10b57cec5SDimitry Andric //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements a transformation that attaches !callees metadata to
100b57cec5SDimitry Andric // indirect call sites. For a given call site, the metadata, if present,
110b57cec5SDimitry Andric // indicates the set of functions the call site could possibly target at
120b57cec5SDimitry Andric // run-time. This metadata is added to indirect call sites when the set of
130b57cec5SDimitry Andric // possible targets can be determined by analysis and is known to be small. The
140b57cec5SDimitry Andric // analysis driving the transformation is similar to constant propagation and
150b57cec5SDimitry Andric // makes uses of the generic sparse propagation solver.
160b57cec5SDimitry Andric //
170b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
180b57cec5SDimitry Andric
190b57cec5SDimitry Andric #include "llvm/Transforms/IPO/CalledValuePropagation.h"
200b57cec5SDimitry Andric #include "llvm/Analysis/SparsePropagation.h"
210b57cec5SDimitry Andric #include "llvm/Analysis/ValueLatticeUtils.h"
2281ad6265SDimitry Andric #include "llvm/IR/Constants.h"
230b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h"
24*0fca6ea1SDimitry Andric #include "llvm/IR/Module.h"
25480093f4SDimitry Andric #include "llvm/Support/CommandLine.h"
260b57cec5SDimitry Andric #include "llvm/Transforms/IPO.h"
2781ad6265SDimitry Andric
280b57cec5SDimitry Andric using namespace llvm;
290b57cec5SDimitry Andric
300b57cec5SDimitry Andric #define DEBUG_TYPE "called-value-propagation"
310b57cec5SDimitry Andric
320b57cec5SDimitry Andric /// The maximum number of functions to track per lattice value. Once the number
330b57cec5SDimitry Andric /// of functions a call site can possibly target exceeds this threshold, it's
340b57cec5SDimitry Andric /// lattice value becomes overdefined. The number of possible lattice values is
350b57cec5SDimitry Andric /// bounded by Ch(F, M), where F is the number of functions in the module and M
360b57cec5SDimitry Andric /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
370b57cec5SDimitry Andric /// likely can't do anything useful for call sites with a large number of
380b57cec5SDimitry Andric /// possible targets, anyway.
390b57cec5SDimitry Andric static cl::opt<unsigned> MaxFunctionsPerValue(
400b57cec5SDimitry Andric "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
410b57cec5SDimitry Andric cl::desc("The maximum number of functions to track per lattice value"));
420b57cec5SDimitry Andric
430b57cec5SDimitry Andric namespace {
440b57cec5SDimitry Andric /// To enable interprocedural analysis, we assign LLVM values to the following
450b57cec5SDimitry Andric /// groups. The register group represents SSA registers, the return group
460b57cec5SDimitry Andric /// represents the return values of functions, and the memory group represents
470b57cec5SDimitry Andric /// in-memory values. An LLVM Value can technically be in more than one group.
480b57cec5SDimitry Andric /// It's necessary to distinguish these groups so we can, for example, track a
490b57cec5SDimitry Andric /// global variable separately from the value stored at its location.
500b57cec5SDimitry Andric enum class IPOGrouping { Register, Return, Memory };
510b57cec5SDimitry Andric
520b57cec5SDimitry Andric /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
530b57cec5SDimitry Andric using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
540b57cec5SDimitry Andric
550b57cec5SDimitry Andric /// The lattice value type used by our custom lattice function. It holds the
560b57cec5SDimitry Andric /// lattice state, and a set of functions.
570b57cec5SDimitry Andric class CVPLatticeVal {
580b57cec5SDimitry Andric public:
590b57cec5SDimitry Andric /// The states of the lattice values. Only the FunctionSet state is
600b57cec5SDimitry Andric /// interesting. It indicates the set of functions to which an LLVM value may
610b57cec5SDimitry Andric /// refer.
620b57cec5SDimitry Andric enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
630b57cec5SDimitry Andric
640b57cec5SDimitry Andric /// Comparator for sorting the functions set. We want to keep the order
650b57cec5SDimitry Andric /// deterministic for testing, etc.
660b57cec5SDimitry Andric struct Compare {
operator ()__anoncc598d4b0111::CVPLatticeVal::Compare670b57cec5SDimitry Andric bool operator()(const Function *LHS, const Function *RHS) const {
680b57cec5SDimitry Andric return LHS->getName() < RHS->getName();
690b57cec5SDimitry Andric }
700b57cec5SDimitry Andric };
710b57cec5SDimitry Andric
7281ad6265SDimitry Andric CVPLatticeVal() = default;
CVPLatticeVal(CVPLatticeStateTy LatticeState)730b57cec5SDimitry Andric CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
CVPLatticeVal(std::vector<Function * > && Functions)740b57cec5SDimitry Andric CVPLatticeVal(std::vector<Function *> &&Functions)
750b57cec5SDimitry Andric : LatticeState(FunctionSet), Functions(std::move(Functions)) {
765ffd83dbSDimitry Andric assert(llvm::is_sorted(this->Functions, Compare()));
770b57cec5SDimitry Andric }
780b57cec5SDimitry Andric
790b57cec5SDimitry Andric /// Get a reference to the functions held by this lattice value. The number
800b57cec5SDimitry Andric /// of functions will be zero for states other than FunctionSet.
getFunctions() const810b57cec5SDimitry Andric const std::vector<Function *> &getFunctions() const {
820b57cec5SDimitry Andric return Functions;
830b57cec5SDimitry Andric }
840b57cec5SDimitry Andric
850b57cec5SDimitry Andric /// Returns true if the lattice value is in the FunctionSet state.
isFunctionSet() const860b57cec5SDimitry Andric bool isFunctionSet() const { return LatticeState == FunctionSet; }
870b57cec5SDimitry Andric
operator ==(const CVPLatticeVal & RHS) const880b57cec5SDimitry Andric bool operator==(const CVPLatticeVal &RHS) const {
890b57cec5SDimitry Andric return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
900b57cec5SDimitry Andric }
910b57cec5SDimitry Andric
operator !=(const CVPLatticeVal & RHS) const920b57cec5SDimitry Andric bool operator!=(const CVPLatticeVal &RHS) const {
930b57cec5SDimitry Andric return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
940b57cec5SDimitry Andric }
950b57cec5SDimitry Andric
960b57cec5SDimitry Andric private:
970b57cec5SDimitry Andric /// Holds the state this lattice value is in.
9881ad6265SDimitry Andric CVPLatticeStateTy LatticeState = Undefined;
990b57cec5SDimitry Andric
1000b57cec5SDimitry Andric /// Holds functions indicating the possible targets of call sites. This set
1010b57cec5SDimitry Andric /// is empty for lattice values in the undefined, overdefined, and untracked
1020b57cec5SDimitry Andric /// states. The maximum size of the set is controlled by
1030b57cec5SDimitry Andric /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
1040b57cec5SDimitry Andric /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
1050b57cec5SDimitry Andric /// small and efficiently copyable.
1060b57cec5SDimitry Andric // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
1070b57cec5SDimitry Andric std::vector<Function *> Functions;
1080b57cec5SDimitry Andric };
1090b57cec5SDimitry Andric
1100b57cec5SDimitry Andric /// The custom lattice function used by the generic sparse propagation solver.
1110b57cec5SDimitry Andric /// It handles merging lattice values and computing new lattice values for
1120b57cec5SDimitry Andric /// constants, arguments, values returned from trackable functions, and values
1130b57cec5SDimitry Andric /// located in trackable global variables. It also computes the lattice values
1140b57cec5SDimitry Andric /// that change as a result of executing instructions.
1150b57cec5SDimitry Andric class CVPLatticeFunc
1160b57cec5SDimitry Andric : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
1170b57cec5SDimitry Andric public:
CVPLatticeFunc()1180b57cec5SDimitry Andric CVPLatticeFunc()
1190b57cec5SDimitry Andric : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
1200b57cec5SDimitry Andric CVPLatticeVal(CVPLatticeVal::Overdefined),
1210b57cec5SDimitry Andric CVPLatticeVal(CVPLatticeVal::Untracked)) {}
1220b57cec5SDimitry Andric
1230b57cec5SDimitry Andric /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
ComputeLatticeVal(CVPLatticeKey Key)1240b57cec5SDimitry Andric CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
1250b57cec5SDimitry Andric switch (Key.getInt()) {
1260b57cec5SDimitry Andric case IPOGrouping::Register:
1270b57cec5SDimitry Andric if (isa<Instruction>(Key.getPointer())) {
1280b57cec5SDimitry Andric return getUndefVal();
1290b57cec5SDimitry Andric } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
1300b57cec5SDimitry Andric if (canTrackArgumentsInterprocedurally(A->getParent()))
1310b57cec5SDimitry Andric return getUndefVal();
1320b57cec5SDimitry Andric } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
1330b57cec5SDimitry Andric return computeConstant(C);
1340b57cec5SDimitry Andric }
1350b57cec5SDimitry Andric return getOverdefinedVal();
1360b57cec5SDimitry Andric case IPOGrouping::Memory:
1370b57cec5SDimitry Andric case IPOGrouping::Return:
1380b57cec5SDimitry Andric if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
1390b57cec5SDimitry Andric if (canTrackGlobalVariableInterprocedurally(GV))
1400b57cec5SDimitry Andric return computeConstant(GV->getInitializer());
1410b57cec5SDimitry Andric } else if (auto *F = cast<Function>(Key.getPointer()))
1420b57cec5SDimitry Andric if (canTrackReturnsInterprocedurally(F))
1430b57cec5SDimitry Andric return getUndefVal();
1440b57cec5SDimitry Andric }
1450b57cec5SDimitry Andric return getOverdefinedVal();
1460b57cec5SDimitry Andric }
1470b57cec5SDimitry Andric
1480b57cec5SDimitry Andric /// Merge the two given lattice values. The interesting cases are merging two
1490b57cec5SDimitry Andric /// FunctionSet values and a FunctionSet value with an Undefined value. For
1500b57cec5SDimitry Andric /// these cases, we simply union the function sets. If the size of the union
1510b57cec5SDimitry Andric /// is greater than the maximum functions we track, the merged value is
1520b57cec5SDimitry Andric /// overdefined.
MergeValues(CVPLatticeVal X,CVPLatticeVal Y)1530b57cec5SDimitry Andric CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
1540b57cec5SDimitry Andric if (X == getOverdefinedVal() || Y == getOverdefinedVal())
1550b57cec5SDimitry Andric return getOverdefinedVal();
1560b57cec5SDimitry Andric if (X == getUndefVal() && Y == getUndefVal())
1570b57cec5SDimitry Andric return getUndefVal();
1580b57cec5SDimitry Andric std::vector<Function *> Union;
1590b57cec5SDimitry Andric std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
1600b57cec5SDimitry Andric Y.getFunctions().begin(), Y.getFunctions().end(),
1610b57cec5SDimitry Andric std::back_inserter(Union), CVPLatticeVal::Compare{});
1620b57cec5SDimitry Andric if (Union.size() > MaxFunctionsPerValue)
1630b57cec5SDimitry Andric return getOverdefinedVal();
1640b57cec5SDimitry Andric return CVPLatticeVal(std::move(Union));
1650b57cec5SDimitry Andric }
1660b57cec5SDimitry Andric
1670b57cec5SDimitry Andric /// Compute the lattice values that change as a result of executing the given
1680b57cec5SDimitry Andric /// instruction. The changed values are stored in \p ChangedValues. We handle
1690b57cec5SDimitry Andric /// just a few kinds of instructions since we're only propagating values that
1700b57cec5SDimitry Andric /// can be called.
ComputeInstructionState(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)1710b57cec5SDimitry Andric void ComputeInstructionState(
1720b57cec5SDimitry Andric Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
1730b57cec5SDimitry Andric SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
1740b57cec5SDimitry Andric switch (I.getOpcode()) {
1750b57cec5SDimitry Andric case Instruction::Call:
1760b57cec5SDimitry Andric case Instruction::Invoke:
1775ffd83dbSDimitry Andric return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
1780b57cec5SDimitry Andric case Instruction::Load:
1790b57cec5SDimitry Andric return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
1800b57cec5SDimitry Andric case Instruction::Ret:
1810b57cec5SDimitry Andric return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
1820b57cec5SDimitry Andric case Instruction::Select:
1830b57cec5SDimitry Andric return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
1840b57cec5SDimitry Andric case Instruction::Store:
1850b57cec5SDimitry Andric return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
1860b57cec5SDimitry Andric default:
1870b57cec5SDimitry Andric return visitInst(I, ChangedValues, SS);
1880b57cec5SDimitry Andric }
1890b57cec5SDimitry Andric }
1900b57cec5SDimitry Andric
1910b57cec5SDimitry Andric /// Print the given CVPLatticeVal to the specified stream.
PrintLatticeVal(CVPLatticeVal LV,raw_ostream & OS)1920b57cec5SDimitry Andric void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
1930b57cec5SDimitry Andric if (LV == getUndefVal())
1940b57cec5SDimitry Andric OS << "Undefined ";
1950b57cec5SDimitry Andric else if (LV == getOverdefinedVal())
1960b57cec5SDimitry Andric OS << "Overdefined";
1970b57cec5SDimitry Andric else if (LV == getUntrackedVal())
1980b57cec5SDimitry Andric OS << "Untracked ";
1990b57cec5SDimitry Andric else
2000b57cec5SDimitry Andric OS << "FunctionSet";
2010b57cec5SDimitry Andric }
2020b57cec5SDimitry Andric
2030b57cec5SDimitry Andric /// Print the given CVPLatticeKey to the specified stream.
PrintLatticeKey(CVPLatticeKey Key,raw_ostream & OS)2040b57cec5SDimitry Andric void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
2050b57cec5SDimitry Andric if (Key.getInt() == IPOGrouping::Register)
2060b57cec5SDimitry Andric OS << "<reg> ";
2070b57cec5SDimitry Andric else if (Key.getInt() == IPOGrouping::Memory)
2080b57cec5SDimitry Andric OS << "<mem> ";
2090b57cec5SDimitry Andric else if (Key.getInt() == IPOGrouping::Return)
2100b57cec5SDimitry Andric OS << "<ret> ";
2110b57cec5SDimitry Andric if (isa<Function>(Key.getPointer()))
2120b57cec5SDimitry Andric OS << Key.getPointer()->getName();
2130b57cec5SDimitry Andric else
2140b57cec5SDimitry Andric OS << *Key.getPointer();
2150b57cec5SDimitry Andric }
2160b57cec5SDimitry Andric
2170b57cec5SDimitry Andric /// We collect a set of indirect calls when visiting call sites. This method
2180b57cec5SDimitry Andric /// returns a reference to that set.
getIndirectCalls()2195ffd83dbSDimitry Andric SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
2200b57cec5SDimitry Andric
2210b57cec5SDimitry Andric private:
2220b57cec5SDimitry Andric /// Holds the indirect calls we encounter during the analysis. We will attach
2230b57cec5SDimitry Andric /// metadata to these calls after the analysis indicating the functions the
2240b57cec5SDimitry Andric /// calls can possibly target.
2255ffd83dbSDimitry Andric SmallPtrSet<CallBase *, 32> IndirectCalls;
2260b57cec5SDimitry Andric
2270b57cec5SDimitry Andric /// Compute a new lattice value for the given constant. The constant, after
2280b57cec5SDimitry Andric /// stripping any pointer casts, should be a Function. We ignore null
2290b57cec5SDimitry Andric /// pointers as an optimization, since calling these values is undefined
2300b57cec5SDimitry Andric /// behavior.
computeConstant(Constant * C)2310b57cec5SDimitry Andric CVPLatticeVal computeConstant(Constant *C) {
2320b57cec5SDimitry Andric if (isa<ConstantPointerNull>(C))
2330b57cec5SDimitry Andric return CVPLatticeVal(CVPLatticeVal::FunctionSet);
2340b57cec5SDimitry Andric if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
2350b57cec5SDimitry Andric return CVPLatticeVal({F});
2360b57cec5SDimitry Andric return getOverdefinedVal();
2370b57cec5SDimitry Andric }
2380b57cec5SDimitry Andric
2390b57cec5SDimitry Andric /// Handle return instructions. The function's return state is the merge of
2400b57cec5SDimitry Andric /// the returned value state and the function's return state.
visitReturn(ReturnInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)2410b57cec5SDimitry Andric void visitReturn(ReturnInst &I,
2420b57cec5SDimitry Andric DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
2430b57cec5SDimitry Andric SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
2440b57cec5SDimitry Andric Function *F = I.getParent()->getParent();
2450b57cec5SDimitry Andric if (F->getReturnType()->isVoidTy())
2460b57cec5SDimitry Andric return;
2470b57cec5SDimitry Andric auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
2480b57cec5SDimitry Andric auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
2490b57cec5SDimitry Andric ChangedValues[RetF] =
2500b57cec5SDimitry Andric MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
2510b57cec5SDimitry Andric }
2520b57cec5SDimitry Andric
2530b57cec5SDimitry Andric /// Handle call sites. The state of a called function's formal arguments is
2540b57cec5SDimitry Andric /// the merge of the argument state with the call sites corresponding actual
2550b57cec5SDimitry Andric /// argument state. The call site state is the merge of the call site state
2560b57cec5SDimitry Andric /// with the returned value state of the called function.
visitCallBase(CallBase & CB,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)2575ffd83dbSDimitry Andric void visitCallBase(CallBase &CB,
2580b57cec5SDimitry Andric DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
2590b57cec5SDimitry Andric SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
2605ffd83dbSDimitry Andric Function *F = CB.getCalledFunction();
2615ffd83dbSDimitry Andric auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
2620b57cec5SDimitry Andric
2630b57cec5SDimitry Andric // If this is an indirect call, save it so we can quickly revisit it when
2640b57cec5SDimitry Andric // attaching metadata.
2650b57cec5SDimitry Andric if (!F)
2665ffd83dbSDimitry Andric IndirectCalls.insert(&CB);
2670b57cec5SDimitry Andric
2680b57cec5SDimitry Andric // If we can't track the function's return values, there's nothing to do.
2690b57cec5SDimitry Andric if (!F || !canTrackReturnsInterprocedurally(F)) {
2700b57cec5SDimitry Andric // Void return, No need to create and update CVPLattice state as no one
2710b57cec5SDimitry Andric // can use it.
2725ffd83dbSDimitry Andric if (CB.getType()->isVoidTy())
2730b57cec5SDimitry Andric return;
2740b57cec5SDimitry Andric ChangedValues[RegI] = getOverdefinedVal();
2750b57cec5SDimitry Andric return;
2760b57cec5SDimitry Andric }
2770b57cec5SDimitry Andric
2780b57cec5SDimitry Andric // Inform the solver that the called function is executable, and perform
2790b57cec5SDimitry Andric // the merges for the arguments and return value.
2800b57cec5SDimitry Andric SS.MarkBlockExecutable(&F->front());
2810b57cec5SDimitry Andric auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
2820b57cec5SDimitry Andric for (Argument &A : F->args()) {
2830b57cec5SDimitry Andric auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
2840b57cec5SDimitry Andric auto RegActual =
2855ffd83dbSDimitry Andric CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
2860b57cec5SDimitry Andric ChangedValues[RegFormal] =
2870b57cec5SDimitry Andric MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
2880b57cec5SDimitry Andric }
2890b57cec5SDimitry Andric
2900b57cec5SDimitry Andric // Void return, No need to create and update CVPLattice state as no one can
2910b57cec5SDimitry Andric // use it.
2925ffd83dbSDimitry Andric if (CB.getType()->isVoidTy())
2930b57cec5SDimitry Andric return;
2940b57cec5SDimitry Andric
2950b57cec5SDimitry Andric ChangedValues[RegI] =
2960b57cec5SDimitry Andric MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
2970b57cec5SDimitry Andric }
2980b57cec5SDimitry Andric
2990b57cec5SDimitry Andric /// Handle select instructions. The select instruction state is the merge the
3000b57cec5SDimitry Andric /// true and false value states.
visitSelect(SelectInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)3010b57cec5SDimitry Andric void visitSelect(SelectInst &I,
3020b57cec5SDimitry Andric DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
3030b57cec5SDimitry Andric SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
3040b57cec5SDimitry Andric auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
3050b57cec5SDimitry Andric auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
3060b57cec5SDimitry Andric auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
3070b57cec5SDimitry Andric ChangedValues[RegI] =
3080b57cec5SDimitry Andric MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
3090b57cec5SDimitry Andric }
3100b57cec5SDimitry Andric
3110b57cec5SDimitry Andric /// Handle load instructions. If the pointer operand of the load is a global
3120b57cec5SDimitry Andric /// variable, we attempt to track the value. The loaded value state is the
3130b57cec5SDimitry Andric /// merge of the loaded value state with the global variable state.
visitLoad(LoadInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)3140b57cec5SDimitry Andric void visitLoad(LoadInst &I,
3150b57cec5SDimitry Andric DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
3160b57cec5SDimitry Andric SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
3170b57cec5SDimitry Andric auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
3180b57cec5SDimitry Andric if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
3190b57cec5SDimitry Andric auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
3200b57cec5SDimitry Andric ChangedValues[RegI] =
3210b57cec5SDimitry Andric MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
3220b57cec5SDimitry Andric } else {
3230b57cec5SDimitry Andric ChangedValues[RegI] = getOverdefinedVal();
3240b57cec5SDimitry Andric }
3250b57cec5SDimitry Andric }
3260b57cec5SDimitry Andric
3270b57cec5SDimitry Andric /// Handle store instructions. If the pointer operand of the store is a
3280b57cec5SDimitry Andric /// global variable, we attempt to track the value. The global variable state
3290b57cec5SDimitry Andric /// is the merge of the stored value state with the global variable state.
visitStore(StoreInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)3300b57cec5SDimitry Andric void visitStore(StoreInst &I,
3310b57cec5SDimitry Andric DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
3320b57cec5SDimitry Andric SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
3330b57cec5SDimitry Andric auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
3340b57cec5SDimitry Andric if (!GV)
3350b57cec5SDimitry Andric return;
3360b57cec5SDimitry Andric auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
3370b57cec5SDimitry Andric auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
3380b57cec5SDimitry Andric ChangedValues[MemGV] =
3390b57cec5SDimitry Andric MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
3400b57cec5SDimitry Andric }
3410b57cec5SDimitry Andric
3420b57cec5SDimitry Andric /// Handle all other instructions. All other instructions are marked
3430b57cec5SDimitry Andric /// overdefined.
visitInst(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)3440b57cec5SDimitry Andric void visitInst(Instruction &I,
3450b57cec5SDimitry Andric DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
3460b57cec5SDimitry Andric SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
3470b57cec5SDimitry Andric // Simply bail if this instruction has no user.
3480b57cec5SDimitry Andric if (I.use_empty())
3490b57cec5SDimitry Andric return;
3500b57cec5SDimitry Andric auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
3510b57cec5SDimitry Andric ChangedValues[RegI] = getOverdefinedVal();
3520b57cec5SDimitry Andric }
3530b57cec5SDimitry Andric };
3540b57cec5SDimitry Andric } // namespace
3550b57cec5SDimitry Andric
3560b57cec5SDimitry Andric namespace llvm {
3570b57cec5SDimitry Andric /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
3580b57cec5SDimitry Andric /// must translate between LatticeKeys and LLVM Values when adding Values to
3590b57cec5SDimitry Andric /// its work list and inspecting the state of control-flow related values.
3600b57cec5SDimitry Andric template <> struct LatticeKeyInfo<CVPLatticeKey> {
getValueFromLatticeKeyllvm::LatticeKeyInfo3610b57cec5SDimitry Andric static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
3620b57cec5SDimitry Andric return Key.getPointer();
3630b57cec5SDimitry Andric }
getLatticeKeyFromValuellvm::LatticeKeyInfo3640b57cec5SDimitry Andric static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
3650b57cec5SDimitry Andric return CVPLatticeKey(V, IPOGrouping::Register);
3660b57cec5SDimitry Andric }
3670b57cec5SDimitry Andric };
3680b57cec5SDimitry Andric } // namespace llvm
3690b57cec5SDimitry Andric
runCVP(Module & M)3700b57cec5SDimitry Andric static bool runCVP(Module &M) {
3710b57cec5SDimitry Andric // Our custom lattice function and generic sparse propagation solver.
3720b57cec5SDimitry Andric CVPLatticeFunc Lattice;
3730b57cec5SDimitry Andric SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
3740b57cec5SDimitry Andric
3750b57cec5SDimitry Andric // For each function in the module, if we can't track its arguments, let the
3760b57cec5SDimitry Andric // generic solver assume it is executable.
3770b57cec5SDimitry Andric for (Function &F : M)
3780b57cec5SDimitry Andric if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
3790b57cec5SDimitry Andric Solver.MarkBlockExecutable(&F.front());
3800b57cec5SDimitry Andric
3810b57cec5SDimitry Andric // Solver our custom lattice. In doing so, we will also build a set of
3820b57cec5SDimitry Andric // indirect call sites.
3830b57cec5SDimitry Andric Solver.Solve();
3840b57cec5SDimitry Andric
3850b57cec5SDimitry Andric // Attach metadata to the indirect call sites that were collected indicating
3860b57cec5SDimitry Andric // the set of functions they can possibly target.
3870b57cec5SDimitry Andric bool Changed = false;
3880b57cec5SDimitry Andric MDBuilder MDB(M.getContext());
3895ffd83dbSDimitry Andric for (CallBase *C : Lattice.getIndirectCalls()) {
3905ffd83dbSDimitry Andric auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
3910b57cec5SDimitry Andric CVPLatticeVal LV = Solver.getExistingValueState(RegI);
3920b57cec5SDimitry Andric if (!LV.isFunctionSet() || LV.getFunctions().empty())
3930b57cec5SDimitry Andric continue;
3940b57cec5SDimitry Andric MDNode *Callees = MDB.createCallees(LV.getFunctions());
3950b57cec5SDimitry Andric C->setMetadata(LLVMContext::MD_callees, Callees);
3960b57cec5SDimitry Andric Changed = true;
3970b57cec5SDimitry Andric }
3980b57cec5SDimitry Andric
3990b57cec5SDimitry Andric return Changed;
4000b57cec5SDimitry Andric }
4010b57cec5SDimitry Andric
run(Module & M,ModuleAnalysisManager &)4020b57cec5SDimitry Andric PreservedAnalyses CalledValuePropagationPass::run(Module &M,
4030b57cec5SDimitry Andric ModuleAnalysisManager &) {
4040b57cec5SDimitry Andric runCVP(M);
4050b57cec5SDimitry Andric return PreservedAnalyses::all();
4060b57cec5SDimitry Andric }
407