::Overdefined),
121                                 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
122 
123   /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
124   CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
125     switch (Key.getInt()) {
126     case IPOGrouping::Register:
127       if (isa<Instruction>(Key.getPointer())) {
128         return getUndefVal();
129       } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
130         if (canTrackArgumentsInterprocedurally(A->getParent()))
131           return getUndefVal();
132       } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
133         return computeConstant(C);
134       }
135       return getOverdefinedVal();
136     case IPOGrouping::Memory:
137     case IPOGrouping::Return:
138       if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
139         if (canTrackGlobalVariableInterprocedurally(GV))
140           return computeConstant(GV->getInitializer());
141       } else if (auto *F = cast<Function>(Key.getPointer()))
142         if (canTrackReturnsInterprocedurally(F))
143           return getUndefVal();
144     }
145     return getOverdefinedVal();
146   }
147 
148   /// Merge the two given lattice values. The interesting cases are merging two
149   /// FunctionSet values and a FunctionSet value with an Undefined value. For
150   /// these cases, we simply union the function sets. If the size of the union
151   /// is greater than the maximum functions we track, the merged value is
152   /// overdefined.
153   CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
154     if (X == getOverdefinedVal() || Y == getOverdefinedVal())
155       return getOverdefinedVal();
156     if (X == getUndefVal() && Y == getUndefVal())
157       return getUndefVal();
158     std::vector<Function *> Union;
159     std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
160                    Y.getFunctions().begin(), Y.getFunctions().end(),
161                    std::back_inserter(Union), CVPLatticeVal::Compare{});
162     if (Union.size() > MaxFunctionsPerValue)
163       return getOverdefinedVal();
164     return CVPLatticeVal(std::move(Union));
165   }
166 
167   /// Compute the lattice values that change as a result of executing the given
168   /// instruction. The changed values are stored in \p ChangedValues. We handle
169   /// just a few kinds of instructions since we're only propagating values that
170   /// can be called.
171   void ComputeInstructionState(
172       Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
173       SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
174     switch (I.getOpcode()) {
175     case Instruction::Call:
176     case Instruction::Invoke:
177       return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
178     case Instruction::Load:
179       return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
180     case Instruction::Ret:
181       return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
182     case Instruction::Select:
183       return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
184     case Instruction::Store:
185       return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
186     default:
187       return visitInst(I, ChangedValues, SS);
188     }
189   }
190 
191   /// Print the given CVPLatticeVal to the specified stream.
192   void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
193     if (LV == getUndefVal())
194       OS << "Undefined  ";
195     else if (LV == getOverdefinedVal())
196       OS << "Overdefined";
197     else if (LV == getUntrackedVal())
198       OS << "Untracked  ";
199     else
200       OS << "FunctionSet";
201   }
202 
203   /// Print the given CVPLatticeKey to the specified stream.
204   void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
205     if (Key.getInt() == IPOGrouping::Register)
206       OS << "<reg> ";
207     else if (Key.getInt() == IPOGrouping::Memory)
208       OS << "<mem> ";
209     else if (Key.getInt() == IPOGrouping::Return)
210       OS << "<ret> ";
211     if (isa<Function>(Key.getPointer()))
212       OS << Key.getPointer()->getName();
213     else
214       OS << *Key.getPointer();
215   }
216 
217   /// We collect a set of indirect calls when visiting call sites. This method
218   /// returns a reference to that set.
219   SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
220 
221 private:
222   /// Holds the indirect calls we encounter during the analysis. We will attach
223   /// metadata to these calls after the analysis indicating the functions the
224   /// calls can possibly target.
225   SmallPtrSet<CallBase *, 32> IndirectCalls;
226 
227   /// Compute a new lattice value for the given constant. The constant, after
228   /// stripping any pointer casts, should be a Function. We ignore null
229   /// pointers as an optimization, since calling these values is undefined
230   /// behavior.
231   CVPLatticeVal computeConstant(Constant *C) {
232     if (isa<ConstantPointerNull>(C))
233       return CVPLatticeVal(CVPLatticeVal::FunctionSet);
234     if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
235       return CVPLatticeVal({F});
236     return getOverdefinedVal();
237   }
238 
239   /// Handle return instructions. The function's return state is the merge of
240   /// the returned value state and the function's return state.
241   void visitReturn(ReturnInst &I,
242                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
243                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
244     Function *F = I.getParent()->getParent();
245     if (F->getReturnType()->isVoidTy())
246       return;
247     auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
248     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
249     ChangedValues[RetF] =
250         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
251   }
252 
253   /// Handle call sites. The state of a called function's formal arguments is
254   /// the merge of the argument state with the call sites corresponding actual
255   /// argument state. The call site state is the merge of the call site state
256   /// with the returned value state of the called function.
257   void visitCallBase(CallBase &CB,
258                      DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
259                      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
260     Function *F = CB.getCalledFunction();
261     auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
262 
263     // If this is an indirect call, save it so we can quickly revisit it when
264     // attaching metadata.
265     if (!F)
266       IndirectCalls.insert(&CB);
267 
268     // If we can't track the function's return values, there's nothing to do.
269     if (!F || !canTrackReturnsInterprocedurally(F)) {
270       // Void return, No need to create and update CVPLattice state as no one
271       // can use it.
272       if (CB.getType()->isVoidTy())
273         return;
274       ChangedValues[RegI] = getOverdefinedVal();
275       return;
276     }
277 
278     // Inform the solver that the called function is executable, and perform
279     // the merges for the arguments and return value.
280     SS.MarkBlockExecutable(&F->front());
281     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
282     for (Argument &A : F->args()) {
283       auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
284       auto RegActual =
285           CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
286       ChangedValues[RegFormal] =
287           MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
288     }
289 
290     // Void return, No need to create and update CVPLattice state as no one can
291     // use it.
292     if (CB.getType()->isVoidTy())
293       return;
294 
295     ChangedValues[RegI] =
296         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
297   }
298 
299   /// Handle select instructions. The select instruction state is the merge the
300   /// true and false value states.
301   void visitSelect(SelectInst &I,
302                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
303                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
304     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
305     auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
306     auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
307     ChangedValues[RegI] =
308         MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
309   }
310 
311   /// Handle load instructions. If the pointer operand of the load is a global
312   /// variable, we attempt to track the value. The loaded value state is the
313   /// merge of the loaded value state with the global variable state.
314   void visitLoad(LoadInst &I,
315                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
316                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
317     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
318     if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
319       auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
320       ChangedValues[RegI] =
321           MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
322     } else {
323       ChangedValues[RegI] = getOverdefinedVal();
324     }
325   }
326 
327   /// Handle store instructions. If the pointer operand of the store is a
328   /// global variable, we attempt to track the value. The global variable state
329   /// is the merge of the stored value state with the global variable state.
330   void visitStore(StoreInst &I,
331                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
332                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
333     auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
334     if (!GV)
335       return;
336     auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
337     auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
338     ChangedValues[MemGV] =
339         MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
340   }
341 
342   /// Handle all other instructions. All other instructions are marked
343   /// overdefined.
344   void visitInst(Instruction &I,
345                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
346                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
347     // Simply bail if this instruction has no user.
348     if (I.use_empty())
349       return;
350     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
351     ChangedValues[RegI] = getOverdefinedVal();
352   }
353 };
354 } // namespace
355 
356 namespace llvm {
357 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
358 /// must translate between LatticeKeys and LLVM Values when adding Values to
359 /// its work list and inspecting the state of control-flow related values.
360 template <> struct LatticeKeyInfo<CVPLatticeKey> {
361   static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
362     return Key.getPointer();
363   }
364   static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
365     return CVPLatticeKey(V, IPOGrouping::Register);
366   }
367 };
368 } // namespace llvm
369 
370 static bool runCVP(Module &M) {
371   // Our custom lattice function and generic sparse propagation solver.
372   CVPLatticeFunc Lattice;
373   SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
374 
375   // For each function in the module, if we can't track its arguments, let the
376   // generic solver assume it is executable.
377   for (Function &F : M)
378     if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
379       Solver.MarkBlockExecutable(&F.front());
380 
381   // Solver our custom lattice. In doing so, we will also build a set of
382   // indirect call sites.
383   Solver.Solve();
384 
385   // Attach metadata to the indirect call sites that were collected indicating
386   // the set of functions they can possibly target.
387   bool Changed = false;
388   MDBuilder MDB(M.getContext());
389   for (CallBase *C : Lattice.getIndirectCalls()) {
390     auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
391     CVPLatticeVal LV = Solver.getExistingValueState(RegI);
392     if (!LV.isFunctionSet() || LV.getFunctions().empty())
393       continue;
394     MDNode *Callees = MDB.createCallees(LV.getFunctions());
395     C->setMetadata(LLVMContext::MD_callees, Callees);
396     Changed = true;
397   }
398 
399   return Changed;
400 }
401 
402 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
403                                                   ModuleAnalysisManager &) {
404   runCVP(M);
405   return PreservedAnalyses::all();
406 }
407