xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/AttributorAttributes.cpp (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/SCCIterator.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetOperations.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/Analysis/AssumeBundleQueries.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/CycleAnalysis.h"
33 #include "llvm/Analysis/InstructionSimplify.h"
34 #include "llvm/Analysis/LazyValueInfo.h"
35 #include "llvm/Analysis/MemoryBuiltins.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/TargetTransformInfo.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Assumptions.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/IRBuilder.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/IntrinsicsAMDGPU.h"
56 #include "llvm/IR/IntrinsicsNVPTX.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/Alignment.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <cassert>
71 #include <numeric>
72 #include <optional>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "attributor"
77 
78 static cl::opt<bool> ManifestInternal(
79     "attributor-manifest-internal", cl::Hidden,
80     cl::desc("Manifest Attributor internal string attributes."),
81     cl::init(false));
82 
83 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
84                                        cl::Hidden);
85 
86 template <>
87 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
88 
89 template <> unsigned llvm::PotentialLLVMValuesState::MaxPotentialValues = -1;
90 
91 static cl::opt<unsigned, true> MaxPotentialValues(
92     "attributor-max-potential-values", cl::Hidden,
93     cl::desc("Maximum number of potential values to be "
94              "tracked for each position."),
95     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
96     cl::init(7));
97 
98 static cl::opt<int> MaxPotentialValuesIterations(
99     "attributor-max-potential-values-iterations", cl::Hidden,
100     cl::desc(
101         "Maximum number of iterations we keep dismantling potential values."),
102     cl::init(64));
103 
104 STATISTIC(NumAAs, "Number of abstract attributes created");
105 
106 // Some helper macros to deal with statistics tracking.
107 //
108 // Usage:
109 // For simple IR attribute tracking overload trackStatistics in the abstract
110 // attribute and choose the right STATS_DECLTRACK_********* macro,
111 // e.g.,:
112 //  void trackStatistics() const override {
113 //    STATS_DECLTRACK_ARG_ATTR(returned)
114 //  }
115 // If there is a single "increment" side one can use the macro
116 // STATS_DECLTRACK with a custom message. If there are multiple increment
117 // sides, STATS_DECL and STATS_TRACK can also be used separately.
118 //
119 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
120   ("Number of " #TYPE " marked '" #NAME "'")
121 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
122 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
123 #define STATS_DECL(NAME, TYPE, MSG)                                            \
124   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
125 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
126 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
127   {                                                                            \
128     STATS_DECL(NAME, TYPE, MSG)                                                \
129     STATS_TRACK(NAME, TYPE)                                                    \
130   }
131 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
132   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
133 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
134   STATS_DECLTRACK(NAME, CSArguments,                                           \
135                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
136 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
137   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
138 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
139   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
140 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
141   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
142                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
143 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
144   STATS_DECLTRACK(NAME, CSReturn,                                              \
145                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
146 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
147   STATS_DECLTRACK(NAME, Floating,                                              \
148                   ("Number of floating values known to be '" #NAME "'"))
149 
150 // Specialization of the operator<< for abstract attributes subclasses. This
151 // disambiguates situations where multiple operators are applicable.
152 namespace llvm {
153 #define PIPE_OPERATOR(CLASS)                                                   \
154   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
155     return OS << static_cast<const AbstractAttribute &>(AA);                   \
156   }
157 
158 PIPE_OPERATOR(AAIsDead)
159 PIPE_OPERATOR(AANoUnwind)
160 PIPE_OPERATOR(AANoSync)
161 PIPE_OPERATOR(AANoRecurse)
162 PIPE_OPERATOR(AANonConvergent)
163 PIPE_OPERATOR(AAWillReturn)
164 PIPE_OPERATOR(AANoReturn)
165 PIPE_OPERATOR(AANonNull)
166 PIPE_OPERATOR(AAMustProgress)
167 PIPE_OPERATOR(AANoAlias)
168 PIPE_OPERATOR(AADereferenceable)
169 PIPE_OPERATOR(AAAlign)
170 PIPE_OPERATOR(AAInstanceInfo)
171 PIPE_OPERATOR(AANoCapture)
172 PIPE_OPERATOR(AAValueSimplify)
173 PIPE_OPERATOR(AANoFree)
174 PIPE_OPERATOR(AAHeapToStack)
175 PIPE_OPERATOR(AAIntraFnReachability)
176 PIPE_OPERATOR(AAMemoryBehavior)
177 PIPE_OPERATOR(AAMemoryLocation)
178 PIPE_OPERATOR(AAValueConstantRange)
179 PIPE_OPERATOR(AAPrivatizablePtr)
180 PIPE_OPERATOR(AAUndefinedBehavior)
181 PIPE_OPERATOR(AAPotentialConstantValues)
182 PIPE_OPERATOR(AAPotentialValues)
183 PIPE_OPERATOR(AANoUndef)
184 PIPE_OPERATOR(AANoFPClass)
185 PIPE_OPERATOR(AACallEdges)
186 PIPE_OPERATOR(AAInterFnReachability)
187 PIPE_OPERATOR(AAPointerInfo)
188 PIPE_OPERATOR(AAAssumptionInfo)
189 PIPE_OPERATOR(AAUnderlyingObjects)
190 PIPE_OPERATOR(AAAddressSpace)
191 
192 #undef PIPE_OPERATOR
193 
194 template <>
195 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
196                                                      const DerefState &R) {
197   ChangeStatus CS0 =
198       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
199   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
200   return CS0 | CS1;
201 }
202 
203 } // namespace llvm
204 
205 static bool mayBeInCycle(const CycleInfo *CI, const Instruction *I,
206                          bool HeaderOnly, Cycle **CPtr = nullptr) {
207   if (!CI)
208     return true;
209   auto *BB = I->getParent();
210   auto *C = CI->getCycle(BB);
211   if (!C)
212     return false;
213   if (CPtr)
214     *CPtr = C;
215   return !HeaderOnly || BB == C->getHeader();
216 }
217 
218 /// Checks if a type could have padding bytes.
219 static bool isDenselyPacked(Type *Ty, const DataLayout &DL) {
220   // There is no size information, so be conservative.
221   if (!Ty->isSized())
222     return false;
223 
224   // If the alloc size is not equal to the storage size, then there are padding
225   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
226   if (DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty))
227     return false;
228 
229   // FIXME: This isn't the right way to check for padding in vectors with
230   // non-byte-size elements.
231   if (VectorType *SeqTy = dyn_cast<VectorType>(Ty))
232     return isDenselyPacked(SeqTy->getElementType(), DL);
233 
234   // For array types, check for padding within members.
235   if (ArrayType *SeqTy = dyn_cast<ArrayType>(Ty))
236     return isDenselyPacked(SeqTy->getElementType(), DL);
237 
238   if (!isa<StructType>(Ty))
239     return true;
240 
241   // Check for padding within and between elements of a struct.
242   StructType *StructTy = cast<StructType>(Ty);
243   const StructLayout *Layout = DL.getStructLayout(StructTy);
244   uint64_t StartPos = 0;
245   for (unsigned I = 0, E = StructTy->getNumElements(); I < E; ++I) {
246     Type *ElTy = StructTy->getElementType(I);
247     if (!isDenselyPacked(ElTy, DL))
248       return false;
249     if (StartPos != Layout->getElementOffsetInBits(I))
250       return false;
251     StartPos += DL.getTypeAllocSizeInBits(ElTy);
252   }
253 
254   return true;
255 }
256 
257 /// Get pointer operand of memory accessing instruction. If \p I is
258 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
259 /// is set to false and the instruction is volatile, return nullptr.
260 static const Value *getPointerOperand(const Instruction *I,
261                                       bool AllowVolatile) {
262   if (!AllowVolatile && I->isVolatile())
263     return nullptr;
264 
265   if (auto *LI = dyn_cast<LoadInst>(I)) {
266     return LI->getPointerOperand();
267   }
268 
269   if (auto *SI = dyn_cast<StoreInst>(I)) {
270     return SI->getPointerOperand();
271   }
272 
273   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
274     return CXI->getPointerOperand();
275   }
276 
277   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
278     return RMWI->getPointerOperand();
279   }
280 
281   return nullptr;
282 }
283 
284 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
285 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
286 /// getelement pointer instructions that traverse the natural type of \p Ptr if
287 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
288 /// through a cast to i8*.
289 ///
290 /// TODO: This could probably live somewhere more prominantly if it doesn't
291 ///       already exist.
292 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
293                                int64_t Offset, IRBuilder<NoFolder> &IRB,
294                                const DataLayout &DL) {
295   assert(Offset >= 0 && "Negative offset not supported yet!");
296   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
297                     << "-bytes as " << *ResTy << "\n");
298 
299   if (Offset) {
300     Type *Ty = PtrElemTy;
301     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
302     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
303 
304     SmallVector<Value *, 4> ValIndices;
305     std::string GEPName = Ptr->getName().str();
306     for (const APInt &Index : IntIndices) {
307       ValIndices.push_back(IRB.getInt(Index));
308       GEPName += "." + std::to_string(Index.getZExtValue());
309     }
310 
311     // Create a GEP for the indices collected above.
312     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
313 
314     // If an offset is left we use byte-wise adjustment.
315     if (IntOffset != 0) {
316       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
317       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
318                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
319     }
320   }
321 
322   // Ensure the result has the requested type.
323   Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
324                                                 Ptr->getName() + ".cast");
325 
326   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
327   return Ptr;
328 }
329 
330 static const Value *
331 stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
332                           const Value *Val, const DataLayout &DL, APInt &Offset,
333                           bool GetMinOffset, bool AllowNonInbounds,
334                           bool UseAssumed = false) {
335 
336   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
337     const IRPosition &Pos = IRPosition::value(V);
338     // Only track dependence if we are going to use the assumed info.
339     const AAValueConstantRange *ValueConstantRangeAA =
340         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
341                                          UseAssumed ? DepClassTy::OPTIONAL
342                                                     : DepClassTy::NONE);
343     if (!ValueConstantRangeAA)
344       return false;
345     ConstantRange Range = UseAssumed ? ValueConstantRangeAA->getAssumed()
346                                      : ValueConstantRangeAA->getKnown();
347     if (Range.isFullSet())
348       return false;
349 
350     // We can only use the lower part of the range because the upper part can
351     // be higher than what the value can really be.
352     if (GetMinOffset)
353       ROffset = Range.getSignedMin();
354     else
355       ROffset = Range.getSignedMax();
356     return true;
357   };
358 
359   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
360                                                 /* AllowInvariant */ true,
361                                                 AttributorAnalysis);
362 }
363 
364 static const Value *
365 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
366                         const Value *Ptr, int64_t &BytesOffset,
367                         const DataLayout &DL, bool AllowNonInbounds = false) {
368   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
369   const Value *Base =
370       stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
371                                 /* GetMinOffset */ true, AllowNonInbounds);
372 
373   BytesOffset = OffsetAPInt.getSExtValue();
374   return Base;
375 }
376 
377 /// Clamp the information known for all returned values of a function
378 /// (identified by \p QueryingAA) into \p S.
379 template <typename AAType, typename StateType = typename AAType::StateType,
380           Attribute::AttrKind IRAttributeKind = Attribute::None,
381           bool RecurseForSelectAndPHI = true>
382 static void clampReturnedValueStates(
383     Attributor &A, const AAType &QueryingAA, StateType &S,
384     const IRPosition::CallBaseContext *CBContext = nullptr) {
385   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
386                     << QueryingAA << " into " << S << "\n");
387 
388   assert((QueryingAA.getIRPosition().getPositionKind() ==
389               IRPosition::IRP_RETURNED ||
390           QueryingAA.getIRPosition().getPositionKind() ==
391               IRPosition::IRP_CALL_SITE_RETURNED) &&
392          "Can only clamp returned value states for a function returned or call "
393          "site returned position!");
394 
395   // Use an optional state as there might not be any return values and we want
396   // to join (IntegerState::operator&) the state of all there are.
397   std::optional<StateType> T;
398 
399   // Callback for each possibly returned value.
400   auto CheckReturnValue = [&](Value &RV) -> bool {
401     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
402     // If possible, use the hasAssumedIRAttr interface.
403     if (IRAttributeKind != Attribute::None) {
404       bool IsKnown;
405       return AA::hasAssumedIRAttr<IRAttributeKind>(
406           A, &QueryingAA, RVPos, DepClassTy::REQUIRED, IsKnown);
407     }
408 
409     const AAType *AA =
410         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
411     if (!AA)
412       return false;
413     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV
414                       << " AA: " << AA->getAsStr(&A) << " @ " << RVPos << "\n");
415     const StateType &AAS = AA->getState();
416     if (!T)
417       T = StateType::getBestState(AAS);
418     *T &= AAS;
419     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
420                       << "\n");
421     return T->isValidState();
422   };
423 
424   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA,
425                                    AA::ValueScope::Intraprocedural,
426                                    RecurseForSelectAndPHI))
427     S.indicatePessimisticFixpoint();
428   else if (T)
429     S ^= *T;
430 }
431 
432 namespace {
433 /// Helper class for generic deduction: return value -> returned position.
434 template <typename AAType, typename BaseType,
435           typename StateType = typename BaseType::StateType,
436           bool PropagateCallBaseContext = false,
437           Attribute::AttrKind IRAttributeKind = Attribute::None,
438           bool RecurseForSelectAndPHI = true>
439 struct AAReturnedFromReturnedValues : public BaseType {
440   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
441       : BaseType(IRP, A) {}
442 
443   /// See AbstractAttribute::updateImpl(...).
444   ChangeStatus updateImpl(Attributor &A) override {
445     StateType S(StateType::getBestState(this->getState()));
446     clampReturnedValueStates<AAType, StateType, IRAttributeKind, RecurseForSelectAndPHI>(
447         A, *this, S,
448         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
449     // TODO: If we know we visited all returned values, thus no are assumed
450     // dead, we can take the known information from the state T.
451     return clampStateAndIndicateChange<StateType>(this->getState(), S);
452   }
453 };
454 
455 /// Clamp the information known at all call sites for a given argument
456 /// (identified by \p QueryingAA) into \p S.
457 template <typename AAType, typename StateType = typename AAType::StateType,
458           Attribute::AttrKind IRAttributeKind = Attribute::None>
459 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
460                                         StateType &S) {
461   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
462                     << QueryingAA << " into " << S << "\n");
463 
464   assert(QueryingAA.getIRPosition().getPositionKind() ==
465              IRPosition::IRP_ARGUMENT &&
466          "Can only clamp call site argument states for an argument position!");
467 
468   // Use an optional state as there might not be any return values and we want
469   // to join (IntegerState::operator&) the state of all there are.
470   std::optional<StateType> T;
471 
472   // The argument number which is also the call site argument number.
473   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
474 
475   auto CallSiteCheck = [&](AbstractCallSite ACS) {
476     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
477     // Check if a coresponding argument was found or if it is on not associated
478     // (which can happen for callback calls).
479     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
480       return false;
481 
482     // If possible, use the hasAssumedIRAttr interface.
483     if (IRAttributeKind != Attribute::None) {
484       bool IsKnown;
485       return AA::hasAssumedIRAttr<IRAttributeKind>(
486           A, &QueryingAA, ACSArgPos, DepClassTy::REQUIRED, IsKnown);
487     }
488 
489     const AAType *AA =
490         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
491     if (!AA)
492       return false;
493     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
494                       << " AA: " << AA->getAsStr(&A) << " @" << ACSArgPos
495                       << "\n");
496     const StateType &AAS = AA->getState();
497     if (!T)
498       T = StateType::getBestState(AAS);
499     *T &= AAS;
500     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
501                       << "\n");
502     return T->isValidState();
503   };
504 
505   bool UsedAssumedInformation = false;
506   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
507                               UsedAssumedInformation))
508     S.indicatePessimisticFixpoint();
509   else if (T)
510     S ^= *T;
511 }
512 
513 /// This function is the bridge between argument position and the call base
514 /// context.
515 template <typename AAType, typename BaseType,
516           typename StateType = typename AAType::StateType,
517           Attribute::AttrKind IRAttributeKind = Attribute::None>
518 bool getArgumentStateFromCallBaseContext(Attributor &A,
519                                          BaseType &QueryingAttribute,
520                                          IRPosition &Pos, StateType &State) {
521   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
522          "Expected an 'argument' position !");
523   const CallBase *CBContext = Pos.getCallBaseContext();
524   if (!CBContext)
525     return false;
526 
527   int ArgNo = Pos.getCallSiteArgNo();
528   assert(ArgNo >= 0 && "Invalid Arg No!");
529   const IRPosition CBArgPos = IRPosition::callsite_argument(*CBContext, ArgNo);
530 
531   // If possible, use the hasAssumedIRAttr interface.
532   if (IRAttributeKind != Attribute::None) {
533     bool IsKnown;
534     return AA::hasAssumedIRAttr<IRAttributeKind>(
535         A, &QueryingAttribute, CBArgPos, DepClassTy::REQUIRED, IsKnown);
536   }
537 
538   const auto *AA =
539       A.getAAFor<AAType>(QueryingAttribute, CBArgPos, DepClassTy::REQUIRED);
540   if (!AA)
541     return false;
542   const StateType &CBArgumentState =
543       static_cast<const StateType &>(AA->getState());
544 
545   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
546                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
547                     << "\n");
548 
549   // NOTE: If we want to do call site grouping it should happen here.
550   State ^= CBArgumentState;
551   return true;
552 }
553 
554 /// Helper class for generic deduction: call site argument -> argument position.
555 template <typename AAType, typename BaseType,
556           typename StateType = typename AAType::StateType,
557           bool BridgeCallBaseContext = false,
558           Attribute::AttrKind IRAttributeKind = Attribute::None>
559 struct AAArgumentFromCallSiteArguments : public BaseType {
560   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
561       : BaseType(IRP, A) {}
562 
563   /// See AbstractAttribute::updateImpl(...).
564   ChangeStatus updateImpl(Attributor &A) override {
565     StateType S = StateType::getBestState(this->getState());
566 
567     if (BridgeCallBaseContext) {
568       bool Success =
569           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType,
570                                               IRAttributeKind>(
571               A, *this, this->getIRPosition(), S);
572       if (Success)
573         return clampStateAndIndicateChange<StateType>(this->getState(), S);
574     }
575     clampCallSiteArgumentStates<AAType, StateType, IRAttributeKind>(A, *this,
576                                                                     S);
577 
578     // TODO: If we know we visited all incoming values, thus no are assumed
579     // dead, we can take the known information from the state T.
580     return clampStateAndIndicateChange<StateType>(this->getState(), S);
581   }
582 };
583 
584 /// Helper class for generic replication: function returned -> cs returned.
585 template <typename AAType, typename BaseType,
586           typename StateType = typename BaseType::StateType,
587           bool IntroduceCallBaseContext = false,
588           Attribute::AttrKind IRAttributeKind = Attribute::None>
589 struct AACallSiteReturnedFromReturned : public BaseType {
590   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
591       : BaseType(IRP, A) {}
592 
593   /// See AbstractAttribute::updateImpl(...).
594   ChangeStatus updateImpl(Attributor &A) override {
595     assert(this->getIRPosition().getPositionKind() ==
596                IRPosition::IRP_CALL_SITE_RETURNED &&
597            "Can only wrap function returned positions for call site returned "
598            "positions!");
599     auto &S = this->getState();
600 
601     const Function *AssociatedFunction =
602         this->getIRPosition().getAssociatedFunction();
603     if (!AssociatedFunction)
604       return S.indicatePessimisticFixpoint();
605 
606     CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
607     if (IntroduceCallBaseContext)
608       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
609                         << CBContext << "\n");
610 
611     IRPosition FnPos = IRPosition::returned(
612         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
613 
614     // If possible, use the hasAssumedIRAttr interface.
615     if (IRAttributeKind != Attribute::None) {
616       bool IsKnown;
617       if (!AA::hasAssumedIRAttr<IRAttributeKind>(A, this, FnPos,
618                                                  DepClassTy::REQUIRED, IsKnown))
619         return S.indicatePessimisticFixpoint();
620       return ChangeStatus::UNCHANGED;
621     }
622 
623     const AAType *AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
624     if (!AA)
625       return S.indicatePessimisticFixpoint();
626     return clampStateAndIndicateChange(S, AA->getState());
627   }
628 };
629 
630 /// Helper function to accumulate uses.
631 template <class AAType, typename StateType = typename AAType::StateType>
632 static void followUsesInContext(AAType &AA, Attributor &A,
633                                 MustBeExecutedContextExplorer &Explorer,
634                                 const Instruction *CtxI,
635                                 SetVector<const Use *> &Uses,
636                                 StateType &State) {
637   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
638   for (unsigned u = 0; u < Uses.size(); ++u) {
639     const Use *U = Uses[u];
640     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
641       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
642       if (Found && AA.followUseInMBEC(A, U, UserI, State))
643         for (const Use &Us : UserI->uses())
644           Uses.insert(&Us);
645     }
646   }
647 }
648 
649 /// Use the must-be-executed-context around \p I to add information into \p S.
650 /// The AAType class is required to have `followUseInMBEC` method with the
651 /// following signature and behaviour:
652 ///
653 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
654 /// U - Underlying use.
655 /// I - The user of the \p U.
656 /// Returns true if the value should be tracked transitively.
657 ///
658 template <class AAType, typename StateType = typename AAType::StateType>
659 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
660                              Instruction &CtxI) {
661   MustBeExecutedContextExplorer *Explorer =
662       A.getInfoCache().getMustBeExecutedContextExplorer();
663   if (!Explorer)
664     return;
665 
666   // Container for (transitive) uses of the associated value.
667   SetVector<const Use *> Uses;
668   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
669     Uses.insert(&U);
670 
671   followUsesInContext<AAType>(AA, A, *Explorer, &CtxI, Uses, S);
672 
673   if (S.isAtFixpoint())
674     return;
675 
676   SmallVector<const BranchInst *, 4> BrInsts;
677   auto Pred = [&](const Instruction *I) {
678     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
679       if (Br->isConditional())
680         BrInsts.push_back(Br);
681     return true;
682   };
683 
684   // Here, accumulate conditional branch instructions in the context. We
685   // explore the child paths and collect the known states. The disjunction of
686   // those states can be merged to its own state. Let ParentState_i be a state
687   // to indicate the known information for an i-th branch instruction in the
688   // context. ChildStates are created for its successors respectively.
689   //
690   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
691   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
692   //      ...
693   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
694   //
695   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
696   //
697   // FIXME: Currently, recursive branches are not handled. For example, we
698   // can't deduce that ptr must be dereferenced in below function.
699   //
700   // void f(int a, int c, int *ptr) {
701   //    if(a)
702   //      if (b) {
703   //        *ptr = 0;
704   //      } else {
705   //        *ptr = 1;
706   //      }
707   //    else {
708   //      if (b) {
709   //        *ptr = 0;
710   //      } else {
711   //        *ptr = 1;
712   //      }
713   //    }
714   // }
715 
716   Explorer->checkForAllContext(&CtxI, Pred);
717   for (const BranchInst *Br : BrInsts) {
718     StateType ParentState;
719 
720     // The known state of the parent state is a conjunction of children's
721     // known states so it is initialized with a best state.
722     ParentState.indicateOptimisticFixpoint();
723 
724     for (const BasicBlock *BB : Br->successors()) {
725       StateType ChildState;
726 
727       size_t BeforeSize = Uses.size();
728       followUsesInContext(AA, A, *Explorer, &BB->front(), Uses, ChildState);
729 
730       // Erase uses which only appear in the child.
731       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
732         It = Uses.erase(It);
733 
734       ParentState &= ChildState;
735     }
736 
737     // Use only known state.
738     S += ParentState;
739   }
740 }
741 } // namespace
742 
743 /// ------------------------ PointerInfo ---------------------------------------
744 
745 namespace llvm {
746 namespace AA {
747 namespace PointerInfo {
748 
749 struct State;
750 
751 } // namespace PointerInfo
752 } // namespace AA
753 
754 /// Helper for AA::PointerInfo::Access DenseMap/Set usage.
755 template <>
756 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
757   using Access = AAPointerInfo::Access;
758   static inline Access getEmptyKey();
759   static inline Access getTombstoneKey();
760   static unsigned getHashValue(const Access &A);
761   static bool isEqual(const Access &LHS, const Access &RHS);
762 };
763 
764 /// Helper that allows RangeTy as a key in a DenseMap.
765 template <> struct DenseMapInfo<AA::RangeTy> {
766   static inline AA::RangeTy getEmptyKey() {
767     auto EmptyKey = DenseMapInfo<int64_t>::getEmptyKey();
768     return AA::RangeTy{EmptyKey, EmptyKey};
769   }
770 
771   static inline AA::RangeTy getTombstoneKey() {
772     auto TombstoneKey = DenseMapInfo<int64_t>::getTombstoneKey();
773     return AA::RangeTy{TombstoneKey, TombstoneKey};
774   }
775 
776   static unsigned getHashValue(const AA::RangeTy &Range) {
777     return detail::combineHashValue(
778         DenseMapInfo<int64_t>::getHashValue(Range.Offset),
779         DenseMapInfo<int64_t>::getHashValue(Range.Size));
780   }
781 
782   static bool isEqual(const AA::RangeTy &A, const AA::RangeTy B) {
783     return A == B;
784   }
785 };
786 
787 /// Helper for AA::PointerInfo::Access DenseMap/Set usage ignoring everythign
788 /// but the instruction
789 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
790   using Base = DenseMapInfo<Instruction *>;
791   using Access = AAPointerInfo::Access;
792   static inline Access getEmptyKey();
793   static inline Access getTombstoneKey();
794   static unsigned getHashValue(const Access &A);
795   static bool isEqual(const Access &LHS, const Access &RHS);
796 };
797 
798 } // namespace llvm
799 
800 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
801 struct AA::PointerInfo::State : public AbstractState {
802   /// Return the best possible representable state.
803   static State getBestState(const State &SIS) { return State(); }
804 
805   /// Return the worst possible representable state.
806   static State getWorstState(const State &SIS) {
807     State R;
808     R.indicatePessimisticFixpoint();
809     return R;
810   }
811 
812   State() = default;
813   State(State &&SIS) = default;
814 
815   const State &getAssumed() const { return *this; }
816 
817   /// See AbstractState::isValidState().
818   bool isValidState() const override { return BS.isValidState(); }
819 
820   /// See AbstractState::isAtFixpoint().
821   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
822 
823   /// See AbstractState::indicateOptimisticFixpoint().
824   ChangeStatus indicateOptimisticFixpoint() override {
825     BS.indicateOptimisticFixpoint();
826     return ChangeStatus::UNCHANGED;
827   }
828 
829   /// See AbstractState::indicatePessimisticFixpoint().
830   ChangeStatus indicatePessimisticFixpoint() override {
831     BS.indicatePessimisticFixpoint();
832     return ChangeStatus::CHANGED;
833   }
834 
835   State &operator=(const State &R) {
836     if (this == &R)
837       return *this;
838     BS = R.BS;
839     AccessList = R.AccessList;
840     OffsetBins = R.OffsetBins;
841     RemoteIMap = R.RemoteIMap;
842     return *this;
843   }
844 
845   State &operator=(State &&R) {
846     if (this == &R)
847       return *this;
848     std::swap(BS, R.BS);
849     std::swap(AccessList, R.AccessList);
850     std::swap(OffsetBins, R.OffsetBins);
851     std::swap(RemoteIMap, R.RemoteIMap);
852     return *this;
853   }
854 
855   /// Add a new Access to the state at offset \p Offset and with size \p Size.
856   /// The access is associated with \p I, writes \p Content (if anything), and
857   /// is of kind \p Kind. If an Access already exists for the same \p I and same
858   /// \p RemoteI, the two are combined, potentially losing information about
859   /// offset and size. The resulting access must now be moved from its original
860   /// OffsetBin to the bin for its new offset.
861   ///
862   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
863   ChangeStatus addAccess(Attributor &A, const AAPointerInfo::RangeList &Ranges,
864                          Instruction &I, std::optional<Value *> Content,
865                          AAPointerInfo::AccessKind Kind, Type *Ty,
866                          Instruction *RemoteI = nullptr);
867 
868   using OffsetBinsTy = DenseMap<RangeTy, SmallSet<unsigned, 4>>;
869 
870   using const_bin_iterator = OffsetBinsTy::const_iterator;
871   const_bin_iterator begin() const { return OffsetBins.begin(); }
872   const_bin_iterator end() const { return OffsetBins.end(); }
873 
874   const AAPointerInfo::Access &getAccess(unsigned Index) const {
875     return AccessList[Index];
876   }
877 
878 protected:
879   // Every memory instruction results in an Access object. We maintain a list of
880   // all Access objects that we own, along with the following maps:
881   //
882   // - OffsetBins: RangeTy -> { Access }
883   // - RemoteIMap: RemoteI x LocalI -> Access
884   //
885   // A RemoteI is any instruction that accesses memory. RemoteI is different
886   // from LocalI if and only if LocalI is a call; then RemoteI is some
887   // instruction in the callgraph starting from LocalI. Multiple paths in the
888   // callgraph from LocalI to RemoteI may produce multiple accesses, but these
889   // are all combined into a single Access object. This may result in loss of
890   // information in RangeTy in the Access object.
891   SmallVector<AAPointerInfo::Access> AccessList;
892   OffsetBinsTy OffsetBins;
893   DenseMap<const Instruction *, SmallVector<unsigned>> RemoteIMap;
894 
895   /// See AAPointerInfo::forallInterferingAccesses.
896   bool forallInterferingAccesses(
897       AA::RangeTy Range,
898       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
899     if (!isValidState())
900       return false;
901 
902     for (const auto &It : OffsetBins) {
903       AA::RangeTy ItRange = It.getFirst();
904       if (!Range.mayOverlap(ItRange))
905         continue;
906       bool IsExact = Range == ItRange && !Range.offsetOrSizeAreUnknown();
907       for (auto Index : It.getSecond()) {
908         auto &Access = AccessList[Index];
909         if (!CB(Access, IsExact))
910           return false;
911       }
912     }
913     return true;
914   }
915 
916   /// See AAPointerInfo::forallInterferingAccesses.
917   bool forallInterferingAccesses(
918       Instruction &I,
919       function_ref<bool(const AAPointerInfo::Access &, bool)> CB,
920       AA::RangeTy &Range) const {
921     if (!isValidState())
922       return false;
923 
924     auto LocalList = RemoteIMap.find(&I);
925     if (LocalList == RemoteIMap.end()) {
926       return true;
927     }
928 
929     for (unsigned Index : LocalList->getSecond()) {
930       for (auto &R : AccessList[Index]) {
931         Range &= R;
932         if (Range.offsetAndSizeAreUnknown())
933           break;
934       }
935     }
936     return forallInterferingAccesses(Range, CB);
937   }
938 
939 private:
940   /// State to track fixpoint and validity.
941   BooleanState BS;
942 };
943 
944 ChangeStatus AA::PointerInfo::State::addAccess(
945     Attributor &A, const AAPointerInfo::RangeList &Ranges, Instruction &I,
946     std::optional<Value *> Content, AAPointerInfo::AccessKind Kind, Type *Ty,
947     Instruction *RemoteI) {
948   RemoteI = RemoteI ? RemoteI : &I;
949 
950   // Check if we have an access for this instruction, if not, simply add it.
951   auto &LocalList = RemoteIMap[RemoteI];
952   bool AccExists = false;
953   unsigned AccIndex = AccessList.size();
954   for (auto Index : LocalList) {
955     auto &A = AccessList[Index];
956     if (A.getLocalInst() == &I) {
957       AccExists = true;
958       AccIndex = Index;
959       break;
960     }
961   }
962 
963   auto AddToBins = [&](const AAPointerInfo::RangeList &ToAdd) {
964     LLVM_DEBUG(if (ToAdd.size()) dbgs()
965                    << "[AAPointerInfo] Inserting access in new offset bins\n";);
966 
967     for (auto Key : ToAdd) {
968       LLVM_DEBUG(dbgs() << "    key " << Key << "\n");
969       OffsetBins[Key].insert(AccIndex);
970     }
971   };
972 
973   if (!AccExists) {
974     AccessList.emplace_back(&I, RemoteI, Ranges, Content, Kind, Ty);
975     assert((AccessList.size() == AccIndex + 1) &&
976            "New Access should have been at AccIndex");
977     LocalList.push_back(AccIndex);
978     AddToBins(AccessList[AccIndex].getRanges());
979     return ChangeStatus::CHANGED;
980   }
981 
982   // Combine the new Access with the existing Access, and then update the
983   // mapping in the offset bins.
984   AAPointerInfo::Access Acc(&I, RemoteI, Ranges, Content, Kind, Ty);
985   auto &Current = AccessList[AccIndex];
986   auto Before = Current;
987   Current &= Acc;
988   if (Current == Before)
989     return ChangeStatus::UNCHANGED;
990 
991   auto &ExistingRanges = Before.getRanges();
992   auto &NewRanges = Current.getRanges();
993 
994   // Ranges that are in the old access but not the new access need to be removed
995   // from the offset bins.
996   AAPointerInfo::RangeList ToRemove;
997   AAPointerInfo::RangeList::set_difference(ExistingRanges, NewRanges, ToRemove);
998   LLVM_DEBUG(if (ToRemove.size()) dbgs()
999                  << "[AAPointerInfo] Removing access from old offset bins\n";);
1000 
1001   for (auto Key : ToRemove) {
1002     LLVM_DEBUG(dbgs() << "    key " << Key << "\n");
1003     assert(OffsetBins.count(Key) && "Existing Access must be in some bin.");
1004     auto &Bin = OffsetBins[Key];
1005     assert(Bin.count(AccIndex) &&
1006            "Expected bin to actually contain the Access.");
1007     Bin.erase(AccIndex);
1008   }
1009 
1010   // Ranges that are in the new access but not the old access need to be added
1011   // to the offset bins.
1012   AAPointerInfo::RangeList ToAdd;
1013   AAPointerInfo::RangeList::set_difference(NewRanges, ExistingRanges, ToAdd);
1014   AddToBins(ToAdd);
1015   return ChangeStatus::CHANGED;
1016 }
1017 
1018 namespace {
1019 
1020 /// A helper containing a list of offsets computed for a Use. Ideally this
1021 /// list should be strictly ascending, but we ensure that only when we
1022 /// actually translate the list of offsets to a RangeList.
1023 struct OffsetInfo {
1024   using VecTy = SmallVector<int64_t>;
1025   using const_iterator = VecTy::const_iterator;
1026   VecTy Offsets;
1027 
1028   const_iterator begin() const { return Offsets.begin(); }
1029   const_iterator end() const { return Offsets.end(); }
1030 
1031   bool operator==(const OffsetInfo &RHS) const {
1032     return Offsets == RHS.Offsets;
1033   }
1034 
1035   bool operator!=(const OffsetInfo &RHS) const { return !(*this == RHS); }
1036 
1037   void insert(int64_t Offset) { Offsets.push_back(Offset); }
1038   bool isUnassigned() const { return Offsets.size() == 0; }
1039 
1040   bool isUnknown() const {
1041     if (isUnassigned())
1042       return false;
1043     if (Offsets.size() == 1)
1044       return Offsets.front() == AA::RangeTy::Unknown;
1045     return false;
1046   }
1047 
1048   void setUnknown() {
1049     Offsets.clear();
1050     Offsets.push_back(AA::RangeTy::Unknown);
1051   }
1052 
1053   void addToAll(int64_t Inc) {
1054     for (auto &Offset : Offsets) {
1055       Offset += Inc;
1056     }
1057   }
1058 
1059   /// Copy offsets from \p R into the current list.
1060   ///
1061   /// Ideally all lists should be strictly ascending, but we defer that to the
1062   /// actual use of the list. So we just blindly append here.
1063   void merge(const OffsetInfo &R) { Offsets.append(R.Offsets); }
1064 };
1065 
1066 #ifndef NDEBUG
1067 static raw_ostream &operator<<(raw_ostream &OS, const OffsetInfo &OI) {
1068   ListSeparator LS;
1069   OS << "[";
1070   for (auto Offset : OI) {
1071     OS << LS << Offset;
1072   }
1073   OS << "]";
1074   return OS;
1075 }
1076 #endif // NDEBUG
1077 
1078 struct AAPointerInfoImpl
1079     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1080   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1081   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1082 
1083   /// See AbstractAttribute::getAsStr().
1084   const std::string getAsStr(Attributor *A) const override {
1085     return std::string("PointerInfo ") +
1086            (isValidState() ? (std::string("#") +
1087                               std::to_string(OffsetBins.size()) + " bins")
1088                            : "<invalid>");
1089   }
1090 
1091   /// See AbstractAttribute::manifest(...).
1092   ChangeStatus manifest(Attributor &A) override {
1093     return AAPointerInfo::manifest(A);
1094   }
1095 
1096   bool forallInterferingAccesses(
1097       AA::RangeTy Range,
1098       function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1099       const override {
1100     return State::forallInterferingAccesses(Range, CB);
1101   }
1102 
1103   bool forallInterferingAccesses(
1104       Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
1105       bool FindInterferingWrites, bool FindInterferingReads,
1106       function_ref<bool(const Access &, bool)> UserCB, bool &HasBeenWrittenTo,
1107       AA::RangeTy &Range) const override {
1108     HasBeenWrittenTo = false;
1109 
1110     SmallPtrSet<const Access *, 8> DominatingWrites;
1111     SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
1112 
1113     Function &Scope = *I.getFunction();
1114     bool IsKnownNoSync;
1115     bool IsAssumedNoSync = AA::hasAssumedIRAttr<Attribute::NoSync>(
1116         A, &QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL,
1117         IsKnownNoSync);
1118     const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
1119         IRPosition::function(Scope), &QueryingAA, DepClassTy::NONE);
1120     bool AllInSameNoSyncFn = IsAssumedNoSync;
1121     bool InstIsExecutedByInitialThreadOnly =
1122         ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I);
1123 
1124     // If the function is not ending in aligned barriers, we need the stores to
1125     // be in aligned barriers. The load being in one is not sufficient since the
1126     // store might be executed by a thread that disappears after, causing the
1127     // aligned barrier guarding the load to unblock and the load to read a value
1128     // that has no CFG path to the load.
1129     bool InstIsExecutedInAlignedRegion =
1130         FindInterferingReads && ExecDomainAA &&
1131         ExecDomainAA->isExecutedInAlignedRegion(A, I);
1132 
1133     if (InstIsExecutedInAlignedRegion || InstIsExecutedByInitialThreadOnly)
1134       A.recordDependence(*ExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
1135 
1136     InformationCache &InfoCache = A.getInfoCache();
1137     bool IsThreadLocalObj =
1138         AA::isAssumedThreadLocalObject(A, getAssociatedValue(), *this);
1139 
1140     // Helper to determine if we need to consider threading, which we cannot
1141     // right now. However, if the function is (assumed) nosync or the thread
1142     // executing all instructions is the main thread only we can ignore
1143     // threading. Also, thread-local objects do not require threading reasoning.
1144     // Finally, we can ignore threading if either access is executed in an
1145     // aligned region.
1146     auto CanIgnoreThreadingForInst = [&](const Instruction &I) -> bool {
1147       if (IsThreadLocalObj || AllInSameNoSyncFn)
1148         return true;
1149       const auto *FnExecDomainAA =
1150           I.getFunction() == &Scope
1151               ? ExecDomainAA
1152               : A.lookupAAFor<AAExecutionDomain>(
1153                     IRPosition::function(*I.getFunction()), &QueryingAA,
1154                     DepClassTy::NONE);
1155       if (!FnExecDomainAA)
1156         return false;
1157       if (InstIsExecutedInAlignedRegion ||
1158           (FindInterferingWrites &&
1159            FnExecDomainAA->isExecutedInAlignedRegion(A, I))) {
1160         A.recordDependence(*FnExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
1161         return true;
1162       }
1163       if (InstIsExecutedByInitialThreadOnly &&
1164           FnExecDomainAA->isExecutedByInitialThreadOnly(I)) {
1165         A.recordDependence(*FnExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
1166         return true;
1167       }
1168       return false;
1169     };
1170 
1171     // Helper to determine if the access is executed by the same thread as the
1172     // given instruction, for now it is sufficient to avoid any potential
1173     // threading effects as we cannot deal with them anyway.
1174     auto CanIgnoreThreading = [&](const Access &Acc) -> bool {
1175       return CanIgnoreThreadingForInst(*Acc.getRemoteInst()) ||
1176              (Acc.getRemoteInst() != Acc.getLocalInst() &&
1177               CanIgnoreThreadingForInst(*Acc.getLocalInst()));
1178     };
1179 
1180     // TODO: Use inter-procedural reachability and dominance.
1181     bool IsKnownNoRecurse;
1182     AA::hasAssumedIRAttr<Attribute::NoRecurse>(
1183         A, this, IRPosition::function(Scope), DepClassTy::OPTIONAL,
1184         IsKnownNoRecurse);
1185 
1186     const bool UseDominanceReasoning =
1187         FindInterferingWrites && IsKnownNoRecurse;
1188     const DominatorTree *DT =
1189         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(Scope);
1190 
1191     // Helper to check if a value has "kernel lifetime", that is it will not
1192     // outlive a GPU kernel. This is true for shared, constant, and local
1193     // globals on AMD and NVIDIA GPUs.
1194     auto HasKernelLifetime = [&](Value *V, Module &M) {
1195       if (!AA::isGPU(M))
1196         return false;
1197       switch (AA::GPUAddressSpace(V->getType()->getPointerAddressSpace())) {
1198       case AA::GPUAddressSpace::Shared:
1199       case AA::GPUAddressSpace::Constant:
1200       case AA::GPUAddressSpace::Local:
1201         return true;
1202       default:
1203         return false;
1204       };
1205     };
1206 
1207     // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
1208     // to determine if we should look at reachability from the callee. For
1209     // certain pointers we know the lifetime and we do not have to step into the
1210     // callee to determine reachability as the pointer would be dead in the
1211     // callee. See the conditional initialization below.
1212     std::function<bool(const Function &)> IsLiveInCalleeCB;
1213 
1214     if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
1215       // If the alloca containing function is not recursive the alloca
1216       // must be dead in the callee.
1217       const Function *AIFn = AI->getFunction();
1218       bool IsKnownNoRecurse;
1219       if (AA::hasAssumedIRAttr<Attribute::NoRecurse>(
1220               A, this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL,
1221               IsKnownNoRecurse)) {
1222         IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
1223       }
1224     } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
1225       // If the global has kernel lifetime we can stop if we reach a kernel
1226       // as it is "dead" in the (unknown) callees.
1227       if (HasKernelLifetime(GV, *GV->getParent()))
1228         IsLiveInCalleeCB = [](const Function &Fn) {
1229           return !Fn.hasFnAttribute("kernel");
1230         };
1231     }
1232 
1233     // Set of accesses/instructions that will overwrite the result and are
1234     // therefore blockers in the reachability traversal.
1235     AA::InstExclusionSetTy ExclusionSet;
1236 
1237     auto AccessCB = [&](const Access &Acc, bool Exact) {
1238       if (Exact && Acc.isMustAccess() && Acc.getRemoteInst() != &I) {
1239         if (Acc.isWrite() || (isa<LoadInst>(I) && Acc.isWriteOrAssumption()))
1240           ExclusionSet.insert(Acc.getRemoteInst());
1241       }
1242 
1243       if ((!FindInterferingWrites || !Acc.isWriteOrAssumption()) &&
1244           (!FindInterferingReads || !Acc.isRead()))
1245         return true;
1246 
1247       bool Dominates = FindInterferingWrites && DT && Exact &&
1248                        Acc.isMustAccess() &&
1249                        (Acc.getRemoteInst()->getFunction() == &Scope) &&
1250                        DT->dominates(Acc.getRemoteInst(), &I);
1251       if (Dominates)
1252         DominatingWrites.insert(&Acc);
1253 
1254       // Track if all interesting accesses are in the same `nosync` function as
1255       // the given instruction.
1256       AllInSameNoSyncFn &= Acc.getRemoteInst()->getFunction() == &Scope;
1257 
1258       InterferingAccesses.push_back({&Acc, Exact});
1259       return true;
1260     };
1261     if (!State::forallInterferingAccesses(I, AccessCB, Range))
1262       return false;
1263 
1264     HasBeenWrittenTo = !DominatingWrites.empty();
1265 
1266     // Dominating writes form a chain, find the least/lowest member.
1267     Instruction *LeastDominatingWriteInst = nullptr;
1268     for (const Access *Acc : DominatingWrites) {
1269       if (!LeastDominatingWriteInst) {
1270         LeastDominatingWriteInst = Acc->getRemoteInst();
1271       } else if (DT->dominates(LeastDominatingWriteInst,
1272                                Acc->getRemoteInst())) {
1273         LeastDominatingWriteInst = Acc->getRemoteInst();
1274       }
1275     }
1276 
1277     // Helper to determine if we can skip a specific write access.
1278     auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
1279       if (!CanIgnoreThreading(Acc))
1280         return false;
1281 
1282       // Check read (RAW) dependences and write (WAR) dependences as necessary.
1283       // If we successfully excluded all effects we are interested in, the
1284       // access can be skipped.
1285       bool ReadChecked = !FindInterferingReads;
1286       bool WriteChecked = !FindInterferingWrites;
1287 
1288       // If the instruction cannot reach the access, the former does not
1289       // interfere with what the access reads.
1290       if (!ReadChecked) {
1291         if (!AA::isPotentiallyReachable(A, I, *Acc.getRemoteInst(), QueryingAA,
1292                                         &ExclusionSet, IsLiveInCalleeCB))
1293           ReadChecked = true;
1294       }
1295       // If the instruction cannot be reach from the access, the latter does not
1296       // interfere with what the instruction reads.
1297       if (!WriteChecked) {
1298         if (!AA::isPotentiallyReachable(A, *Acc.getRemoteInst(), I, QueryingAA,
1299                                         &ExclusionSet, IsLiveInCalleeCB))
1300           WriteChecked = true;
1301       }
1302 
1303       // If we still might be affected by the write of the access but there are
1304       // dominating writes in the function of the instruction
1305       // (HasBeenWrittenTo), we can try to reason that the access is overwritten
1306       // by them. This would have happend above if they are all in the same
1307       // function, so we only check the inter-procedural case. Effectively, we
1308       // want to show that there is no call after the dominting write that might
1309       // reach the access, and when it returns reach the instruction with the
1310       // updated value. To this end, we iterate all call sites, check if they
1311       // might reach the instruction without going through another access
1312       // (ExclusionSet) and at the same time might reach the access. However,
1313       // that is all part of AAInterFnReachability.
1314       if (!WriteChecked && HasBeenWrittenTo &&
1315           Acc.getRemoteInst()->getFunction() != &Scope) {
1316 
1317         const auto *FnReachabilityAA = A.getAAFor<AAInterFnReachability>(
1318             QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1319 
1320         // Without going backwards in the call tree, can we reach the access
1321         // from the least dominating write. Do not allow to pass the instruction
1322         // itself either.
1323         bool Inserted = ExclusionSet.insert(&I).second;
1324 
1325         if (!FnReachabilityAA ||
1326             !FnReachabilityAA->instructionCanReach(
1327                 A, *LeastDominatingWriteInst,
1328                 *Acc.getRemoteInst()->getFunction(), &ExclusionSet))
1329           WriteChecked = true;
1330 
1331         if (Inserted)
1332           ExclusionSet.erase(&I);
1333       }
1334 
1335       if (ReadChecked && WriteChecked)
1336         return true;
1337 
1338       if (!DT || !UseDominanceReasoning)
1339         return false;
1340       if (!DominatingWrites.count(&Acc))
1341         return false;
1342       return LeastDominatingWriteInst != Acc.getRemoteInst();
1343     };
1344 
1345     // Run the user callback on all accesses we cannot skip and return if
1346     // that succeeded for all or not.
1347     for (auto &It : InterferingAccesses) {
1348       if ((!AllInSameNoSyncFn && !IsThreadLocalObj && !ExecDomainAA) ||
1349           !CanSkipAccess(*It.first, It.second)) {
1350         if (!UserCB(*It.first, It.second))
1351           return false;
1352       }
1353     }
1354     return true;
1355   }
1356 
1357   ChangeStatus translateAndAddStateFromCallee(Attributor &A,
1358                                               const AAPointerInfo &OtherAA,
1359                                               CallBase &CB) {
1360     using namespace AA::PointerInfo;
1361     if (!OtherAA.getState().isValidState() || !isValidState())
1362       return indicatePessimisticFixpoint();
1363 
1364     const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
1365     bool IsByval = OtherAAImpl.getAssociatedArgument()->hasByValAttr();
1366 
1367     // Combine the accesses bin by bin.
1368     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1369     const auto &State = OtherAAImpl.getState();
1370     for (const auto &It : State) {
1371       for (auto Index : It.getSecond()) {
1372         const auto &RAcc = State.getAccess(Index);
1373         if (IsByval && !RAcc.isRead())
1374           continue;
1375         bool UsedAssumedInformation = false;
1376         AccessKind AK = RAcc.getKind();
1377         auto Content = A.translateArgumentToCallSiteContent(
1378             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1379         AK = AccessKind(AK & (IsByval ? AccessKind::AK_R : AccessKind::AK_RW));
1380         AK = AccessKind(AK | (RAcc.isMayAccess() ? AK_MAY : AK_MUST));
1381 
1382         Changed |= addAccess(A, RAcc.getRanges(), CB, Content, AK,
1383                              RAcc.getType(), RAcc.getRemoteInst());
1384       }
1385     }
1386     return Changed;
1387   }
1388 
1389   ChangeStatus translateAndAddState(Attributor &A, const AAPointerInfo &OtherAA,
1390                                     const OffsetInfo &Offsets, CallBase &CB) {
1391     using namespace AA::PointerInfo;
1392     if (!OtherAA.getState().isValidState() || !isValidState())
1393       return indicatePessimisticFixpoint();
1394 
1395     const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
1396 
1397     // Combine the accesses bin by bin.
1398     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1399     const auto &State = OtherAAImpl.getState();
1400     for (const auto &It : State) {
1401       for (auto Index : It.getSecond()) {
1402         const auto &RAcc = State.getAccess(Index);
1403         for (auto Offset : Offsets) {
1404           auto NewRanges = Offset == AA::RangeTy::Unknown
1405                                ? AA::RangeTy::getUnknown()
1406                                : RAcc.getRanges();
1407           if (!NewRanges.isUnknown()) {
1408             NewRanges.addToAllOffsets(Offset);
1409           }
1410           Changed |=
1411               addAccess(A, NewRanges, CB, RAcc.getContent(), RAcc.getKind(),
1412                         RAcc.getType(), RAcc.getRemoteInst());
1413         }
1414       }
1415     }
1416     return Changed;
1417   }
1418 
1419   /// Statistic tracking for all AAPointerInfo implementations.
1420   /// See AbstractAttribute::trackStatistics().
1421   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1422 
1423   /// Dump the state into \p O.
1424   void dumpState(raw_ostream &O) {
1425     for (auto &It : OffsetBins) {
1426       O << "[" << It.first.Offset << "-" << It.first.Offset + It.first.Size
1427         << "] : " << It.getSecond().size() << "\n";
1428       for (auto AccIndex : It.getSecond()) {
1429         auto &Acc = AccessList[AccIndex];
1430         O << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst() << "\n";
1431         if (Acc.getLocalInst() != Acc.getRemoteInst())
1432           O << "     -->                         " << *Acc.getRemoteInst()
1433             << "\n";
1434         if (!Acc.isWrittenValueYetUndetermined()) {
1435           if (isa_and_nonnull<Function>(Acc.getWrittenValue()))
1436             O << "       - c: func " << Acc.getWrittenValue()->getName()
1437               << "\n";
1438           else if (Acc.getWrittenValue())
1439             O << "       - c: " << *Acc.getWrittenValue() << "\n";
1440           else
1441             O << "       - c: <unknown>\n";
1442         }
1443       }
1444     }
1445   }
1446 };
1447 
1448 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1449   using AccessKind = AAPointerInfo::AccessKind;
1450   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1451       : AAPointerInfoImpl(IRP, A) {}
1452 
1453   /// Deal with an access and signal if it was handled successfully.
1454   bool handleAccess(Attributor &A, Instruction &I,
1455                     std::optional<Value *> Content, AccessKind Kind,
1456                     SmallVectorImpl<int64_t> &Offsets, ChangeStatus &Changed,
1457                     Type &Ty) {
1458     using namespace AA::PointerInfo;
1459     auto Size = AA::RangeTy::Unknown;
1460     const DataLayout &DL = A.getDataLayout();
1461     TypeSize AccessSize = DL.getTypeStoreSize(&Ty);
1462     if (!AccessSize.isScalable())
1463       Size = AccessSize.getFixedValue();
1464 
1465     // Make a strictly ascending list of offsets as required by addAccess()
1466     llvm::sort(Offsets);
1467     auto *Last = std::unique(Offsets.begin(), Offsets.end());
1468     Offsets.erase(Last, Offsets.end());
1469 
1470     VectorType *VT = dyn_cast<VectorType>(&Ty);
1471     if (!VT || VT->getElementCount().isScalable() ||
1472         !Content.value_or(nullptr) || !isa<Constant>(*Content) ||
1473         (*Content)->getType() != VT ||
1474         DL.getTypeStoreSize(VT->getElementType()).isScalable()) {
1475       Changed = Changed | addAccess(A, {Offsets, Size}, I, Content, Kind, &Ty);
1476     } else {
1477       // Handle vector stores with constant content element-wise.
1478       // TODO: We could look for the elements or create instructions
1479       //       representing them.
1480       // TODO: We need to push the Content into the range abstraction
1481       //       (AA::RangeTy) to allow different content values for different
1482       //       ranges. ranges. Hence, support vectors storing different values.
1483       Type *ElementType = VT->getElementType();
1484       int64_t ElementSize = DL.getTypeStoreSize(ElementType).getFixedValue();
1485       auto *ConstContent = cast<Constant>(*Content);
1486       Type *Int32Ty = Type::getInt32Ty(ElementType->getContext());
1487       SmallVector<int64_t> ElementOffsets(Offsets.begin(), Offsets.end());
1488 
1489       for (int i = 0, e = VT->getElementCount().getFixedValue(); i != e; ++i) {
1490         Value *ElementContent = ConstantExpr::getExtractElement(
1491             ConstContent, ConstantInt::get(Int32Ty, i));
1492 
1493         // Add the element access.
1494         Changed = Changed | addAccess(A, {ElementOffsets, ElementSize}, I,
1495                                       ElementContent, Kind, ElementType);
1496 
1497         // Advance the offsets for the next element.
1498         for (auto &ElementOffset : ElementOffsets)
1499           ElementOffset += ElementSize;
1500       }
1501     }
1502     return true;
1503   };
1504 
1505   /// See AbstractAttribute::updateImpl(...).
1506   ChangeStatus updateImpl(Attributor &A) override;
1507 
1508   /// If the indices to \p GEP can be traced to constants, incorporate all
1509   /// of these into \p UsrOI.
1510   ///
1511   /// \return true iff \p UsrOI is updated.
1512   bool collectConstantsForGEP(Attributor &A, const DataLayout &DL,
1513                               OffsetInfo &UsrOI, const OffsetInfo &PtrOI,
1514                               const GEPOperator *GEP);
1515 
1516   /// See AbstractAttribute::trackStatistics()
1517   void trackStatistics() const override {
1518     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1519   }
1520 };
1521 
1522 bool AAPointerInfoFloating::collectConstantsForGEP(Attributor &A,
1523                                                    const DataLayout &DL,
1524                                                    OffsetInfo &UsrOI,
1525                                                    const OffsetInfo &PtrOI,
1526                                                    const GEPOperator *GEP) {
1527   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1528   MapVector<Value *, APInt> VariableOffsets;
1529   APInt ConstantOffset(BitWidth, 0);
1530 
1531   assert(!UsrOI.isUnknown() && !PtrOI.isUnknown() &&
1532          "Don't look for constant values if the offset has already been "
1533          "determined to be unknown.");
1534 
1535   if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) {
1536     UsrOI.setUnknown();
1537     return true;
1538   }
1539 
1540   LLVM_DEBUG(dbgs() << "[AAPointerInfo] GEP offset is "
1541                     << (VariableOffsets.empty() ? "" : "not") << " constant "
1542                     << *GEP << "\n");
1543 
1544   auto Union = PtrOI;
1545   Union.addToAll(ConstantOffset.getSExtValue());
1546 
1547   // Each VI in VariableOffsets has a set of potential constant values. Every
1548   // combination of elements, picked one each from these sets, is separately
1549   // added to the original set of offsets, thus resulting in more offsets.
1550   for (const auto &VI : VariableOffsets) {
1551     auto *PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
1552         *this, IRPosition::value(*VI.first), DepClassTy::OPTIONAL);
1553     if (!PotentialConstantsAA || !PotentialConstantsAA->isValidState()) {
1554       UsrOI.setUnknown();
1555       return true;
1556     }
1557 
1558     // UndefValue is treated as a zero, which leaves Union as is.
1559     if (PotentialConstantsAA->undefIsContained())
1560       continue;
1561 
1562     // We need at least one constant in every set to compute an actual offset.
1563     // Otherwise, we end up pessimizing AAPointerInfo by respecting offsets that
1564     // don't actually exist. In other words, the absence of constant values
1565     // implies that the operation can be assumed dead for now.
1566     auto &AssumedSet = PotentialConstantsAA->getAssumedSet();
1567     if (AssumedSet.empty())
1568       return false;
1569 
1570     OffsetInfo Product;
1571     for (const auto &ConstOffset : AssumedSet) {
1572       auto CopyPerOffset = Union;
1573       CopyPerOffset.addToAll(ConstOffset.getSExtValue() *
1574                              VI.second.getZExtValue());
1575       Product.merge(CopyPerOffset);
1576     }
1577     Union = Product;
1578   }
1579 
1580   UsrOI = std::move(Union);
1581   return true;
1582 }
1583 
1584 ChangeStatus AAPointerInfoFloating::updateImpl(Attributor &A) {
1585   using namespace AA::PointerInfo;
1586   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1587   const DataLayout &DL = A.getDataLayout();
1588   Value &AssociatedValue = getAssociatedValue();
1589 
1590   DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1591   OffsetInfoMap[&AssociatedValue].insert(0);
1592 
1593   auto HandlePassthroughUser = [&](Value *Usr, Value *CurPtr, bool &Follow) {
1594     // One does not simply walk into a map and assign a reference to a possibly
1595     // new location. That can cause an invalidation before the assignment
1596     // happens, like so:
1597     //
1598     //   OffsetInfoMap[Usr] = OffsetInfoMap[CurPtr]; /* bad idea! */
1599     //
1600     // The RHS is a reference that may be invalidated by an insertion caused by
1601     // the LHS. So we ensure that the side-effect of the LHS happens first.
1602     auto &UsrOI = OffsetInfoMap[Usr];
1603     auto &PtrOI = OffsetInfoMap[CurPtr];
1604     assert(!PtrOI.isUnassigned() &&
1605            "Cannot pass through if the input Ptr was not visited!");
1606     UsrOI = PtrOI;
1607     Follow = true;
1608     return true;
1609   };
1610 
1611   const auto *F = getAnchorScope();
1612   const auto *CI =
1613       F ? A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(*F)
1614         : nullptr;
1615   const auto *TLI =
1616       F ? A.getInfoCache().getTargetLibraryInfoForFunction(*F) : nullptr;
1617 
1618   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1619     Value *CurPtr = U.get();
1620     User *Usr = U.getUser();
1621     LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in " << *Usr
1622                       << "\n");
1623     assert(OffsetInfoMap.count(CurPtr) &&
1624            "The current pointer offset should have been seeded!");
1625 
1626     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1627       if (CE->isCast())
1628         return HandlePassthroughUser(Usr, CurPtr, Follow);
1629       if (CE->isCompare())
1630         return true;
1631       if (!isa<GEPOperator>(CE)) {
1632         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1633                           << "\n");
1634         return false;
1635       }
1636     }
1637     if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1638       // Note the order here, the Usr access might change the map, CurPtr is
1639       // already in it though.
1640       auto &UsrOI = OffsetInfoMap[Usr];
1641       auto &PtrOI = OffsetInfoMap[CurPtr];
1642 
1643       if (UsrOI.isUnknown())
1644         return true;
1645 
1646       if (PtrOI.isUnknown()) {
1647         Follow = true;
1648         UsrOI.setUnknown();
1649         return true;
1650       }
1651 
1652       Follow = collectConstantsForGEP(A, DL, UsrOI, PtrOI, GEP);
1653       return true;
1654     }
1655     if (isa<PtrToIntInst>(Usr))
1656       return false;
1657     if (isa<CastInst>(Usr) || isa<SelectInst>(Usr) || isa<ReturnInst>(Usr))
1658       return HandlePassthroughUser(Usr, CurPtr, Follow);
1659 
1660     // For PHIs we need to take care of the recurrence explicitly as the value
1661     // might change while we iterate through a loop. For now, we give up if
1662     // the PHI is not invariant.
1663     if (isa<PHINode>(Usr)) {
1664       // Note the order here, the Usr access might change the map, CurPtr is
1665       // already in it though.
1666       bool IsFirstPHIUser = !OffsetInfoMap.count(Usr);
1667       auto &UsrOI = OffsetInfoMap[Usr];
1668       auto &PtrOI = OffsetInfoMap[CurPtr];
1669 
1670       // Check if the PHI operand has already an unknown offset as we can't
1671       // improve on that anymore.
1672       if (PtrOI.isUnknown()) {
1673         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand offset unknown "
1674                           << *CurPtr << " in " << *Usr << "\n");
1675         Follow = !UsrOI.isUnknown();
1676         UsrOI.setUnknown();
1677         return true;
1678       }
1679 
1680       // Check if the PHI is invariant (so far).
1681       if (UsrOI == PtrOI) {
1682         assert(!PtrOI.isUnassigned() &&
1683                "Cannot assign if the current Ptr was not visited!");
1684         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant (so far)");
1685         return true;
1686       }
1687 
1688       // Check if the PHI operand can be traced back to AssociatedValue.
1689       APInt Offset(
1690           DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1691           0);
1692       Value *CurPtrBase = CurPtr->stripAndAccumulateConstantOffsets(
1693           DL, Offset, /* AllowNonInbounds */ true);
1694       auto It = OffsetInfoMap.find(CurPtrBase);
1695       if (It == OffsetInfoMap.end()) {
1696         LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1697                           << *CurPtr << " in " << *Usr << "\n");
1698         UsrOI.setUnknown();
1699         Follow = true;
1700         return true;
1701       }
1702 
1703       // Check if the PHI operand is not dependent on the PHI itself. Every
1704       // recurrence is a cyclic net of PHIs in the data flow, and has an
1705       // equivalent Cycle in the control flow. One of those PHIs must be in the
1706       // header of that control flow Cycle. This is independent of the choice of
1707       // Cycles reported by CycleInfo. It is sufficient to check the PHIs in
1708       // every Cycle header; if such a node is marked unknown, this will
1709       // eventually propagate through the whole net of PHIs in the recurrence.
1710       if (mayBeInCycle(CI, cast<Instruction>(Usr), /* HeaderOnly */ true)) {
1711         auto BaseOI = It->getSecond();
1712         BaseOI.addToAll(Offset.getZExtValue());
1713         if (IsFirstPHIUser || BaseOI == UsrOI) {
1714           LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant " << *CurPtr
1715                             << " in " << *Usr << "\n");
1716           return HandlePassthroughUser(Usr, CurPtr, Follow);
1717         }
1718 
1719         LLVM_DEBUG(
1720             dbgs() << "[AAPointerInfo] PHI operand pointer offset mismatch "
1721                    << *CurPtr << " in " << *Usr << "\n");
1722         UsrOI.setUnknown();
1723         Follow = true;
1724         return true;
1725       }
1726 
1727       UsrOI.merge(PtrOI);
1728       Follow = true;
1729       return true;
1730     }
1731 
1732     if (auto *LoadI = dyn_cast<LoadInst>(Usr)) {
1733       // If the access is to a pointer that may or may not be the associated
1734       // value, e.g. due to a PHI, we cannot assume it will be read.
1735       AccessKind AK = AccessKind::AK_R;
1736       if (getUnderlyingObject(CurPtr) == &AssociatedValue)
1737         AK = AccessKind(AK | AccessKind::AK_MUST);
1738       else
1739         AK = AccessKind(AK | AccessKind::AK_MAY);
1740       if (!handleAccess(A, *LoadI, /* Content */ nullptr, AK,
1741                         OffsetInfoMap[CurPtr].Offsets, Changed,
1742                         *LoadI->getType()))
1743         return false;
1744 
1745       auto IsAssumption = [](Instruction &I) {
1746         if (auto *II = dyn_cast<IntrinsicInst>(&I))
1747           return II->isAssumeLikeIntrinsic();
1748         return false;
1749       };
1750 
1751       auto IsImpactedInRange = [&](Instruction *FromI, Instruction *ToI) {
1752         // Check if the assumption and the load are executed together without
1753         // memory modification.
1754         do {
1755           if (FromI->mayWriteToMemory() && !IsAssumption(*FromI))
1756             return true;
1757           FromI = FromI->getNextNonDebugInstruction();
1758         } while (FromI && FromI != ToI);
1759         return false;
1760       };
1761 
1762       BasicBlock *BB = LoadI->getParent();
1763       auto IsValidAssume = [&](IntrinsicInst &IntrI) {
1764         if (IntrI.getIntrinsicID() != Intrinsic::assume)
1765           return false;
1766         BasicBlock *IntrBB = IntrI.getParent();
1767         if (IntrI.getParent() == BB) {
1768           if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(), &IntrI))
1769             return false;
1770         } else {
1771           auto PredIt = pred_begin(IntrBB);
1772           if (PredIt == pred_end(IntrBB))
1773             return false;
1774           if ((*PredIt) != BB)
1775             return false;
1776           if (++PredIt != pred_end(IntrBB))
1777             return false;
1778           for (auto *SuccBB : successors(BB)) {
1779             if (SuccBB == IntrBB)
1780               continue;
1781             if (isa<UnreachableInst>(SuccBB->getTerminator()))
1782               continue;
1783             return false;
1784           }
1785           if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(),
1786                                 BB->getTerminator()))
1787             return false;
1788           if (IsImpactedInRange(&IntrBB->front(), &IntrI))
1789             return false;
1790         }
1791         return true;
1792       };
1793 
1794       std::pair<Value *, IntrinsicInst *> Assumption;
1795       for (const Use &LoadU : LoadI->uses()) {
1796         if (auto *CmpI = dyn_cast<CmpInst>(LoadU.getUser())) {
1797           if (!CmpI->isEquality() || !CmpI->isTrueWhenEqual())
1798             continue;
1799           for (const Use &CmpU : CmpI->uses()) {
1800             if (auto *IntrI = dyn_cast<IntrinsicInst>(CmpU.getUser())) {
1801               if (!IsValidAssume(*IntrI))
1802                 continue;
1803               int Idx = CmpI->getOperandUse(0) == LoadU;
1804               Assumption = {CmpI->getOperand(Idx), IntrI};
1805               break;
1806             }
1807           }
1808         }
1809         if (Assumption.first)
1810           break;
1811       }
1812 
1813       // Check if we found an assumption associated with this load.
1814       if (!Assumption.first || !Assumption.second)
1815         return true;
1816 
1817       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Assumption found "
1818                         << *Assumption.second << ": " << *LoadI
1819                         << " == " << *Assumption.first << "\n");
1820 
1821       return handleAccess(
1822           A, *Assumption.second, Assumption.first, AccessKind::AK_ASSUMPTION,
1823           OffsetInfoMap[CurPtr].Offsets, Changed, *LoadI->getType());
1824     }
1825 
1826     auto HandleStoreLike = [&](Instruction &I, Value *ValueOp, Type &ValueTy,
1827                                ArrayRef<Value *> OtherOps, AccessKind AK) {
1828       for (auto *OtherOp : OtherOps) {
1829         if (OtherOp == CurPtr) {
1830           LLVM_DEBUG(
1831               dbgs()
1832               << "[AAPointerInfo] Escaping use in store like instruction " << I
1833               << "\n");
1834           return false;
1835         }
1836       }
1837 
1838       // If the access is to a pointer that may or may not be the associated
1839       // value, e.g. due to a PHI, we cannot assume it will be written.
1840       if (getUnderlyingObject(CurPtr) == &AssociatedValue)
1841         AK = AccessKind(AK | AccessKind::AK_MUST);
1842       else
1843         AK = AccessKind(AK | AccessKind::AK_MAY);
1844       bool UsedAssumedInformation = false;
1845       std::optional<Value *> Content = nullptr;
1846       if (ValueOp)
1847         Content = A.getAssumedSimplified(
1848             *ValueOp, *this, UsedAssumedInformation, AA::Interprocedural);
1849       return handleAccess(A, I, Content, AK, OffsetInfoMap[CurPtr].Offsets,
1850                           Changed, ValueTy);
1851     };
1852 
1853     if (auto *StoreI = dyn_cast<StoreInst>(Usr))
1854       return HandleStoreLike(*StoreI, StoreI->getValueOperand(),
1855                              *StoreI->getValueOperand()->getType(),
1856                              {StoreI->getValueOperand()}, AccessKind::AK_W);
1857     if (auto *RMWI = dyn_cast<AtomicRMWInst>(Usr))
1858       return HandleStoreLike(*RMWI, nullptr, *RMWI->getValOperand()->getType(),
1859                              {RMWI->getValOperand()}, AccessKind::AK_RW);
1860     if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(Usr))
1861       return HandleStoreLike(
1862           *CXI, nullptr, *CXI->getNewValOperand()->getType(),
1863           {CXI->getCompareOperand(), CXI->getNewValOperand()},
1864           AccessKind::AK_RW);
1865 
1866     if (auto *CB = dyn_cast<CallBase>(Usr)) {
1867       if (CB->isLifetimeStartOrEnd())
1868         return true;
1869       if (getFreedOperand(CB, TLI) == U)
1870         return true;
1871       if (CB->isArgOperand(&U)) {
1872         unsigned ArgNo = CB->getArgOperandNo(&U);
1873         const auto *CSArgPI = A.getAAFor<AAPointerInfo>(
1874             *this, IRPosition::callsite_argument(*CB, ArgNo),
1875             DepClassTy::REQUIRED);
1876         if (!CSArgPI)
1877           return false;
1878         Changed =
1879             translateAndAddState(A, *CSArgPI, OffsetInfoMap[CurPtr], *CB) |
1880             Changed;
1881         return isValidState();
1882       }
1883       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1884                         << "\n");
1885       // TODO: Allow some call uses
1886       return false;
1887     }
1888 
1889     LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1890     return false;
1891   };
1892   auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1893     assert(OffsetInfoMap.count(OldU) && "Old use should be known already!");
1894     if (OffsetInfoMap.count(NewU)) {
1895       LLVM_DEBUG({
1896         if (!(OffsetInfoMap[NewU] == OffsetInfoMap[OldU])) {
1897           dbgs() << "[AAPointerInfo] Equivalent use callback failed: "
1898                  << OffsetInfoMap[NewU] << " vs " << OffsetInfoMap[OldU]
1899                  << "\n";
1900         }
1901       });
1902       return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1903     }
1904     OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1905     return true;
1906   };
1907   if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1908                          /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1909                          /* IgnoreDroppableUses */ true, EquivalentUseCB)) {
1910     LLVM_DEBUG(dbgs() << "[AAPointerInfo] Check for all uses failed, abort!\n");
1911     return indicatePessimisticFixpoint();
1912   }
1913 
1914   LLVM_DEBUG({
1915     dbgs() << "Accesses by bin after update:\n";
1916     dumpState(dbgs());
1917   });
1918 
1919   return Changed;
1920 }
1921 
1922 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1923   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1924       : AAPointerInfoImpl(IRP, A) {}
1925 
1926   /// See AbstractAttribute::updateImpl(...).
1927   ChangeStatus updateImpl(Attributor &A) override {
1928     return indicatePessimisticFixpoint();
1929   }
1930 
1931   /// See AbstractAttribute::trackStatistics()
1932   void trackStatistics() const override {
1933     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1934   }
1935 };
1936 
1937 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1938   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1939       : AAPointerInfoFloating(IRP, A) {}
1940 
1941   /// See AbstractAttribute::trackStatistics()
1942   void trackStatistics() const override {
1943     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1944   }
1945 };
1946 
1947 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1948   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1949       : AAPointerInfoFloating(IRP, A) {}
1950 
1951   /// See AbstractAttribute::updateImpl(...).
1952   ChangeStatus updateImpl(Attributor &A) override {
1953     using namespace AA::PointerInfo;
1954     // We handle memory intrinsics explicitly, at least the first (=
1955     // destination) and second (=source) arguments as we know how they are
1956     // accessed.
1957     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1958       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1959       int64_t LengthVal = AA::RangeTy::Unknown;
1960       if (Length)
1961         LengthVal = Length->getSExtValue();
1962       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1963       ChangeStatus Changed = ChangeStatus::UNCHANGED;
1964       if (ArgNo > 1) {
1965         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1966                           << *MI << "\n");
1967         return indicatePessimisticFixpoint();
1968       } else {
1969         auto Kind =
1970             ArgNo == 0 ? AccessKind::AK_MUST_WRITE : AccessKind::AK_MUST_READ;
1971         Changed =
1972             Changed | addAccess(A, {0, LengthVal}, *MI, nullptr, Kind, nullptr);
1973       }
1974       LLVM_DEBUG({
1975         dbgs() << "Accesses by bin after update:\n";
1976         dumpState(dbgs());
1977       });
1978 
1979       return Changed;
1980     }
1981 
1982     // TODO: Once we have call site specific value information we can provide
1983     //       call site specific liveness information and then it makes
1984     //       sense to specialize attributes for call sites arguments instead of
1985     //       redirecting requests to the callee argument.
1986     Argument *Arg = getAssociatedArgument();
1987     if (Arg) {
1988       const IRPosition &ArgPos = IRPosition::argument(*Arg);
1989       auto *ArgAA =
1990           A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1991       if (ArgAA && ArgAA->getState().isValidState())
1992         return translateAndAddStateFromCallee(A, *ArgAA,
1993                                               *cast<CallBase>(getCtxI()));
1994       if (!Arg->getParent()->isDeclaration())
1995         return indicatePessimisticFixpoint();
1996     }
1997 
1998     bool IsKnownNoCapture;
1999     if (!AA::hasAssumedIRAttr<Attribute::NoCapture>(
2000             A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnownNoCapture))
2001       return indicatePessimisticFixpoint();
2002 
2003     bool IsKnown = false;
2004     if (AA::isAssumedReadNone(A, getIRPosition(), *this, IsKnown))
2005       return ChangeStatus::UNCHANGED;
2006     bool ReadOnly = AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown);
2007     auto Kind =
2008         ReadOnly ? AccessKind::AK_MAY_READ : AccessKind::AK_MAY_READ_WRITE;
2009     return addAccess(A, AA::RangeTy::getUnknown(), *getCtxI(), nullptr, Kind,
2010                      nullptr);
2011   }
2012 
2013   /// See AbstractAttribute::trackStatistics()
2014   void trackStatistics() const override {
2015     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
2016   }
2017 };
2018 
2019 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
2020   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
2021       : AAPointerInfoFloating(IRP, A) {}
2022 
2023   /// See AbstractAttribute::trackStatistics()
2024   void trackStatistics() const override {
2025     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
2026   }
2027 };
2028 } // namespace
2029 
2030 /// -----------------------NoUnwind Function Attribute--------------------------
2031 
2032 namespace {
2033 struct AANoUnwindImpl : AANoUnwind {
2034   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
2035 
2036   /// See AbstractAttribute::initialize(...).
2037   void initialize(Attributor &A) override {
2038     bool IsKnown;
2039     assert(!AA::hasAssumedIRAttr<Attribute::NoUnwind>(
2040         A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
2041     (void)IsKnown;
2042   }
2043 
2044   const std::string getAsStr(Attributor *A) const override {
2045     return getAssumed() ? "nounwind" : "may-unwind";
2046   }
2047 
2048   /// See AbstractAttribute::updateImpl(...).
2049   ChangeStatus updateImpl(Attributor &A) override {
2050     auto Opcodes = {
2051         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
2052         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
2053         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
2054 
2055     auto CheckForNoUnwind = [&](Instruction &I) {
2056       if (!I.mayThrow(/* IncludePhaseOneUnwind */ true))
2057         return true;
2058 
2059       if (const auto *CB = dyn_cast<CallBase>(&I)) {
2060         bool IsKnownNoUnwind;
2061         return AA::hasAssumedIRAttr<Attribute::NoUnwind>(
2062             A, this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED,
2063             IsKnownNoUnwind);
2064       }
2065       return false;
2066     };
2067 
2068     bool UsedAssumedInformation = false;
2069     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
2070                                    UsedAssumedInformation))
2071       return indicatePessimisticFixpoint();
2072 
2073     return ChangeStatus::UNCHANGED;
2074   }
2075 };
2076 
2077 struct AANoUnwindFunction final : public AANoUnwindImpl {
2078   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
2079       : AANoUnwindImpl(IRP, A) {}
2080 
2081   /// See AbstractAttribute::trackStatistics()
2082   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
2083 };
2084 
2085 /// NoUnwind attribute deduction for a call sites.
2086 struct AANoUnwindCallSite final : AANoUnwindImpl {
2087   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
2088       : AANoUnwindImpl(IRP, A) {}
2089 
2090   /// See AbstractAttribute::updateImpl(...).
2091   ChangeStatus updateImpl(Attributor &A) override {
2092     // TODO: Once we have call site specific value information we can provide
2093     //       call site specific liveness information and then it makes
2094     //       sense to specialize attributes for call sites arguments instead of
2095     //       redirecting requests to the callee argument.
2096     Function *F = getAssociatedFunction();
2097     const IRPosition &FnPos = IRPosition::function(*F);
2098     bool IsKnownNoUnwind;
2099     if (AA::hasAssumedIRAttr<Attribute::NoUnwind>(
2100             A, this, FnPos, DepClassTy::REQUIRED, IsKnownNoUnwind))
2101       return ChangeStatus::UNCHANGED;
2102     return indicatePessimisticFixpoint();
2103   }
2104 
2105   /// See AbstractAttribute::trackStatistics()
2106   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
2107 };
2108 } // namespace
2109 
2110 /// ------------------------ NoSync Function Attribute -------------------------
2111 
2112 bool AANoSync::isAlignedBarrier(const CallBase &CB, bool ExecutedAligned) {
2113   switch (CB.getIntrinsicID()) {
2114   case Intrinsic::nvvm_barrier0:
2115   case Intrinsic::nvvm_barrier0_and:
2116   case Intrinsic::nvvm_barrier0_or:
2117   case Intrinsic::nvvm_barrier0_popc:
2118     return true;
2119   case Intrinsic::amdgcn_s_barrier:
2120     if (ExecutedAligned)
2121       return true;
2122     break;
2123   default:
2124     break;
2125   }
2126   return hasAssumption(CB, KnownAssumptionString("ompx_aligned_barrier"));
2127 }
2128 
2129 bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
2130   if (!I->isAtomic())
2131     return false;
2132 
2133   if (auto *FI = dyn_cast<FenceInst>(I))
2134     // All legal orderings for fence are stronger than monotonic.
2135     return FI->getSyncScopeID() != SyncScope::SingleThread;
2136   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
2137     // Unordered is not a legal ordering for cmpxchg.
2138     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
2139             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
2140   }
2141 
2142   AtomicOrdering Ordering;
2143   switch (I->getOpcode()) {
2144   case Instruction::AtomicRMW:
2145     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
2146     break;
2147   case Instruction::Store:
2148     Ordering = cast<StoreInst>(I)->getOrdering();
2149     break;
2150   case Instruction::Load:
2151     Ordering = cast<LoadInst>(I)->getOrdering();
2152     break;
2153   default:
2154     llvm_unreachable(
2155         "New atomic operations need to be known in the attributor.");
2156   }
2157 
2158   return (Ordering != AtomicOrdering::Unordered &&
2159           Ordering != AtomicOrdering::Monotonic);
2160 }
2161 
2162 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
2163 /// which would be nosync except that they have a volatile flag.  All other
2164 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
2165 bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
2166   if (auto *MI = dyn_cast<MemIntrinsic>(I))
2167     return !MI->isVolatile();
2168   return false;
2169 }
2170 
2171 namespace {
2172 struct AANoSyncImpl : AANoSync {
2173   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
2174 
2175   /// See AbstractAttribute::initialize(...).
2176   void initialize(Attributor &A) override {
2177     bool IsKnown;
2178     assert(!AA::hasAssumedIRAttr<Attribute::NoSync>(A, nullptr, getIRPosition(),
2179                                                     DepClassTy::NONE, IsKnown));
2180     (void)IsKnown;
2181   }
2182 
2183   const std::string getAsStr(Attributor *A) const override {
2184     return getAssumed() ? "nosync" : "may-sync";
2185   }
2186 
2187   /// See AbstractAttribute::updateImpl(...).
2188   ChangeStatus updateImpl(Attributor &A) override;
2189 };
2190 
2191 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
2192 
2193   auto CheckRWInstForNoSync = [&](Instruction &I) {
2194     return AA::isNoSyncInst(A, I, *this);
2195   };
2196 
2197   auto CheckForNoSync = [&](Instruction &I) {
2198     // At this point we handled all read/write effects and they are all
2199     // nosync, so they can be skipped.
2200     if (I.mayReadOrWriteMemory())
2201       return true;
2202 
2203     // non-convergent and readnone imply nosync.
2204     return !cast<CallBase>(I).isConvergent();
2205   };
2206 
2207   bool UsedAssumedInformation = false;
2208   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
2209                                           UsedAssumedInformation) ||
2210       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
2211                                          UsedAssumedInformation))
2212     return indicatePessimisticFixpoint();
2213 
2214   return ChangeStatus::UNCHANGED;
2215 }
2216 
2217 struct AANoSyncFunction final : public AANoSyncImpl {
2218   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
2219       : AANoSyncImpl(IRP, A) {}
2220 
2221   /// See AbstractAttribute::trackStatistics()
2222   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
2223 };
2224 
2225 /// NoSync attribute deduction for a call sites.
2226 struct AANoSyncCallSite final : AANoSyncImpl {
2227   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
2228       : AANoSyncImpl(IRP, A) {}
2229 
2230   /// See AbstractAttribute::updateImpl(...).
2231   ChangeStatus updateImpl(Attributor &A) override {
2232     // TODO: Once we have call site specific value information we can provide
2233     //       call site specific liveness information and then it makes
2234     //       sense to specialize attributes for call sites arguments instead of
2235     //       redirecting requests to the callee argument.
2236     Function *F = getAssociatedFunction();
2237     const IRPosition &FnPos = IRPosition::function(*F);
2238     bool IsKnownNoSycn;
2239     if (AA::hasAssumedIRAttr<Attribute::NoSync>(
2240             A, this, FnPos, DepClassTy::REQUIRED, IsKnownNoSycn))
2241       return ChangeStatus::UNCHANGED;
2242     return indicatePessimisticFixpoint();
2243   }
2244 
2245   /// See AbstractAttribute::trackStatistics()
2246   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
2247 };
2248 } // namespace
2249 
2250 /// ------------------------ No-Free Attributes ----------------------------
2251 
2252 namespace {
2253 struct AANoFreeImpl : public AANoFree {
2254   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
2255 
2256   /// See AbstractAttribute::initialize(...).
2257   void initialize(Attributor &A) override {
2258     bool IsKnown;
2259     assert(!AA::hasAssumedIRAttr<Attribute::NoFree>(A, nullptr, getIRPosition(),
2260                                                     DepClassTy::NONE, IsKnown));
2261     (void)IsKnown;
2262   }
2263 
2264   /// See AbstractAttribute::updateImpl(...).
2265   ChangeStatus updateImpl(Attributor &A) override {
2266     auto CheckForNoFree = [&](Instruction &I) {
2267       bool IsKnown;
2268       return AA::hasAssumedIRAttr<Attribute::NoFree>(
2269           A, this, IRPosition::callsite_function(cast<CallBase>(I)),
2270           DepClassTy::REQUIRED, IsKnown);
2271     };
2272 
2273     bool UsedAssumedInformation = false;
2274     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
2275                                            UsedAssumedInformation))
2276       return indicatePessimisticFixpoint();
2277     return ChangeStatus::UNCHANGED;
2278   }
2279 
2280   /// See AbstractAttribute::getAsStr().
2281   const std::string getAsStr(Attributor *A) const override {
2282     return getAssumed() ? "nofree" : "may-free";
2283   }
2284 };
2285 
2286 struct AANoFreeFunction final : public AANoFreeImpl {
2287   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
2288       : AANoFreeImpl(IRP, A) {}
2289 
2290   /// See AbstractAttribute::trackStatistics()
2291   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
2292 };
2293 
2294 /// NoFree attribute deduction for a call sites.
2295 struct AANoFreeCallSite final : AANoFreeImpl {
2296   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
2297       : AANoFreeImpl(IRP, A) {}
2298 
2299   /// See AbstractAttribute::updateImpl(...).
2300   ChangeStatus updateImpl(Attributor &A) override {
2301     // TODO: Once we have call site specific value information we can provide
2302     //       call site specific liveness information and then it makes
2303     //       sense to specialize attributes for call sites arguments instead of
2304     //       redirecting requests to the callee argument.
2305     Function *F = getAssociatedFunction();
2306     const IRPosition &FnPos = IRPosition::function(*F);
2307     bool IsKnown;
2308     if (AA::hasAssumedIRAttr<Attribute::NoFree>(A, this, FnPos,
2309                                                 DepClassTy::REQUIRED, IsKnown))
2310       return ChangeStatus::UNCHANGED;
2311     return indicatePessimisticFixpoint();
2312   }
2313 
2314   /// See AbstractAttribute::trackStatistics()
2315   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
2316 };
2317 
2318 /// NoFree attribute for floating values.
2319 struct AANoFreeFloating : AANoFreeImpl {
2320   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
2321       : AANoFreeImpl(IRP, A) {}
2322 
2323   /// See AbstractAttribute::trackStatistics()
2324   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
2325 
2326   /// See Abstract Attribute::updateImpl(...).
2327   ChangeStatus updateImpl(Attributor &A) override {
2328     const IRPosition &IRP = getIRPosition();
2329 
2330     bool IsKnown;
2331     if (AA::hasAssumedIRAttr<Attribute::NoFree>(A, this,
2332                                                 IRPosition::function_scope(IRP),
2333                                                 DepClassTy::OPTIONAL, IsKnown))
2334       return ChangeStatus::UNCHANGED;
2335 
2336     Value &AssociatedValue = getIRPosition().getAssociatedValue();
2337     auto Pred = [&](const Use &U, bool &Follow) -> bool {
2338       Instruction *UserI = cast<Instruction>(U.getUser());
2339       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2340         if (CB->isBundleOperand(&U))
2341           return false;
2342         if (!CB->isArgOperand(&U))
2343           return true;
2344         unsigned ArgNo = CB->getArgOperandNo(&U);
2345 
2346         bool IsKnown;
2347         return AA::hasAssumedIRAttr<Attribute::NoFree>(
2348             A, this, IRPosition::callsite_argument(*CB, ArgNo),
2349             DepClassTy::REQUIRED, IsKnown);
2350       }
2351 
2352       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2353           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2354         Follow = true;
2355         return true;
2356       }
2357       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2358           isa<ReturnInst>(UserI))
2359         return true;
2360 
2361       // Unknown user.
2362       return false;
2363     };
2364     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2365       return indicatePessimisticFixpoint();
2366 
2367     return ChangeStatus::UNCHANGED;
2368   }
2369 };
2370 
2371 /// NoFree attribute for a call site argument.
2372 struct AANoFreeArgument final : AANoFreeFloating {
2373   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2374       : AANoFreeFloating(IRP, A) {}
2375 
2376   /// See AbstractAttribute::trackStatistics()
2377   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2378 };
2379 
2380 /// NoFree attribute for call site arguments.
2381 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2382   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2383       : AANoFreeFloating(IRP, A) {}
2384 
2385   /// See AbstractAttribute::updateImpl(...).
2386   ChangeStatus updateImpl(Attributor &A) override {
2387     // TODO: Once we have call site specific value information we can provide
2388     //       call site specific liveness information and then it makes
2389     //       sense to specialize attributes for call sites arguments instead of
2390     //       redirecting requests to the callee argument.
2391     Argument *Arg = getAssociatedArgument();
2392     if (!Arg)
2393       return indicatePessimisticFixpoint();
2394     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2395     bool IsKnown;
2396     if (AA::hasAssumedIRAttr<Attribute::NoFree>(A, this, ArgPos,
2397                                                 DepClassTy::REQUIRED, IsKnown))
2398       return ChangeStatus::UNCHANGED;
2399     return indicatePessimisticFixpoint();
2400   }
2401 
2402   /// See AbstractAttribute::trackStatistics()
2403   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2404 };
2405 
2406 /// NoFree attribute for function return value.
2407 struct AANoFreeReturned final : AANoFreeFloating {
2408   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2409       : AANoFreeFloating(IRP, A) {
2410     llvm_unreachable("NoFree is not applicable to function returns!");
2411   }
2412 
2413   /// See AbstractAttribute::initialize(...).
2414   void initialize(Attributor &A) override {
2415     llvm_unreachable("NoFree is not applicable to function returns!");
2416   }
2417 
2418   /// See AbstractAttribute::updateImpl(...).
2419   ChangeStatus updateImpl(Attributor &A) override {
2420     llvm_unreachable("NoFree is not applicable to function returns!");
2421   }
2422 
2423   /// See AbstractAttribute::trackStatistics()
2424   void trackStatistics() const override {}
2425 };
2426 
2427 /// NoFree attribute deduction for a call site return value.
2428 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2429   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2430       : AANoFreeFloating(IRP, A) {}
2431 
2432   ChangeStatus manifest(Attributor &A) override {
2433     return ChangeStatus::UNCHANGED;
2434   }
2435   /// See AbstractAttribute::trackStatistics()
2436   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2437 };
2438 } // namespace
2439 
2440 /// ------------------------ NonNull Argument Attribute ------------------------
2441 
2442 bool AANonNull::isImpliedByIR(Attributor &A, const IRPosition &IRP,
2443                               Attribute::AttrKind ImpliedAttributeKind,
2444                               bool IgnoreSubsumingPositions) {
2445   SmallVector<Attribute::AttrKind, 2> AttrKinds;
2446   AttrKinds.push_back(Attribute::NonNull);
2447   if (!NullPointerIsDefined(IRP.getAnchorScope(),
2448                             IRP.getAssociatedType()->getPointerAddressSpace()))
2449     AttrKinds.push_back(Attribute::Dereferenceable);
2450   if (A.hasAttr(IRP, AttrKinds, IgnoreSubsumingPositions, Attribute::NonNull))
2451     return true;
2452 
2453   if (IRP.getPositionKind() == IRP_RETURNED)
2454     return false;
2455 
2456   DominatorTree *DT = nullptr;
2457   AssumptionCache *AC = nullptr;
2458   InformationCache &InfoCache = A.getInfoCache();
2459   if (const Function *Fn = IRP.getAnchorScope()) {
2460     if (!Fn->isDeclaration()) {
2461       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2462       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2463     }
2464   }
2465 
2466   if (!isKnownNonZero(&IRP.getAssociatedValue(), A.getDataLayout(), 0, AC,
2467                       IRP.getCtxI(), DT))
2468     return false;
2469   A.manifestAttrs(IRP, {Attribute::get(IRP.getAnchorValue().getContext(),
2470                                        Attribute::NonNull)});
2471   return true;
2472 }
2473 
2474 namespace {
2475 static int64_t getKnownNonNullAndDerefBytesForUse(
2476     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2477     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2478   TrackUse = false;
2479 
2480   const Value *UseV = U->get();
2481   if (!UseV->getType()->isPointerTy())
2482     return 0;
2483 
2484   // We need to follow common pointer manipulation uses to the accesses they
2485   // feed into. We can try to be smart to avoid looking through things we do not
2486   // like for now, e.g., non-inbounds GEPs.
2487   if (isa<CastInst>(I)) {
2488     TrackUse = true;
2489     return 0;
2490   }
2491 
2492   if (isa<GetElementPtrInst>(I)) {
2493     TrackUse = true;
2494     return 0;
2495   }
2496 
2497   Type *PtrTy = UseV->getType();
2498   const Function *F = I->getFunction();
2499   bool NullPointerIsDefined =
2500       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2501   const DataLayout &DL = A.getInfoCache().getDL();
2502   if (const auto *CB = dyn_cast<CallBase>(I)) {
2503     if (CB->isBundleOperand(U)) {
2504       if (RetainedKnowledge RK = getKnowledgeFromUse(
2505               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2506         IsNonNull |=
2507             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2508         return RK.ArgValue;
2509       }
2510       return 0;
2511     }
2512 
2513     if (CB->isCallee(U)) {
2514       IsNonNull |= !NullPointerIsDefined;
2515       return 0;
2516     }
2517 
2518     unsigned ArgNo = CB->getArgOperandNo(U);
2519     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2520     // As long as we only use known information there is no need to track
2521     // dependences here.
2522     bool IsKnownNonNull;
2523     AA::hasAssumedIRAttr<Attribute::NonNull>(A, &QueryingAA, IRP,
2524                                              DepClassTy::NONE, IsKnownNonNull);
2525     IsNonNull |= IsKnownNonNull;
2526     auto *DerefAA =
2527         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2528     return DerefAA ? DerefAA->getKnownDereferenceableBytes() : 0;
2529   }
2530 
2531   std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2532   if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2533     return 0;
2534 
2535   int64_t Offset;
2536   const Value *Base =
2537       getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2538   if (Base && Base == &AssociatedValue) {
2539     int64_t DerefBytes = Loc->Size.getValue() + Offset;
2540     IsNonNull |= !NullPointerIsDefined;
2541     return std::max(int64_t(0), DerefBytes);
2542   }
2543 
2544   /// Corner case when an offset is 0.
2545   Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2546                                           /*AllowNonInbounds*/ true);
2547   if (Base && Base == &AssociatedValue && Offset == 0) {
2548     int64_t DerefBytes = Loc->Size.getValue();
2549     IsNonNull |= !NullPointerIsDefined;
2550     return std::max(int64_t(0), DerefBytes);
2551   }
2552 
2553   return 0;
2554 }
2555 
2556 struct AANonNullImpl : AANonNull {
2557   AANonNullImpl(const IRPosition &IRP, Attributor &A) : AANonNull(IRP, A) {}
2558 
2559   /// See AbstractAttribute::initialize(...).
2560   void initialize(Attributor &A) override {
2561     Value &V = *getAssociatedValue().stripPointerCasts();
2562     if (isa<ConstantPointerNull>(V)) {
2563       indicatePessimisticFixpoint();
2564       return;
2565     }
2566 
2567     if (Instruction *CtxI = getCtxI())
2568       followUsesInMBEC(*this, A, getState(), *CtxI);
2569   }
2570 
2571   /// See followUsesInMBEC
2572   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2573                        AANonNull::StateType &State) {
2574     bool IsNonNull = false;
2575     bool TrackUse = false;
2576     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2577                                        IsNonNull, TrackUse);
2578     State.setKnown(IsNonNull);
2579     return TrackUse;
2580   }
2581 
2582   /// See AbstractAttribute::getAsStr().
2583   const std::string getAsStr(Attributor *A) const override {
2584     return getAssumed() ? "nonnull" : "may-null";
2585   }
2586 };
2587 
2588 /// NonNull attribute for a floating value.
2589 struct AANonNullFloating : public AANonNullImpl {
2590   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2591       : AANonNullImpl(IRP, A) {}
2592 
2593   /// See AbstractAttribute::updateImpl(...).
2594   ChangeStatus updateImpl(Attributor &A) override {
2595     auto CheckIRP = [&](const IRPosition &IRP) {
2596       bool IsKnownNonNull;
2597       return AA::hasAssumedIRAttr<Attribute::NonNull>(
2598           A, *this, IRP, DepClassTy::OPTIONAL, IsKnownNonNull);
2599     };
2600 
2601     bool Stripped;
2602     bool UsedAssumedInformation = false;
2603     Value *AssociatedValue = &getAssociatedValue();
2604     SmallVector<AA::ValueAndContext> Values;
2605     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
2606                                       AA::AnyScope, UsedAssumedInformation))
2607       Stripped = false;
2608     else
2609       Stripped =
2610           Values.size() != 1 || Values.front().getValue() != AssociatedValue;
2611 
2612     if (!Stripped) {
2613       // If we haven't stripped anything we might still be able to use a
2614       // different AA, but only if the IRP changes. Effectively when we
2615       // interpret this not as a call site value but as a floating/argument
2616       // value.
2617       const IRPosition AVIRP = IRPosition::value(*AssociatedValue);
2618       if (AVIRP == getIRPosition() || !CheckIRP(AVIRP))
2619         return indicatePessimisticFixpoint();
2620       return ChangeStatus::UNCHANGED;
2621     }
2622 
2623     for (const auto &VAC : Values)
2624       if (!CheckIRP(IRPosition::value(*VAC.getValue())))
2625         return indicatePessimisticFixpoint();
2626 
2627     return ChangeStatus::UNCHANGED;
2628   }
2629 
2630   /// See AbstractAttribute::trackStatistics()
2631   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2632 };
2633 
2634 /// NonNull attribute for function return value.
2635 struct AANonNullReturned final
2636     : AAReturnedFromReturnedValues<AANonNull, AANonNull, AANonNull::StateType,
2637                                    false, AANonNull::IRAttributeKind> {
2638   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2639       : AAReturnedFromReturnedValues<AANonNull, AANonNull, AANonNull::StateType,
2640                                      false, Attribute::NonNull>(IRP, A) {}
2641 
2642   /// See AbstractAttribute::getAsStr().
2643   const std::string getAsStr(Attributor *A) const override {
2644     return getAssumed() ? "nonnull" : "may-null";
2645   }
2646 
2647   /// See AbstractAttribute::trackStatistics()
2648   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2649 };
2650 
2651 /// NonNull attribute for function argument.
2652 struct AANonNullArgument final
2653     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl,
2654                                       AANonNull::StateType, false,
2655                                       AANonNull::IRAttributeKind> {
2656   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2657       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl,
2658                                         AANonNull::StateType, false,
2659                                         AANonNull::IRAttributeKind>(IRP, A) {}
2660 
2661   /// See AbstractAttribute::trackStatistics()
2662   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2663 };
2664 
2665 struct AANonNullCallSiteArgument final : AANonNullFloating {
2666   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2667       : AANonNullFloating(IRP, A) {}
2668 
2669   /// See AbstractAttribute::trackStatistics()
2670   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2671 };
2672 
2673 /// NonNull attribute for a call site return position.
2674 struct AANonNullCallSiteReturned final
2675     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl,
2676                                      AANonNull::StateType, false,
2677                                      AANonNull::IRAttributeKind> {
2678   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2679       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl,
2680                                        AANonNull::StateType, false,
2681                                        AANonNull::IRAttributeKind>(IRP, A) {}
2682 
2683   /// See AbstractAttribute::trackStatistics()
2684   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2685 };
2686 } // namespace
2687 
2688 /// ------------------------ Must-Progress Attributes --------------------------
2689 namespace {
2690 struct AAMustProgressImpl : public AAMustProgress {
2691   AAMustProgressImpl(const IRPosition &IRP, Attributor &A)
2692       : AAMustProgress(IRP, A) {}
2693 
2694   /// See AbstractAttribute::initialize(...).
2695   void initialize(Attributor &A) override {
2696     bool IsKnown;
2697     assert(!AA::hasAssumedIRAttr<Attribute::MustProgress>(
2698         A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
2699     (void)IsKnown;
2700   }
2701 
2702   /// See AbstractAttribute::getAsStr()
2703   const std::string getAsStr(Attributor *A) const override {
2704     return getAssumed() ? "mustprogress" : "may-not-progress";
2705   }
2706 };
2707 
2708 struct AAMustProgressFunction final : AAMustProgressImpl {
2709   AAMustProgressFunction(const IRPosition &IRP, Attributor &A)
2710       : AAMustProgressImpl(IRP, A) {}
2711 
2712   /// See AbstractAttribute::updateImpl(...).
2713   ChangeStatus updateImpl(Attributor &A) override {
2714     bool IsKnown;
2715     if (AA::hasAssumedIRAttr<Attribute::WillReturn>(
2716             A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnown)) {
2717       if (IsKnown)
2718         return indicateOptimisticFixpoint();
2719       return ChangeStatus::UNCHANGED;
2720     }
2721 
2722     auto CheckForMustProgress = [&](AbstractCallSite ACS) {
2723       IRPosition IPos = IRPosition::callsite_function(*ACS.getInstruction());
2724       bool IsKnownMustProgress;
2725       return AA::hasAssumedIRAttr<Attribute::MustProgress>(
2726           A, this, IPos, DepClassTy::REQUIRED, IsKnownMustProgress,
2727           /* IgnoreSubsumingPositions */ true);
2728     };
2729 
2730     bool AllCallSitesKnown = true;
2731     if (!A.checkForAllCallSites(CheckForMustProgress, *this,
2732                                 /* RequireAllCallSites */ true,
2733                                 AllCallSitesKnown))
2734       return indicatePessimisticFixpoint();
2735 
2736     return ChangeStatus::UNCHANGED;
2737   }
2738 
2739   /// See AbstractAttribute::trackStatistics()
2740   void trackStatistics() const override {
2741     STATS_DECLTRACK_FN_ATTR(mustprogress)
2742   }
2743 };
2744 
2745 /// MustProgress attribute deduction for a call sites.
2746 struct AAMustProgressCallSite final : AAMustProgressImpl {
2747   AAMustProgressCallSite(const IRPosition &IRP, Attributor &A)
2748       : AAMustProgressImpl(IRP, A) {}
2749 
2750   /// See AbstractAttribute::updateImpl(...).
2751   ChangeStatus updateImpl(Attributor &A) override {
2752     // TODO: Once we have call site specific value information we can provide
2753     //       call site specific liveness information and then it makes
2754     //       sense to specialize attributes for call sites arguments instead of
2755     //       redirecting requests to the callee argument.
2756     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
2757     bool IsKnownMustProgress;
2758     if (!AA::hasAssumedIRAttr<Attribute::MustProgress>(
2759             A, this, FnPos, DepClassTy::REQUIRED, IsKnownMustProgress))
2760       return indicatePessimisticFixpoint();
2761     return ChangeStatus::UNCHANGED;
2762   }
2763 
2764   /// See AbstractAttribute::trackStatistics()
2765   void trackStatistics() const override {
2766     STATS_DECLTRACK_CS_ATTR(mustprogress);
2767   }
2768 };
2769 } // namespace
2770 
2771 /// ------------------------ No-Recurse Attributes ----------------------------
2772 
2773 namespace {
2774 struct AANoRecurseImpl : public AANoRecurse {
2775   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2776 
2777   /// See AbstractAttribute::initialize(...).
2778   void initialize(Attributor &A) override {
2779     bool IsKnown;
2780     assert(!AA::hasAssumedIRAttr<Attribute::NoRecurse>(
2781         A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
2782     (void)IsKnown;
2783   }
2784 
2785   /// See AbstractAttribute::getAsStr()
2786   const std::string getAsStr(Attributor *A) const override {
2787     return getAssumed() ? "norecurse" : "may-recurse";
2788   }
2789 };
2790 
2791 struct AANoRecurseFunction final : AANoRecurseImpl {
2792   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2793       : AANoRecurseImpl(IRP, A) {}
2794 
2795   /// See AbstractAttribute::updateImpl(...).
2796   ChangeStatus updateImpl(Attributor &A) override {
2797 
2798     // If all live call sites are known to be no-recurse, we are as well.
2799     auto CallSitePred = [&](AbstractCallSite ACS) {
2800       bool IsKnownNoRecurse;
2801       if (!AA::hasAssumedIRAttr<Attribute::NoRecurse>(
2802               A, this,
2803               IRPosition::function(*ACS.getInstruction()->getFunction()),
2804               DepClassTy::NONE, IsKnownNoRecurse))
2805         return false;
2806       return IsKnownNoRecurse;
2807     };
2808     bool UsedAssumedInformation = false;
2809     if (A.checkForAllCallSites(CallSitePred, *this, true,
2810                                UsedAssumedInformation)) {
2811       // If we know all call sites and all are known no-recurse, we are done.
2812       // If all known call sites, which might not be all that exist, are known
2813       // to be no-recurse, we are not done but we can continue to assume
2814       // no-recurse. If one of the call sites we have not visited will become
2815       // live, another update is triggered.
2816       if (!UsedAssumedInformation)
2817         indicateOptimisticFixpoint();
2818       return ChangeStatus::UNCHANGED;
2819     }
2820 
2821     const AAInterFnReachability *EdgeReachability =
2822         A.getAAFor<AAInterFnReachability>(*this, getIRPosition(),
2823                                           DepClassTy::REQUIRED);
2824     if (EdgeReachability && EdgeReachability->canReach(A, *getAnchorScope()))
2825       return indicatePessimisticFixpoint();
2826     return ChangeStatus::UNCHANGED;
2827   }
2828 
2829   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2830 };
2831 
2832 /// NoRecurse attribute deduction for a call sites.
2833 struct AANoRecurseCallSite final : AANoRecurseImpl {
2834   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2835       : AANoRecurseImpl(IRP, A) {}
2836 
2837   /// See AbstractAttribute::updateImpl(...).
2838   ChangeStatus updateImpl(Attributor &A) override {
2839     // TODO: Once we have call site specific value information we can provide
2840     //       call site specific liveness information and then it makes
2841     //       sense to specialize attributes for call sites arguments instead of
2842     //       redirecting requests to the callee argument.
2843     Function *F = getAssociatedFunction();
2844     const IRPosition &FnPos = IRPosition::function(*F);
2845     bool IsKnownNoRecurse;
2846     if (!AA::hasAssumedIRAttr<Attribute::NoRecurse>(
2847             A, this, FnPos, DepClassTy::REQUIRED, IsKnownNoRecurse))
2848       return indicatePessimisticFixpoint();
2849     return ChangeStatus::UNCHANGED;
2850   }
2851 
2852   /// See AbstractAttribute::trackStatistics()
2853   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2854 };
2855 } // namespace
2856 
2857 /// ------------------------ No-Convergent Attribute --------------------------
2858 
2859 namespace {
2860 struct AANonConvergentImpl : public AANonConvergent {
2861   AANonConvergentImpl(const IRPosition &IRP, Attributor &A)
2862       : AANonConvergent(IRP, A) {}
2863 
2864   /// See AbstractAttribute::getAsStr()
2865   const std::string getAsStr(Attributor *A) const override {
2866     return getAssumed() ? "non-convergent" : "may-be-convergent";
2867   }
2868 };
2869 
2870 struct AANonConvergentFunction final : AANonConvergentImpl {
2871   AANonConvergentFunction(const IRPosition &IRP, Attributor &A)
2872       : AANonConvergentImpl(IRP, A) {}
2873 
2874   /// See AbstractAttribute::updateImpl(...).
2875   ChangeStatus updateImpl(Attributor &A) override {
2876     // If all function calls are known to not be convergent, we are not
2877     // convergent.
2878     auto CalleeIsNotConvergent = [&](Instruction &Inst) {
2879       CallBase &CB = cast<CallBase>(Inst);
2880       auto *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
2881       if (!Callee || Callee->isIntrinsic()) {
2882         return false;
2883       }
2884       if (Callee->isDeclaration()) {
2885         return !Callee->hasFnAttribute(Attribute::Convergent);
2886       }
2887       const auto *ConvergentAA = A.getAAFor<AANonConvergent>(
2888           *this, IRPosition::function(*Callee), DepClassTy::REQUIRED);
2889       return ConvergentAA && ConvergentAA->isAssumedNotConvergent();
2890     };
2891 
2892     bool UsedAssumedInformation = false;
2893     if (!A.checkForAllCallLikeInstructions(CalleeIsNotConvergent, *this,
2894                                            UsedAssumedInformation)) {
2895       return indicatePessimisticFixpoint();
2896     }
2897     return ChangeStatus::UNCHANGED;
2898   }
2899 
2900   ChangeStatus manifest(Attributor &A) override {
2901     if (isKnownNotConvergent() &&
2902         A.hasAttr(getIRPosition(), Attribute::Convergent)) {
2903       A.removeAttrs(getIRPosition(), {Attribute::Convergent});
2904       return ChangeStatus::CHANGED;
2905     }
2906     return ChangeStatus::UNCHANGED;
2907   }
2908 
2909   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(convergent) }
2910 };
2911 } // namespace
2912 
2913 /// -------------------- Undefined-Behavior Attributes ------------------------
2914 
2915 namespace {
2916 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2917   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2918       : AAUndefinedBehavior(IRP, A) {}
2919 
2920   /// See AbstractAttribute::updateImpl(...).
2921   // through a pointer (i.e. also branches etc.)
2922   ChangeStatus updateImpl(Attributor &A) override {
2923     const size_t UBPrevSize = KnownUBInsts.size();
2924     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2925 
2926     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2927       // Lang ref now states volatile store is not UB, let's skip them.
2928       if (I.isVolatile() && I.mayWriteToMemory())
2929         return true;
2930 
2931       // Skip instructions that are already saved.
2932       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2933         return true;
2934 
2935       // If we reach here, we know we have an instruction
2936       // that accesses memory through a pointer operand,
2937       // for which getPointerOperand() should give it to us.
2938       Value *PtrOp =
2939           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2940       assert(PtrOp &&
2941              "Expected pointer operand of memory accessing instruction");
2942 
2943       // Either we stopped and the appropriate action was taken,
2944       // or we got back a simplified value to continue.
2945       std::optional<Value *> SimplifiedPtrOp =
2946           stopOnUndefOrAssumed(A, PtrOp, &I);
2947       if (!SimplifiedPtrOp || !*SimplifiedPtrOp)
2948         return true;
2949       const Value *PtrOpVal = *SimplifiedPtrOp;
2950 
2951       // A memory access through a pointer is considered UB
2952       // only if the pointer has constant null value.
2953       // TODO: Expand it to not only check constant values.
2954       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2955         AssumedNoUBInsts.insert(&I);
2956         return true;
2957       }
2958       const Type *PtrTy = PtrOpVal->getType();
2959 
2960       // Because we only consider instructions inside functions,
2961       // assume that a parent function exists.
2962       const Function *F = I.getFunction();
2963 
2964       // A memory access using constant null pointer is only considered UB
2965       // if null pointer is _not_ defined for the target platform.
2966       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2967         AssumedNoUBInsts.insert(&I);
2968       else
2969         KnownUBInsts.insert(&I);
2970       return true;
2971     };
2972 
2973     auto InspectBrInstForUB = [&](Instruction &I) {
2974       // A conditional branch instruction is considered UB if it has `undef`
2975       // condition.
2976 
2977       // Skip instructions that are already saved.
2978       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2979         return true;
2980 
2981       // We know we have a branch instruction.
2982       auto *BrInst = cast<BranchInst>(&I);
2983 
2984       // Unconditional branches are never considered UB.
2985       if (BrInst->isUnconditional())
2986         return true;
2987 
2988       // Either we stopped and the appropriate action was taken,
2989       // or we got back a simplified value to continue.
2990       std::optional<Value *> SimplifiedCond =
2991           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2992       if (!SimplifiedCond || !*SimplifiedCond)
2993         return true;
2994       AssumedNoUBInsts.insert(&I);
2995       return true;
2996     };
2997 
2998     auto InspectCallSiteForUB = [&](Instruction &I) {
2999       // Check whether a callsite always cause UB or not
3000 
3001       // Skip instructions that are already saved.
3002       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
3003         return true;
3004 
3005       // Check nonnull and noundef argument attribute violation for each
3006       // callsite.
3007       CallBase &CB = cast<CallBase>(I);
3008       auto *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
3009       if (!Callee)
3010         return true;
3011       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
3012         // If current argument is known to be simplified to null pointer and the
3013         // corresponding argument position is known to have nonnull attribute,
3014         // the argument is poison. Furthermore, if the argument is poison and
3015         // the position is known to have noundef attriubte, this callsite is
3016         // considered UB.
3017         if (idx >= Callee->arg_size())
3018           break;
3019         Value *ArgVal = CB.getArgOperand(idx);
3020         if (!ArgVal)
3021           continue;
3022         // Here, we handle three cases.
3023         //   (1) Not having a value means it is dead. (we can replace the value
3024         //       with undef)
3025         //   (2) Simplified to undef. The argument violate noundef attriubte.
3026         //   (3) Simplified to null pointer where known to be nonnull.
3027         //       The argument is a poison value and violate noundef attribute.
3028         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
3029         bool IsKnownNoUndef;
3030         AA::hasAssumedIRAttr<Attribute::NoUndef>(
3031             A, this, CalleeArgumentIRP, DepClassTy::NONE, IsKnownNoUndef);
3032         if (!IsKnownNoUndef)
3033           continue;
3034         bool UsedAssumedInformation = false;
3035         std::optional<Value *> SimplifiedVal =
3036             A.getAssumedSimplified(IRPosition::value(*ArgVal), *this,
3037                                    UsedAssumedInformation, AA::Interprocedural);
3038         if (UsedAssumedInformation)
3039           continue;
3040         if (SimplifiedVal && !*SimplifiedVal)
3041           return true;
3042         if (!SimplifiedVal || isa<UndefValue>(**SimplifiedVal)) {
3043           KnownUBInsts.insert(&I);
3044           continue;
3045         }
3046         if (!ArgVal->getType()->isPointerTy() ||
3047             !isa<ConstantPointerNull>(**SimplifiedVal))
3048           continue;
3049         bool IsKnownNonNull;
3050         AA::hasAssumedIRAttr<Attribute::NonNull>(
3051             A, this, CalleeArgumentIRP, DepClassTy::NONE, IsKnownNonNull);
3052         if (IsKnownNonNull)
3053           KnownUBInsts.insert(&I);
3054       }
3055       return true;
3056     };
3057 
3058     auto InspectReturnInstForUB = [&](Instruction &I) {
3059       auto &RI = cast<ReturnInst>(I);
3060       // Either we stopped and the appropriate action was taken,
3061       // or we got back a simplified return value to continue.
3062       std::optional<Value *> SimplifiedRetValue =
3063           stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
3064       if (!SimplifiedRetValue || !*SimplifiedRetValue)
3065         return true;
3066 
3067       // Check if a return instruction always cause UB or not
3068       // Note: It is guaranteed that the returned position of the anchor
3069       //       scope has noundef attribute when this is called.
3070       //       We also ensure the return position is not "assumed dead"
3071       //       because the returned value was then potentially simplified to
3072       //       `undef` in AAReturnedValues without removing the `noundef`
3073       //       attribute yet.
3074 
3075       // When the returned position has noundef attriubte, UB occurs in the
3076       // following cases.
3077       //   (1) Returned value is known to be undef.
3078       //   (2) The value is known to be a null pointer and the returned
3079       //       position has nonnull attribute (because the returned value is
3080       //       poison).
3081       if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
3082         bool IsKnownNonNull;
3083         AA::hasAssumedIRAttr<Attribute::NonNull>(
3084             A, this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE,
3085             IsKnownNonNull);
3086         if (IsKnownNonNull)
3087           KnownUBInsts.insert(&I);
3088       }
3089 
3090       return true;
3091     };
3092 
3093     bool UsedAssumedInformation = false;
3094     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
3095                               {Instruction::Load, Instruction::Store,
3096                                Instruction::AtomicCmpXchg,
3097                                Instruction::AtomicRMW},
3098                               UsedAssumedInformation,
3099                               /* CheckBBLivenessOnly */ true);
3100     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
3101                               UsedAssumedInformation,
3102                               /* CheckBBLivenessOnly */ true);
3103     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
3104                                       UsedAssumedInformation);
3105 
3106     // If the returned position of the anchor scope has noundef attriubte, check
3107     // all returned instructions.
3108     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
3109       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
3110       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
3111         bool IsKnownNoUndef;
3112         AA::hasAssumedIRAttr<Attribute::NoUndef>(
3113             A, this, ReturnIRP, DepClassTy::NONE, IsKnownNoUndef);
3114         if (IsKnownNoUndef)
3115           A.checkForAllInstructions(InspectReturnInstForUB, *this,
3116                                     {Instruction::Ret}, UsedAssumedInformation,
3117                                     /* CheckBBLivenessOnly */ true);
3118       }
3119     }
3120 
3121     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
3122         UBPrevSize != KnownUBInsts.size())
3123       return ChangeStatus::CHANGED;
3124     return ChangeStatus::UNCHANGED;
3125   }
3126 
3127   bool isKnownToCauseUB(Instruction *I) const override {
3128     return KnownUBInsts.count(I);
3129   }
3130 
3131   bool isAssumedToCauseUB(Instruction *I) const override {
3132     // In simple words, if an instruction is not in the assumed to _not_
3133     // cause UB, then it is assumed UB (that includes those
3134     // in the KnownUBInsts set). The rest is boilerplate
3135     // is to ensure that it is one of the instructions we test
3136     // for UB.
3137 
3138     switch (I->getOpcode()) {
3139     case Instruction::Load:
3140     case Instruction::Store:
3141     case Instruction::AtomicCmpXchg:
3142     case Instruction::AtomicRMW:
3143       return !AssumedNoUBInsts.count(I);
3144     case Instruction::Br: {
3145       auto *BrInst = cast<BranchInst>(I);
3146       if (BrInst->isUnconditional())
3147         return false;
3148       return !AssumedNoUBInsts.count(I);
3149     } break;
3150     default:
3151       return false;
3152     }
3153     return false;
3154   }
3155 
3156   ChangeStatus manifest(Attributor &A) override {
3157     if (KnownUBInsts.empty())
3158       return ChangeStatus::UNCHANGED;
3159     for (Instruction *I : KnownUBInsts)
3160       A.changeToUnreachableAfterManifest(I);
3161     return ChangeStatus::CHANGED;
3162   }
3163 
3164   /// See AbstractAttribute::getAsStr()
3165   const std::string getAsStr(Attributor *A) const override {
3166     return getAssumed() ? "undefined-behavior" : "no-ub";
3167   }
3168 
3169   /// Note: The correctness of this analysis depends on the fact that the
3170   /// following 2 sets will stop changing after some point.
3171   /// "Change" here means that their size changes.
3172   /// The size of each set is monotonically increasing
3173   /// (we only add items to them) and it is upper bounded by the number of
3174   /// instructions in the processed function (we can never save more
3175   /// elements in either set than this number). Hence, at some point,
3176   /// they will stop increasing.
3177   /// Consequently, at some point, both sets will have stopped
3178   /// changing, effectively making the analysis reach a fixpoint.
3179 
3180   /// Note: These 2 sets are disjoint and an instruction can be considered
3181   /// one of 3 things:
3182   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
3183   ///    the KnownUBInsts set.
3184   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
3185   ///    has a reason to assume it).
3186   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
3187   ///    could not find a reason to assume or prove that it can cause UB,
3188   ///    hence it assumes it doesn't. We have a set for these instructions
3189   ///    so that we don't reprocess them in every update.
3190   ///    Note however that instructions in this set may cause UB.
3191 
3192 protected:
3193   /// A set of all live instructions _known_ to cause UB.
3194   SmallPtrSet<Instruction *, 8> KnownUBInsts;
3195 
3196 private:
3197   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
3198   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
3199 
3200   // Should be called on updates in which if we're processing an instruction
3201   // \p I that depends on a value \p V, one of the following has to happen:
3202   // - If the value is assumed, then stop.
3203   // - If the value is known but undef, then consider it UB.
3204   // - Otherwise, do specific processing with the simplified value.
3205   // We return std::nullopt in the first 2 cases to signify that an appropriate
3206   // action was taken and the caller should stop.
3207   // Otherwise, we return the simplified value that the caller should
3208   // use for specific processing.
3209   std::optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
3210                                               Instruction *I) {
3211     bool UsedAssumedInformation = false;
3212     std::optional<Value *> SimplifiedV =
3213         A.getAssumedSimplified(IRPosition::value(*V), *this,
3214                                UsedAssumedInformation, AA::Interprocedural);
3215     if (!UsedAssumedInformation) {
3216       // Don't depend on assumed values.
3217       if (!SimplifiedV) {
3218         // If it is known (which we tested above) but it doesn't have a value,
3219         // then we can assume `undef` and hence the instruction is UB.
3220         KnownUBInsts.insert(I);
3221         return std::nullopt;
3222       }
3223       if (!*SimplifiedV)
3224         return nullptr;
3225       V = *SimplifiedV;
3226     }
3227     if (isa<UndefValue>(V)) {
3228       KnownUBInsts.insert(I);
3229       return std::nullopt;
3230     }
3231     return V;
3232   }
3233 };
3234 
3235 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
3236   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
3237       : AAUndefinedBehaviorImpl(IRP, A) {}
3238 
3239   /// See AbstractAttribute::trackStatistics()
3240   void trackStatistics() const override {
3241     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
3242                "Number of instructions known to have UB");
3243     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
3244         KnownUBInsts.size();
3245   }
3246 };
3247 } // namespace
3248 
3249 /// ------------------------ Will-Return Attributes ----------------------------
3250 
3251 namespace {
3252 // Helper function that checks whether a function has any cycle which we don't
3253 // know if it is bounded or not.
3254 // Loops with maximum trip count are considered bounded, any other cycle not.
3255 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
3256   ScalarEvolution *SE =
3257       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
3258   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
3259   // If either SCEV or LoopInfo is not available for the function then we assume
3260   // any cycle to be unbounded cycle.
3261   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
3262   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
3263   if (!SE || !LI) {
3264     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
3265       if (SCCI.hasCycle())
3266         return true;
3267     return false;
3268   }
3269 
3270   // If there's irreducible control, the function may contain non-loop cycles.
3271   if (mayContainIrreducibleControl(F, LI))
3272     return true;
3273 
3274   // Any loop that does not have a max trip count is considered unbounded cycle.
3275   for (auto *L : LI->getLoopsInPreorder()) {
3276     if (!SE->getSmallConstantMaxTripCount(L))
3277       return true;
3278   }
3279   return false;
3280 }
3281 
3282 struct AAWillReturnImpl : public AAWillReturn {
3283   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
3284       : AAWillReturn(IRP, A) {}
3285 
3286   /// See AbstractAttribute::initialize(...).
3287   void initialize(Attributor &A) override {
3288     bool IsKnown;
3289     assert(!AA::hasAssumedIRAttr<Attribute::WillReturn>(
3290         A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
3291     (void)IsKnown;
3292   }
3293 
3294   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
3295   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
3296     if (!A.hasAttr(getIRPosition(), {Attribute::MustProgress}))
3297       return false;
3298 
3299     bool IsKnown;
3300     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3301       return IsKnown || !KnownOnly;
3302     return false;
3303   }
3304 
3305   /// See AbstractAttribute::updateImpl(...).
3306   ChangeStatus updateImpl(Attributor &A) override {
3307     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
3308       return ChangeStatus::UNCHANGED;
3309 
3310     auto CheckForWillReturn = [&](Instruction &I) {
3311       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
3312       bool IsKnown;
3313       if (AA::hasAssumedIRAttr<Attribute::WillReturn>(
3314               A, this, IPos, DepClassTy::REQUIRED, IsKnown)) {
3315         if (IsKnown)
3316           return true;
3317       } else {
3318         return false;
3319       }
3320       bool IsKnownNoRecurse;
3321       return AA::hasAssumedIRAttr<Attribute::NoRecurse>(
3322           A, this, IPos, DepClassTy::REQUIRED, IsKnownNoRecurse);
3323     };
3324 
3325     bool UsedAssumedInformation = false;
3326     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
3327                                            UsedAssumedInformation))
3328       return indicatePessimisticFixpoint();
3329 
3330     return ChangeStatus::UNCHANGED;
3331   }
3332 
3333   /// See AbstractAttribute::getAsStr()
3334   const std::string getAsStr(Attributor *A) const override {
3335     return getAssumed() ? "willreturn" : "may-noreturn";
3336   }
3337 };
3338 
3339 struct AAWillReturnFunction final : AAWillReturnImpl {
3340   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
3341       : AAWillReturnImpl(IRP, A) {}
3342 
3343   /// See AbstractAttribute::initialize(...).
3344   void initialize(Attributor &A) override {
3345     AAWillReturnImpl::initialize(A);
3346 
3347     Function *F = getAnchorScope();
3348     assert(F && "Did expect an anchor function");
3349     if (F->isDeclaration() || mayContainUnboundedCycle(*F, A))
3350       indicatePessimisticFixpoint();
3351   }
3352 
3353   /// See AbstractAttribute::trackStatistics()
3354   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
3355 };
3356 
3357 /// WillReturn attribute deduction for a call sites.
3358 struct AAWillReturnCallSite final : AAWillReturnImpl {
3359   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
3360       : AAWillReturnImpl(IRP, A) {}
3361 
3362   /// See AbstractAttribute::updateImpl(...).
3363   ChangeStatus updateImpl(Attributor &A) override {
3364     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
3365       return ChangeStatus::UNCHANGED;
3366 
3367     // TODO: Once we have call site specific value information we can provide
3368     //       call site specific liveness information and then it makes
3369     //       sense to specialize attributes for call sites arguments instead of
3370     //       redirecting requests to the callee argument.
3371     Function *F = getAssociatedFunction();
3372     const IRPosition &FnPos = IRPosition::function(*F);
3373     bool IsKnown;
3374     if (AA::hasAssumedIRAttr<Attribute::WillReturn>(
3375             A, this, FnPos, DepClassTy::REQUIRED, IsKnown))
3376       return ChangeStatus::UNCHANGED;
3377     return indicatePessimisticFixpoint();
3378   }
3379 
3380   /// See AbstractAttribute::trackStatistics()
3381   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
3382 };
3383 } // namespace
3384 
3385 /// -------------------AAIntraFnReachability Attribute--------------------------
3386 
3387 /// All information associated with a reachability query. This boilerplate code
3388 /// is used by both AAIntraFnReachability and AAInterFnReachability, with
3389 /// different \p ToTy values.
3390 template <typename ToTy> struct ReachabilityQueryInfo {
3391   enum class Reachable {
3392     No,
3393     Yes,
3394   };
3395 
3396   /// Start here,
3397   const Instruction *From = nullptr;
3398   /// reach this place,
3399   const ToTy *To = nullptr;
3400   /// without going through any of these instructions,
3401   const AA::InstExclusionSetTy *ExclusionSet = nullptr;
3402   /// and remember if it worked:
3403   Reachable Result = Reachable::No;
3404 
3405   ReachabilityQueryInfo(const Instruction *From, const ToTy *To)
3406       : From(From), To(To) {}
3407 
3408   /// Constructor replacement to ensure unique and stable sets are used for the
3409   /// cache.
3410   ReachabilityQueryInfo(Attributor &A, const Instruction &From, const ToTy &To,
3411                         const AA::InstExclusionSetTy *ES, bool MakeUnique)
3412       : From(&From), To(&To), ExclusionSet(ES) {
3413 
3414     if (!ES || ES->empty()) {
3415       ExclusionSet = nullptr;
3416     } else if (MakeUnique) {
3417       ExclusionSet = A.getInfoCache().getOrCreateUniqueBlockExecutionSet(ES);
3418     }
3419   }
3420 
3421   ReachabilityQueryInfo(const ReachabilityQueryInfo &RQI)
3422       : From(RQI.From), To(RQI.To), ExclusionSet(RQI.ExclusionSet) {}
3423 };
3424 
3425 namespace llvm {
3426 template <typename ToTy> struct DenseMapInfo<ReachabilityQueryInfo<ToTy> *> {
3427   using InstSetDMI = DenseMapInfo<const AA::InstExclusionSetTy *>;
3428   using PairDMI = DenseMapInfo<std::pair<const Instruction *, const ToTy *>>;
3429 
3430   static ReachabilityQueryInfo<ToTy> EmptyKey;
3431   static ReachabilityQueryInfo<ToTy> TombstoneKey;
3432 
3433   static inline ReachabilityQueryInfo<ToTy> *getEmptyKey() { return &EmptyKey; }
3434   static inline ReachabilityQueryInfo<ToTy> *getTombstoneKey() {
3435     return &TombstoneKey;
3436   }
3437   static unsigned getHashValue(const ReachabilityQueryInfo<ToTy> *RQI) {
3438     unsigned H = PairDMI ::getHashValue({RQI->From, RQI->To});
3439     H += InstSetDMI::getHashValue(RQI->ExclusionSet);
3440     return H;
3441   }
3442   static bool isEqual(const ReachabilityQueryInfo<ToTy> *LHS,
3443                       const ReachabilityQueryInfo<ToTy> *RHS) {
3444     if (!PairDMI::isEqual({LHS->From, LHS->To}, {RHS->From, RHS->To}))
3445       return false;
3446     return InstSetDMI::isEqual(LHS->ExclusionSet, RHS->ExclusionSet);
3447   }
3448 };
3449 
3450 #define DefineKeys(ToTy)                                                       \
3451   template <>                                                                  \
3452   ReachabilityQueryInfo<ToTy>                                                  \
3453       DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::EmptyKey =                  \
3454           ReachabilityQueryInfo<ToTy>(                                         \
3455               DenseMapInfo<const Instruction *>::getEmptyKey(),                \
3456               DenseMapInfo<const ToTy *>::getEmptyKey());                      \
3457   template <>                                                                  \
3458   ReachabilityQueryInfo<ToTy>                                                  \
3459       DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::TombstoneKey =              \
3460           ReachabilityQueryInfo<ToTy>(                                         \
3461               DenseMapInfo<const Instruction *>::getTombstoneKey(),            \
3462               DenseMapInfo<const ToTy *>::getTombstoneKey());
3463 
3464 DefineKeys(Instruction) DefineKeys(Function)
3465 #undef DefineKeys
3466 
3467 } // namespace llvm
3468 
3469 namespace {
3470 
3471 template <typename BaseTy, typename ToTy>
3472 struct CachedReachabilityAA : public BaseTy {
3473   using RQITy = ReachabilityQueryInfo<ToTy>;
3474 
3475   CachedReachabilityAA(const IRPosition &IRP, Attributor &A) : BaseTy(IRP, A) {}
3476 
3477   /// See AbstractAttribute::isQueryAA.
3478   bool isQueryAA() const override { return true; }
3479 
3480   /// See AbstractAttribute::updateImpl(...).
3481   ChangeStatus updateImpl(Attributor &A) override {
3482     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3483     InUpdate = true;
3484     for (unsigned u = 0, e = QueryVector.size(); u < e; ++u) {
3485       RQITy *RQI = QueryVector[u];
3486       if (RQI->Result == RQITy::Reachable::No && isReachableImpl(A, *RQI))
3487         Changed = ChangeStatus::CHANGED;
3488     }
3489     InUpdate = false;
3490     return Changed;
3491   }
3492 
3493   virtual bool isReachableImpl(Attributor &A, RQITy &RQI) = 0;
3494 
3495   bool rememberResult(Attributor &A, typename RQITy::Reachable Result,
3496                       RQITy &RQI, bool UsedExclusionSet) {
3497     RQI.Result = Result;
3498 
3499     // Remove the temporary RQI from the cache.
3500     if (!InUpdate)
3501       QueryCache.erase(&RQI);
3502 
3503     // Insert a plain RQI (w/o exclusion set) if that makes sense. Two options:
3504     // 1) If it is reachable, it doesn't matter if we have an exclusion set for
3505     // this query. 2) We did not use the exclusion set, potentially because
3506     // there is none.
3507     if (Result == RQITy::Reachable::Yes || !UsedExclusionSet) {
3508       RQITy PlainRQI(RQI.From, RQI.To);
3509       if (!QueryCache.count(&PlainRQI)) {
3510         RQITy *RQIPtr = new (A.Allocator) RQITy(RQI.From, RQI.To);
3511         RQIPtr->Result = Result;
3512         QueryVector.push_back(RQIPtr);
3513         QueryCache.insert(RQIPtr);
3514       }
3515     }
3516 
3517     // Check if we need to insert a new permanent RQI with the exclusion set.
3518     if (!InUpdate && Result != RQITy::Reachable::Yes && UsedExclusionSet) {
3519       assert((!RQI.ExclusionSet || !RQI.ExclusionSet->empty()) &&
3520              "Did not expect empty set!");
3521       RQITy *RQIPtr = new (A.Allocator)
3522           RQITy(A, *RQI.From, *RQI.To, RQI.ExclusionSet, true);
3523       assert(RQIPtr->Result == RQITy::Reachable::No && "Already reachable?");
3524       RQIPtr->Result = Result;
3525       assert(!QueryCache.count(RQIPtr));
3526       QueryVector.push_back(RQIPtr);
3527       QueryCache.insert(RQIPtr);
3528     }
3529 
3530     if (Result == RQITy::Reachable::No && !InUpdate)
3531       A.registerForUpdate(*this);
3532     return Result == RQITy::Reachable::Yes;
3533   }
3534 
3535   const std::string getAsStr(Attributor *A) const override {
3536     // TODO: Return the number of reachable queries.
3537     return "#queries(" + std::to_string(QueryVector.size()) + ")";
3538   }
3539 
3540   bool checkQueryCache(Attributor &A, RQITy &StackRQI,
3541                        typename RQITy::Reachable &Result) {
3542     if (!this->getState().isValidState()) {
3543       Result = RQITy::Reachable::Yes;
3544       return true;
3545     }
3546 
3547     // If we have an exclusion set we might be able to find our answer by
3548     // ignoring it first.
3549     if (StackRQI.ExclusionSet) {
3550       RQITy PlainRQI(StackRQI.From, StackRQI.To);
3551       auto It = QueryCache.find(&PlainRQI);
3552       if (It != QueryCache.end() && (*It)->Result == RQITy::Reachable::No) {
3553         Result = RQITy::Reachable::No;
3554         return true;
3555       }
3556     }
3557 
3558     auto It = QueryCache.find(&StackRQI);
3559     if (It != QueryCache.end()) {
3560       Result = (*It)->Result;
3561       return true;
3562     }
3563 
3564     // Insert a temporary for recursive queries. We will replace it with a
3565     // permanent entry later.
3566     QueryCache.insert(&StackRQI);
3567     return false;
3568   }
3569 
3570 private:
3571   bool InUpdate = false;
3572   SmallVector<RQITy *> QueryVector;
3573   DenseSet<RQITy *> QueryCache;
3574 };
3575 
3576 struct AAIntraFnReachabilityFunction final
3577     : public CachedReachabilityAA<AAIntraFnReachability, Instruction> {
3578   using Base = CachedReachabilityAA<AAIntraFnReachability, Instruction>;
3579   AAIntraFnReachabilityFunction(const IRPosition &IRP, Attributor &A)
3580       : Base(IRP, A) {}
3581 
3582   bool isAssumedReachable(
3583       Attributor &A, const Instruction &From, const Instruction &To,
3584       const AA::InstExclusionSetTy *ExclusionSet) const override {
3585     auto *NonConstThis = const_cast<AAIntraFnReachabilityFunction *>(this);
3586     if (&From == &To)
3587       return true;
3588 
3589     RQITy StackRQI(A, From, To, ExclusionSet, false);
3590     typename RQITy::Reachable Result;
3591     if (!NonConstThis->checkQueryCache(A, StackRQI, Result))
3592       return NonConstThis->isReachableImpl(A, StackRQI);
3593     return Result == RQITy::Reachable::Yes;
3594   }
3595 
3596   ChangeStatus updateImpl(Attributor &A) override {
3597     // We only depend on liveness. DeadEdges is all we care about, check if any
3598     // of them changed.
3599     auto *LivenessAA =
3600         A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
3601     if (LivenessAA && llvm::all_of(DeadEdges, [&](const auto &DeadEdge) {
3602           return LivenessAA->isEdgeDead(DeadEdge.first, DeadEdge.second);
3603         })) {
3604       return ChangeStatus::UNCHANGED;
3605     }
3606     DeadEdges.clear();
3607     return Base::updateImpl(A);
3608   }
3609 
3610   bool isReachableImpl(Attributor &A, RQITy &RQI) override {
3611     const Instruction *Origin = RQI.From;
3612     bool UsedExclusionSet = false;
3613 
3614     auto WillReachInBlock = [&](const Instruction &From, const Instruction &To,
3615                                 const AA::InstExclusionSetTy *ExclusionSet) {
3616       const Instruction *IP = &From;
3617       while (IP && IP != &To) {
3618         if (ExclusionSet && IP != Origin && ExclusionSet->count(IP)) {
3619           UsedExclusionSet = true;
3620           break;
3621         }
3622         IP = IP->getNextNode();
3623       }
3624       return IP == &To;
3625     };
3626 
3627     const BasicBlock *FromBB = RQI.From->getParent();
3628     const BasicBlock *ToBB = RQI.To->getParent();
3629     assert(FromBB->getParent() == ToBB->getParent() &&
3630            "Not an intra-procedural query!");
3631 
3632     // Check intra-block reachability, however, other reaching paths are still
3633     // possible.
3634     if (FromBB == ToBB &&
3635         WillReachInBlock(*RQI.From, *RQI.To, RQI.ExclusionSet))
3636       return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet);
3637 
3638     // Check if reaching the ToBB block is sufficient or if even that would not
3639     // ensure reaching the target. In the latter case we are done.
3640     if (!WillReachInBlock(ToBB->front(), *RQI.To, RQI.ExclusionSet))
3641       return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet);
3642 
3643     SmallPtrSet<const BasicBlock *, 16> ExclusionBlocks;
3644     if (RQI.ExclusionSet)
3645       for (auto *I : *RQI.ExclusionSet)
3646         ExclusionBlocks.insert(I->getParent());
3647 
3648     // Check if we make it out of the FromBB block at all.
3649     if (ExclusionBlocks.count(FromBB) &&
3650         !WillReachInBlock(*RQI.From, *FromBB->getTerminator(),
3651                           RQI.ExclusionSet))
3652       return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet);
3653 
3654     SmallPtrSet<const BasicBlock *, 16> Visited;
3655     SmallVector<const BasicBlock *, 16> Worklist;
3656     Worklist.push_back(FromBB);
3657 
3658     DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> LocalDeadEdges;
3659     auto *LivenessAA =
3660         A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
3661     while (!Worklist.empty()) {
3662       const BasicBlock *BB = Worklist.pop_back_val();
3663       if (!Visited.insert(BB).second)
3664         continue;
3665       for (const BasicBlock *SuccBB : successors(BB)) {
3666         if (LivenessAA && LivenessAA->isEdgeDead(BB, SuccBB)) {
3667           LocalDeadEdges.insert({BB, SuccBB});
3668           continue;
3669         }
3670         // We checked before if we just need to reach the ToBB block.
3671         if (SuccBB == ToBB)
3672           return rememberResult(A, RQITy::Reachable::Yes, RQI,
3673                                 UsedExclusionSet);
3674         if (ExclusionBlocks.count(SuccBB)) {
3675           UsedExclusionSet = true;
3676           continue;
3677         }
3678         Worklist.push_back(SuccBB);
3679       }
3680     }
3681 
3682     DeadEdges.insert(LocalDeadEdges.begin(), LocalDeadEdges.end());
3683     return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet);
3684   }
3685 
3686   /// See AbstractAttribute::trackStatistics()
3687   void trackStatistics() const override {}
3688 
3689 private:
3690   // Set of assumed dead edges we used in the last query. If any changes we
3691   // update the state.
3692   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> DeadEdges;
3693 };
3694 } // namespace
3695 
3696 /// ------------------------ NoAlias Argument Attribute ------------------------
3697 
3698 bool AANoAlias::isImpliedByIR(Attributor &A, const IRPosition &IRP,
3699                               Attribute::AttrKind ImpliedAttributeKind,
3700                               bool IgnoreSubsumingPositions) {
3701   assert(ImpliedAttributeKind == Attribute::NoAlias &&
3702          "Unexpected attribute kind");
3703   Value *Val = &IRP.getAssociatedValue();
3704   if (IRP.getPositionKind() != IRP_CALL_SITE_ARGUMENT) {
3705     if (isa<AllocaInst>(Val))
3706       return true;
3707   } else {
3708     IgnoreSubsumingPositions = true;
3709   }
3710 
3711   if (isa<UndefValue>(Val))
3712     return true;
3713 
3714   if (isa<ConstantPointerNull>(Val) &&
3715       !NullPointerIsDefined(IRP.getAnchorScope(),
3716                             Val->getType()->getPointerAddressSpace()))
3717     return true;
3718 
3719   if (A.hasAttr(IRP, {Attribute::ByVal, Attribute::NoAlias},
3720                 IgnoreSubsumingPositions, Attribute::NoAlias))
3721     return true;
3722 
3723   return false;
3724 }
3725 
3726 namespace {
3727 struct AANoAliasImpl : AANoAlias {
3728   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
3729     assert(getAssociatedType()->isPointerTy() &&
3730            "Noalias is a pointer attribute");
3731   }
3732 
3733   const std::string getAsStr(Attributor *A) const override {
3734     return getAssumed() ? "noalias" : "may-alias";
3735   }
3736 };
3737 
3738 /// NoAlias attribute for a floating value.
3739 struct AANoAliasFloating final : AANoAliasImpl {
3740   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
3741       : AANoAliasImpl(IRP, A) {}
3742 
3743   /// See AbstractAttribute::updateImpl(...).
3744   ChangeStatus updateImpl(Attributor &A) override {
3745     // TODO: Implement this.
3746     return indicatePessimisticFixpoint();
3747   }
3748 
3749   /// See AbstractAttribute::trackStatistics()
3750   void trackStatistics() const override {
3751     STATS_DECLTRACK_FLOATING_ATTR(noalias)
3752   }
3753 };
3754 
3755 /// NoAlias attribute for an argument.
3756 struct AANoAliasArgument final
3757     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl,
3758                                       AANoAlias::StateType, false,
3759                                       Attribute::NoAlias> {
3760   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl,
3761                                                AANoAlias::StateType, false,
3762                                                Attribute::NoAlias>;
3763   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3764 
3765   /// See AbstractAttribute::update(...).
3766   ChangeStatus updateImpl(Attributor &A) override {
3767     // We have to make sure no-alias on the argument does not break
3768     // synchronization when this is a callback argument, see also [1] below.
3769     // If synchronization cannot be affected, we delegate to the base updateImpl
3770     // function, otherwise we give up for now.
3771 
3772     // If the function is no-sync, no-alias cannot break synchronization.
3773     bool IsKnownNoSycn;
3774     if (AA::hasAssumedIRAttr<Attribute::NoSync>(
3775             A, this, IRPosition::function_scope(getIRPosition()),
3776             DepClassTy::OPTIONAL, IsKnownNoSycn))
3777       return Base::updateImpl(A);
3778 
3779     // If the argument is read-only, no-alias cannot break synchronization.
3780     bool IsKnown;
3781     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3782       return Base::updateImpl(A);
3783 
3784     // If the argument is never passed through callbacks, no-alias cannot break
3785     // synchronization.
3786     bool UsedAssumedInformation = false;
3787     if (A.checkForAllCallSites(
3788             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3789             true, UsedAssumedInformation))
3790       return Base::updateImpl(A);
3791 
3792     // TODO: add no-alias but make sure it doesn't break synchronization by
3793     // introducing fake uses. See:
3794     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3795     //     International Workshop on OpenMP 2018,
3796     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3797 
3798     return indicatePessimisticFixpoint();
3799   }
3800 
3801   /// See AbstractAttribute::trackStatistics()
3802   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3803 };
3804 
3805 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3806   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3807       : AANoAliasImpl(IRP, A) {}
3808 
3809   /// Determine if the underlying value may alias with the call site argument
3810   /// \p OtherArgNo of \p ICS (= the underlying call site).
3811   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3812                             const AAMemoryBehavior &MemBehaviorAA,
3813                             const CallBase &CB, unsigned OtherArgNo) {
3814     // We do not need to worry about aliasing with the underlying IRP.
3815     if (this->getCalleeArgNo() == (int)OtherArgNo)
3816       return false;
3817 
3818     // If it is not a pointer or pointer vector we do not alias.
3819     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3820     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3821       return false;
3822 
3823     auto *CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3824         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3825 
3826     // If the argument is readnone, there is no read-write aliasing.
3827     if (CBArgMemBehaviorAA && CBArgMemBehaviorAA->isAssumedReadNone()) {
3828       A.recordDependence(*CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3829       return false;
3830     }
3831 
3832     // If the argument is readonly and the underlying value is readonly, there
3833     // is no read-write aliasing.
3834     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3835     if (CBArgMemBehaviorAA && CBArgMemBehaviorAA->isAssumedReadOnly() &&
3836         IsReadOnly) {
3837       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3838       A.recordDependence(*CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3839       return false;
3840     }
3841 
3842     // We have to utilize actual alias analysis queries so we need the object.
3843     if (!AAR)
3844       AAR = A.getInfoCache().getAnalysisResultForFunction<AAManager>(
3845           *getAnchorScope());
3846 
3847     // Try to rule it out at the call site.
3848     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3849     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3850                          "callsite arguments: "
3851                       << getAssociatedValue() << " " << *ArgOp << " => "
3852                       << (IsAliasing ? "" : "no-") << "alias \n");
3853 
3854     return IsAliasing;
3855   }
3856 
3857   bool isKnownNoAliasDueToNoAliasPreservation(
3858       Attributor &A, AAResults *&AAR, const AAMemoryBehavior &MemBehaviorAA) {
3859     // We can deduce "noalias" if the following conditions hold.
3860     // (i)   Associated value is assumed to be noalias in the definition.
3861     // (ii)  Associated value is assumed to be no-capture in all the uses
3862     //       possibly executed before this callsite.
3863     // (iii) There is no other pointer argument which could alias with the
3864     //       value.
3865 
3866     auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
3867       const auto *DerefAA = A.getAAFor<AADereferenceable>(
3868           *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
3869       return DerefAA ? DerefAA->getAssumedDereferenceableBytes() : 0;
3870     };
3871 
3872     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3873     const Function *ScopeFn = VIRP.getAnchorScope();
3874     // Check whether the value is captured in the scope using AANoCapture.
3875     // Look at CFG and check only uses possibly executed before this
3876     // callsite.
3877     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3878       Instruction *UserI = cast<Instruction>(U.getUser());
3879 
3880       // If UserI is the curr instruction and there is a single potential use of
3881       // the value in UserI we allow the use.
3882       // TODO: We should inspect the operands and allow those that cannot alias
3883       //       with the value.
3884       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3885         return true;
3886 
3887       if (ScopeFn) {
3888         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3889           if (CB->isArgOperand(&U)) {
3890 
3891             unsigned ArgNo = CB->getArgOperandNo(&U);
3892 
3893             bool IsKnownNoCapture;
3894             if (AA::hasAssumedIRAttr<Attribute::NoCapture>(
3895                     A, this, IRPosition::callsite_argument(*CB, ArgNo),
3896                     DepClassTy::OPTIONAL, IsKnownNoCapture))
3897               return true;
3898           }
3899         }
3900 
3901         if (!AA::isPotentiallyReachable(
3902                 A, *UserI, *getCtxI(), *this, /* ExclusionSet */ nullptr,
3903                 [ScopeFn](const Function &Fn) { return &Fn != ScopeFn; }))
3904           return true;
3905       }
3906 
3907       // TODO: We should track the capturing uses in AANoCapture but the problem
3908       //       is CGSCC runs. For those we would need to "allow" AANoCapture for
3909       //       a value in the module slice.
3910       switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
3911       case UseCaptureKind::NO_CAPTURE:
3912         return true;
3913       case UseCaptureKind::MAY_CAPTURE:
3914         LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *UserI
3915                           << "\n");
3916         return false;
3917       case UseCaptureKind::PASSTHROUGH:
3918         Follow = true;
3919         return true;
3920       }
3921       llvm_unreachable("unknown UseCaptureKind");
3922     };
3923 
3924     bool IsKnownNoCapture;
3925     const AANoCapture *NoCaptureAA = nullptr;
3926     bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
3927         A, this, VIRP, DepClassTy::NONE, IsKnownNoCapture, false, &NoCaptureAA);
3928     if (!IsAssumedNoCapture &&
3929         (!NoCaptureAA || !NoCaptureAA->isAssumedNoCaptureMaybeReturned())) {
3930       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3931         LLVM_DEBUG(
3932             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3933                    << " cannot be noalias as it is potentially captured\n");
3934         return false;
3935       }
3936     }
3937     if (NoCaptureAA)
3938       A.recordDependence(*NoCaptureAA, *this, DepClassTy::OPTIONAL);
3939 
3940     // Check there is no other pointer argument which could alias with the
3941     // value passed at this call site.
3942     // TODO: AbstractCallSite
3943     const auto &CB = cast<CallBase>(getAnchorValue());
3944     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3945       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3946         return false;
3947 
3948     return true;
3949   }
3950 
3951   /// See AbstractAttribute::updateImpl(...).
3952   ChangeStatus updateImpl(Attributor &A) override {
3953     // If the argument is readnone we are done as there are no accesses via the
3954     // argument.
3955     auto *MemBehaviorAA =
3956         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3957     if (MemBehaviorAA && MemBehaviorAA->isAssumedReadNone()) {
3958       A.recordDependence(*MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3959       return ChangeStatus::UNCHANGED;
3960     }
3961 
3962     bool IsKnownNoAlias;
3963     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3964     if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
3965             A, this, VIRP, DepClassTy::REQUIRED, IsKnownNoAlias)) {
3966       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3967                         << " is not no-alias at the definition\n");
3968       return indicatePessimisticFixpoint();
3969     }
3970 
3971     AAResults *AAR = nullptr;
3972     if (MemBehaviorAA &&
3973         isKnownNoAliasDueToNoAliasPreservation(A, AAR, *MemBehaviorAA)) {
3974       LLVM_DEBUG(
3975           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3976       return ChangeStatus::UNCHANGED;
3977     }
3978 
3979     return indicatePessimisticFixpoint();
3980   }
3981 
3982   /// See AbstractAttribute::trackStatistics()
3983   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3984 };
3985 
3986 /// NoAlias attribute for function return value.
3987 struct AANoAliasReturned final : AANoAliasImpl {
3988   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3989       : AANoAliasImpl(IRP, A) {}
3990 
3991   /// See AbstractAttribute::updateImpl(...).
3992   ChangeStatus updateImpl(Attributor &A) override {
3993 
3994     auto CheckReturnValue = [&](Value &RV) -> bool {
3995       if (Constant *C = dyn_cast<Constant>(&RV))
3996         if (C->isNullValue() || isa<UndefValue>(C))
3997           return true;
3998 
3999       /// For now, we can only deduce noalias if we have call sites.
4000       /// FIXME: add more support.
4001       if (!isa<CallBase>(&RV))
4002         return false;
4003 
4004       const IRPosition &RVPos = IRPosition::value(RV);
4005       bool IsKnownNoAlias;
4006       if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
4007               A, this, RVPos, DepClassTy::REQUIRED, IsKnownNoAlias))
4008         return false;
4009 
4010       bool IsKnownNoCapture;
4011       const AANoCapture *NoCaptureAA = nullptr;
4012       bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
4013           A, this, RVPos, DepClassTy::REQUIRED, IsKnownNoCapture, false,
4014           &NoCaptureAA);
4015       return IsAssumedNoCapture ||
4016              (NoCaptureAA && NoCaptureAA->isAssumedNoCaptureMaybeReturned());
4017     };
4018 
4019     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
4020       return indicatePessimisticFixpoint();
4021 
4022     return ChangeStatus::UNCHANGED;
4023   }
4024 
4025   /// See AbstractAttribute::trackStatistics()
4026   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
4027 };
4028 
4029 /// NoAlias attribute deduction for a call site return value.
4030 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
4031   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
4032       : AANoAliasImpl(IRP, A) {}
4033 
4034   /// See AbstractAttribute::updateImpl(...).
4035   ChangeStatus updateImpl(Attributor &A) override {
4036     // TODO: Once we have call site specific value information we can provide
4037     //       call site specific liveness information and then it makes
4038     //       sense to specialize attributes for call sites arguments instead of
4039     //       redirecting requests to the callee argument.
4040     Function *F = getAssociatedFunction();
4041     const IRPosition &FnPos = IRPosition::returned(*F);
4042     bool IsKnownNoAlias;
4043     if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
4044             A, this, FnPos, DepClassTy::REQUIRED, IsKnownNoAlias))
4045       return indicatePessimisticFixpoint();
4046     return ChangeStatus::UNCHANGED;
4047   }
4048 
4049   /// See AbstractAttribute::trackStatistics()
4050   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
4051 };
4052 } // namespace
4053 
4054 /// -------------------AAIsDead Function Attribute-----------------------
4055 
4056 namespace {
4057 struct AAIsDeadValueImpl : public AAIsDead {
4058   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
4059 
4060   /// See AAIsDead::isAssumedDead().
4061   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
4062 
4063   /// See AAIsDead::isKnownDead().
4064   bool isKnownDead() const override { return isKnown(IS_DEAD); }
4065 
4066   /// See AAIsDead::isAssumedDead(BasicBlock *).
4067   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
4068 
4069   /// See AAIsDead::isKnownDead(BasicBlock *).
4070   bool isKnownDead(const BasicBlock *BB) const override { return false; }
4071 
4072   /// See AAIsDead::isAssumedDead(Instruction *I).
4073   bool isAssumedDead(const Instruction *I) const override {
4074     return I == getCtxI() && isAssumedDead();
4075   }
4076 
4077   /// See AAIsDead::isKnownDead(Instruction *I).
4078   bool isKnownDead(const Instruction *I) const override {
4079     return isAssumedDead(I) && isKnownDead();
4080   }
4081 
4082   /// See AbstractAttribute::getAsStr().
4083   const std::string getAsStr(Attributor *A) const override {
4084     return isAssumedDead() ? "assumed-dead" : "assumed-live";
4085   }
4086 
4087   /// Check if all uses are assumed dead.
4088   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
4089     // Callers might not check the type, void has no uses.
4090     if (V.getType()->isVoidTy() || V.use_empty())
4091       return true;
4092 
4093     // If we replace a value with a constant there are no uses left afterwards.
4094     if (!isa<Constant>(V)) {
4095       if (auto *I = dyn_cast<Instruction>(&V))
4096         if (!A.isRunOn(*I->getFunction()))
4097           return false;
4098       bool UsedAssumedInformation = false;
4099       std::optional<Constant *> C =
4100           A.getAssumedConstant(V, *this, UsedAssumedInformation);
4101       if (!C || *C)
4102         return true;
4103     }
4104 
4105     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
4106     // Explicitly set the dependence class to required because we want a long
4107     // chain of N dependent instructions to be considered live as soon as one is
4108     // without going through N update cycles. This is not required for
4109     // correctness.
4110     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
4111                              DepClassTy::REQUIRED,
4112                              /* IgnoreDroppableUses */ false);
4113   }
4114 
4115   /// Determine if \p I is assumed to be side-effect free.
4116   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
4117     if (!I || wouldInstructionBeTriviallyDead(I))
4118       return true;
4119 
4120     auto *CB = dyn_cast<CallBase>(I);
4121     if (!CB || isa<IntrinsicInst>(CB))
4122       return false;
4123 
4124     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
4125 
4126     bool IsKnownNoUnwind;
4127     if (!AA::hasAssumedIRAttr<Attribute::NoUnwind>(
4128             A, this, CallIRP, DepClassTy::OPTIONAL, IsKnownNoUnwind))
4129       return false;
4130 
4131     bool IsKnown;
4132     return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
4133   }
4134 };
4135 
4136 struct AAIsDeadFloating : public AAIsDeadValueImpl {
4137   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
4138       : AAIsDeadValueImpl(IRP, A) {}
4139 
4140   /// See AbstractAttribute::initialize(...).
4141   void initialize(Attributor &A) override {
4142     AAIsDeadValueImpl::initialize(A);
4143 
4144     if (isa<UndefValue>(getAssociatedValue())) {
4145       indicatePessimisticFixpoint();
4146       return;
4147     }
4148 
4149     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
4150     if (!isAssumedSideEffectFree(A, I)) {
4151       if (!isa_and_nonnull<StoreInst>(I) && !isa_and_nonnull<FenceInst>(I))
4152         indicatePessimisticFixpoint();
4153       else
4154         removeAssumedBits(HAS_NO_EFFECT);
4155     }
4156   }
4157 
4158   bool isDeadFence(Attributor &A, FenceInst &FI) {
4159     const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
4160         IRPosition::function(*FI.getFunction()), *this, DepClassTy::NONE);
4161     if (!ExecDomainAA || !ExecDomainAA->isNoOpFence(FI))
4162       return false;
4163     A.recordDependence(*ExecDomainAA, *this, DepClassTy::OPTIONAL);
4164     return true;
4165   }
4166 
4167   bool isDeadStore(Attributor &A, StoreInst &SI,
4168                    SmallSetVector<Instruction *, 8> *AssumeOnlyInst = nullptr) {
4169     // Lang ref now states volatile store is not UB/dead, let's skip them.
4170     if (SI.isVolatile())
4171       return false;
4172 
4173     // If we are collecting assumes to be deleted we are in the manifest stage.
4174     // It's problematic to collect the potential copies again now so we use the
4175     // cached ones.
4176     bool UsedAssumedInformation = false;
4177     if (!AssumeOnlyInst) {
4178       PotentialCopies.clear();
4179       if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
4180                                                UsedAssumedInformation)) {
4181         LLVM_DEBUG(
4182             dbgs()
4183             << "[AAIsDead] Could not determine potential copies of store!\n");
4184         return false;
4185       }
4186     }
4187     LLVM_DEBUG(dbgs() << "[AAIsDead] Store has " << PotentialCopies.size()
4188                       << " potential copies.\n");
4189 
4190     InformationCache &InfoCache = A.getInfoCache();
4191     return llvm::all_of(PotentialCopies, [&](Value *V) {
4192       if (A.isAssumedDead(IRPosition::value(*V), this, nullptr,
4193                           UsedAssumedInformation))
4194         return true;
4195       if (auto *LI = dyn_cast<LoadInst>(V)) {
4196         if (llvm::all_of(LI->uses(), [&](const Use &U) {
4197               auto &UserI = cast<Instruction>(*U.getUser());
4198               if (InfoCache.isOnlyUsedByAssume(UserI)) {
4199                 if (AssumeOnlyInst)
4200                   AssumeOnlyInst->insert(&UserI);
4201                 return true;
4202               }
4203               return A.isAssumedDead(U, this, nullptr, UsedAssumedInformation);
4204             })) {
4205           return true;
4206         }
4207       }
4208       LLVM_DEBUG(dbgs() << "[AAIsDead] Potential copy " << *V
4209                         << " is assumed live!\n");
4210       return false;
4211     });
4212   }
4213 
4214   /// See AbstractAttribute::getAsStr().
4215   const std::string getAsStr(Attributor *A) const override {
4216     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
4217     if (isa_and_nonnull<StoreInst>(I))
4218       if (isValidState())
4219         return "assumed-dead-store";
4220     if (isa_and_nonnull<FenceInst>(I))
4221       if (isValidState())
4222         return "assumed-dead-fence";
4223     return AAIsDeadValueImpl::getAsStr(A);
4224   }
4225 
4226   /// See AbstractAttribute::updateImpl(...).
4227   ChangeStatus updateImpl(Attributor &A) override {
4228     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
4229     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
4230       if (!isDeadStore(A, *SI))
4231         return indicatePessimisticFixpoint();
4232     } else if (auto *FI = dyn_cast_or_null<FenceInst>(I)) {
4233       if (!isDeadFence(A, *FI))
4234         return indicatePessimisticFixpoint();
4235     } else {
4236       if (!isAssumedSideEffectFree(A, I))
4237         return indicatePessimisticFixpoint();
4238       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
4239         return indicatePessimisticFixpoint();
4240     }
4241     return ChangeStatus::UNCHANGED;
4242   }
4243 
4244   bool isRemovableStore() const override {
4245     return isAssumed(IS_REMOVABLE) && isa<StoreInst>(&getAssociatedValue());
4246   }
4247 
4248   /// See AbstractAttribute::manifest(...).
4249   ChangeStatus manifest(Attributor &A) override {
4250     Value &V = getAssociatedValue();
4251     if (auto *I = dyn_cast<Instruction>(&V)) {
4252       // If we get here we basically know the users are all dead. We check if
4253       // isAssumedSideEffectFree returns true here again because it might not be
4254       // the case and only the users are dead but the instruction (=call) is
4255       // still needed.
4256       if (auto *SI = dyn_cast<StoreInst>(I)) {
4257         SmallSetVector<Instruction *, 8> AssumeOnlyInst;
4258         bool IsDead = isDeadStore(A, *SI, &AssumeOnlyInst);
4259         (void)IsDead;
4260         assert(IsDead && "Store was assumed to be dead!");
4261         A.deleteAfterManifest(*I);
4262         for (size_t i = 0; i < AssumeOnlyInst.size(); ++i) {
4263           Instruction *AOI = AssumeOnlyInst[i];
4264           for (auto *Usr : AOI->users())
4265             AssumeOnlyInst.insert(cast<Instruction>(Usr));
4266           A.deleteAfterManifest(*AOI);
4267         }
4268         return ChangeStatus::CHANGED;
4269       }
4270       if (auto *FI = dyn_cast<FenceInst>(I)) {
4271         assert(isDeadFence(A, *FI));
4272         A.deleteAfterManifest(*FI);
4273         return ChangeStatus::CHANGED;
4274       }
4275       if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
4276         A.deleteAfterManifest(*I);
4277         return ChangeStatus::CHANGED;
4278       }
4279     }
4280     return ChangeStatus::UNCHANGED;
4281   }
4282 
4283   /// See AbstractAttribute::trackStatistics()
4284   void trackStatistics() const override {
4285     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
4286   }
4287 
4288 private:
4289   // The potential copies of a dead store, used for deletion during manifest.
4290   SmallSetVector<Value *, 4> PotentialCopies;
4291 };
4292 
4293 struct AAIsDeadArgument : public AAIsDeadFloating {
4294   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
4295       : AAIsDeadFloating(IRP, A) {}
4296 
4297   /// See AbstractAttribute::manifest(...).
4298   ChangeStatus manifest(Attributor &A) override {
4299     Argument &Arg = *getAssociatedArgument();
4300     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
4301       if (A.registerFunctionSignatureRewrite(
4302               Arg, /* ReplacementTypes */ {},
4303               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
4304               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
4305         return ChangeStatus::CHANGED;
4306       }
4307     return ChangeStatus::UNCHANGED;
4308   }
4309 
4310   /// See AbstractAttribute::trackStatistics()
4311   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
4312 };
4313 
4314 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
4315   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
4316       : AAIsDeadValueImpl(IRP, A) {}
4317 
4318   /// See AbstractAttribute::initialize(...).
4319   void initialize(Attributor &A) override {
4320     AAIsDeadValueImpl::initialize(A);
4321     if (isa<UndefValue>(getAssociatedValue()))
4322       indicatePessimisticFixpoint();
4323   }
4324 
4325   /// See AbstractAttribute::updateImpl(...).
4326   ChangeStatus updateImpl(Attributor &A) override {
4327     // TODO: Once we have call site specific value information we can provide
4328     //       call site specific liveness information and then it makes
4329     //       sense to specialize attributes for call sites arguments instead of
4330     //       redirecting requests to the callee argument.
4331     Argument *Arg = getAssociatedArgument();
4332     if (!Arg)
4333       return indicatePessimisticFixpoint();
4334     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4335     auto *ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
4336     if (!ArgAA)
4337       return indicatePessimisticFixpoint();
4338     return clampStateAndIndicateChange(getState(), ArgAA->getState());
4339   }
4340 
4341   /// See AbstractAttribute::manifest(...).
4342   ChangeStatus manifest(Attributor &A) override {
4343     CallBase &CB = cast<CallBase>(getAnchorValue());
4344     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
4345     assert(!isa<UndefValue>(U.get()) &&
4346            "Expected undef values to be filtered out!");
4347     UndefValue &UV = *UndefValue::get(U->getType());
4348     if (A.changeUseAfterManifest(U, UV))
4349       return ChangeStatus::CHANGED;
4350     return ChangeStatus::UNCHANGED;
4351   }
4352 
4353   /// See AbstractAttribute::trackStatistics()
4354   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
4355 };
4356 
4357 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
4358   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
4359       : AAIsDeadFloating(IRP, A) {}
4360 
4361   /// See AAIsDead::isAssumedDead().
4362   bool isAssumedDead() const override {
4363     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
4364   }
4365 
4366   /// See AbstractAttribute::initialize(...).
4367   void initialize(Attributor &A) override {
4368     AAIsDeadFloating::initialize(A);
4369     if (isa<UndefValue>(getAssociatedValue())) {
4370       indicatePessimisticFixpoint();
4371       return;
4372     }
4373 
4374     // We track this separately as a secondary state.
4375     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
4376   }
4377 
4378   /// See AbstractAttribute::updateImpl(...).
4379   ChangeStatus updateImpl(Attributor &A) override {
4380     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4381     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
4382       IsAssumedSideEffectFree = false;
4383       Changed = ChangeStatus::CHANGED;
4384     }
4385     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
4386       return indicatePessimisticFixpoint();
4387     return Changed;
4388   }
4389 
4390   /// See AbstractAttribute::trackStatistics()
4391   void trackStatistics() const override {
4392     if (IsAssumedSideEffectFree)
4393       STATS_DECLTRACK_CSRET_ATTR(IsDead)
4394     else
4395       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
4396   }
4397 
4398   /// See AbstractAttribute::getAsStr().
4399   const std::string getAsStr(Attributor *A) const override {
4400     return isAssumedDead()
4401                ? "assumed-dead"
4402                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
4403   }
4404 
4405 private:
4406   bool IsAssumedSideEffectFree = true;
4407 };
4408 
4409 struct AAIsDeadReturned : public AAIsDeadValueImpl {
4410   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
4411       : AAIsDeadValueImpl(IRP, A) {}
4412 
4413   /// See AbstractAttribute::updateImpl(...).
4414   ChangeStatus updateImpl(Attributor &A) override {
4415 
4416     bool UsedAssumedInformation = false;
4417     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
4418                               {Instruction::Ret}, UsedAssumedInformation);
4419 
4420     auto PredForCallSite = [&](AbstractCallSite ACS) {
4421       if (ACS.isCallbackCall() || !ACS.getInstruction())
4422         return false;
4423       return areAllUsesAssumedDead(A, *ACS.getInstruction());
4424     };
4425 
4426     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
4427                                 UsedAssumedInformation))
4428       return indicatePessimisticFixpoint();
4429 
4430     return ChangeStatus::UNCHANGED;
4431   }
4432 
4433   /// See AbstractAttribute::manifest(...).
4434   ChangeStatus manifest(Attributor &A) override {
4435     // TODO: Rewrite the signature to return void?
4436     bool AnyChange = false;
4437     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
4438     auto RetInstPred = [&](Instruction &I) {
4439       ReturnInst &RI = cast<ReturnInst>(I);
4440       if (!isa<UndefValue>(RI.getReturnValue()))
4441         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
4442       return true;
4443     };
4444     bool UsedAssumedInformation = false;
4445     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
4446                               UsedAssumedInformation);
4447     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
4448   }
4449 
4450   /// See AbstractAttribute::trackStatistics()
4451   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
4452 };
4453 
4454 struct AAIsDeadFunction : public AAIsDead {
4455   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
4456 
4457   /// See AbstractAttribute::initialize(...).
4458   void initialize(Attributor &A) override {
4459     Function *F = getAnchorScope();
4460     assert(F && "Did expect an anchor function");
4461     if (!isAssumedDeadInternalFunction(A)) {
4462       ToBeExploredFrom.insert(&F->getEntryBlock().front());
4463       assumeLive(A, F->getEntryBlock());
4464     }
4465   }
4466 
4467   bool isAssumedDeadInternalFunction(Attributor &A) {
4468     if (!getAnchorScope()->hasLocalLinkage())
4469       return false;
4470     bool UsedAssumedInformation = false;
4471     return A.checkForAllCallSites([](AbstractCallSite) { return false; }, *this,
4472                                   true, UsedAssumedInformation);
4473   }
4474 
4475   /// See AbstractAttribute::getAsStr().
4476   const std::string getAsStr(Attributor *A) const override {
4477     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
4478            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
4479            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
4480            std::to_string(KnownDeadEnds.size()) + "]";
4481   }
4482 
4483   /// See AbstractAttribute::manifest(...).
4484   ChangeStatus manifest(Attributor &A) override {
4485     assert(getState().isValidState() &&
4486            "Attempted to manifest an invalid state!");
4487 
4488     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
4489     Function &F = *getAnchorScope();
4490 
4491     if (AssumedLiveBlocks.empty()) {
4492       A.deleteAfterManifest(F);
4493       return ChangeStatus::CHANGED;
4494     }
4495 
4496     // Flag to determine if we can change an invoke to a call assuming the
4497     // callee is nounwind. This is not possible if the personality of the
4498     // function allows to catch asynchronous exceptions.
4499     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
4500 
4501     KnownDeadEnds.set_union(ToBeExploredFrom);
4502     for (const Instruction *DeadEndI : KnownDeadEnds) {
4503       auto *CB = dyn_cast<CallBase>(DeadEndI);
4504       if (!CB)
4505         continue;
4506       bool IsKnownNoReturn;
4507       bool MayReturn = !AA::hasAssumedIRAttr<Attribute::NoReturn>(
4508           A, this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL,
4509           IsKnownNoReturn);
4510       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
4511         continue;
4512 
4513       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
4514         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
4515       else
4516         A.changeToUnreachableAfterManifest(
4517             const_cast<Instruction *>(DeadEndI->getNextNode()));
4518       HasChanged = ChangeStatus::CHANGED;
4519     }
4520 
4521     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
4522     for (BasicBlock &BB : F)
4523       if (!AssumedLiveBlocks.count(&BB)) {
4524         A.deleteAfterManifest(BB);
4525         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
4526         HasChanged = ChangeStatus::CHANGED;
4527       }
4528 
4529     return HasChanged;
4530   }
4531 
4532   /// See AbstractAttribute::updateImpl(...).
4533   ChangeStatus updateImpl(Attributor &A) override;
4534 
4535   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
4536     assert(From->getParent() == getAnchorScope() &&
4537            To->getParent() == getAnchorScope() &&
4538            "Used AAIsDead of the wrong function");
4539     return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
4540   }
4541 
4542   /// See AbstractAttribute::trackStatistics()
4543   void trackStatistics() const override {}
4544 
4545   /// Returns true if the function is assumed dead.
4546   bool isAssumedDead() const override { return false; }
4547 
4548   /// See AAIsDead::isKnownDead().
4549   bool isKnownDead() const override { return false; }
4550 
4551   /// See AAIsDead::isAssumedDead(BasicBlock *).
4552   bool isAssumedDead(const BasicBlock *BB) const override {
4553     assert(BB->getParent() == getAnchorScope() &&
4554            "BB must be in the same anchor scope function.");
4555 
4556     if (!getAssumed())
4557       return false;
4558     return !AssumedLiveBlocks.count(BB);
4559   }
4560 
4561   /// See AAIsDead::isKnownDead(BasicBlock *).
4562   bool isKnownDead(const BasicBlock *BB) const override {
4563     return getKnown() && isAssumedDead(BB);
4564   }
4565 
4566   /// See AAIsDead::isAssumed(Instruction *I).
4567   bool isAssumedDead(const Instruction *I) const override {
4568     assert(I->getParent()->getParent() == getAnchorScope() &&
4569            "Instruction must be in the same anchor scope function.");
4570 
4571     if (!getAssumed())
4572       return false;
4573 
4574     // If it is not in AssumedLiveBlocks then it for sure dead.
4575     // Otherwise, it can still be after noreturn call in a live block.
4576     if (!AssumedLiveBlocks.count(I->getParent()))
4577       return true;
4578 
4579     // If it is not after a liveness barrier it is live.
4580     const Instruction *PrevI = I->getPrevNode();
4581     while (PrevI) {
4582       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
4583         return true;
4584       PrevI = PrevI->getPrevNode();
4585     }
4586     return false;
4587   }
4588 
4589   /// See AAIsDead::isKnownDead(Instruction *I).
4590   bool isKnownDead(const Instruction *I) const override {
4591     return getKnown() && isAssumedDead(I);
4592   }
4593 
4594   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
4595   /// that internal function called from \p BB should now be looked at.
4596   bool assumeLive(Attributor &A, const BasicBlock &BB) {
4597     if (!AssumedLiveBlocks.insert(&BB).second)
4598       return false;
4599 
4600     // We assume that all of BB is (probably) live now and if there are calls to
4601     // internal functions we will assume that those are now live as well. This
4602     // is a performance optimization for blocks with calls to a lot of internal
4603     // functions. It can however cause dead functions to be treated as live.
4604     for (const Instruction &I : BB)
4605       if (const auto *CB = dyn_cast<CallBase>(&I))
4606         if (auto *F = dyn_cast_if_present<Function>(CB->getCalledOperand()))
4607           if (F->hasLocalLinkage())
4608             A.markLiveInternalFunction(*F);
4609     return true;
4610   }
4611 
4612   /// Collection of instructions that need to be explored again, e.g., we
4613   /// did assume they do not transfer control to (one of their) successors.
4614   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
4615 
4616   /// Collection of instructions that are known to not transfer control.
4617   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
4618 
4619   /// Collection of all assumed live edges
4620   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
4621 
4622   /// Collection of all assumed live BasicBlocks.
4623   DenseSet<const BasicBlock *> AssumedLiveBlocks;
4624 };
4625 
4626 static bool
4627 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
4628                         AbstractAttribute &AA,
4629                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4630   const IRPosition &IPos = IRPosition::callsite_function(CB);
4631 
4632   bool IsKnownNoReturn;
4633   if (AA::hasAssumedIRAttr<Attribute::NoReturn>(
4634           A, &AA, IPos, DepClassTy::OPTIONAL, IsKnownNoReturn))
4635     return !IsKnownNoReturn;
4636   if (CB.isTerminator())
4637     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
4638   else
4639     AliveSuccessors.push_back(CB.getNextNode());
4640   return false;
4641 }
4642 
4643 static bool
4644 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
4645                         AbstractAttribute &AA,
4646                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4647   bool UsedAssumedInformation =
4648       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
4649 
4650   // First, determine if we can change an invoke to a call assuming the
4651   // callee is nounwind. This is not possible if the personality of the
4652   // function allows to catch asynchronous exceptions.
4653   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
4654     AliveSuccessors.push_back(&II.getUnwindDest()->front());
4655   } else {
4656     const IRPosition &IPos = IRPosition::callsite_function(II);
4657 
4658     bool IsKnownNoUnwind;
4659     if (AA::hasAssumedIRAttr<Attribute::NoUnwind>(
4660             A, &AA, IPos, DepClassTy::OPTIONAL, IsKnownNoUnwind)) {
4661       UsedAssumedInformation |= !IsKnownNoUnwind;
4662     } else {
4663       AliveSuccessors.push_back(&II.getUnwindDest()->front());
4664     }
4665   }
4666   return UsedAssumedInformation;
4667 }
4668 
4669 static bool
4670 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
4671                         AbstractAttribute &AA,
4672                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4673   bool UsedAssumedInformation = false;
4674   if (BI.getNumSuccessors() == 1) {
4675     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
4676   } else {
4677     std::optional<Constant *> C =
4678         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
4679     if (!C || isa_and_nonnull<UndefValue>(*C)) {
4680       // No value yet, assume both edges are dead.
4681     } else if (isa_and_nonnull<ConstantInt>(*C)) {
4682       const BasicBlock *SuccBB =
4683           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
4684       AliveSuccessors.push_back(&SuccBB->front());
4685     } else {
4686       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
4687       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
4688       UsedAssumedInformation = false;
4689     }
4690   }
4691   return UsedAssumedInformation;
4692 }
4693 
4694 static bool
4695 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
4696                         AbstractAttribute &AA,
4697                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
4698   bool UsedAssumedInformation = false;
4699   std::optional<Constant *> C =
4700       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
4701   if (!C || isa_and_nonnull<UndefValue>(*C)) {
4702     // No value yet, assume all edges are dead.
4703   } else if (isa_and_nonnull<ConstantInt>(*C)) {
4704     for (const auto &CaseIt : SI.cases()) {
4705       if (CaseIt.getCaseValue() == *C) {
4706         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
4707         return UsedAssumedInformation;
4708       }
4709     }
4710     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
4711     return UsedAssumedInformation;
4712   } else {
4713     for (const BasicBlock *SuccBB : successors(SI.getParent()))
4714       AliveSuccessors.push_back(&SuccBB->front());
4715   }
4716   return UsedAssumedInformation;
4717 }
4718 
4719 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
4720   ChangeStatus Change = ChangeStatus::UNCHANGED;
4721 
4722   if (AssumedLiveBlocks.empty()) {
4723     if (isAssumedDeadInternalFunction(A))
4724       return ChangeStatus::UNCHANGED;
4725 
4726     Function *F = getAnchorScope();
4727     ToBeExploredFrom.insert(&F->getEntryBlock().front());
4728     assumeLive(A, F->getEntryBlock());
4729     Change = ChangeStatus::CHANGED;
4730   }
4731 
4732   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
4733                     << getAnchorScope()->size() << "] BBs and "
4734                     << ToBeExploredFrom.size() << " exploration points and "
4735                     << KnownDeadEnds.size() << " known dead ends\n");
4736 
4737   // Copy and clear the list of instructions we need to explore from. It is
4738   // refilled with instructions the next update has to look at.
4739   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
4740                                                ToBeExploredFrom.end());
4741   decltype(ToBeExploredFrom) NewToBeExploredFrom;
4742 
4743   SmallVector<const Instruction *, 8> AliveSuccessors;
4744   while (!Worklist.empty()) {
4745     const Instruction *I = Worklist.pop_back_val();
4746     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
4747 
4748     // Fast forward for uninteresting instructions. We could look for UB here
4749     // though.
4750     while (!I->isTerminator() && !isa<CallBase>(I))
4751       I = I->getNextNode();
4752 
4753     AliveSuccessors.clear();
4754 
4755     bool UsedAssumedInformation = false;
4756     switch (I->getOpcode()) {
4757     // TODO: look for (assumed) UB to backwards propagate "deadness".
4758     default:
4759       assert(I->isTerminator() &&
4760              "Expected non-terminators to be handled already!");
4761       for (const BasicBlock *SuccBB : successors(I->getParent()))
4762         AliveSuccessors.push_back(&SuccBB->front());
4763       break;
4764     case Instruction::Call:
4765       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
4766                                                        *this, AliveSuccessors);
4767       break;
4768     case Instruction::Invoke:
4769       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
4770                                                        *this, AliveSuccessors);
4771       break;
4772     case Instruction::Br:
4773       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
4774                                                        *this, AliveSuccessors);
4775       break;
4776     case Instruction::Switch:
4777       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
4778                                                        *this, AliveSuccessors);
4779       break;
4780     }
4781 
4782     if (UsedAssumedInformation) {
4783       NewToBeExploredFrom.insert(I);
4784     } else if (AliveSuccessors.empty() ||
4785                (I->isTerminator() &&
4786                 AliveSuccessors.size() < I->getNumSuccessors())) {
4787       if (KnownDeadEnds.insert(I))
4788         Change = ChangeStatus::CHANGED;
4789     }
4790 
4791     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
4792                       << AliveSuccessors.size() << " UsedAssumedInformation: "
4793                       << UsedAssumedInformation << "\n");
4794 
4795     for (const Instruction *AliveSuccessor : AliveSuccessors) {
4796       if (!I->isTerminator()) {
4797         assert(AliveSuccessors.size() == 1 &&
4798                "Non-terminator expected to have a single successor!");
4799         Worklist.push_back(AliveSuccessor);
4800       } else {
4801         // record the assumed live edge
4802         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
4803         if (AssumedLiveEdges.insert(Edge).second)
4804           Change = ChangeStatus::CHANGED;
4805         if (assumeLive(A, *AliveSuccessor->getParent()))
4806           Worklist.push_back(AliveSuccessor);
4807       }
4808     }
4809   }
4810 
4811   // Check if the content of ToBeExploredFrom changed, ignore the order.
4812   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
4813       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
4814         return !ToBeExploredFrom.count(I);
4815       })) {
4816     Change = ChangeStatus::CHANGED;
4817     ToBeExploredFrom = std::move(NewToBeExploredFrom);
4818   }
4819 
4820   // If we know everything is live there is no need to query for liveness.
4821   // Instead, indicating a pessimistic fixpoint will cause the state to be
4822   // "invalid" and all queries to be answered conservatively without lookups.
4823   // To be in this state we have to (1) finished the exploration and (3) not
4824   // discovered any non-trivial dead end and (2) not ruled unreachable code
4825   // dead.
4826   if (ToBeExploredFrom.empty() &&
4827       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4828       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4829         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4830       }))
4831     return indicatePessimisticFixpoint();
4832   return Change;
4833 }
4834 
4835 /// Liveness information for a call sites.
4836 struct AAIsDeadCallSite final : AAIsDeadFunction {
4837   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4838       : AAIsDeadFunction(IRP, A) {}
4839 
4840   /// See AbstractAttribute::initialize(...).
4841   void initialize(Attributor &A) override {
4842     // TODO: Once we have call site specific value information we can provide
4843     //       call site specific liveness information and then it makes
4844     //       sense to specialize attributes for call sites instead of
4845     //       redirecting requests to the callee.
4846     llvm_unreachable("Abstract attributes for liveness are not "
4847                      "supported for call sites yet!");
4848   }
4849 
4850   /// See AbstractAttribute::updateImpl(...).
4851   ChangeStatus updateImpl(Attributor &A) override {
4852     return indicatePessimisticFixpoint();
4853   }
4854 
4855   /// See AbstractAttribute::trackStatistics()
4856   void trackStatistics() const override {}
4857 };
4858 } // namespace
4859 
4860 /// -------------------- Dereferenceable Argument Attribute --------------------
4861 
4862 namespace {
4863 struct AADereferenceableImpl : AADereferenceable {
4864   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4865       : AADereferenceable(IRP, A) {}
4866   using StateType = DerefState;
4867 
4868   /// See AbstractAttribute::initialize(...).
4869   void initialize(Attributor &A) override {
4870     Value &V = *getAssociatedValue().stripPointerCasts();
4871     SmallVector<Attribute, 4> Attrs;
4872     A.getAttrs(getIRPosition(),
4873                {Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4874                Attrs, /* IgnoreSubsumingPositions */ false);
4875     for (const Attribute &Attr : Attrs)
4876       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4877 
4878     // Ensure we initialize the non-null AA (if necessary).
4879     bool IsKnownNonNull;
4880     AA::hasAssumedIRAttr<Attribute::NonNull>(
4881         A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnownNonNull);
4882 
4883     bool CanBeNull, CanBeFreed;
4884     takeKnownDerefBytesMaximum(V.getPointerDereferenceableBytes(
4885         A.getDataLayout(), CanBeNull, CanBeFreed));
4886 
4887     if (Instruction *CtxI = getCtxI())
4888       followUsesInMBEC(*this, A, getState(), *CtxI);
4889   }
4890 
4891   /// See AbstractAttribute::getState()
4892   /// {
4893   StateType &getState() override { return *this; }
4894   const StateType &getState() const override { return *this; }
4895   /// }
4896 
4897   /// Helper function for collecting accessed bytes in must-be-executed-context
4898   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4899                               DerefState &State) {
4900     const Value *UseV = U->get();
4901     if (!UseV->getType()->isPointerTy())
4902       return;
4903 
4904     std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4905     if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4906       return;
4907 
4908     int64_t Offset;
4909     const Value *Base = GetPointerBaseWithConstantOffset(
4910         Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4911     if (Base && Base == &getAssociatedValue())
4912       State.addAccessedBytes(Offset, Loc->Size.getValue());
4913   }
4914 
4915   /// See followUsesInMBEC
4916   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4917                        AADereferenceable::StateType &State) {
4918     bool IsNonNull = false;
4919     bool TrackUse = false;
4920     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4921         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4922     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4923                       << " for instruction " << *I << "\n");
4924 
4925     addAccessedBytesForUse(A, U, I, State);
4926     State.takeKnownDerefBytesMaximum(DerefBytes);
4927     return TrackUse;
4928   }
4929 
4930   /// See AbstractAttribute::manifest(...).
4931   ChangeStatus manifest(Attributor &A) override {
4932     ChangeStatus Change = AADereferenceable::manifest(A);
4933     bool IsKnownNonNull;
4934     bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
4935         A, this, getIRPosition(), DepClassTy::NONE, IsKnownNonNull);
4936     if (IsAssumedNonNull &&
4937         A.hasAttr(getIRPosition(), Attribute::DereferenceableOrNull)) {
4938       A.removeAttrs(getIRPosition(), {Attribute::DereferenceableOrNull});
4939       return ChangeStatus::CHANGED;
4940     }
4941     return Change;
4942   }
4943 
4944   void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
4945                             SmallVectorImpl<Attribute> &Attrs) const override {
4946     // TODO: Add *_globally support
4947     bool IsKnownNonNull;
4948     bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
4949         A, this, getIRPosition(), DepClassTy::NONE, IsKnownNonNull);
4950     if (IsAssumedNonNull)
4951       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4952           Ctx, getAssumedDereferenceableBytes()));
4953     else
4954       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4955           Ctx, getAssumedDereferenceableBytes()));
4956   }
4957 
4958   /// See AbstractAttribute::getAsStr().
4959   const std::string getAsStr(Attributor *A) const override {
4960     if (!getAssumedDereferenceableBytes())
4961       return "unknown-dereferenceable";
4962     bool IsKnownNonNull;
4963     bool IsAssumedNonNull = false;
4964     if (A)
4965       IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
4966           *A, this, getIRPosition(), DepClassTy::NONE, IsKnownNonNull);
4967     return std::string("dereferenceable") +
4968            (IsAssumedNonNull ? "" : "_or_null") +
4969            (isAssumedGlobal() ? "_globally" : "") + "<" +
4970            std::to_string(getKnownDereferenceableBytes()) + "-" +
4971            std::to_string(getAssumedDereferenceableBytes()) + ">" +
4972            (!A ? " [non-null is unknown]" : "");
4973   }
4974 };
4975 
4976 /// Dereferenceable attribute for a floating value.
4977 struct AADereferenceableFloating : AADereferenceableImpl {
4978   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4979       : AADereferenceableImpl(IRP, A) {}
4980 
4981   /// See AbstractAttribute::updateImpl(...).
4982   ChangeStatus updateImpl(Attributor &A) override {
4983     bool Stripped;
4984     bool UsedAssumedInformation = false;
4985     SmallVector<AA::ValueAndContext> Values;
4986     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
4987                                       AA::AnyScope, UsedAssumedInformation)) {
4988       Values.push_back({getAssociatedValue(), getCtxI()});
4989       Stripped = false;
4990     } else {
4991       Stripped = Values.size() != 1 ||
4992                  Values.front().getValue() != &getAssociatedValue();
4993     }
4994 
4995     const DataLayout &DL = A.getDataLayout();
4996     DerefState T;
4997 
4998     auto VisitValueCB = [&](const Value &V) -> bool {
4999       unsigned IdxWidth =
5000           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
5001       APInt Offset(IdxWidth, 0);
5002       const Value *Base = stripAndAccumulateOffsets(
5003           A, *this, &V, DL, Offset, /* GetMinOffset */ false,
5004           /* AllowNonInbounds */ true);
5005 
5006       const auto *AA = A.getAAFor<AADereferenceable>(
5007           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
5008       int64_t DerefBytes = 0;
5009       if (!AA || (!Stripped && this == AA)) {
5010         // Use IR information if we did not strip anything.
5011         // TODO: track globally.
5012         bool CanBeNull, CanBeFreed;
5013         DerefBytes =
5014             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
5015         T.GlobalState.indicatePessimisticFixpoint();
5016       } else {
5017         const DerefState &DS = AA->getState();
5018         DerefBytes = DS.DerefBytesState.getAssumed();
5019         T.GlobalState &= DS.GlobalState;
5020       }
5021 
5022       // For now we do not try to "increase" dereferenceability due to negative
5023       // indices as we first have to come up with code to deal with loops and
5024       // for overflows of the dereferenceable bytes.
5025       int64_t OffsetSExt = Offset.getSExtValue();
5026       if (OffsetSExt < 0)
5027         OffsetSExt = 0;
5028 
5029       T.takeAssumedDerefBytesMinimum(
5030           std::max(int64_t(0), DerefBytes - OffsetSExt));
5031 
5032       if (this == AA) {
5033         if (!Stripped) {
5034           // If nothing was stripped IR information is all we got.
5035           T.takeKnownDerefBytesMaximum(
5036               std::max(int64_t(0), DerefBytes - OffsetSExt));
5037           T.indicatePessimisticFixpoint();
5038         } else if (OffsetSExt > 0) {
5039           // If something was stripped but there is circular reasoning we look
5040           // for the offset. If it is positive we basically decrease the
5041           // dereferenceable bytes in a circular loop now, which will simply
5042           // drive them down to the known value in a very slow way which we
5043           // can accelerate.
5044           T.indicatePessimisticFixpoint();
5045         }
5046       }
5047 
5048       return T.isValidState();
5049     };
5050 
5051     for (const auto &VAC : Values)
5052       if (!VisitValueCB(*VAC.getValue()))
5053         return indicatePessimisticFixpoint();
5054 
5055     return clampStateAndIndicateChange(getState(), T);
5056   }
5057 
5058   /// See AbstractAttribute::trackStatistics()
5059   void trackStatistics() const override {
5060     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
5061   }
5062 };
5063 
5064 /// Dereferenceable attribute for a return value.
5065 struct AADereferenceableReturned final
5066     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
5067   using Base =
5068       AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>;
5069   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
5070       : Base(IRP, A) {}
5071 
5072   /// See AbstractAttribute::trackStatistics()
5073   void trackStatistics() const override {
5074     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
5075   }
5076 };
5077 
5078 /// Dereferenceable attribute for an argument
5079 struct AADereferenceableArgument final
5080     : AAArgumentFromCallSiteArguments<AADereferenceable,
5081                                       AADereferenceableImpl> {
5082   using Base =
5083       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
5084   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
5085       : Base(IRP, A) {}
5086 
5087   /// See AbstractAttribute::trackStatistics()
5088   void trackStatistics() const override {
5089     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
5090   }
5091 };
5092 
5093 /// Dereferenceable attribute for a call site argument.
5094 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
5095   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
5096       : AADereferenceableFloating(IRP, A) {}
5097 
5098   /// See AbstractAttribute::trackStatistics()
5099   void trackStatistics() const override {
5100     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
5101   }
5102 };
5103 
5104 /// Dereferenceable attribute deduction for a call site return value.
5105 struct AADereferenceableCallSiteReturned final
5106     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
5107   using Base =
5108       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
5109   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
5110       : Base(IRP, A) {}
5111 
5112   /// See AbstractAttribute::trackStatistics()
5113   void trackStatistics() const override {
5114     STATS_DECLTRACK_CS_ATTR(dereferenceable);
5115   }
5116 };
5117 } // namespace
5118 
5119 // ------------------------ Align Argument Attribute ------------------------
5120 
5121 namespace {
5122 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
5123                                     Value &AssociatedValue, const Use *U,
5124                                     const Instruction *I, bool &TrackUse) {
5125   // We need to follow common pointer manipulation uses to the accesses they
5126   // feed into.
5127   if (isa<CastInst>(I)) {
5128     // Follow all but ptr2int casts.
5129     TrackUse = !isa<PtrToIntInst>(I);
5130     return 0;
5131   }
5132   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
5133     if (GEP->hasAllConstantIndices())
5134       TrackUse = true;
5135     return 0;
5136   }
5137 
5138   MaybeAlign MA;
5139   if (const auto *CB = dyn_cast<CallBase>(I)) {
5140     if (CB->isBundleOperand(U) || CB->isCallee(U))
5141       return 0;
5142 
5143     unsigned ArgNo = CB->getArgOperandNo(U);
5144     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
5145     // As long as we only use known information there is no need to track
5146     // dependences here.
5147     auto *AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
5148     if (AlignAA)
5149       MA = MaybeAlign(AlignAA->getKnownAlign());
5150   }
5151 
5152   const DataLayout &DL = A.getDataLayout();
5153   const Value *UseV = U->get();
5154   if (auto *SI = dyn_cast<StoreInst>(I)) {
5155     if (SI->getPointerOperand() == UseV)
5156       MA = SI->getAlign();
5157   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
5158     if (LI->getPointerOperand() == UseV)
5159       MA = LI->getAlign();
5160   }
5161 
5162   if (!MA || *MA <= QueryingAA.getKnownAlign())
5163     return 0;
5164 
5165   unsigned Alignment = MA->value();
5166   int64_t Offset;
5167 
5168   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
5169     if (Base == &AssociatedValue) {
5170       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
5171       // So we can say that the maximum power of two which is a divisor of
5172       // gcd(Offset, Alignment) is an alignment.
5173 
5174       uint32_t gcd = std::gcd(uint32_t(abs((int32_t)Offset)), Alignment);
5175       Alignment = llvm::bit_floor(gcd);
5176     }
5177   }
5178 
5179   return Alignment;
5180 }
5181 
5182 struct AAAlignImpl : AAAlign {
5183   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
5184 
5185   /// See AbstractAttribute::initialize(...).
5186   void initialize(Attributor &A) override {
5187     SmallVector<Attribute, 4> Attrs;
5188     A.getAttrs(getIRPosition(), {Attribute::Alignment}, Attrs);
5189     for (const Attribute &Attr : Attrs)
5190       takeKnownMaximum(Attr.getValueAsInt());
5191 
5192     Value &V = *getAssociatedValue().stripPointerCasts();
5193     takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
5194 
5195     if (Instruction *CtxI = getCtxI())
5196       followUsesInMBEC(*this, A, getState(), *CtxI);
5197   }
5198 
5199   /// See AbstractAttribute::manifest(...).
5200   ChangeStatus manifest(Attributor &A) override {
5201     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
5202 
5203     // Check for users that allow alignment annotations.
5204     Value &AssociatedValue = getAssociatedValue();
5205     for (const Use &U : AssociatedValue.uses()) {
5206       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
5207         if (SI->getPointerOperand() == &AssociatedValue)
5208           if (SI->getAlign() < getAssumedAlign()) {
5209             STATS_DECLTRACK(AAAlign, Store,
5210                             "Number of times alignment added to a store");
5211             SI->setAlignment(getAssumedAlign());
5212             LoadStoreChanged = ChangeStatus::CHANGED;
5213           }
5214       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
5215         if (LI->getPointerOperand() == &AssociatedValue)
5216           if (LI->getAlign() < getAssumedAlign()) {
5217             LI->setAlignment(getAssumedAlign());
5218             STATS_DECLTRACK(AAAlign, Load,
5219                             "Number of times alignment added to a load");
5220             LoadStoreChanged = ChangeStatus::CHANGED;
5221           }
5222       }
5223     }
5224 
5225     ChangeStatus Changed = AAAlign::manifest(A);
5226 
5227     Align InheritAlign =
5228         getAssociatedValue().getPointerAlignment(A.getDataLayout());
5229     if (InheritAlign >= getAssumedAlign())
5230       return LoadStoreChanged;
5231     return Changed | LoadStoreChanged;
5232   }
5233 
5234   // TODO: Provide a helper to determine the implied ABI alignment and check in
5235   //       the existing manifest method and a new one for AAAlignImpl that value
5236   //       to avoid making the alignment explicit if it did not improve.
5237 
5238   /// See AbstractAttribute::getDeducedAttributes
5239   void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
5240                             SmallVectorImpl<Attribute> &Attrs) const override {
5241     if (getAssumedAlign() > 1)
5242       Attrs.emplace_back(
5243           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
5244   }
5245 
5246   /// See followUsesInMBEC
5247   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
5248                        AAAlign::StateType &State) {
5249     bool TrackUse = false;
5250 
5251     unsigned int KnownAlign =
5252         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
5253     State.takeKnownMaximum(KnownAlign);
5254 
5255     return TrackUse;
5256   }
5257 
5258   /// See AbstractAttribute::getAsStr().
5259   const std::string getAsStr(Attributor *A) const override {
5260     return "align<" + std::to_string(getKnownAlign().value()) + "-" +
5261            std::to_string(getAssumedAlign().value()) + ">";
5262   }
5263 };
5264 
5265 /// Align attribute for a floating value.
5266 struct AAAlignFloating : AAAlignImpl {
5267   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
5268 
5269   /// See AbstractAttribute::updateImpl(...).
5270   ChangeStatus updateImpl(Attributor &A) override {
5271     const DataLayout &DL = A.getDataLayout();
5272 
5273     bool Stripped;
5274     bool UsedAssumedInformation = false;
5275     SmallVector<AA::ValueAndContext> Values;
5276     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
5277                                       AA::AnyScope, UsedAssumedInformation)) {
5278       Values.push_back({getAssociatedValue(), getCtxI()});
5279       Stripped = false;
5280     } else {
5281       Stripped = Values.size() != 1 ||
5282                  Values.front().getValue() != &getAssociatedValue();
5283     }
5284 
5285     StateType T;
5286     auto VisitValueCB = [&](Value &V) -> bool {
5287       if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
5288         return true;
5289       const auto *AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
5290                                            DepClassTy::REQUIRED);
5291       if (!AA || (!Stripped && this == AA)) {
5292         int64_t Offset;
5293         unsigned Alignment = 1;
5294         if (const Value *Base =
5295                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
5296           // TODO: Use AAAlign for the base too.
5297           Align PA = Base->getPointerAlignment(DL);
5298           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
5299           // So we can say that the maximum power of two which is a divisor of
5300           // gcd(Offset, Alignment) is an alignment.
5301 
5302           uint32_t gcd =
5303               std::gcd(uint32_t(abs((int32_t)Offset)), uint32_t(PA.value()));
5304           Alignment = llvm::bit_floor(gcd);
5305         } else {
5306           Alignment = V.getPointerAlignment(DL).value();
5307         }
5308         // Use only IR information if we did not strip anything.
5309         T.takeKnownMaximum(Alignment);
5310         T.indicatePessimisticFixpoint();
5311       } else {
5312         // Use abstract attribute information.
5313         const AAAlign::StateType &DS = AA->getState();
5314         T ^= DS;
5315       }
5316       return T.isValidState();
5317     };
5318 
5319     for (const auto &VAC : Values) {
5320       if (!VisitValueCB(*VAC.getValue()))
5321         return indicatePessimisticFixpoint();
5322     }
5323 
5324     //  TODO: If we know we visited all incoming values, thus no are assumed
5325     //  dead, we can take the known information from the state T.
5326     return clampStateAndIndicateChange(getState(), T);
5327   }
5328 
5329   /// See AbstractAttribute::trackStatistics()
5330   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
5331 };
5332 
5333 /// Align attribute for function return value.
5334 struct AAAlignReturned final
5335     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
5336   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
5337   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
5338 
5339   /// See AbstractAttribute::trackStatistics()
5340   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
5341 };
5342 
5343 /// Align attribute for function argument.
5344 struct AAAlignArgument final
5345     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
5346   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
5347   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
5348 
5349   /// See AbstractAttribute::manifest(...).
5350   ChangeStatus manifest(Attributor &A) override {
5351     // If the associated argument is involved in a must-tail call we give up
5352     // because we would need to keep the argument alignments of caller and
5353     // callee in-sync. Just does not seem worth the trouble right now.
5354     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
5355       return ChangeStatus::UNCHANGED;
5356     return Base::manifest(A);
5357   }
5358 
5359   /// See AbstractAttribute::trackStatistics()
5360   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
5361 };
5362 
5363 struct AAAlignCallSiteArgument final : AAAlignFloating {
5364   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
5365       : AAAlignFloating(IRP, A) {}
5366 
5367   /// See AbstractAttribute::manifest(...).
5368   ChangeStatus manifest(Attributor &A) override {
5369     // If the associated argument is involved in a must-tail call we give up
5370     // because we would need to keep the argument alignments of caller and
5371     // callee in-sync. Just does not seem worth the trouble right now.
5372     if (Argument *Arg = getAssociatedArgument())
5373       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
5374         return ChangeStatus::UNCHANGED;
5375     ChangeStatus Changed = AAAlignImpl::manifest(A);
5376     Align InheritAlign =
5377         getAssociatedValue().getPointerAlignment(A.getDataLayout());
5378     if (InheritAlign >= getAssumedAlign())
5379       Changed = ChangeStatus::UNCHANGED;
5380     return Changed;
5381   }
5382 
5383   /// See AbstractAttribute::updateImpl(Attributor &A).
5384   ChangeStatus updateImpl(Attributor &A) override {
5385     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
5386     if (Argument *Arg = getAssociatedArgument()) {
5387       // We only take known information from the argument
5388       // so we do not need to track a dependence.
5389       const auto *ArgAlignAA = A.getAAFor<AAAlign>(
5390           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
5391       if (ArgAlignAA)
5392         takeKnownMaximum(ArgAlignAA->getKnownAlign().value());
5393     }
5394     return Changed;
5395   }
5396 
5397   /// See AbstractAttribute::trackStatistics()
5398   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
5399 };
5400 
5401 /// Align attribute deduction for a call site return value.
5402 struct AAAlignCallSiteReturned final
5403     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
5404   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
5405   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
5406       : Base(IRP, A) {}
5407 
5408   /// See AbstractAttribute::trackStatistics()
5409   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
5410 };
5411 } // namespace
5412 
5413 /// ------------------ Function No-Return Attribute ----------------------------
5414 namespace {
5415 struct AANoReturnImpl : public AANoReturn {
5416   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
5417 
5418   /// See AbstractAttribute::initialize(...).
5419   void initialize(Attributor &A) override {
5420     bool IsKnown;
5421     assert(!AA::hasAssumedIRAttr<Attribute::NoReturn>(
5422         A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
5423     (void)IsKnown;
5424   }
5425 
5426   /// See AbstractAttribute::getAsStr().
5427   const std::string getAsStr(Attributor *A) const override {
5428     return getAssumed() ? "noreturn" : "may-return";
5429   }
5430 
5431   /// See AbstractAttribute::updateImpl(Attributor &A).
5432   ChangeStatus updateImpl(Attributor &A) override {
5433     auto CheckForNoReturn = [](Instruction &) { return false; };
5434     bool UsedAssumedInformation = false;
5435     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
5436                                    {(unsigned)Instruction::Ret},
5437                                    UsedAssumedInformation))
5438       return indicatePessimisticFixpoint();
5439     return ChangeStatus::UNCHANGED;
5440   }
5441 };
5442 
5443 struct AANoReturnFunction final : AANoReturnImpl {
5444   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
5445       : AANoReturnImpl(IRP, A) {}
5446 
5447   /// See AbstractAttribute::trackStatistics()
5448   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
5449 };
5450 
5451 /// NoReturn attribute deduction for a call sites.
5452 struct AANoReturnCallSite final : AANoReturnImpl {
5453   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
5454       : AANoReturnImpl(IRP, A) {}
5455 
5456   /// See AbstractAttribute::updateImpl(...).
5457   ChangeStatus updateImpl(Attributor &A) override {
5458     // TODO: Once we have call site specific value information we can provide
5459     //       call site specific liveness information and then it makes
5460     //       sense to specialize attributes for call sites arguments instead of
5461     //       redirecting requests to the callee argument.
5462     Function *F = getAssociatedFunction();
5463     const IRPosition &FnPos = IRPosition::function(*F);
5464     bool IsKnownNoReturn;
5465     if (!AA::hasAssumedIRAttr<Attribute::NoReturn>(
5466             A, this, FnPos, DepClassTy::REQUIRED, IsKnownNoReturn))
5467       return indicatePessimisticFixpoint();
5468     return ChangeStatus::UNCHANGED;
5469   }
5470 
5471   /// See AbstractAttribute::trackStatistics()
5472   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
5473 };
5474 } // namespace
5475 
5476 /// ----------------------- Instance Info ---------------------------------
5477 
5478 namespace {
5479 /// A class to hold the state of for no-capture attributes.
5480 struct AAInstanceInfoImpl : public AAInstanceInfo {
5481   AAInstanceInfoImpl(const IRPosition &IRP, Attributor &A)
5482       : AAInstanceInfo(IRP, A) {}
5483 
5484   /// See AbstractAttribute::initialize(...).
5485   void initialize(Attributor &A) override {
5486     Value &V = getAssociatedValue();
5487     if (auto *C = dyn_cast<Constant>(&V)) {
5488       if (C->isThreadDependent())
5489         indicatePessimisticFixpoint();
5490       else
5491         indicateOptimisticFixpoint();
5492       return;
5493     }
5494     if (auto *CB = dyn_cast<CallBase>(&V))
5495       if (CB->arg_size() == 0 && !CB->mayHaveSideEffects() &&
5496           !CB->mayReadFromMemory()) {
5497         indicateOptimisticFixpoint();
5498         return;
5499       }
5500     if (auto *I = dyn_cast<Instruction>(&V)) {
5501       const auto *CI =
5502           A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(
5503               *I->getFunction());
5504       if (mayBeInCycle(CI, I, /* HeaderOnly */ false)) {
5505         indicatePessimisticFixpoint();
5506         return;
5507       }
5508     }
5509   }
5510 
5511   /// See AbstractAttribute::updateImpl(...).
5512   ChangeStatus updateImpl(Attributor &A) override {
5513     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5514 
5515     Value &V = getAssociatedValue();
5516     const Function *Scope = nullptr;
5517     if (auto *I = dyn_cast<Instruction>(&V))
5518       Scope = I->getFunction();
5519     if (auto *A = dyn_cast<Argument>(&V)) {
5520       Scope = A->getParent();
5521       if (!Scope->hasLocalLinkage())
5522         return Changed;
5523     }
5524     if (!Scope)
5525       return indicateOptimisticFixpoint();
5526 
5527     bool IsKnownNoRecurse;
5528     if (AA::hasAssumedIRAttr<Attribute::NoRecurse>(
5529             A, this, IRPosition::function(*Scope), DepClassTy::OPTIONAL,
5530             IsKnownNoRecurse))
5531       return Changed;
5532 
5533     auto UsePred = [&](const Use &U, bool &Follow) {
5534       const Instruction *UserI = dyn_cast<Instruction>(U.getUser());
5535       if (!UserI || isa<GetElementPtrInst>(UserI) || isa<CastInst>(UserI) ||
5536           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
5537         Follow = true;
5538         return true;
5539       }
5540       if (isa<LoadInst>(UserI) || isa<CmpInst>(UserI) ||
5541           (isa<StoreInst>(UserI) &&
5542            cast<StoreInst>(UserI)->getValueOperand() != U.get()))
5543         return true;
5544       if (auto *CB = dyn_cast<CallBase>(UserI)) {
5545         // This check is not guaranteeing uniqueness but for now that we cannot
5546         // end up with two versions of \p U thinking it was one.
5547         auto *Callee = dyn_cast_if_present<Function>(CB->getCalledOperand());
5548         if (!Callee || !Callee->hasLocalLinkage())
5549           return true;
5550         if (!CB->isArgOperand(&U))
5551           return false;
5552         const auto *ArgInstanceInfoAA = A.getAAFor<AAInstanceInfo>(
5553             *this, IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)),
5554             DepClassTy::OPTIONAL);
5555         if (!ArgInstanceInfoAA ||
5556             !ArgInstanceInfoAA->isAssumedUniqueForAnalysis())
5557           return false;
5558         // If this call base might reach the scope again we might forward the
5559         // argument back here. This is very conservative.
5560         if (AA::isPotentiallyReachable(
5561                 A, *CB, *Scope, *this, /* ExclusionSet */ nullptr,
5562                 [Scope](const Function &Fn) { return &Fn != Scope; }))
5563           return false;
5564         return true;
5565       }
5566       return false;
5567     };
5568 
5569     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
5570       if (auto *SI = dyn_cast<StoreInst>(OldU.getUser())) {
5571         auto *Ptr = SI->getPointerOperand()->stripPointerCasts();
5572         if ((isa<AllocaInst>(Ptr) || isNoAliasCall(Ptr)) &&
5573             AA::isDynamicallyUnique(A, *this, *Ptr))
5574           return true;
5575       }
5576       return false;
5577     };
5578 
5579     if (!A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ true,
5580                            DepClassTy::OPTIONAL,
5581                            /* IgnoreDroppableUses */ true, EquivalentUseCB))
5582       return indicatePessimisticFixpoint();
5583 
5584     return Changed;
5585   }
5586 
5587   /// See AbstractState::getAsStr().
5588   const std::string getAsStr(Attributor *A) const override {
5589     return isAssumedUniqueForAnalysis() ? "<unique [fAa]>" : "<unknown>";
5590   }
5591 
5592   /// See AbstractAttribute::trackStatistics()
5593   void trackStatistics() const override {}
5594 };
5595 
5596 /// InstanceInfo attribute for floating values.
5597 struct AAInstanceInfoFloating : AAInstanceInfoImpl {
5598   AAInstanceInfoFloating(const IRPosition &IRP, Attributor &A)
5599       : AAInstanceInfoImpl(IRP, A) {}
5600 };
5601 
5602 /// NoCapture attribute for function arguments.
5603 struct AAInstanceInfoArgument final : AAInstanceInfoFloating {
5604   AAInstanceInfoArgument(const IRPosition &IRP, Attributor &A)
5605       : AAInstanceInfoFloating(IRP, A) {}
5606 };
5607 
5608 /// InstanceInfo attribute for call site arguments.
5609 struct AAInstanceInfoCallSiteArgument final : AAInstanceInfoImpl {
5610   AAInstanceInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
5611       : AAInstanceInfoImpl(IRP, A) {}
5612 
5613   /// See AbstractAttribute::updateImpl(...).
5614   ChangeStatus updateImpl(Attributor &A) override {
5615     // TODO: Once we have call site specific value information we can provide
5616     //       call site specific liveness information and then it makes
5617     //       sense to specialize attributes for call sites arguments instead of
5618     //       redirecting requests to the callee argument.
5619     Argument *Arg = getAssociatedArgument();
5620     if (!Arg)
5621       return indicatePessimisticFixpoint();
5622     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5623     auto *ArgAA =
5624         A.getAAFor<AAInstanceInfo>(*this, ArgPos, DepClassTy::REQUIRED);
5625     if (!ArgAA)
5626       return indicatePessimisticFixpoint();
5627     return clampStateAndIndicateChange(getState(), ArgAA->getState());
5628   }
5629 };
5630 
5631 /// InstanceInfo attribute for function return value.
5632 struct AAInstanceInfoReturned final : AAInstanceInfoImpl {
5633   AAInstanceInfoReturned(const IRPosition &IRP, Attributor &A)
5634       : AAInstanceInfoImpl(IRP, A) {
5635     llvm_unreachable("InstanceInfo is not applicable to function returns!");
5636   }
5637 
5638   /// See AbstractAttribute::initialize(...).
5639   void initialize(Attributor &A) override {
5640     llvm_unreachable("InstanceInfo is not applicable to function returns!");
5641   }
5642 
5643   /// See AbstractAttribute::updateImpl(...).
5644   ChangeStatus updateImpl(Attributor &A) override {
5645     llvm_unreachable("InstanceInfo is not applicable to function returns!");
5646   }
5647 };
5648 
5649 /// InstanceInfo attribute deduction for a call site return value.
5650 struct AAInstanceInfoCallSiteReturned final : AAInstanceInfoFloating {
5651   AAInstanceInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
5652       : AAInstanceInfoFloating(IRP, A) {}
5653 };
5654 } // namespace
5655 
5656 /// ----------------------- Variable Capturing ---------------------------------
5657 bool AANoCapture::isImpliedByIR(Attributor &A, const IRPosition &IRP,
5658                                 Attribute::AttrKind ImpliedAttributeKind,
5659                                 bool IgnoreSubsumingPositions) {
5660   assert(ImpliedAttributeKind == Attribute::NoCapture &&
5661          "Unexpected attribute kind");
5662   Value &V = IRP.getAssociatedValue();
5663   if (!IRP.isArgumentPosition())
5664     return V.use_empty();
5665 
5666   // You cannot "capture" null in the default address space.
5667   if (isa<UndefValue>(V) || (isa<ConstantPointerNull>(V) &&
5668                              V.getType()->getPointerAddressSpace() == 0)) {
5669     return true;
5670   }
5671 
5672   if (A.hasAttr(IRP, {Attribute::NoCapture},
5673                 /* IgnoreSubsumingPositions */ true, Attribute::NoCapture))
5674     return true;
5675 
5676   if (IRP.getPositionKind() == IRP_CALL_SITE_ARGUMENT)
5677     if (Argument *Arg = IRP.getAssociatedArgument())
5678       if (A.hasAttr(IRPosition::argument(*Arg),
5679                     {Attribute::NoCapture, Attribute::ByVal},
5680                     /* IgnoreSubsumingPositions */ true)) {
5681         A.manifestAttrs(IRP,
5682                         Attribute::get(V.getContext(), Attribute::NoCapture));
5683         return true;
5684       }
5685 
5686   if (const Function *F = IRP.getAssociatedFunction()) {
5687     // Check what state the associated function can actually capture.
5688     AANoCapture::StateType State;
5689     determineFunctionCaptureCapabilities(IRP, *F, State);
5690     if (State.isKnown(NO_CAPTURE)) {
5691       A.manifestAttrs(IRP,
5692                       Attribute::get(V.getContext(), Attribute::NoCapture));
5693       return true;
5694     }
5695   }
5696 
5697   return false;
5698 }
5699 
5700 /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
5701 /// depending on the ability of the function associated with \p IRP to capture
5702 /// state in memory and through "returning/throwing", respectively.
5703 void AANoCapture::determineFunctionCaptureCapabilities(const IRPosition &IRP,
5704                                                        const Function &F,
5705                                                        BitIntegerState &State) {
5706   // TODO: Once we have memory behavior attributes we should use them here.
5707 
5708   // If we know we cannot communicate or write to memory, we do not care about
5709   // ptr2int anymore.
5710   bool ReadOnly = F.onlyReadsMemory();
5711   bool NoThrow = F.doesNotThrow();
5712   bool IsVoidReturn = F.getReturnType()->isVoidTy();
5713   if (ReadOnly && NoThrow && IsVoidReturn) {
5714     State.addKnownBits(NO_CAPTURE);
5715     return;
5716   }
5717 
5718   // A function cannot capture state in memory if it only reads memory, it can
5719   // however return/throw state and the state might be influenced by the
5720   // pointer value, e.g., loading from a returned pointer might reveal a bit.
5721   if (ReadOnly)
5722     State.addKnownBits(NOT_CAPTURED_IN_MEM);
5723 
5724   // A function cannot communicate state back if it does not through
5725   // exceptions and doesn not return values.
5726   if (NoThrow && IsVoidReturn)
5727     State.addKnownBits(NOT_CAPTURED_IN_RET);
5728 
5729   // Check existing "returned" attributes.
5730   int ArgNo = IRP.getCalleeArgNo();
5731   if (!NoThrow || ArgNo < 0 ||
5732       !F.getAttributes().hasAttrSomewhere(Attribute::Returned))
5733     return;
5734 
5735   for (unsigned U = 0, E = F.arg_size(); U < E; ++U)
5736     if (F.hasParamAttribute(U, Attribute::Returned)) {
5737       if (U == unsigned(ArgNo))
5738         State.removeAssumedBits(NOT_CAPTURED_IN_RET);
5739       else if (ReadOnly)
5740         State.addKnownBits(NO_CAPTURE);
5741       else
5742         State.addKnownBits(NOT_CAPTURED_IN_RET);
5743       break;
5744     }
5745 }
5746 
5747 namespace {
5748 /// A class to hold the state of for no-capture attributes.
5749 struct AANoCaptureImpl : public AANoCapture {
5750   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
5751 
5752   /// See AbstractAttribute::initialize(...).
5753   void initialize(Attributor &A) override {
5754     bool IsKnown;
5755     assert(!AA::hasAssumedIRAttr<Attribute::NoCapture>(
5756         A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown));
5757     (void)IsKnown;
5758   }
5759 
5760   /// See AbstractAttribute::updateImpl(...).
5761   ChangeStatus updateImpl(Attributor &A) override;
5762 
5763   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
5764   void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
5765                             SmallVectorImpl<Attribute> &Attrs) const override {
5766     if (!isAssumedNoCaptureMaybeReturned())
5767       return;
5768 
5769     if (isArgumentPosition()) {
5770       if (isAssumedNoCapture())
5771         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
5772       else if (ManifestInternal)
5773         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
5774     }
5775   }
5776 
5777   /// See AbstractState::getAsStr().
5778   const std::string getAsStr(Attributor *A) const override {
5779     if (isKnownNoCapture())
5780       return "known not-captured";
5781     if (isAssumedNoCapture())
5782       return "assumed not-captured";
5783     if (isKnownNoCaptureMaybeReturned())
5784       return "known not-captured-maybe-returned";
5785     if (isAssumedNoCaptureMaybeReturned())
5786       return "assumed not-captured-maybe-returned";
5787     return "assumed-captured";
5788   }
5789 
5790   /// Check the use \p U and update \p State accordingly. Return true if we
5791   /// should continue to update the state.
5792   bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U,
5793                 bool &Follow) {
5794     Instruction *UInst = cast<Instruction>(U.getUser());
5795     LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in "
5796                       << *UInst << "\n");
5797 
5798     // Deal with ptr2int by following uses.
5799     if (isa<PtrToIntInst>(UInst)) {
5800       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
5801       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5802                           /* Return */ true);
5803     }
5804 
5805     // For stores we already checked if we can follow them, if they make it
5806     // here we give up.
5807     if (isa<StoreInst>(UInst))
5808       return isCapturedIn(State, /* Memory */ true, /* Integer */ false,
5809                           /* Return */ false);
5810 
5811     // Explicitly catch return instructions.
5812     if (isa<ReturnInst>(UInst)) {
5813       if (UInst->getFunction() == getAnchorScope())
5814         return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5815                             /* Return */ true);
5816       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5817                           /* Return */ true);
5818     }
5819 
5820     // For now we only use special logic for call sites. However, the tracker
5821     // itself knows about a lot of other non-capturing cases already.
5822     auto *CB = dyn_cast<CallBase>(UInst);
5823     if (!CB || !CB->isArgOperand(&U))
5824       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5825                           /* Return */ true);
5826 
5827     unsigned ArgNo = CB->getArgOperandNo(&U);
5828     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
5829     // If we have a abstract no-capture attribute for the argument we can use
5830     // it to justify a non-capture attribute here. This allows recursion!
5831     bool IsKnownNoCapture;
5832     const AANoCapture *ArgNoCaptureAA = nullptr;
5833     bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
5834         A, this, CSArgPos, DepClassTy::REQUIRED, IsKnownNoCapture, false,
5835         &ArgNoCaptureAA);
5836     if (IsAssumedNoCapture)
5837       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5838                           /* Return */ false);
5839     if (ArgNoCaptureAA && ArgNoCaptureAA->isAssumedNoCaptureMaybeReturned()) {
5840       Follow = true;
5841       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5842                           /* Return */ false);
5843     }
5844 
5845     // Lastly, we could not find a reason no-capture can be assumed so we don't.
5846     return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5847                         /* Return */ true);
5848   }
5849 
5850   /// Update \p State according to \p CapturedInMem, \p CapturedInInt, and
5851   /// \p CapturedInRet, then return true if we should continue updating the
5852   /// state.
5853   static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem,
5854                            bool CapturedInInt, bool CapturedInRet) {
5855     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
5856                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
5857     if (CapturedInMem)
5858       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
5859     if (CapturedInInt)
5860       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
5861     if (CapturedInRet)
5862       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
5863     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
5864   }
5865 };
5866 
5867 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
5868   const IRPosition &IRP = getIRPosition();
5869   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
5870                                   : &IRP.getAssociatedValue();
5871   if (!V)
5872     return indicatePessimisticFixpoint();
5873 
5874   const Function *F =
5875       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
5876   assert(F && "Expected a function!");
5877   const IRPosition &FnPos = IRPosition::function(*F);
5878 
5879   AANoCapture::StateType T;
5880 
5881   // Readonly means we cannot capture through memory.
5882   bool IsKnown;
5883   if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
5884     T.addKnownBits(NOT_CAPTURED_IN_MEM);
5885     if (IsKnown)
5886       addKnownBits(NOT_CAPTURED_IN_MEM);
5887   }
5888 
5889   // Make sure all returned values are different than the underlying value.
5890   // TODO: we could do this in a more sophisticated way inside
5891   //       AAReturnedValues, e.g., track all values that escape through returns
5892   //       directly somehow.
5893   auto CheckReturnedArgs = [&](bool &UsedAssumedInformation) {
5894     SmallVector<AA::ValueAndContext> Values;
5895     if (!A.getAssumedSimplifiedValues(IRPosition::returned(*F), this, Values,
5896                                       AA::ValueScope::Intraprocedural,
5897                                       UsedAssumedInformation))
5898       return false;
5899     bool SeenConstant = false;
5900     for (const AA::ValueAndContext &VAC : Values) {
5901       if (isa<Constant>(VAC.getValue())) {
5902         if (SeenConstant)
5903           return false;
5904         SeenConstant = true;
5905       } else if (!isa<Argument>(VAC.getValue()) ||
5906                  VAC.getValue() == getAssociatedArgument())
5907         return false;
5908     }
5909     return true;
5910   };
5911 
5912   bool IsKnownNoUnwind;
5913   if (AA::hasAssumedIRAttr<Attribute::NoUnwind>(
5914           A, this, FnPos, DepClassTy::OPTIONAL, IsKnownNoUnwind)) {
5915     bool IsVoidTy = F->getReturnType()->isVoidTy();
5916     bool UsedAssumedInformation = false;
5917     if (IsVoidTy || CheckReturnedArgs(UsedAssumedInformation)) {
5918       T.addKnownBits(NOT_CAPTURED_IN_RET);
5919       if (T.isKnown(NOT_CAPTURED_IN_MEM))
5920         return ChangeStatus::UNCHANGED;
5921       if (IsKnownNoUnwind && (IsVoidTy || !UsedAssumedInformation)) {
5922         addKnownBits(NOT_CAPTURED_IN_RET);
5923         if (isKnown(NOT_CAPTURED_IN_MEM))
5924           return indicateOptimisticFixpoint();
5925       }
5926     }
5927   }
5928 
5929   auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
5930     const auto *DerefAA = A.getAAFor<AADereferenceable>(
5931         *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
5932     return DerefAA && DerefAA->getAssumedDereferenceableBytes();
5933   };
5934 
5935   auto UseCheck = [&](const Use &U, bool &Follow) -> bool {
5936     switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
5937     case UseCaptureKind::NO_CAPTURE:
5938       return true;
5939     case UseCaptureKind::MAY_CAPTURE:
5940       return checkUse(A, T, U, Follow);
5941     case UseCaptureKind::PASSTHROUGH:
5942       Follow = true;
5943       return true;
5944     }
5945     llvm_unreachable("Unexpected use capture kind!");
5946   };
5947 
5948   if (!A.checkForAllUses(UseCheck, *this, *V))
5949     return indicatePessimisticFixpoint();
5950 
5951   AANoCapture::StateType &S = getState();
5952   auto Assumed = S.getAssumed();
5953   S.intersectAssumedBits(T.getAssumed());
5954   if (!isAssumedNoCaptureMaybeReturned())
5955     return indicatePessimisticFixpoint();
5956   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5957                                    : ChangeStatus::CHANGED;
5958 }
5959 
5960 /// NoCapture attribute for function arguments.
5961 struct AANoCaptureArgument final : AANoCaptureImpl {
5962   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5963       : AANoCaptureImpl(IRP, A) {}
5964 
5965   /// See AbstractAttribute::trackStatistics()
5966   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5967 };
5968 
5969 /// NoCapture attribute for call site arguments.
5970 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5971   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5972       : AANoCaptureImpl(IRP, A) {}
5973 
5974   /// See AbstractAttribute::updateImpl(...).
5975   ChangeStatus updateImpl(Attributor &A) override {
5976     // TODO: Once we have call site specific value information we can provide
5977     //       call site specific liveness information and then it makes
5978     //       sense to specialize attributes for call sites arguments instead of
5979     //       redirecting requests to the callee argument.
5980     Argument *Arg = getAssociatedArgument();
5981     if (!Arg)
5982       return indicatePessimisticFixpoint();
5983     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5984     bool IsKnownNoCapture;
5985     const AANoCapture *ArgAA = nullptr;
5986     if (AA::hasAssumedIRAttr<Attribute::NoCapture>(
5987             A, this, ArgPos, DepClassTy::REQUIRED, IsKnownNoCapture, false,
5988             &ArgAA))
5989       return ChangeStatus::UNCHANGED;
5990     if (!ArgAA || !ArgAA->isAssumedNoCaptureMaybeReturned())
5991       return indicatePessimisticFixpoint();
5992     return clampStateAndIndicateChange(getState(), ArgAA->getState());
5993   }
5994 
5995   /// See AbstractAttribute::trackStatistics()
5996   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5997 };
5998 
5999 /// NoCapture attribute for floating values.
6000 struct AANoCaptureFloating final : AANoCaptureImpl {
6001   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
6002       : AANoCaptureImpl(IRP, A) {}
6003 
6004   /// See AbstractAttribute::trackStatistics()
6005   void trackStatistics() const override {
6006     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
6007   }
6008 };
6009 
6010 /// NoCapture attribute for function return value.
6011 struct AANoCaptureReturned final : AANoCaptureImpl {
6012   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
6013       : AANoCaptureImpl(IRP, A) {
6014     llvm_unreachable("NoCapture is not applicable to function returns!");
6015   }
6016 
6017   /// See AbstractAttribute::initialize(...).
6018   void initialize(Attributor &A) override {
6019     llvm_unreachable("NoCapture is not applicable to function returns!");
6020   }
6021 
6022   /// See AbstractAttribute::updateImpl(...).
6023   ChangeStatus updateImpl(Attributor &A) override {
6024     llvm_unreachable("NoCapture is not applicable to function returns!");
6025   }
6026 
6027   /// See AbstractAttribute::trackStatistics()
6028   void trackStatistics() const override {}
6029 };
6030 
6031 /// NoCapture attribute deduction for a call site return value.
6032 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
6033   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
6034       : AANoCaptureImpl(IRP, A) {}
6035 
6036   /// See AbstractAttribute::initialize(...).
6037   void initialize(Attributor &A) override {
6038     const Function *F = getAnchorScope();
6039     // Check what state the associated function can actually capture.
6040     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
6041   }
6042 
6043   /// See AbstractAttribute::trackStatistics()
6044   void trackStatistics() const override {
6045     STATS_DECLTRACK_CSRET_ATTR(nocapture)
6046   }
6047 };
6048 } // namespace
6049 
6050 /// ------------------ Value Simplify Attribute ----------------------------
6051 
6052 bool ValueSimplifyStateType::unionAssumed(std::optional<Value *> Other) {
6053   // FIXME: Add a typecast support.
6054   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
6055       SimplifiedAssociatedValue, Other, Ty);
6056   if (SimplifiedAssociatedValue == std::optional<Value *>(nullptr))
6057     return false;
6058 
6059   LLVM_DEBUG({
6060     if (SimplifiedAssociatedValue)
6061       dbgs() << "[ValueSimplify] is assumed to be "
6062              << **SimplifiedAssociatedValue << "\n";
6063     else
6064       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
6065   });
6066   return true;
6067 }
6068 
6069 namespace {
6070 struct AAValueSimplifyImpl : AAValueSimplify {
6071   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
6072       : AAValueSimplify(IRP, A) {}
6073 
6074   /// See AbstractAttribute::initialize(...).
6075   void initialize(Attributor &A) override {
6076     if (getAssociatedValue().getType()->isVoidTy())
6077       indicatePessimisticFixpoint();
6078     if (A.hasSimplificationCallback(getIRPosition()))
6079       indicatePessimisticFixpoint();
6080   }
6081 
6082   /// See AbstractAttribute::getAsStr().
6083   const std::string getAsStr(Attributor *A) const override {
6084     LLVM_DEBUG({
6085       dbgs() << "SAV: " << (bool)SimplifiedAssociatedValue << " ";
6086       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
6087         dbgs() << "SAV: " << **SimplifiedAssociatedValue << " ";
6088     });
6089     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
6090                           : "not-simple";
6091   }
6092 
6093   /// See AbstractAttribute::trackStatistics()
6094   void trackStatistics() const override {}
6095 
6096   /// See AAValueSimplify::getAssumedSimplifiedValue()
6097   std::optional<Value *>
6098   getAssumedSimplifiedValue(Attributor &A) const override {
6099     return SimplifiedAssociatedValue;
6100   }
6101 
6102   /// Ensure the return value is \p V with type \p Ty, if not possible return
6103   /// nullptr. If \p Check is true we will only verify such an operation would
6104   /// suceed and return a non-nullptr value if that is the case. No IR is
6105   /// generated or modified.
6106   static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI,
6107                            bool Check) {
6108     if (auto *TypedV = AA::getWithType(V, Ty))
6109       return TypedV;
6110     if (CtxI && V.getType()->canLosslesslyBitCastTo(&Ty))
6111       return Check ? &V
6112                    : BitCastInst::CreatePointerBitCastOrAddrSpaceCast(&V, &Ty,
6113                                                                       "", CtxI);
6114     return nullptr;
6115   }
6116 
6117   /// Reproduce \p I with type \p Ty or return nullptr if that is not posisble.
6118   /// If \p Check is true we will only verify such an operation would suceed and
6119   /// return a non-nullptr value if that is the case. No IR is generated or
6120   /// modified.
6121   static Value *reproduceInst(Attributor &A,
6122                               const AbstractAttribute &QueryingAA,
6123                               Instruction &I, Type &Ty, Instruction *CtxI,
6124                               bool Check, ValueToValueMapTy &VMap) {
6125     assert(CtxI && "Cannot reproduce an instruction without context!");
6126     if (Check && (I.mayReadFromMemory() ||
6127                   !isSafeToSpeculativelyExecute(&I, CtxI, /* DT */ nullptr,
6128                                                 /* TLI */ nullptr)))
6129       return nullptr;
6130     for (Value *Op : I.operands()) {
6131       Value *NewOp = reproduceValue(A, QueryingAA, *Op, Ty, CtxI, Check, VMap);
6132       if (!NewOp) {
6133         assert(Check && "Manifest of new value unexpectedly failed!");
6134         return nullptr;
6135       }
6136       if (!Check)
6137         VMap[Op] = NewOp;
6138     }
6139     if (Check)
6140       return &I;
6141 
6142     Instruction *CloneI = I.clone();
6143     // TODO: Try to salvage debug information here.
6144     CloneI->setDebugLoc(DebugLoc());
6145     VMap[&I] = CloneI;
6146     CloneI->insertBefore(CtxI);
6147     RemapInstruction(CloneI, VMap);
6148     return CloneI;
6149   }
6150 
6151   /// Reproduce \p V with type \p Ty or return nullptr if that is not posisble.
6152   /// If \p Check is true we will only verify such an operation would suceed and
6153   /// return a non-nullptr value if that is the case. No IR is generated or
6154   /// modified.
6155   static Value *reproduceValue(Attributor &A,
6156                                const AbstractAttribute &QueryingAA, Value &V,
6157                                Type &Ty, Instruction *CtxI, bool Check,
6158                                ValueToValueMapTy &VMap) {
6159     if (const auto &NewV = VMap.lookup(&V))
6160       return NewV;
6161     bool UsedAssumedInformation = false;
6162     std::optional<Value *> SimpleV = A.getAssumedSimplified(
6163         V, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
6164     if (!SimpleV.has_value())
6165       return PoisonValue::get(&Ty);
6166     Value *EffectiveV = &V;
6167     if (*SimpleV)
6168       EffectiveV = *SimpleV;
6169     if (auto *C = dyn_cast<Constant>(EffectiveV))
6170       return C;
6171     if (CtxI && AA::isValidAtPosition(AA::ValueAndContext(*EffectiveV, *CtxI),
6172                                       A.getInfoCache()))
6173       return ensureType(A, *EffectiveV, Ty, CtxI, Check);
6174     if (auto *I = dyn_cast<Instruction>(EffectiveV))
6175       if (Value *NewV = reproduceInst(A, QueryingAA, *I, Ty, CtxI, Check, VMap))
6176         return ensureType(A, *NewV, Ty, CtxI, Check);
6177     return nullptr;
6178   }
6179 
6180   /// Return a value we can use as replacement for the associated one, or
6181   /// nullptr if we don't have one that makes sense.
6182   Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const {
6183     Value *NewV = SimplifiedAssociatedValue
6184                       ? *SimplifiedAssociatedValue
6185                       : UndefValue::get(getAssociatedType());
6186     if (NewV && NewV != &getAssociatedValue()) {
6187       ValueToValueMapTy VMap;
6188       // First verify we can reprduce the value with the required type at the
6189       // context location before we actually start modifying the IR.
6190       if (reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
6191                          /* CheckOnly */ true, VMap))
6192         return reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
6193                               /* CheckOnly */ false, VMap);
6194     }
6195     return nullptr;
6196   }
6197 
6198   /// Helper function for querying AAValueSimplify and updating candidate.
6199   /// \param IRP The value position we are trying to unify with SimplifiedValue
6200   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
6201                       const IRPosition &IRP, bool Simplify = true) {
6202     bool UsedAssumedInformation = false;
6203     std::optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
6204     if (Simplify)
6205       QueryingValueSimplified = A.getAssumedSimplified(
6206           IRP, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
6207     return unionAssumed(QueryingValueSimplified);
6208   }
6209 
6210   /// Returns a candidate is found or not
6211   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
6212     if (!getAssociatedValue().getType()->isIntegerTy())
6213       return false;
6214 
6215     // This will also pass the call base context.
6216     const auto *AA =
6217         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
6218     if (!AA)
6219       return false;
6220 
6221     std::optional<Constant *> COpt = AA->getAssumedConstant(A);
6222 
6223     if (!COpt) {
6224       SimplifiedAssociatedValue = std::nullopt;
6225       A.recordDependence(*AA, *this, DepClassTy::OPTIONAL);
6226       return true;
6227     }
6228     if (auto *C = *COpt) {
6229       SimplifiedAssociatedValue = C;
6230       A.recordDependence(*AA, *this, DepClassTy::OPTIONAL);
6231       return true;
6232     }
6233     return false;
6234   }
6235 
6236   bool askSimplifiedValueForOtherAAs(Attributor &A) {
6237     if (askSimplifiedValueFor<AAValueConstantRange>(A))
6238       return true;
6239     if (askSimplifiedValueFor<AAPotentialConstantValues>(A))
6240       return true;
6241     return false;
6242   }
6243 
6244   /// See AbstractAttribute::manifest(...).
6245   ChangeStatus manifest(Attributor &A) override {
6246     ChangeStatus Changed = ChangeStatus::UNCHANGED;
6247     for (auto &U : getAssociatedValue().uses()) {
6248       // Check if we need to adjust the insertion point to make sure the IR is
6249       // valid.
6250       Instruction *IP = dyn_cast<Instruction>(U.getUser());
6251       if (auto *PHI = dyn_cast_or_null<PHINode>(IP))
6252         IP = PHI->getIncomingBlock(U)->getTerminator();
6253       if (auto *NewV = manifestReplacementValue(A, IP)) {
6254         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue()
6255                           << " -> " << *NewV << " :: " << *this << "\n");
6256         if (A.changeUseAfterManifest(U, *NewV))
6257           Changed = ChangeStatus::CHANGED;
6258       }
6259     }
6260 
6261     return Changed | AAValueSimplify::manifest(A);
6262   }
6263 
6264   /// See AbstractState::indicatePessimisticFixpoint(...).
6265   ChangeStatus indicatePessimisticFixpoint() override {
6266     SimplifiedAssociatedValue = &getAssociatedValue();
6267     return AAValueSimplify::indicatePessimisticFixpoint();
6268   }
6269 };
6270 
6271 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
6272   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
6273       : AAValueSimplifyImpl(IRP, A) {}
6274 
6275   void initialize(Attributor &A) override {
6276     AAValueSimplifyImpl::initialize(A);
6277     if (A.hasAttr(getIRPosition(),
6278                   {Attribute::InAlloca, Attribute::Preallocated,
6279                    Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
6280                   /* IgnoreSubsumingPositions */ true))
6281       indicatePessimisticFixpoint();
6282   }
6283 
6284   /// See AbstractAttribute::updateImpl(...).
6285   ChangeStatus updateImpl(Attributor &A) override {
6286     // Byval is only replacable if it is readonly otherwise we would write into
6287     // the replaced value and not the copy that byval creates implicitly.
6288     Argument *Arg = getAssociatedArgument();
6289     if (Arg->hasByValAttr()) {
6290       // TODO: We probably need to verify synchronization is not an issue, e.g.,
6291       //       there is no race by not copying a constant byval.
6292       bool IsKnown;
6293       if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
6294         return indicatePessimisticFixpoint();
6295     }
6296 
6297     auto Before = SimplifiedAssociatedValue;
6298 
6299     auto PredForCallSite = [&](AbstractCallSite ACS) {
6300       const IRPosition &ACSArgPos =
6301           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
6302       // Check if a coresponding argument was found or if it is on not
6303       // associated (which can happen for callback calls).
6304       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6305         return false;
6306 
6307       // Simplify the argument operand explicitly and check if the result is
6308       // valid in the current scope. This avoids refering to simplified values
6309       // in other functions, e.g., we don't want to say a an argument in a
6310       // static function is actually an argument in a different function.
6311       bool UsedAssumedInformation = false;
6312       std::optional<Constant *> SimpleArgOp =
6313           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
6314       if (!SimpleArgOp)
6315         return true;
6316       if (!*SimpleArgOp)
6317         return false;
6318       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
6319         return false;
6320       return unionAssumed(*SimpleArgOp);
6321     };
6322 
6323     // Generate a answer specific to a call site context.
6324     bool Success;
6325     bool UsedAssumedInformation = false;
6326     if (hasCallBaseContext() &&
6327         getCallBaseContext()->getCalledOperand() == Arg->getParent())
6328       Success = PredForCallSite(
6329           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
6330     else
6331       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
6332                                        UsedAssumedInformation);
6333 
6334     if (!Success)
6335       if (!askSimplifiedValueForOtherAAs(A))
6336         return indicatePessimisticFixpoint();
6337 
6338     // If a candidate was found in this update, return CHANGED.
6339     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
6340                                                : ChangeStatus ::CHANGED;
6341   }
6342 
6343   /// See AbstractAttribute::trackStatistics()
6344   void trackStatistics() const override {
6345     STATS_DECLTRACK_ARG_ATTR(value_simplify)
6346   }
6347 };
6348 
6349 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
6350   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
6351       : AAValueSimplifyImpl(IRP, A) {}
6352 
6353   /// See AAValueSimplify::getAssumedSimplifiedValue()
6354   std::optional<Value *>
6355   getAssumedSimplifiedValue(Attributor &A) const override {
6356     if (!isValidState())
6357       return nullptr;
6358     return SimplifiedAssociatedValue;
6359   }
6360 
6361   /// See AbstractAttribute::updateImpl(...).
6362   ChangeStatus updateImpl(Attributor &A) override {
6363     auto Before = SimplifiedAssociatedValue;
6364 
6365     auto ReturnInstCB = [&](Instruction &I) {
6366       auto &RI = cast<ReturnInst>(I);
6367       return checkAndUpdate(
6368           A, *this,
6369           IRPosition::value(*RI.getReturnValue(), getCallBaseContext()));
6370     };
6371 
6372     bool UsedAssumedInformation = false;
6373     if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
6374                                    UsedAssumedInformation))
6375       if (!askSimplifiedValueForOtherAAs(A))
6376         return indicatePessimisticFixpoint();
6377 
6378     // If a candidate was found in this update, return CHANGED.
6379     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
6380                                                : ChangeStatus ::CHANGED;
6381   }
6382 
6383   ChangeStatus manifest(Attributor &A) override {
6384     // We queried AAValueSimplify for the returned values so they will be
6385     // replaced if a simplified form was found. Nothing to do here.
6386     return ChangeStatus::UNCHANGED;
6387   }
6388 
6389   /// See AbstractAttribute::trackStatistics()
6390   void trackStatistics() const override {
6391     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
6392   }
6393 };
6394 
6395 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
6396   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
6397       : AAValueSimplifyImpl(IRP, A) {}
6398 
6399   /// See AbstractAttribute::initialize(...).
6400   void initialize(Attributor &A) override {
6401     AAValueSimplifyImpl::initialize(A);
6402     Value &V = getAnchorValue();
6403 
6404     // TODO: add other stuffs
6405     if (isa<Constant>(V))
6406       indicatePessimisticFixpoint();
6407   }
6408 
6409   /// See AbstractAttribute::updateImpl(...).
6410   ChangeStatus updateImpl(Attributor &A) override {
6411     auto Before = SimplifiedAssociatedValue;
6412     if (!askSimplifiedValueForOtherAAs(A))
6413       return indicatePessimisticFixpoint();
6414 
6415     // If a candidate was found in this update, return CHANGED.
6416     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
6417                                                : ChangeStatus ::CHANGED;
6418   }
6419 
6420   /// See AbstractAttribute::trackStatistics()
6421   void trackStatistics() const override {
6422     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
6423   }
6424 };
6425 
6426 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
6427   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
6428       : AAValueSimplifyImpl(IRP, A) {}
6429 
6430   /// See AbstractAttribute::initialize(...).
6431   void initialize(Attributor &A) override {
6432     SimplifiedAssociatedValue = nullptr;
6433     indicateOptimisticFixpoint();
6434   }
6435   /// See AbstractAttribute::initialize(...).
6436   ChangeStatus updateImpl(Attributor &A) override {
6437     llvm_unreachable(
6438         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
6439   }
6440   /// See AbstractAttribute::trackStatistics()
6441   void trackStatistics() const override {
6442     STATS_DECLTRACK_FN_ATTR(value_simplify)
6443   }
6444 };
6445 
6446 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
6447   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
6448       : AAValueSimplifyFunction(IRP, A) {}
6449   /// See AbstractAttribute::trackStatistics()
6450   void trackStatistics() const override {
6451     STATS_DECLTRACK_CS_ATTR(value_simplify)
6452   }
6453 };
6454 
6455 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
6456   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
6457       : AAValueSimplifyImpl(IRP, A) {}
6458 
6459   void initialize(Attributor &A) override {
6460     AAValueSimplifyImpl::initialize(A);
6461     Function *Fn = getAssociatedFunction();
6462     assert(Fn && "Did expect an associted function");
6463     for (Argument &Arg : Fn->args()) {
6464       if (Arg.hasReturnedAttr()) {
6465         auto IRP = IRPosition::callsite_argument(*cast<CallBase>(getCtxI()),
6466                                                  Arg.getArgNo());
6467         if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT &&
6468             checkAndUpdate(A, *this, IRP))
6469           indicateOptimisticFixpoint();
6470         else
6471           indicatePessimisticFixpoint();
6472         return;
6473       }
6474     }
6475   }
6476 
6477   /// See AbstractAttribute::updateImpl(...).
6478   ChangeStatus updateImpl(Attributor &A) override {
6479         return indicatePessimisticFixpoint();
6480   }
6481 
6482   void trackStatistics() const override {
6483     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
6484   }
6485 };
6486 
6487 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
6488   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
6489       : AAValueSimplifyFloating(IRP, A) {}
6490 
6491   /// See AbstractAttribute::manifest(...).
6492   ChangeStatus manifest(Attributor &A) override {
6493     ChangeStatus Changed = ChangeStatus::UNCHANGED;
6494     // TODO: We should avoid simplification duplication to begin with.
6495     auto *FloatAA = A.lookupAAFor<AAValueSimplify>(
6496         IRPosition::value(getAssociatedValue()), this, DepClassTy::NONE);
6497     if (FloatAA && FloatAA->getState().isValidState())
6498       return Changed;
6499 
6500     if (auto *NewV = manifestReplacementValue(A, getCtxI())) {
6501       Use &U = cast<CallBase>(&getAnchorValue())
6502                    ->getArgOperandUse(getCallSiteArgNo());
6503       if (A.changeUseAfterManifest(U, *NewV))
6504         Changed = ChangeStatus::CHANGED;
6505     }
6506 
6507     return Changed | AAValueSimplify::manifest(A);
6508   }
6509 
6510   void trackStatistics() const override {
6511     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
6512   }
6513 };
6514 } // namespace
6515 
6516 /// ----------------------- Heap-To-Stack Conversion ---------------------------
6517 namespace {
6518 struct AAHeapToStackFunction final : public AAHeapToStack {
6519 
6520   struct AllocationInfo {
6521     /// The call that allocates the memory.
6522     CallBase *const CB;
6523 
6524     /// The library function id for the allocation.
6525     LibFunc LibraryFunctionId = NotLibFunc;
6526 
6527     /// The status wrt. a rewrite.
6528     enum {
6529       STACK_DUE_TO_USE,
6530       STACK_DUE_TO_FREE,
6531       INVALID,
6532     } Status = STACK_DUE_TO_USE;
6533 
6534     /// Flag to indicate if we encountered a use that might free this allocation
6535     /// but which is not in the deallocation infos.
6536     bool HasPotentiallyFreeingUnknownUses = false;
6537 
6538     /// Flag to indicate that we should place the new alloca in the function
6539     /// entry block rather than where the call site (CB) is.
6540     bool MoveAllocaIntoEntry = true;
6541 
6542     /// The set of free calls that use this allocation.
6543     SmallSetVector<CallBase *, 1> PotentialFreeCalls{};
6544   };
6545 
6546   struct DeallocationInfo {
6547     /// The call that deallocates the memory.
6548     CallBase *const CB;
6549     /// The value freed by the call.
6550     Value *FreedOp;
6551 
6552     /// Flag to indicate if we don't know all objects this deallocation might
6553     /// free.
6554     bool MightFreeUnknownObjects = false;
6555 
6556     /// The set of allocation calls that are potentially freed.
6557     SmallSetVector<CallBase *, 1> PotentialAllocationCalls{};
6558   };
6559 
6560   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
6561       : AAHeapToStack(IRP, A) {}
6562 
6563   ~AAHeapToStackFunction() {
6564     // Ensure we call the destructor so we release any memory allocated in the
6565     // sets.
6566     for (auto &It : AllocationInfos)
6567       It.second->~AllocationInfo();
6568     for (auto &It : DeallocationInfos)
6569       It.second->~DeallocationInfo();
6570   }
6571 
6572   void initialize(Attributor &A) override {
6573     AAHeapToStack::initialize(A);
6574 
6575     const Function *F = getAnchorScope();
6576     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6577 
6578     auto AllocationIdentifierCB = [&](Instruction &I) {
6579       CallBase *CB = dyn_cast<CallBase>(&I);
6580       if (!CB)
6581         return true;
6582       if (Value *FreedOp = getFreedOperand(CB, TLI)) {
6583         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB, FreedOp};
6584         return true;
6585       }
6586       // To do heap to stack, we need to know that the allocation itself is
6587       // removable once uses are rewritten, and that we can initialize the
6588       // alloca to the same pattern as the original allocation result.
6589       if (isRemovableAlloc(CB, TLI)) {
6590         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
6591         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
6592           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
6593           AllocationInfos[CB] = AI;
6594           if (TLI)
6595             TLI->getLibFunc(*CB, AI->LibraryFunctionId);
6596         }
6597       }
6598       return true;
6599     };
6600 
6601     bool UsedAssumedInformation = false;
6602     bool Success = A.checkForAllCallLikeInstructions(
6603         AllocationIdentifierCB, *this, UsedAssumedInformation,
6604         /* CheckBBLivenessOnly */ false,
6605         /* CheckPotentiallyDead */ true);
6606     (void)Success;
6607     assert(Success && "Did not expect the call base visit callback to fail!");
6608 
6609     Attributor::SimplifictionCallbackTy SCB =
6610         [](const IRPosition &, const AbstractAttribute *,
6611            bool &) -> std::optional<Value *> { return nullptr; };
6612     for (const auto &It : AllocationInfos)
6613       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
6614                                        SCB);
6615     for (const auto &It : DeallocationInfos)
6616       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
6617                                        SCB);
6618   }
6619 
6620   const std::string getAsStr(Attributor *A) const override {
6621     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
6622     for (const auto &It : AllocationInfos) {
6623       if (It.second->Status == AllocationInfo::INVALID)
6624         ++NumInvalidMallocs;
6625       else
6626         ++NumH2SMallocs;
6627     }
6628     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
6629            std::to_string(NumInvalidMallocs);
6630   }
6631 
6632   /// See AbstractAttribute::trackStatistics().
6633   void trackStatistics() const override {
6634     STATS_DECL(
6635         MallocCalls, Function,
6636         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
6637     for (const auto &It : AllocationInfos)
6638       if (It.second->Status != AllocationInfo::INVALID)
6639         ++BUILD_STAT_NAME(MallocCalls, Function);
6640   }
6641 
6642   bool isAssumedHeapToStack(const CallBase &CB) const override {
6643     if (isValidState())
6644       if (AllocationInfo *AI =
6645               AllocationInfos.lookup(const_cast<CallBase *>(&CB)))
6646         return AI->Status != AllocationInfo::INVALID;
6647     return false;
6648   }
6649 
6650   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
6651     if (!isValidState())
6652       return false;
6653 
6654     for (const auto &It : AllocationInfos) {
6655       AllocationInfo &AI = *It.second;
6656       if (AI.Status == AllocationInfo::INVALID)
6657         continue;
6658 
6659       if (AI.PotentialFreeCalls.count(&CB))
6660         return true;
6661     }
6662 
6663     return false;
6664   }
6665 
6666   ChangeStatus manifest(Attributor &A) override {
6667     assert(getState().isValidState() &&
6668            "Attempted to manifest an invalid state!");
6669 
6670     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
6671     Function *F = getAnchorScope();
6672     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6673 
6674     for (auto &It : AllocationInfos) {
6675       AllocationInfo &AI = *It.second;
6676       if (AI.Status == AllocationInfo::INVALID)
6677         continue;
6678 
6679       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
6680         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
6681         A.deleteAfterManifest(*FreeCall);
6682         HasChanged = ChangeStatus::CHANGED;
6683       }
6684 
6685       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
6686                         << "\n");
6687 
6688       auto Remark = [&](OptimizationRemark OR) {
6689         LibFunc IsAllocShared;
6690         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
6691           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
6692             return OR << "Moving globalized variable to the stack.";
6693         return OR << "Moving memory allocation from the heap to the stack.";
6694       };
6695       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6696         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
6697       else
6698         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
6699 
6700       const DataLayout &DL = A.getInfoCache().getDL();
6701       Value *Size;
6702       std::optional<APInt> SizeAPI = getSize(A, *this, AI);
6703       if (SizeAPI) {
6704         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
6705       } else {
6706         LLVMContext &Ctx = AI.CB->getContext();
6707         ObjectSizeOpts Opts;
6708         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
6709         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
6710         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
6711                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
6712         Size = SizeOffsetPair.first;
6713       }
6714 
6715       Instruction *IP =
6716           AI.MoveAllocaIntoEntry ? &F->getEntryBlock().front() : AI.CB;
6717 
6718       Align Alignment(1);
6719       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
6720         Alignment = std::max(Alignment, *RetAlign);
6721       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6722         std::optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
6723         assert(AlignmentAPI && AlignmentAPI->getZExtValue() > 0 &&
6724                "Expected an alignment during manifest!");
6725         Alignment =
6726             std::max(Alignment, assumeAligned(AlignmentAPI->getZExtValue()));
6727       }
6728 
6729       // TODO: Hoist the alloca towards the function entry.
6730       unsigned AS = DL.getAllocaAddrSpace();
6731       Instruction *Alloca =
6732           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
6733                          AI.CB->getName() + ".h2s", IP);
6734 
6735       if (Alloca->getType() != AI.CB->getType())
6736         Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6737             Alloca, AI.CB->getType(), "malloc_cast", AI.CB);
6738 
6739       auto *I8Ty = Type::getInt8Ty(F->getContext());
6740       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
6741       assert(InitVal &&
6742              "Must be able to materialize initial memory state of allocation");
6743 
6744       A.changeAfterManifest(IRPosition::inst(*AI.CB), *Alloca);
6745 
6746       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
6747         auto *NBB = II->getNormalDest();
6748         BranchInst::Create(NBB, AI.CB->getParent());
6749         A.deleteAfterManifest(*AI.CB);
6750       } else {
6751         A.deleteAfterManifest(*AI.CB);
6752       }
6753 
6754       // Initialize the alloca with the same value as used by the allocation
6755       // function.  We can skip undef as the initial value of an alloc is
6756       // undef, and the memset would simply end up being DSEd.
6757       if (!isa<UndefValue>(InitVal)) {
6758         IRBuilder<> Builder(Alloca->getNextNode());
6759         // TODO: Use alignment above if align!=1
6760         Builder.CreateMemSet(Alloca, InitVal, Size, std::nullopt);
6761       }
6762       HasChanged = ChangeStatus::CHANGED;
6763     }
6764 
6765     return HasChanged;
6766   }
6767 
6768   std::optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6769                                 Value &V) {
6770     bool UsedAssumedInformation = false;
6771     std::optional<Constant *> SimpleV =
6772         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6773     if (!SimpleV)
6774       return APInt(64, 0);
6775     if (auto *CI = dyn_cast_or_null<ConstantInt>(*SimpleV))
6776       return CI->getValue();
6777     return std::nullopt;
6778   }
6779 
6780   std::optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6781                                AllocationInfo &AI) {
6782     auto Mapper = [&](const Value *V) -> const Value * {
6783       bool UsedAssumedInformation = false;
6784       if (std::optional<Constant *> SimpleV =
6785               A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6786         if (*SimpleV)
6787           return *SimpleV;
6788       return V;
6789     };
6790 
6791     const Function *F = getAnchorScope();
6792     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6793     return getAllocSize(AI.CB, TLI, Mapper);
6794   }
6795 
6796   /// Collection of all malloc-like calls in a function with associated
6797   /// information.
6798   MapVector<CallBase *, AllocationInfo *> AllocationInfos;
6799 
6800   /// Collection of all free-like calls in a function with associated
6801   /// information.
6802   MapVector<CallBase *, DeallocationInfo *> DeallocationInfos;
6803 
6804   ChangeStatus updateImpl(Attributor &A) override;
6805 };
6806 
6807 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6808   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6809   const Function *F = getAnchorScope();
6810   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6811 
6812   const auto *LivenessAA =
6813       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6814 
6815   MustBeExecutedContextExplorer *Explorer =
6816       A.getInfoCache().getMustBeExecutedContextExplorer();
6817 
6818   bool StackIsAccessibleByOtherThreads =
6819       A.getInfoCache().stackIsAccessibleByOtherThreads();
6820 
6821   LoopInfo *LI =
6822       A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(*F);
6823   std::optional<bool> MayContainIrreducibleControl;
6824   auto IsInLoop = [&](BasicBlock &BB) {
6825     if (&F->getEntryBlock() == &BB)
6826       return false;
6827     if (!MayContainIrreducibleControl.has_value())
6828       MayContainIrreducibleControl = mayContainIrreducibleControl(*F, LI);
6829     if (*MayContainIrreducibleControl)
6830       return true;
6831     if (!LI)
6832       return true;
6833     return LI->getLoopFor(&BB) != nullptr;
6834   };
6835 
6836   // Flag to ensure we update our deallocation information at most once per
6837   // updateImpl call and only if we use the free check reasoning.
6838   bool HasUpdatedFrees = false;
6839 
6840   auto UpdateFrees = [&]() {
6841     HasUpdatedFrees = true;
6842 
6843     for (auto &It : DeallocationInfos) {
6844       DeallocationInfo &DI = *It.second;
6845       // For now we cannot use deallocations that have unknown inputs, skip
6846       // them.
6847       if (DI.MightFreeUnknownObjects)
6848         continue;
6849 
6850       // No need to analyze dead calls, ignore them instead.
6851       bool UsedAssumedInformation = false;
6852       if (A.isAssumedDead(*DI.CB, this, LivenessAA, UsedAssumedInformation,
6853                           /* CheckBBLivenessOnly */ true))
6854         continue;
6855 
6856       // Use the non-optimistic version to get the freed object.
6857       Value *Obj = getUnderlyingObject(DI.FreedOp);
6858       if (!Obj) {
6859         LLVM_DEBUG(dbgs() << "[H2S] Unknown underlying object for free!\n");
6860         DI.MightFreeUnknownObjects = true;
6861         continue;
6862       }
6863 
6864       // Free of null and undef can be ignored as no-ops (or UB in the latter
6865       // case).
6866       if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6867         continue;
6868 
6869       CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6870       if (!ObjCB) {
6871         LLVM_DEBUG(dbgs() << "[H2S] Free of a non-call object: " << *Obj
6872                           << "\n");
6873         DI.MightFreeUnknownObjects = true;
6874         continue;
6875       }
6876 
6877       AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6878       if (!AI) {
6879         LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6880                           << "\n");
6881         DI.MightFreeUnknownObjects = true;
6882         continue;
6883       }
6884 
6885       DI.PotentialAllocationCalls.insert(ObjCB);
6886     }
6887   };
6888 
6889   auto FreeCheck = [&](AllocationInfo &AI) {
6890     // If the stack is not accessible by other threads, the "must-free" logic
6891     // doesn't apply as the pointer could be shared and needs to be places in
6892     // "shareable" memory.
6893     if (!StackIsAccessibleByOtherThreads) {
6894       bool IsKnownNoSycn;
6895       if (!AA::hasAssumedIRAttr<Attribute::NoSync>(
6896               A, this, getIRPosition(), DepClassTy::OPTIONAL, IsKnownNoSycn)) {
6897         LLVM_DEBUG(
6898             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6899                       "other threads and function is not nosync:\n");
6900         return false;
6901       }
6902     }
6903     if (!HasUpdatedFrees)
6904       UpdateFrees();
6905 
6906     // TODO: Allow multi exit functions that have different free calls.
6907     if (AI.PotentialFreeCalls.size() != 1) {
6908       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6909                         << AI.PotentialFreeCalls.size() << "\n");
6910       return false;
6911     }
6912     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6913     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6914     if (!DI) {
6915       LLVM_DEBUG(
6916           dbgs() << "[H2S] unique free call was not known as deallocation call "
6917                  << *UniqueFree << "\n");
6918       return false;
6919     }
6920     if (DI->MightFreeUnknownObjects) {
6921       LLVM_DEBUG(
6922           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6923       return false;
6924     }
6925     if (DI->PotentialAllocationCalls.empty())
6926       return true;
6927     if (DI->PotentialAllocationCalls.size() > 1) {
6928       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6929                         << DI->PotentialAllocationCalls.size()
6930                         << " different allocations\n");
6931       return false;
6932     }
6933     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6934       LLVM_DEBUG(
6935           dbgs()
6936           << "[H2S] unique free call not known to free this allocation but "
6937           << **DI->PotentialAllocationCalls.begin() << "\n");
6938       return false;
6939     }
6940     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6941     if (!Explorer || !Explorer->findInContextOf(UniqueFree, CtxI)) {
6942       LLVM_DEBUG(
6943           dbgs()
6944           << "[H2S] unique free call might not be executed with the allocation "
6945           << *UniqueFree << "\n");
6946       return false;
6947     }
6948     return true;
6949   };
6950 
6951   auto UsesCheck = [&](AllocationInfo &AI) {
6952     bool ValidUsesOnly = true;
6953 
6954     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6955       Instruction *UserI = cast<Instruction>(U.getUser());
6956       if (isa<LoadInst>(UserI))
6957         return true;
6958       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6959         if (SI->getValueOperand() == U.get()) {
6960           LLVM_DEBUG(dbgs()
6961                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6962           ValidUsesOnly = false;
6963         } else {
6964           // A store into the malloc'ed memory is fine.
6965         }
6966         return true;
6967       }
6968       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6969         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6970           return true;
6971         if (DeallocationInfos.count(CB)) {
6972           AI.PotentialFreeCalls.insert(CB);
6973           return true;
6974         }
6975 
6976         unsigned ArgNo = CB->getArgOperandNo(&U);
6977         auto CBIRP = IRPosition::callsite_argument(*CB, ArgNo);
6978 
6979         bool IsKnownNoCapture;
6980         bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
6981             A, this, CBIRP, DepClassTy::OPTIONAL, IsKnownNoCapture);
6982 
6983         // If a call site argument use is nofree, we are fine.
6984         bool IsKnownNoFree;
6985         bool IsAssumedNoFree = AA::hasAssumedIRAttr<Attribute::NoFree>(
6986             A, this, CBIRP, DepClassTy::OPTIONAL, IsKnownNoFree);
6987 
6988         if (!IsAssumedNoCapture ||
6989             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6990              !IsAssumedNoFree)) {
6991           AI.HasPotentiallyFreeingUnknownUses |= !IsAssumedNoFree;
6992 
6993           // Emit a missed remark if this is missed OpenMP globalization.
6994           auto Remark = [&](OptimizationRemarkMissed ORM) {
6995             return ORM
6996                    << "Could not move globalized variable to the stack. "
6997                       "Variable is potentially captured in call. Mark "
6998                       "parameter as `__attribute__((noescape))` to override.";
6999           };
7000 
7001           if (ValidUsesOnly &&
7002               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
7003             A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
7004 
7005           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
7006           ValidUsesOnly = false;
7007         }
7008         return true;
7009       }
7010 
7011       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
7012           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
7013         Follow = true;
7014         return true;
7015       }
7016       // Unknown user for which we can not track uses further (in a way that
7017       // makes sense).
7018       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
7019       ValidUsesOnly = false;
7020       return true;
7021     };
7022     if (!A.checkForAllUses(Pred, *this, *AI.CB, /* CheckBBLivenessOnly */ false,
7023                            DepClassTy::OPTIONAL, /* IgnoreDroppableUses */ true,
7024                            [&](const Use &OldU, const Use &NewU) {
7025                              auto *SI = dyn_cast<StoreInst>(OldU.getUser());
7026                              return !SI || StackIsAccessibleByOtherThreads ||
7027                                     AA::isAssumedThreadLocalObject(
7028                                         A, *SI->getPointerOperand(), *this);
7029                            }))
7030       return false;
7031     return ValidUsesOnly;
7032   };
7033 
7034   // The actual update starts here. We look at all allocations and depending on
7035   // their status perform the appropriate check(s).
7036   for (auto &It : AllocationInfos) {
7037     AllocationInfo &AI = *It.second;
7038     if (AI.Status == AllocationInfo::INVALID)
7039       continue;
7040 
7041     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
7042       std::optional<APInt> APAlign = getAPInt(A, *this, *Align);
7043       if (!APAlign) {
7044         // Can't generate an alloca which respects the required alignment
7045         // on the allocation.
7046         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
7047                           << "\n");
7048         AI.Status = AllocationInfo::INVALID;
7049         Changed = ChangeStatus::CHANGED;
7050         continue;
7051       }
7052       if (APAlign->ugt(llvm::Value::MaximumAlignment) ||
7053           !APAlign->isPowerOf2()) {
7054         LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign
7055                           << "\n");
7056         AI.Status = AllocationInfo::INVALID;
7057         Changed = ChangeStatus::CHANGED;
7058         continue;
7059       }
7060     }
7061 
7062     std::optional<APInt> Size = getSize(A, *this, AI);
7063     if (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
7064         MaxHeapToStackSize != -1) {
7065       if (!Size || Size->ugt(MaxHeapToStackSize)) {
7066         LLVM_DEBUG({
7067           if (!Size)
7068             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
7069           else
7070             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
7071                    << MaxHeapToStackSize << "\n";
7072         });
7073 
7074         AI.Status = AllocationInfo::INVALID;
7075         Changed = ChangeStatus::CHANGED;
7076         continue;
7077       }
7078     }
7079 
7080     switch (AI.Status) {
7081     case AllocationInfo::STACK_DUE_TO_USE:
7082       if (UsesCheck(AI))
7083         break;
7084       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
7085       [[fallthrough]];
7086     case AllocationInfo::STACK_DUE_TO_FREE:
7087       if (FreeCheck(AI))
7088         break;
7089       AI.Status = AllocationInfo::INVALID;
7090       Changed = ChangeStatus::CHANGED;
7091       break;
7092     case AllocationInfo::INVALID:
7093       llvm_unreachable("Invalid allocations should never reach this point!");
7094     };
7095 
7096     // Check if we still think we can move it into the entry block. If the
7097     // alloca comes from a converted __kmpc_alloc_shared then we can usually
7098     // ignore the potential compilations associated with loops.
7099     bool IsGlobalizedLocal =
7100         AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared;
7101     if (AI.MoveAllocaIntoEntry &&
7102         (!Size.has_value() ||
7103          (!IsGlobalizedLocal && IsInLoop(*AI.CB->getParent()))))
7104       AI.MoveAllocaIntoEntry = false;
7105   }
7106 
7107   return Changed;
7108 }
7109 } // namespace
7110 
7111 /// ----------------------- Privatizable Pointers ------------------------------
7112 namespace {
7113 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
7114   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
7115       : AAPrivatizablePtr(IRP, A), PrivatizableType(std::nullopt) {}
7116 
7117   ChangeStatus indicatePessimisticFixpoint() override {
7118     AAPrivatizablePtr::indicatePessimisticFixpoint();
7119     PrivatizableType = nullptr;
7120     return ChangeStatus::CHANGED;
7121   }
7122 
7123   /// Identify the type we can chose for a private copy of the underlying
7124   /// argument. std::nullopt means it is not clear yet, nullptr means there is
7125   /// none.
7126   virtual std::optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
7127 
7128   /// Return a privatizable type that encloses both T0 and T1.
7129   /// TODO: This is merely a stub for now as we should manage a mapping as well.
7130   std::optional<Type *> combineTypes(std::optional<Type *> T0,
7131                                      std::optional<Type *> T1) {
7132     if (!T0)
7133       return T1;
7134     if (!T1)
7135       return T0;
7136     if (T0 == T1)
7137       return T0;
7138     return nullptr;
7139   }
7140 
7141   std::optional<Type *> getPrivatizableType() const override {
7142     return PrivatizableType;
7143   }
7144 
7145   const std::string getAsStr(Attributor *A) const override {
7146     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
7147   }
7148 
7149 protected:
7150   std::optional<Type *> PrivatizableType;
7151 };
7152 
7153 // TODO: Do this for call site arguments (probably also other values) as well.
7154 
7155 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
7156   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
7157       : AAPrivatizablePtrImpl(IRP, A) {}
7158 
7159   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
7160   std::optional<Type *> identifyPrivatizableType(Attributor &A) override {
7161     // If this is a byval argument and we know all the call sites (so we can
7162     // rewrite them), there is no need to check them explicitly.
7163     bool UsedAssumedInformation = false;
7164     SmallVector<Attribute, 1> Attrs;
7165     A.getAttrs(getIRPosition(), {Attribute::ByVal}, Attrs,
7166                /* IgnoreSubsumingPositions */ true);
7167     if (!Attrs.empty() &&
7168         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
7169                                true, UsedAssumedInformation))
7170       return Attrs[0].getValueAsType();
7171 
7172     std::optional<Type *> Ty;
7173     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
7174 
7175     // Make sure the associated call site argument has the same type at all call
7176     // sites and it is an allocation we know is safe to privatize, for now that
7177     // means we only allow alloca instructions.
7178     // TODO: We can additionally analyze the accesses in the callee to  create
7179     //       the type from that information instead. That is a little more
7180     //       involved and will be done in a follow up patch.
7181     auto CallSiteCheck = [&](AbstractCallSite ACS) {
7182       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
7183       // Check if a coresponding argument was found or if it is one not
7184       // associated (which can happen for callback calls).
7185       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
7186         return false;
7187 
7188       // Check that all call sites agree on a type.
7189       auto *PrivCSArgAA =
7190           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
7191       if (!PrivCSArgAA)
7192         return false;
7193       std::optional<Type *> CSTy = PrivCSArgAA->getPrivatizableType();
7194 
7195       LLVM_DEBUG({
7196         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
7197         if (CSTy && *CSTy)
7198           (*CSTy)->print(dbgs());
7199         else if (CSTy)
7200           dbgs() << "<nullptr>";
7201         else
7202           dbgs() << "<none>";
7203       });
7204 
7205       Ty = combineTypes(Ty, CSTy);
7206 
7207       LLVM_DEBUG({
7208         dbgs() << " : New Type: ";
7209         if (Ty && *Ty)
7210           (*Ty)->print(dbgs());
7211         else if (Ty)
7212           dbgs() << "<nullptr>";
7213         else
7214           dbgs() << "<none>";
7215         dbgs() << "\n";
7216       });
7217 
7218       return !Ty || *Ty;
7219     };
7220 
7221     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
7222                                 UsedAssumedInformation))
7223       return nullptr;
7224     return Ty;
7225   }
7226 
7227   /// See AbstractAttribute::updateImpl(...).
7228   ChangeStatus updateImpl(Attributor &A) override {
7229     PrivatizableType = identifyPrivatizableType(A);
7230     if (!PrivatizableType)
7231       return ChangeStatus::UNCHANGED;
7232     if (!*PrivatizableType)
7233       return indicatePessimisticFixpoint();
7234 
7235     // The dependence is optional so we don't give up once we give up on the
7236     // alignment.
7237     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
7238                         DepClassTy::OPTIONAL);
7239 
7240     // Avoid arguments with padding for now.
7241     if (!A.hasAttr(getIRPosition(), Attribute::ByVal) &&
7242         !isDenselyPacked(*PrivatizableType, A.getInfoCache().getDL())) {
7243       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
7244       return indicatePessimisticFixpoint();
7245     }
7246 
7247     // Collect the types that will replace the privatizable type in the function
7248     // signature.
7249     SmallVector<Type *, 16> ReplacementTypes;
7250     identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
7251 
7252     // Verify callee and caller agree on how the promoted argument would be
7253     // passed.
7254     Function &Fn = *getIRPosition().getAnchorScope();
7255     const auto *TTI =
7256         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
7257     if (!TTI) {
7258       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
7259                         << Fn.getName() << "\n");
7260       return indicatePessimisticFixpoint();
7261     }
7262 
7263     auto CallSiteCheck = [&](AbstractCallSite ACS) {
7264       CallBase *CB = ACS.getInstruction();
7265       return TTI->areTypesABICompatible(
7266           CB->getCaller(),
7267           dyn_cast_if_present<Function>(CB->getCalledOperand()),
7268           ReplacementTypes);
7269     };
7270     bool UsedAssumedInformation = false;
7271     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
7272                                 UsedAssumedInformation)) {
7273       LLVM_DEBUG(
7274           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
7275                  << Fn.getName() << "\n");
7276       return indicatePessimisticFixpoint();
7277     }
7278 
7279     // Register a rewrite of the argument.
7280     Argument *Arg = getAssociatedArgument();
7281     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
7282       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
7283       return indicatePessimisticFixpoint();
7284     }
7285 
7286     unsigned ArgNo = Arg->getArgNo();
7287 
7288     // Helper to check if for the given call site the associated argument is
7289     // passed to a callback where the privatization would be different.
7290     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
7291       SmallVector<const Use *, 4> CallbackUses;
7292       AbstractCallSite::getCallbackUses(CB, CallbackUses);
7293       for (const Use *U : CallbackUses) {
7294         AbstractCallSite CBACS(U);
7295         assert(CBACS && CBACS.isCallbackCall());
7296         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
7297           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
7298 
7299           LLVM_DEBUG({
7300             dbgs()
7301                 << "[AAPrivatizablePtr] Argument " << *Arg
7302                 << "check if can be privatized in the context of its parent ("
7303                 << Arg->getParent()->getName()
7304                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
7305                    "callback ("
7306                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
7307                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
7308                 << CBACS.getCallArgOperand(CBArg) << " vs "
7309                 << CB.getArgOperand(ArgNo) << "\n"
7310                 << "[AAPrivatizablePtr] " << CBArg << " : "
7311                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
7312           });
7313 
7314           if (CBArgNo != int(ArgNo))
7315             continue;
7316           const auto *CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
7317               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
7318           if (CBArgPrivAA && CBArgPrivAA->isValidState()) {
7319             auto CBArgPrivTy = CBArgPrivAA->getPrivatizableType();
7320             if (!CBArgPrivTy)
7321               continue;
7322             if (*CBArgPrivTy == PrivatizableType)
7323               continue;
7324           }
7325 
7326           LLVM_DEBUG({
7327             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
7328                    << " cannot be privatized in the context of its parent ("
7329                    << Arg->getParent()->getName()
7330                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
7331                       "callback ("
7332                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
7333                    << ").\n[AAPrivatizablePtr] for which the argument "
7334                       "privatization is not compatible.\n";
7335           });
7336           return false;
7337         }
7338       }
7339       return true;
7340     };
7341 
7342     // Helper to check if for the given call site the associated argument is
7343     // passed to a direct call where the privatization would be different.
7344     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
7345       CallBase *DC = cast<CallBase>(ACS.getInstruction());
7346       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
7347       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
7348              "Expected a direct call operand for callback call operand");
7349 
7350       Function *DCCallee =
7351           dyn_cast_if_present<Function>(DC->getCalledOperand());
7352       LLVM_DEBUG({
7353         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
7354                << " check if be privatized in the context of its parent ("
7355                << Arg->getParent()->getName()
7356                << ")\n[AAPrivatizablePtr] because it is an argument in a "
7357                   "direct call of ("
7358                << DCArgNo << "@" << DCCallee->getName() << ").\n";
7359       });
7360 
7361       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
7362         const auto *DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
7363             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
7364             DepClassTy::REQUIRED);
7365         if (DCArgPrivAA && DCArgPrivAA->isValidState()) {
7366           auto DCArgPrivTy = DCArgPrivAA->getPrivatizableType();
7367           if (!DCArgPrivTy)
7368             return true;
7369           if (*DCArgPrivTy == PrivatizableType)
7370             return true;
7371         }
7372       }
7373 
7374       LLVM_DEBUG({
7375         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
7376                << " cannot be privatized in the context of its parent ("
7377                << Arg->getParent()->getName()
7378                << ")\n[AAPrivatizablePtr] because it is an argument in a "
7379                   "direct call of ("
7380                << ACS.getInstruction()->getCalledOperand()->getName()
7381                << ").\n[AAPrivatizablePtr] for which the argument "
7382                   "privatization is not compatible.\n";
7383       });
7384       return false;
7385     };
7386 
7387     // Helper to check if the associated argument is used at the given abstract
7388     // call site in a way that is incompatible with the privatization assumed
7389     // here.
7390     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
7391       if (ACS.isDirectCall())
7392         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
7393       if (ACS.isCallbackCall())
7394         return IsCompatiblePrivArgOfDirectCS(ACS);
7395       return false;
7396     };
7397 
7398     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
7399                                 UsedAssumedInformation))
7400       return indicatePessimisticFixpoint();
7401 
7402     return ChangeStatus::UNCHANGED;
7403   }
7404 
7405   /// Given a type to private \p PrivType, collect the constituates (which are
7406   /// used) in \p ReplacementTypes.
7407   static void
7408   identifyReplacementTypes(Type *PrivType,
7409                            SmallVectorImpl<Type *> &ReplacementTypes) {
7410     // TODO: For now we expand the privatization type to the fullest which can
7411     //       lead to dead arguments that need to be removed later.
7412     assert(PrivType && "Expected privatizable type!");
7413 
7414     // Traverse the type, extract constituate types on the outermost level.
7415     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
7416       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
7417         ReplacementTypes.push_back(PrivStructType->getElementType(u));
7418     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
7419       ReplacementTypes.append(PrivArrayType->getNumElements(),
7420                               PrivArrayType->getElementType());
7421     } else {
7422       ReplacementTypes.push_back(PrivType);
7423     }
7424   }
7425 
7426   /// Initialize \p Base according to the type \p PrivType at position \p IP.
7427   /// The values needed are taken from the arguments of \p F starting at
7428   /// position \p ArgNo.
7429   static void createInitialization(Type *PrivType, Value &Base, Function &F,
7430                                    unsigned ArgNo, Instruction &IP) {
7431     assert(PrivType && "Expected privatizable type!");
7432 
7433     IRBuilder<NoFolder> IRB(&IP);
7434     const DataLayout &DL = F.getParent()->getDataLayout();
7435 
7436     // Traverse the type, build GEPs and stores.
7437     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
7438       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
7439       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
7440         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
7441         Value *Ptr =
7442             constructPointer(PointeeTy, PrivType, &Base,
7443                              PrivStructLayout->getElementOffset(u), IRB, DL);
7444         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
7445       }
7446     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
7447       Type *PointeeTy = PrivArrayType->getElementType();
7448       Type *PointeePtrTy = PointeeTy->getPointerTo();
7449       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
7450       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
7451         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
7452                                       u * PointeeTySize, IRB, DL);
7453         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
7454       }
7455     } else {
7456       new StoreInst(F.getArg(ArgNo), &Base, &IP);
7457     }
7458   }
7459 
7460   /// Extract values from \p Base according to the type \p PrivType at the
7461   /// call position \p ACS. The values are appended to \p ReplacementValues.
7462   void createReplacementValues(Align Alignment, Type *PrivType,
7463                                AbstractCallSite ACS, Value *Base,
7464                                SmallVectorImpl<Value *> &ReplacementValues) {
7465     assert(Base && "Expected base value!");
7466     assert(PrivType && "Expected privatizable type!");
7467     Instruction *IP = ACS.getInstruction();
7468 
7469     IRBuilder<NoFolder> IRB(IP);
7470     const DataLayout &DL = IP->getModule()->getDataLayout();
7471 
7472     Type *PrivPtrType = PrivType->getPointerTo();
7473     if (Base->getType() != PrivPtrType)
7474       Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
7475           Base, PrivPtrType, "", ACS.getInstruction());
7476 
7477     // Traverse the type, build GEPs and loads.
7478     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
7479       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
7480       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
7481         Type *PointeeTy = PrivStructType->getElementType(u);
7482         Value *Ptr =
7483             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
7484                              PrivStructLayout->getElementOffset(u), IRB, DL);
7485         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
7486         L->setAlignment(Alignment);
7487         ReplacementValues.push_back(L);
7488       }
7489     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
7490       Type *PointeeTy = PrivArrayType->getElementType();
7491       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
7492       Type *PointeePtrTy = PointeeTy->getPointerTo();
7493       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
7494         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
7495                                       u * PointeeTySize, IRB, DL);
7496         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
7497         L->setAlignment(Alignment);
7498         ReplacementValues.push_back(L);
7499       }
7500     } else {
7501       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
7502       L->setAlignment(Alignment);
7503       ReplacementValues.push_back(L);
7504     }
7505   }
7506 
7507   /// See AbstractAttribute::manifest(...)
7508   ChangeStatus manifest(Attributor &A) override {
7509     if (!PrivatizableType)
7510       return ChangeStatus::UNCHANGED;
7511     assert(*PrivatizableType && "Expected privatizable type!");
7512 
7513     // Collect all tail calls in the function as we cannot allow new allocas to
7514     // escape into tail recursion.
7515     // TODO: Be smarter about new allocas escaping into tail calls.
7516     SmallVector<CallInst *, 16> TailCalls;
7517     bool UsedAssumedInformation = false;
7518     if (!A.checkForAllInstructions(
7519             [&](Instruction &I) {
7520               CallInst &CI = cast<CallInst>(I);
7521               if (CI.isTailCall())
7522                 TailCalls.push_back(&CI);
7523               return true;
7524             },
7525             *this, {Instruction::Call}, UsedAssumedInformation))
7526       return ChangeStatus::UNCHANGED;
7527 
7528     Argument *Arg = getAssociatedArgument();
7529     // Query AAAlign attribute for alignment of associated argument to
7530     // determine the best alignment of loads.
7531     const auto *AlignAA =
7532         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
7533 
7534     // Callback to repair the associated function. A new alloca is placed at the
7535     // beginning and initialized with the values passed through arguments. The
7536     // new alloca replaces the use of the old pointer argument.
7537     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
7538         [=](const Attributor::ArgumentReplacementInfo &ARI,
7539             Function &ReplacementFn, Function::arg_iterator ArgIt) {
7540           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
7541           Instruction *IP = &*EntryBB.getFirstInsertionPt();
7542           const DataLayout &DL = IP->getModule()->getDataLayout();
7543           unsigned AS = DL.getAllocaAddrSpace();
7544           Instruction *AI = new AllocaInst(*PrivatizableType, AS,
7545                                            Arg->getName() + ".priv", IP);
7546           createInitialization(*PrivatizableType, *AI, ReplacementFn,
7547                                ArgIt->getArgNo(), *IP);
7548 
7549           if (AI->getType() != Arg->getType())
7550             AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
7551                 AI, Arg->getType(), "", IP);
7552           Arg->replaceAllUsesWith(AI);
7553 
7554           for (CallInst *CI : TailCalls)
7555             CI->setTailCall(false);
7556         };
7557 
7558     // Callback to repair a call site of the associated function. The elements
7559     // of the privatizable type are loaded prior to the call and passed to the
7560     // new function version.
7561     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
7562         [=](const Attributor::ArgumentReplacementInfo &ARI,
7563             AbstractCallSite ACS, SmallVectorImpl<Value *> &NewArgOperands) {
7564           // When no alignment is specified for the load instruction,
7565           // natural alignment is assumed.
7566           createReplacementValues(
7567               AlignAA ? AlignAA->getAssumedAlign() : Align(0),
7568               *PrivatizableType, ACS,
7569               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
7570               NewArgOperands);
7571         };
7572 
7573     // Collect the types that will replace the privatizable type in the function
7574     // signature.
7575     SmallVector<Type *, 16> ReplacementTypes;
7576     identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
7577 
7578     // Register a rewrite of the argument.
7579     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
7580                                            std::move(FnRepairCB),
7581                                            std::move(ACSRepairCB)))
7582       return ChangeStatus::CHANGED;
7583     return ChangeStatus::UNCHANGED;
7584   }
7585 
7586   /// See AbstractAttribute::trackStatistics()
7587   void trackStatistics() const override {
7588     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
7589   }
7590 };
7591 
7592 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
7593   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
7594       : AAPrivatizablePtrImpl(IRP, A) {}
7595 
7596   /// See AbstractAttribute::initialize(...).
7597   void initialize(Attributor &A) override {
7598     // TODO: We can privatize more than arguments.
7599     indicatePessimisticFixpoint();
7600   }
7601 
7602   ChangeStatus updateImpl(Attributor &A) override {
7603     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
7604                      "updateImpl will not be called");
7605   }
7606 
7607   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
7608   std::optional<Type *> identifyPrivatizableType(Attributor &A) override {
7609     Value *Obj = getUnderlyingObject(&getAssociatedValue());
7610     if (!Obj) {
7611       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
7612       return nullptr;
7613     }
7614 
7615     if (auto *AI = dyn_cast<AllocaInst>(Obj))
7616       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
7617         if (CI->isOne())
7618           return AI->getAllocatedType();
7619     if (auto *Arg = dyn_cast<Argument>(Obj)) {
7620       auto *PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
7621           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
7622       if (PrivArgAA && PrivArgAA->isAssumedPrivatizablePtr())
7623         return PrivArgAA->getPrivatizableType();
7624     }
7625 
7626     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
7627                          "alloca nor privatizable argument: "
7628                       << *Obj << "!\n");
7629     return nullptr;
7630   }
7631 
7632   /// See AbstractAttribute::trackStatistics()
7633   void trackStatistics() const override {
7634     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
7635   }
7636 };
7637 
7638 struct AAPrivatizablePtrCallSiteArgument final
7639     : public AAPrivatizablePtrFloating {
7640   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
7641       : AAPrivatizablePtrFloating(IRP, A) {}
7642 
7643   /// See AbstractAttribute::initialize(...).
7644   void initialize(Attributor &A) override {
7645     if (A.hasAttr(getIRPosition(), Attribute::ByVal))
7646       indicateOptimisticFixpoint();
7647   }
7648 
7649   /// See AbstractAttribute::updateImpl(...).
7650   ChangeStatus updateImpl(Attributor &A) override {
7651     PrivatizableType = identifyPrivatizableType(A);
7652     if (!PrivatizableType)
7653       return ChangeStatus::UNCHANGED;
7654     if (!*PrivatizableType)
7655       return indicatePessimisticFixpoint();
7656 
7657     const IRPosition &IRP = getIRPosition();
7658     bool IsKnownNoCapture;
7659     bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
7660         A, this, IRP, DepClassTy::REQUIRED, IsKnownNoCapture);
7661     if (!IsAssumedNoCapture) {
7662       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
7663       return indicatePessimisticFixpoint();
7664     }
7665 
7666     bool IsKnownNoAlias;
7667     if (!AA::hasAssumedIRAttr<Attribute::NoAlias>(
7668             A, this, IRP, DepClassTy::REQUIRED, IsKnownNoAlias)) {
7669       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
7670       return indicatePessimisticFixpoint();
7671     }
7672 
7673     bool IsKnown;
7674     if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
7675       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
7676       return indicatePessimisticFixpoint();
7677     }
7678 
7679     return ChangeStatus::UNCHANGED;
7680   }
7681 
7682   /// See AbstractAttribute::trackStatistics()
7683   void trackStatistics() const override {
7684     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
7685   }
7686 };
7687 
7688 struct AAPrivatizablePtrCallSiteReturned final
7689     : public AAPrivatizablePtrFloating {
7690   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
7691       : AAPrivatizablePtrFloating(IRP, A) {}
7692 
7693   /// See AbstractAttribute::initialize(...).
7694   void initialize(Attributor &A) override {
7695     // TODO: We can privatize more than arguments.
7696     indicatePessimisticFixpoint();
7697   }
7698 
7699   /// See AbstractAttribute::trackStatistics()
7700   void trackStatistics() const override {
7701     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
7702   }
7703 };
7704 
7705 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
7706   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
7707       : AAPrivatizablePtrFloating(IRP, A) {}
7708 
7709   /// See AbstractAttribute::initialize(...).
7710   void initialize(Attributor &A) override {
7711     // TODO: We can privatize more than arguments.
7712     indicatePessimisticFixpoint();
7713   }
7714 
7715   /// See AbstractAttribute::trackStatistics()
7716   void trackStatistics() const override {
7717     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
7718   }
7719 };
7720 } // namespace
7721 
7722 /// -------------------- Memory Behavior Attributes ----------------------------
7723 /// Includes read-none, read-only, and write-only.
7724 /// ----------------------------------------------------------------------------
7725 namespace {
7726 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
7727   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
7728       : AAMemoryBehavior(IRP, A) {}
7729 
7730   /// See AbstractAttribute::initialize(...).
7731   void initialize(Attributor &A) override {
7732     intersectAssumedBits(BEST_STATE);
7733     getKnownStateFromValue(A, getIRPosition(), getState());
7734     AAMemoryBehavior::initialize(A);
7735   }
7736 
7737   /// Return the memory behavior information encoded in the IR for \p IRP.
7738   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7739                                      BitIntegerState &State,
7740                                      bool IgnoreSubsumingPositions = false) {
7741     SmallVector<Attribute, 2> Attrs;
7742     A.getAttrs(IRP, AttrKinds, Attrs, IgnoreSubsumingPositions);
7743     for (const Attribute &Attr : Attrs) {
7744       switch (Attr.getKindAsEnum()) {
7745       case Attribute::ReadNone:
7746         State.addKnownBits(NO_ACCESSES);
7747         break;
7748       case Attribute::ReadOnly:
7749         State.addKnownBits(NO_WRITES);
7750         break;
7751       case Attribute::WriteOnly:
7752         State.addKnownBits(NO_READS);
7753         break;
7754       default:
7755         llvm_unreachable("Unexpected attribute!");
7756       }
7757     }
7758 
7759     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
7760       if (!I->mayReadFromMemory())
7761         State.addKnownBits(NO_READS);
7762       if (!I->mayWriteToMemory())
7763         State.addKnownBits(NO_WRITES);
7764     }
7765   }
7766 
7767   /// See AbstractAttribute::getDeducedAttributes(...).
7768   void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
7769                             SmallVectorImpl<Attribute> &Attrs) const override {
7770     assert(Attrs.size() == 0);
7771     if (isAssumedReadNone())
7772       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7773     else if (isAssumedReadOnly())
7774       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
7775     else if (isAssumedWriteOnly())
7776       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
7777     assert(Attrs.size() <= 1);
7778   }
7779 
7780   /// See AbstractAttribute::manifest(...).
7781   ChangeStatus manifest(Attributor &A) override {
7782     const IRPosition &IRP = getIRPosition();
7783 
7784     if (A.hasAttr(IRP, Attribute::ReadNone,
7785                   /* IgnoreSubsumingPositions */ true))
7786       return ChangeStatus::UNCHANGED;
7787 
7788     // Check if we would improve the existing attributes first.
7789     SmallVector<Attribute, 4> DeducedAttrs;
7790     getDeducedAttributes(A, IRP.getAnchorValue().getContext(), DeducedAttrs);
7791     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7792           return A.hasAttr(IRP, Attr.getKindAsEnum(),
7793                            /* IgnoreSubsumingPositions */ true);
7794         }))
7795       return ChangeStatus::UNCHANGED;
7796 
7797     // Clear existing attributes.
7798     A.removeAttrs(IRP, AttrKinds);
7799 
7800     // Use the generic manifest method.
7801     return IRAttribute::manifest(A);
7802   }
7803 
7804   /// See AbstractState::getAsStr().
7805   const std::string getAsStr(Attributor *A) const override {
7806     if (isAssumedReadNone())
7807       return "readnone";
7808     if (isAssumedReadOnly())
7809       return "readonly";
7810     if (isAssumedWriteOnly())
7811       return "writeonly";
7812     return "may-read/write";
7813   }
7814 
7815   /// The set of IR attributes AAMemoryBehavior deals with.
7816   static const Attribute::AttrKind AttrKinds[3];
7817 };
7818 
7819 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7820     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7821 
7822 /// Memory behavior attribute for a floating value.
7823 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
7824   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7825       : AAMemoryBehaviorImpl(IRP, A) {}
7826 
7827   /// See AbstractAttribute::updateImpl(...).
7828   ChangeStatus updateImpl(Attributor &A) override;
7829 
7830   /// See AbstractAttribute::trackStatistics()
7831   void trackStatistics() const override {
7832     if (isAssumedReadNone())
7833       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7834     else if (isAssumedReadOnly())
7835       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7836     else if (isAssumedWriteOnly())
7837       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7838   }
7839 
7840 private:
7841   /// Return true if users of \p UserI might access the underlying
7842   /// variable/location described by \p U and should therefore be analyzed.
7843   bool followUsersOfUseIn(Attributor &A, const Use &U,
7844                           const Instruction *UserI);
7845 
7846   /// Update the state according to the effect of use \p U in \p UserI.
7847   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7848 };
7849 
7850 /// Memory behavior attribute for function argument.
7851 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7852   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7853       : AAMemoryBehaviorFloating(IRP, A) {}
7854 
7855   /// See AbstractAttribute::initialize(...).
7856   void initialize(Attributor &A) override {
7857     intersectAssumedBits(BEST_STATE);
7858     const IRPosition &IRP = getIRPosition();
7859     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7860     // can query it when we use has/getAttr. That would allow us to reuse the
7861     // initialize of the base class here.
7862     bool HasByVal = A.hasAttr(IRP, {Attribute::ByVal},
7863                               /* IgnoreSubsumingPositions */ true);
7864     getKnownStateFromValue(A, IRP, getState(),
7865                            /* IgnoreSubsumingPositions */ HasByVal);
7866   }
7867 
7868   ChangeStatus manifest(Attributor &A) override {
7869     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7870     if (!getAssociatedValue().getType()->isPointerTy())
7871       return ChangeStatus::UNCHANGED;
7872 
7873     // TODO: From readattrs.ll: "inalloca parameters are always
7874     //                           considered written"
7875     if (A.hasAttr(getIRPosition(),
7876                   {Attribute::InAlloca, Attribute::Preallocated})) {
7877       removeKnownBits(NO_WRITES);
7878       removeAssumedBits(NO_WRITES);
7879     }
7880     A.removeAttrs(getIRPosition(), AttrKinds);
7881     return AAMemoryBehaviorFloating::manifest(A);
7882   }
7883 
7884   /// See AbstractAttribute::trackStatistics()
7885   void trackStatistics() const override {
7886     if (isAssumedReadNone())
7887       STATS_DECLTRACK_ARG_ATTR(readnone)
7888     else if (isAssumedReadOnly())
7889       STATS_DECLTRACK_ARG_ATTR(readonly)
7890     else if (isAssumedWriteOnly())
7891       STATS_DECLTRACK_ARG_ATTR(writeonly)
7892   }
7893 };
7894 
7895 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7896   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7897       : AAMemoryBehaviorArgument(IRP, A) {}
7898 
7899   /// See AbstractAttribute::initialize(...).
7900   void initialize(Attributor &A) override {
7901     // If we don't have an associated attribute this is either a variadic call
7902     // or an indirect call, either way, nothing to do here.
7903     Argument *Arg = getAssociatedArgument();
7904     if (!Arg) {
7905       indicatePessimisticFixpoint();
7906       return;
7907     }
7908     if (Arg->hasByValAttr()) {
7909       addKnownBits(NO_WRITES);
7910       removeKnownBits(NO_READS);
7911       removeAssumedBits(NO_READS);
7912     }
7913     AAMemoryBehaviorArgument::initialize(A);
7914     if (getAssociatedFunction()->isDeclaration())
7915       indicatePessimisticFixpoint();
7916   }
7917 
7918   /// See AbstractAttribute::updateImpl(...).
7919   ChangeStatus updateImpl(Attributor &A) override {
7920     // TODO: Once we have call site specific value information we can provide
7921     //       call site specific liveness liveness information and then it makes
7922     //       sense to specialize attributes for call sites arguments instead of
7923     //       redirecting requests to the callee argument.
7924     Argument *Arg = getAssociatedArgument();
7925     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7926     auto *ArgAA =
7927         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7928     if (!ArgAA)
7929       return indicatePessimisticFixpoint();
7930     return clampStateAndIndicateChange(getState(), ArgAA->getState());
7931   }
7932 
7933   /// See AbstractAttribute::trackStatistics()
7934   void trackStatistics() const override {
7935     if (isAssumedReadNone())
7936       STATS_DECLTRACK_CSARG_ATTR(readnone)
7937     else if (isAssumedReadOnly())
7938       STATS_DECLTRACK_CSARG_ATTR(readonly)
7939     else if (isAssumedWriteOnly())
7940       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7941   }
7942 };
7943 
7944 /// Memory behavior attribute for a call site return position.
7945 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7946   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7947       : AAMemoryBehaviorFloating(IRP, A) {}
7948 
7949   /// See AbstractAttribute::initialize(...).
7950   void initialize(Attributor &A) override {
7951     AAMemoryBehaviorImpl::initialize(A);
7952   }
7953   /// See AbstractAttribute::manifest(...).
7954   ChangeStatus manifest(Attributor &A) override {
7955     // We do not annotate returned values.
7956     return ChangeStatus::UNCHANGED;
7957   }
7958 
7959   /// See AbstractAttribute::trackStatistics()
7960   void trackStatistics() const override {}
7961 };
7962 
7963 /// An AA to represent the memory behavior function attributes.
7964 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7965   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7966       : AAMemoryBehaviorImpl(IRP, A) {}
7967 
7968   /// See AbstractAttribute::updateImpl(Attributor &A).
7969   ChangeStatus updateImpl(Attributor &A) override;
7970 
7971   /// See AbstractAttribute::manifest(...).
7972   ChangeStatus manifest(Attributor &A) override {
7973     // TODO: It would be better to merge this with AAMemoryLocation, so that
7974     // we could determine read/write per location. This would also have the
7975     // benefit of only one place trying to manifest the memory attribute.
7976     Function &F = cast<Function>(getAnchorValue());
7977     MemoryEffects ME = MemoryEffects::unknown();
7978     if (isAssumedReadNone())
7979       ME = MemoryEffects::none();
7980     else if (isAssumedReadOnly())
7981       ME = MemoryEffects::readOnly();
7982     else if (isAssumedWriteOnly())
7983       ME = MemoryEffects::writeOnly();
7984 
7985     A.removeAttrs(getIRPosition(), AttrKinds);
7986     return A.manifestAttrs(getIRPosition(),
7987                            Attribute::getWithMemoryEffects(F.getContext(), ME));
7988   }
7989 
7990   /// See AbstractAttribute::trackStatistics()
7991   void trackStatistics() const override {
7992     if (isAssumedReadNone())
7993       STATS_DECLTRACK_FN_ATTR(readnone)
7994     else if (isAssumedReadOnly())
7995       STATS_DECLTRACK_FN_ATTR(readonly)
7996     else if (isAssumedWriteOnly())
7997       STATS_DECLTRACK_FN_ATTR(writeonly)
7998   }
7999 };
8000 
8001 /// AAMemoryBehavior attribute for call sites.
8002 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
8003   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
8004       : AAMemoryBehaviorImpl(IRP, A) {}
8005 
8006   /// See AbstractAttribute::updateImpl(...).
8007   ChangeStatus updateImpl(Attributor &A) override {
8008     // TODO: Once we have call site specific value information we can provide
8009     //       call site specific liveness liveness information and then it makes
8010     //       sense to specialize attributes for call sites arguments instead of
8011     //       redirecting requests to the callee argument.
8012     Function *F = getAssociatedFunction();
8013     const IRPosition &FnPos = IRPosition::function(*F);
8014     auto *FnAA =
8015         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
8016     if (!FnAA)
8017       return indicatePessimisticFixpoint();
8018     return clampStateAndIndicateChange(getState(), FnAA->getState());
8019   }
8020 
8021   /// See AbstractAttribute::manifest(...).
8022   ChangeStatus manifest(Attributor &A) override {
8023     // TODO: Deduplicate this with AAMemoryBehaviorFunction.
8024     CallBase &CB = cast<CallBase>(getAnchorValue());
8025     MemoryEffects ME = MemoryEffects::unknown();
8026     if (isAssumedReadNone())
8027       ME = MemoryEffects::none();
8028     else if (isAssumedReadOnly())
8029       ME = MemoryEffects::readOnly();
8030     else if (isAssumedWriteOnly())
8031       ME = MemoryEffects::writeOnly();
8032 
8033     A.removeAttrs(getIRPosition(), AttrKinds);
8034     return A.manifestAttrs(
8035         getIRPosition(), Attribute::getWithMemoryEffects(CB.getContext(), ME));
8036   }
8037 
8038   /// See AbstractAttribute::trackStatistics()
8039   void trackStatistics() const override {
8040     if (isAssumedReadNone())
8041       STATS_DECLTRACK_CS_ATTR(readnone)
8042     else if (isAssumedReadOnly())
8043       STATS_DECLTRACK_CS_ATTR(readonly)
8044     else if (isAssumedWriteOnly())
8045       STATS_DECLTRACK_CS_ATTR(writeonly)
8046   }
8047 };
8048 
8049 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
8050 
8051   // The current assumed state used to determine a change.
8052   auto AssumedState = getAssumed();
8053 
8054   auto CheckRWInst = [&](Instruction &I) {
8055     // If the instruction has an own memory behavior state, use it to restrict
8056     // the local state. No further analysis is required as the other memory
8057     // state is as optimistic as it gets.
8058     if (const auto *CB = dyn_cast<CallBase>(&I)) {
8059       const auto *MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
8060           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
8061       if (MemBehaviorAA) {
8062         intersectAssumedBits(MemBehaviorAA->getAssumed());
8063         return !isAtFixpoint();
8064       }
8065     }
8066 
8067     // Remove access kind modifiers if necessary.
8068     if (I.mayReadFromMemory())
8069       removeAssumedBits(NO_READS);
8070     if (I.mayWriteToMemory())
8071       removeAssumedBits(NO_WRITES);
8072     return !isAtFixpoint();
8073   };
8074 
8075   bool UsedAssumedInformation = false;
8076   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
8077                                           UsedAssumedInformation))
8078     return indicatePessimisticFixpoint();
8079 
8080   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
8081                                         : ChangeStatus::UNCHANGED;
8082 }
8083 
8084 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
8085 
8086   const IRPosition &IRP = getIRPosition();
8087   const IRPosition &FnPos = IRPosition::function_scope(IRP);
8088   AAMemoryBehavior::StateType &S = getState();
8089 
8090   // First, check the function scope. We take the known information and we avoid
8091   // work if the assumed information implies the current assumed information for
8092   // this attribute. This is a valid for all but byval arguments.
8093   Argument *Arg = IRP.getAssociatedArgument();
8094   AAMemoryBehavior::base_t FnMemAssumedState =
8095       AAMemoryBehavior::StateType::getWorstState();
8096   if (!Arg || !Arg->hasByValAttr()) {
8097     const auto *FnMemAA =
8098         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
8099     if (FnMemAA) {
8100       FnMemAssumedState = FnMemAA->getAssumed();
8101       S.addKnownBits(FnMemAA->getKnown());
8102       if ((S.getAssumed() & FnMemAA->getAssumed()) == S.getAssumed())
8103         return ChangeStatus::UNCHANGED;
8104     }
8105   }
8106 
8107   // The current assumed state used to determine a change.
8108   auto AssumedState = S.getAssumed();
8109 
8110   // Make sure the value is not captured (except through "return"), if
8111   // it is, any information derived would be irrelevant anyway as we cannot
8112   // check the potential aliases introduced by the capture. However, no need
8113   // to fall back to anythign less optimistic than the function state.
8114   bool IsKnownNoCapture;
8115   const AANoCapture *ArgNoCaptureAA = nullptr;
8116   bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
8117       A, this, IRP, DepClassTy::OPTIONAL, IsKnownNoCapture, false,
8118       &ArgNoCaptureAA);
8119 
8120   if (!IsAssumedNoCapture &&
8121       (!ArgNoCaptureAA || !ArgNoCaptureAA->isAssumedNoCaptureMaybeReturned())) {
8122     S.intersectAssumedBits(FnMemAssumedState);
8123     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
8124                                           : ChangeStatus::UNCHANGED;
8125   }
8126 
8127   // Visit and expand uses until all are analyzed or a fixpoint is reached.
8128   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
8129     Instruction *UserI = cast<Instruction>(U.getUser());
8130     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
8131                       << " \n");
8132 
8133     // Droppable users, e.g., llvm::assume does not actually perform any action.
8134     if (UserI->isDroppable())
8135       return true;
8136 
8137     // Check if the users of UserI should also be visited.
8138     Follow = followUsersOfUseIn(A, U, UserI);
8139 
8140     // If UserI might touch memory we analyze the use in detail.
8141     if (UserI->mayReadOrWriteMemory())
8142       analyzeUseIn(A, U, UserI);
8143 
8144     return !isAtFixpoint();
8145   };
8146 
8147   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
8148     return indicatePessimisticFixpoint();
8149 
8150   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
8151                                         : ChangeStatus::UNCHANGED;
8152 }
8153 
8154 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
8155                                                   const Instruction *UserI) {
8156   // The loaded value is unrelated to the pointer argument, no need to
8157   // follow the users of the load.
8158   if (isa<LoadInst>(UserI) || isa<ReturnInst>(UserI))
8159     return false;
8160 
8161   // By default we follow all uses assuming UserI might leak information on U,
8162   // we have special handling for call sites operands though.
8163   const auto *CB = dyn_cast<CallBase>(UserI);
8164   if (!CB || !CB->isArgOperand(&U))
8165     return true;
8166 
8167   // If the use is a call argument known not to be captured, the users of
8168   // the call do not need to be visited because they have to be unrelated to
8169   // the input. Note that this check is not trivial even though we disallow
8170   // general capturing of the underlying argument. The reason is that the
8171   // call might the argument "through return", which we allow and for which we
8172   // need to check call users.
8173   if (U.get()->getType()->isPointerTy()) {
8174     unsigned ArgNo = CB->getArgOperandNo(&U);
8175     bool IsKnownNoCapture;
8176     return !AA::hasAssumedIRAttr<Attribute::NoCapture>(
8177         A, this, IRPosition::callsite_argument(*CB, ArgNo),
8178         DepClassTy::OPTIONAL, IsKnownNoCapture);
8179   }
8180 
8181   return true;
8182 }
8183 
8184 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
8185                                             const Instruction *UserI) {
8186   assert(UserI->mayReadOrWriteMemory());
8187 
8188   switch (UserI->getOpcode()) {
8189   default:
8190     // TODO: Handle all atomics and other side-effect operations we know of.
8191     break;
8192   case Instruction::Load:
8193     // Loads cause the NO_READS property to disappear.
8194     removeAssumedBits(NO_READS);
8195     return;
8196 
8197   case Instruction::Store:
8198     // Stores cause the NO_WRITES property to disappear if the use is the
8199     // pointer operand. Note that while capturing was taken care of somewhere
8200     // else we need to deal with stores of the value that is not looked through.
8201     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
8202       removeAssumedBits(NO_WRITES);
8203     else
8204       indicatePessimisticFixpoint();
8205     return;
8206 
8207   case Instruction::Call:
8208   case Instruction::CallBr:
8209   case Instruction::Invoke: {
8210     // For call sites we look at the argument memory behavior attribute (this
8211     // could be recursive!) in order to restrict our own state.
8212     const auto *CB = cast<CallBase>(UserI);
8213 
8214     // Give up on operand bundles.
8215     if (CB->isBundleOperand(&U)) {
8216       indicatePessimisticFixpoint();
8217       return;
8218     }
8219 
8220     // Calling a function does read the function pointer, maybe write it if the
8221     // function is self-modifying.
8222     if (CB->isCallee(&U)) {
8223       removeAssumedBits(NO_READS);
8224       break;
8225     }
8226 
8227     // Adjust the possible access behavior based on the information on the
8228     // argument.
8229     IRPosition Pos;
8230     if (U.get()->getType()->isPointerTy())
8231       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
8232     else
8233       Pos = IRPosition::callsite_function(*CB);
8234     const auto *MemBehaviorAA =
8235         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
8236     if (!MemBehaviorAA)
8237       break;
8238     // "assumed" has at most the same bits as the MemBehaviorAA assumed
8239     // and at least "known".
8240     intersectAssumedBits(MemBehaviorAA->getAssumed());
8241     return;
8242   }
8243   };
8244 
8245   // Generally, look at the "may-properties" and adjust the assumed state if we
8246   // did not trigger special handling before.
8247   if (UserI->mayReadFromMemory())
8248     removeAssumedBits(NO_READS);
8249   if (UserI->mayWriteToMemory())
8250     removeAssumedBits(NO_WRITES);
8251 }
8252 } // namespace
8253 
8254 /// -------------------- Memory Locations Attributes ---------------------------
8255 /// Includes read-none, argmemonly, inaccessiblememonly,
8256 /// inaccessiblememorargmemonly
8257 /// ----------------------------------------------------------------------------
8258 
8259 std::string AAMemoryLocation::getMemoryLocationsAsStr(
8260     AAMemoryLocation::MemoryLocationsKind MLK) {
8261   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
8262     return "all memory";
8263   if (MLK == AAMemoryLocation::NO_LOCATIONS)
8264     return "no memory";
8265   std::string S = "memory:";
8266   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
8267     S += "stack,";
8268   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
8269     S += "constant,";
8270   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
8271     S += "internal global,";
8272   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
8273     S += "external global,";
8274   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
8275     S += "argument,";
8276   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
8277     S += "inaccessible,";
8278   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
8279     S += "malloced,";
8280   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
8281     S += "unknown,";
8282   S.pop_back();
8283   return S;
8284 }
8285 
8286 namespace {
8287 struct AAMemoryLocationImpl : public AAMemoryLocation {
8288 
8289   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
8290       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
8291     AccessKind2Accesses.fill(nullptr);
8292   }
8293 
8294   ~AAMemoryLocationImpl() {
8295     // The AccessSets are allocated via a BumpPtrAllocator, we call
8296     // the destructor manually.
8297     for (AccessSet *AS : AccessKind2Accesses)
8298       if (AS)
8299         AS->~AccessSet();
8300   }
8301 
8302   /// See AbstractAttribute::initialize(...).
8303   void initialize(Attributor &A) override {
8304     intersectAssumedBits(BEST_STATE);
8305     getKnownStateFromValue(A, getIRPosition(), getState());
8306     AAMemoryLocation::initialize(A);
8307   }
8308 
8309   /// Return the memory behavior information encoded in the IR for \p IRP.
8310   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
8311                                      BitIntegerState &State,
8312                                      bool IgnoreSubsumingPositions = false) {
8313     // For internal functions we ignore `argmemonly` and
8314     // `inaccessiblememorargmemonly` as we might break it via interprocedural
8315     // constant propagation. It is unclear if this is the best way but it is
8316     // unlikely this will cause real performance problems. If we are deriving
8317     // attributes for the anchor function we even remove the attribute in
8318     // addition to ignoring it.
8319     // TODO: A better way to handle this would be to add ~NO_GLOBAL_MEM /
8320     // MemoryEffects::Other as a possible location.
8321     bool UseArgMemOnly = true;
8322     Function *AnchorFn = IRP.getAnchorScope();
8323     if (AnchorFn && A.isRunOn(*AnchorFn))
8324       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
8325 
8326     SmallVector<Attribute, 2> Attrs;
8327     A.getAttrs(IRP, {Attribute::Memory}, Attrs, IgnoreSubsumingPositions);
8328     for (const Attribute &Attr : Attrs) {
8329       // TODO: We can map MemoryEffects to Attributor locations more precisely.
8330       MemoryEffects ME = Attr.getMemoryEffects();
8331       if (ME.doesNotAccessMemory()) {
8332         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
8333         continue;
8334       }
8335       if (ME.onlyAccessesInaccessibleMem()) {
8336         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
8337         continue;
8338       }
8339       if (ME.onlyAccessesArgPointees()) {
8340         if (UseArgMemOnly)
8341           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
8342         else {
8343           // Remove location information, only keep read/write info.
8344           ME = MemoryEffects(ME.getModRef());
8345           A.manifestAttrs(IRP,
8346                           Attribute::getWithMemoryEffects(
8347                               IRP.getAnchorValue().getContext(), ME),
8348                           /*ForceReplace*/ true);
8349         }
8350         continue;
8351       }
8352       if (ME.onlyAccessesInaccessibleOrArgMem()) {
8353         if (UseArgMemOnly)
8354           State.addKnownBits(inverseLocation(
8355               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
8356         else {
8357           // Remove location information, only keep read/write info.
8358           ME = MemoryEffects(ME.getModRef());
8359           A.manifestAttrs(IRP,
8360                           Attribute::getWithMemoryEffects(
8361                               IRP.getAnchorValue().getContext(), ME),
8362                           /*ForceReplace*/ true);
8363         }
8364         continue;
8365       }
8366     }
8367   }
8368 
8369   /// See AbstractAttribute::getDeducedAttributes(...).
8370   void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
8371                             SmallVectorImpl<Attribute> &Attrs) const override {
8372     // TODO: We can map Attributor locations to MemoryEffects more precisely.
8373     assert(Attrs.size() == 0);
8374     if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
8375       if (isAssumedReadNone())
8376         Attrs.push_back(
8377             Attribute::getWithMemoryEffects(Ctx, MemoryEffects::none()));
8378       else if (isAssumedInaccessibleMemOnly())
8379         Attrs.push_back(Attribute::getWithMemoryEffects(
8380             Ctx, MemoryEffects::inaccessibleMemOnly()));
8381       else if (isAssumedArgMemOnly())
8382         Attrs.push_back(
8383             Attribute::getWithMemoryEffects(Ctx, MemoryEffects::argMemOnly()));
8384       else if (isAssumedInaccessibleOrArgMemOnly())
8385         Attrs.push_back(Attribute::getWithMemoryEffects(
8386             Ctx, MemoryEffects::inaccessibleOrArgMemOnly()));
8387     }
8388     assert(Attrs.size() <= 1);
8389   }
8390 
8391   /// See AbstractAttribute::manifest(...).
8392   ChangeStatus manifest(Attributor &A) override {
8393     // TODO: If AAMemoryLocation and AAMemoryBehavior are merged, we could
8394     // provide per-location modref information here.
8395     const IRPosition &IRP = getIRPosition();
8396 
8397     SmallVector<Attribute, 1> DeducedAttrs;
8398     getDeducedAttributes(A, IRP.getAnchorValue().getContext(), DeducedAttrs);
8399     if (DeducedAttrs.size() != 1)
8400       return ChangeStatus::UNCHANGED;
8401     MemoryEffects ME = DeducedAttrs[0].getMemoryEffects();
8402 
8403     return A.manifestAttrs(IRP, Attribute::getWithMemoryEffects(
8404                                     IRP.getAnchorValue().getContext(), ME));
8405   }
8406 
8407   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
8408   bool checkForAllAccessesToMemoryKind(
8409       function_ref<bool(const Instruction *, const Value *, AccessKind,
8410                         MemoryLocationsKind)>
8411           Pred,
8412       MemoryLocationsKind RequestedMLK) const override {
8413     if (!isValidState())
8414       return false;
8415 
8416     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
8417     if (AssumedMLK == NO_LOCATIONS)
8418       return true;
8419 
8420     unsigned Idx = 0;
8421     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
8422          CurMLK *= 2, ++Idx) {
8423       if (CurMLK & RequestedMLK)
8424         continue;
8425 
8426       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
8427         for (const AccessInfo &AI : *Accesses)
8428           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
8429             return false;
8430     }
8431 
8432     return true;
8433   }
8434 
8435   ChangeStatus indicatePessimisticFixpoint() override {
8436     // If we give up and indicate a pessimistic fixpoint this instruction will
8437     // become an access for all potential access kinds:
8438     // TODO: Add pointers for argmemonly and globals to improve the results of
8439     //       checkForAllAccessesToMemoryKind.
8440     bool Changed = false;
8441     MemoryLocationsKind KnownMLK = getKnown();
8442     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
8443     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
8444       if (!(CurMLK & KnownMLK))
8445         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
8446                                   getAccessKindFromInst(I));
8447     return AAMemoryLocation::indicatePessimisticFixpoint();
8448   }
8449 
8450 protected:
8451   /// Helper struct to tie together an instruction that has a read or write
8452   /// effect with the pointer it accesses (if any).
8453   struct AccessInfo {
8454 
8455     /// The instruction that caused the access.
8456     const Instruction *I;
8457 
8458     /// The base pointer that is accessed, or null if unknown.
8459     const Value *Ptr;
8460 
8461     /// The kind of access (read/write/read+write).
8462     AccessKind Kind;
8463 
8464     bool operator==(const AccessInfo &RHS) const {
8465       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
8466     }
8467     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
8468       if (LHS.I != RHS.I)
8469         return LHS.I < RHS.I;
8470       if (LHS.Ptr != RHS.Ptr)
8471         return LHS.Ptr < RHS.Ptr;
8472       if (LHS.Kind != RHS.Kind)
8473         return LHS.Kind < RHS.Kind;
8474       return false;
8475     }
8476   };
8477 
8478   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
8479   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
8480   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
8481   std::array<AccessSet *, llvm::CTLog2<VALID_STATE>()> AccessKind2Accesses;
8482 
8483   /// Categorize the pointer arguments of CB that might access memory in
8484   /// AccessedLoc and update the state and access map accordingly.
8485   void
8486   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
8487                                      AAMemoryLocation::StateType &AccessedLocs,
8488                                      bool &Changed);
8489 
8490   /// Return the kind(s) of location that may be accessed by \p V.
8491   AAMemoryLocation::MemoryLocationsKind
8492   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
8493 
8494   /// Return the access kind as determined by \p I.
8495   AccessKind getAccessKindFromInst(const Instruction *I) {
8496     AccessKind AK = READ_WRITE;
8497     if (I) {
8498       AK = I->mayReadFromMemory() ? READ : NONE;
8499       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
8500     }
8501     return AK;
8502   }
8503 
8504   /// Update the state \p State and the AccessKind2Accesses given that \p I is
8505   /// an access of kind \p AK to a \p MLK memory location with the access
8506   /// pointer \p Ptr.
8507   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
8508                                  MemoryLocationsKind MLK, const Instruction *I,
8509                                  const Value *Ptr, bool &Changed,
8510                                  AccessKind AK = READ_WRITE) {
8511 
8512     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
8513     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
8514     if (!Accesses)
8515       Accesses = new (Allocator) AccessSet();
8516     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
8517     if (MLK == NO_UNKOWN_MEM)
8518       MLK = NO_LOCATIONS;
8519     State.removeAssumedBits(MLK);
8520   }
8521 
8522   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
8523   /// arguments, and update the state and access map accordingly.
8524   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
8525                           AAMemoryLocation::StateType &State, bool &Changed,
8526                           unsigned AccessAS = 0);
8527 
8528   /// Used to allocate access sets.
8529   BumpPtrAllocator &Allocator;
8530 };
8531 
8532 void AAMemoryLocationImpl::categorizePtrValue(
8533     Attributor &A, const Instruction &I, const Value &Ptr,
8534     AAMemoryLocation::StateType &State, bool &Changed, unsigned AccessAS) {
8535   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
8536                     << Ptr << " ["
8537                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
8538 
8539   auto Pred = [&](Value &Obj) {
8540     unsigned ObjectAS = Obj.getType()->getPointerAddressSpace();
8541     // TODO: recognize the TBAA used for constant accesses.
8542     MemoryLocationsKind MLK = NO_LOCATIONS;
8543 
8544     // Filter accesses to constant (GPU) memory if we have an AS at the access
8545     // site or the object is known to actually have the associated AS.
8546     if ((AccessAS == (unsigned)AA::GPUAddressSpace::Constant ||
8547          (ObjectAS == (unsigned)AA::GPUAddressSpace::Constant &&
8548           isIdentifiedObject(&Obj))) &&
8549         AA::isGPU(*I.getModule()))
8550       return true;
8551 
8552     if (isa<UndefValue>(&Obj))
8553       return true;
8554     if (isa<Argument>(&Obj)) {
8555       // TODO: For now we do not treat byval arguments as local copies performed
8556       // on the call edge, though, we should. To make that happen we need to
8557       // teach various passes, e.g., DSE, about the copy effect of a byval. That
8558       // would also allow us to mark functions only accessing byval arguments as
8559       // readnone again, arguably their accesses have no effect outside of the
8560       // function, like accesses to allocas.
8561       MLK = NO_ARGUMENT_MEM;
8562     } else if (auto *GV = dyn_cast<GlobalValue>(&Obj)) {
8563       // Reading constant memory is not treated as a read "effect" by the
8564       // function attr pass so we won't neither. Constants defined by TBAA are
8565       // similar. (We know we do not write it because it is constant.)
8566       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
8567         if (GVar->isConstant())
8568           return true;
8569 
8570       if (GV->hasLocalLinkage())
8571         MLK = NO_GLOBAL_INTERNAL_MEM;
8572       else
8573         MLK = NO_GLOBAL_EXTERNAL_MEM;
8574     } else if (isa<ConstantPointerNull>(&Obj) &&
8575                (!NullPointerIsDefined(getAssociatedFunction(), AccessAS) ||
8576                 !NullPointerIsDefined(getAssociatedFunction(), ObjectAS))) {
8577       return true;
8578     } else if (isa<AllocaInst>(&Obj)) {
8579       MLK = NO_LOCAL_MEM;
8580     } else if (const auto *CB = dyn_cast<CallBase>(&Obj)) {
8581       bool IsKnownNoAlias;
8582       if (AA::hasAssumedIRAttr<Attribute::NoAlias>(
8583               A, this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL,
8584               IsKnownNoAlias))
8585         MLK = NO_MALLOCED_MEM;
8586       else
8587         MLK = NO_UNKOWN_MEM;
8588     } else {
8589       MLK = NO_UNKOWN_MEM;
8590     }
8591 
8592     assert(MLK != NO_LOCATIONS && "No location specified!");
8593     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
8594                       << Obj << " -> " << getMemoryLocationsAsStr(MLK) << "\n");
8595     updateStateAndAccessesMap(State, MLK, &I, &Obj, Changed,
8596                               getAccessKindFromInst(&I));
8597 
8598     return true;
8599   };
8600 
8601   const auto *AA = A.getAAFor<AAUnderlyingObjects>(
8602       *this, IRPosition::value(Ptr), DepClassTy::OPTIONAL);
8603   if (!AA || !AA->forallUnderlyingObjects(Pred, AA::Intraprocedural)) {
8604     LLVM_DEBUG(
8605         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
8606     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
8607                               getAccessKindFromInst(&I));
8608     return;
8609   }
8610 
8611   LLVM_DEBUG(
8612       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
8613              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
8614 }
8615 
8616 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
8617     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
8618     bool &Changed) {
8619   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
8620 
8621     // Skip non-pointer arguments.
8622     const Value *ArgOp = CB.getArgOperand(ArgNo);
8623     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
8624       continue;
8625 
8626     // Skip readnone arguments.
8627     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
8628     const auto *ArgOpMemLocationAA =
8629         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
8630 
8631     if (ArgOpMemLocationAA && ArgOpMemLocationAA->isAssumedReadNone())
8632       continue;
8633 
8634     // Categorize potentially accessed pointer arguments as if there was an
8635     // access instruction with them as pointer.
8636     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
8637   }
8638 }
8639 
8640 AAMemoryLocation::MemoryLocationsKind
8641 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
8642                                                   bool &Changed) {
8643   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
8644                     << I << "\n");
8645 
8646   AAMemoryLocation::StateType AccessedLocs;
8647   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
8648 
8649   if (auto *CB = dyn_cast<CallBase>(&I)) {
8650 
8651     // First check if we assume any memory is access is visible.
8652     const auto *CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
8653         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
8654     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
8655                       << " [" << CBMemLocationAA << "]\n");
8656     if (!CBMemLocationAA) {
8657       updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr,
8658                                 Changed, getAccessKindFromInst(&I));
8659       return NO_UNKOWN_MEM;
8660     }
8661 
8662     if (CBMemLocationAA->isAssumedReadNone())
8663       return NO_LOCATIONS;
8664 
8665     if (CBMemLocationAA->isAssumedInaccessibleMemOnly()) {
8666       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
8667                                 Changed, getAccessKindFromInst(&I));
8668       return AccessedLocs.getAssumed();
8669     }
8670 
8671     uint32_t CBAssumedNotAccessedLocs =
8672         CBMemLocationAA->getAssumedNotAccessedLocation();
8673 
8674     // Set the argmemonly and global bit as we handle them separately below.
8675     uint32_t CBAssumedNotAccessedLocsNoArgMem =
8676         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
8677 
8678     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
8679       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
8680         continue;
8681       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
8682                                 getAccessKindFromInst(&I));
8683     }
8684 
8685     // Now handle global memory if it might be accessed. This is slightly tricky
8686     // as NO_GLOBAL_MEM has multiple bits set.
8687     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
8688     if (HasGlobalAccesses) {
8689       auto AccessPred = [&](const Instruction *, const Value *Ptr,
8690                             AccessKind Kind, MemoryLocationsKind MLK) {
8691         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
8692                                   getAccessKindFromInst(&I));
8693         return true;
8694       };
8695       if (!CBMemLocationAA->checkForAllAccessesToMemoryKind(
8696               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
8697         return AccessedLocs.getWorstState();
8698     }
8699 
8700     LLVM_DEBUG(
8701         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
8702                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
8703 
8704     // Now handle argument memory if it might be accessed.
8705     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
8706     if (HasArgAccesses)
8707       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
8708 
8709     LLVM_DEBUG(
8710         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
8711                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
8712 
8713     return AccessedLocs.getAssumed();
8714   }
8715 
8716   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
8717     LLVM_DEBUG(
8718         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
8719                << I << " [" << *Ptr << "]\n");
8720     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed,
8721                        Ptr->getType()->getPointerAddressSpace());
8722     return AccessedLocs.getAssumed();
8723   }
8724 
8725   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
8726                     << I << "\n");
8727   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
8728                             getAccessKindFromInst(&I));
8729   return AccessedLocs.getAssumed();
8730 }
8731 
8732 /// An AA to represent the memory behavior function attributes.
8733 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
8734   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
8735       : AAMemoryLocationImpl(IRP, A) {}
8736 
8737   /// See AbstractAttribute::updateImpl(Attributor &A).
8738   ChangeStatus updateImpl(Attributor &A) override {
8739 
8740     const auto *MemBehaviorAA =
8741         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
8742     if (MemBehaviorAA && MemBehaviorAA->isAssumedReadNone()) {
8743       if (MemBehaviorAA->isKnownReadNone())
8744         return indicateOptimisticFixpoint();
8745       assert(isAssumedReadNone() &&
8746              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
8747       A.recordDependence(*MemBehaviorAA, *this, DepClassTy::OPTIONAL);
8748       return ChangeStatus::UNCHANGED;
8749     }
8750 
8751     // The current assumed state used to determine a change.
8752     auto AssumedState = getAssumed();
8753     bool Changed = false;
8754 
8755     auto CheckRWInst = [&](Instruction &I) {
8756       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
8757       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
8758                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
8759       removeAssumedBits(inverseLocation(MLK, false, false));
8760       // Stop once only the valid bit set in the *not assumed location*, thus
8761       // once we don't actually exclude any memory locations in the state.
8762       return getAssumedNotAccessedLocation() != VALID_STATE;
8763     };
8764 
8765     bool UsedAssumedInformation = false;
8766     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
8767                                             UsedAssumedInformation))
8768       return indicatePessimisticFixpoint();
8769 
8770     Changed |= AssumedState != getAssumed();
8771     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8772   }
8773 
8774   /// See AbstractAttribute::trackStatistics()
8775   void trackStatistics() const override {
8776     if (isAssumedReadNone())
8777       STATS_DECLTRACK_FN_ATTR(readnone)
8778     else if (isAssumedArgMemOnly())
8779       STATS_DECLTRACK_FN_ATTR(argmemonly)
8780     else if (isAssumedInaccessibleMemOnly())
8781       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
8782     else if (isAssumedInaccessibleOrArgMemOnly())
8783       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
8784   }
8785 };
8786 
8787 /// AAMemoryLocation attribute for call sites.
8788 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
8789   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
8790       : AAMemoryLocationImpl(IRP, A) {}
8791 
8792   /// See AbstractAttribute::updateImpl(...).
8793   ChangeStatus updateImpl(Attributor &A) override {
8794     // TODO: Once we have call site specific value information we can provide
8795     //       call site specific liveness liveness information and then it makes
8796     //       sense to specialize attributes for call sites arguments instead of
8797     //       redirecting requests to the callee argument.
8798     Function *F = getAssociatedFunction();
8799     const IRPosition &FnPos = IRPosition::function(*F);
8800     auto *FnAA =
8801         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
8802     if (!FnAA)
8803       return indicatePessimisticFixpoint();
8804     bool Changed = false;
8805     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
8806                           AccessKind Kind, MemoryLocationsKind MLK) {
8807       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
8808                                 getAccessKindFromInst(I));
8809       return true;
8810     };
8811     if (!FnAA->checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
8812       return indicatePessimisticFixpoint();
8813     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8814   }
8815 
8816   /// See AbstractAttribute::trackStatistics()
8817   void trackStatistics() const override {
8818     if (isAssumedReadNone())
8819       STATS_DECLTRACK_CS_ATTR(readnone)
8820   }
8821 };
8822 } // namespace
8823 
8824 /// ------------------ Value Constant Range Attribute -------------------------
8825 
8826 namespace {
8827 struct AAValueConstantRangeImpl : AAValueConstantRange {
8828   using StateType = IntegerRangeState;
8829   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
8830       : AAValueConstantRange(IRP, A) {}
8831 
8832   /// See AbstractAttribute::initialize(..).
8833   void initialize(Attributor &A) override {
8834     if (A.hasSimplificationCallback(getIRPosition())) {
8835       indicatePessimisticFixpoint();
8836       return;
8837     }
8838 
8839     // Intersect a range given by SCEV.
8840     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8841 
8842     // Intersect a range given by LVI.
8843     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8844   }
8845 
8846   /// See AbstractAttribute::getAsStr().
8847   const std::string getAsStr(Attributor *A) const override {
8848     std::string Str;
8849     llvm::raw_string_ostream OS(Str);
8850     OS << "range(" << getBitWidth() << ")<";
8851     getKnown().print(OS);
8852     OS << " / ";
8853     getAssumed().print(OS);
8854     OS << ">";
8855     return OS.str();
8856   }
8857 
8858   /// Helper function to get a SCEV expr for the associated value at program
8859   /// point \p I.
8860   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8861     if (!getAnchorScope())
8862       return nullptr;
8863 
8864     ScalarEvolution *SE =
8865         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8866             *getAnchorScope());
8867 
8868     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8869         *getAnchorScope());
8870 
8871     if (!SE || !LI)
8872       return nullptr;
8873 
8874     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8875     if (!I)
8876       return S;
8877 
8878     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8879   }
8880 
8881   /// Helper function to get a range from SCEV for the associated value at
8882   /// program point \p I.
8883   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8884                                          const Instruction *I = nullptr) const {
8885     if (!getAnchorScope())
8886       return getWorstState(getBitWidth());
8887 
8888     ScalarEvolution *SE =
8889         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8890             *getAnchorScope());
8891 
8892     const SCEV *S = getSCEV(A, I);
8893     if (!SE || !S)
8894       return getWorstState(getBitWidth());
8895 
8896     return SE->getUnsignedRange(S);
8897   }
8898 
8899   /// Helper function to get a range from LVI for the associated value at
8900   /// program point \p I.
8901   ConstantRange
8902   getConstantRangeFromLVI(Attributor &A,
8903                           const Instruction *CtxI = nullptr) const {
8904     if (!getAnchorScope())
8905       return getWorstState(getBitWidth());
8906 
8907     LazyValueInfo *LVI =
8908         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8909             *getAnchorScope());
8910 
8911     if (!LVI || !CtxI)
8912       return getWorstState(getBitWidth());
8913     return LVI->getConstantRange(&getAssociatedValue(),
8914                                  const_cast<Instruction *>(CtxI));
8915   }
8916 
8917   /// Return true if \p CtxI is valid for querying outside analyses.
8918   /// This basically makes sure we do not ask intra-procedural analysis
8919   /// about a context in the wrong function or a context that violates
8920   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8921   /// if the original context of this AA is OK or should be considered invalid.
8922   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8923                                                const Instruction *CtxI,
8924                                                bool AllowAACtxI) const {
8925     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8926       return false;
8927 
8928     // Our context might be in a different function, neither intra-procedural
8929     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8930     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8931       return false;
8932 
8933     // If the context is not dominated by the value there are paths to the
8934     // context that do not define the value. This cannot be handled by
8935     // LazyValueInfo so we need to bail.
8936     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8937       InformationCache &InfoCache = A.getInfoCache();
8938       const DominatorTree *DT =
8939           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8940               *I->getFunction());
8941       return DT && DT->dominates(I, CtxI);
8942     }
8943 
8944     return true;
8945   }
8946 
8947   /// See AAValueConstantRange::getKnownConstantRange(..).
8948   ConstantRange
8949   getKnownConstantRange(Attributor &A,
8950                         const Instruction *CtxI = nullptr) const override {
8951     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8952                                                  /* AllowAACtxI */ false))
8953       return getKnown();
8954 
8955     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8956     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8957     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8958   }
8959 
8960   /// See AAValueConstantRange::getAssumedConstantRange(..).
8961   ConstantRange
8962   getAssumedConstantRange(Attributor &A,
8963                           const Instruction *CtxI = nullptr) const override {
8964     // TODO: Make SCEV use Attributor assumption.
8965     //       We may be able to bound a variable range via assumptions in
8966     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8967     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8968     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8969                                                  /* AllowAACtxI */ false))
8970       return getAssumed();
8971 
8972     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8973     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8974     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8975   }
8976 
8977   /// Helper function to create MDNode for range metadata.
8978   static MDNode *
8979   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8980                             const ConstantRange &AssumedConstantRange) {
8981     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8982                                   Ty, AssumedConstantRange.getLower())),
8983                               ConstantAsMetadata::get(ConstantInt::get(
8984                                   Ty, AssumedConstantRange.getUpper()))};
8985     return MDNode::get(Ctx, LowAndHigh);
8986   }
8987 
8988   /// Return true if \p Assumed is included in \p KnownRanges.
8989   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8990 
8991     if (Assumed.isFullSet())
8992       return false;
8993 
8994     if (!KnownRanges)
8995       return true;
8996 
8997     // If multiple ranges are annotated in IR, we give up to annotate assumed
8998     // range for now.
8999 
9000     // TODO:  If there exists a known range which containts assumed range, we
9001     // can say assumed range is better.
9002     if (KnownRanges->getNumOperands() > 2)
9003       return false;
9004 
9005     ConstantInt *Lower =
9006         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
9007     ConstantInt *Upper =
9008         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
9009 
9010     ConstantRange Known(Lower->getValue(), Upper->getValue());
9011     return Known.contains(Assumed) && Known != Assumed;
9012   }
9013 
9014   /// Helper function to set range metadata.
9015   static bool
9016   setRangeMetadataIfisBetterRange(Instruction *I,
9017                                   const ConstantRange &AssumedConstantRange) {
9018     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
9019     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
9020       if (!AssumedConstantRange.isEmptySet()) {
9021         I->setMetadata(LLVMContext::MD_range,
9022                        getMDNodeForConstantRange(I->getType(), I->getContext(),
9023                                                  AssumedConstantRange));
9024         return true;
9025       }
9026     }
9027     return false;
9028   }
9029 
9030   /// See AbstractAttribute::manifest()
9031   ChangeStatus manifest(Attributor &A) override {
9032     ChangeStatus Changed = ChangeStatus::UNCHANGED;
9033     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
9034     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
9035 
9036     auto &V = getAssociatedValue();
9037     if (!AssumedConstantRange.isEmptySet() &&
9038         !AssumedConstantRange.isSingleElement()) {
9039       if (Instruction *I = dyn_cast<Instruction>(&V)) {
9040         assert(I == getCtxI() && "Should not annotate an instruction which is "
9041                                  "not the context instruction");
9042         if (isa<CallInst>(I) || isa<LoadInst>(I))
9043           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
9044             Changed = ChangeStatus::CHANGED;
9045       }
9046     }
9047 
9048     return Changed;
9049   }
9050 };
9051 
9052 struct AAValueConstantRangeArgument final
9053     : AAArgumentFromCallSiteArguments<
9054           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
9055           true /* BridgeCallBaseContext */> {
9056   using Base = AAArgumentFromCallSiteArguments<
9057       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
9058       true /* BridgeCallBaseContext */>;
9059   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
9060       : Base(IRP, A) {}
9061 
9062   /// See AbstractAttribute::trackStatistics()
9063   void trackStatistics() const override {
9064     STATS_DECLTRACK_ARG_ATTR(value_range)
9065   }
9066 };
9067 
9068 struct AAValueConstantRangeReturned
9069     : AAReturnedFromReturnedValues<AAValueConstantRange,
9070                                    AAValueConstantRangeImpl,
9071                                    AAValueConstantRangeImpl::StateType,
9072                                    /* PropogateCallBaseContext */ true> {
9073   using Base =
9074       AAReturnedFromReturnedValues<AAValueConstantRange,
9075                                    AAValueConstantRangeImpl,
9076                                    AAValueConstantRangeImpl::StateType,
9077                                    /* PropogateCallBaseContext */ true>;
9078   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
9079       : Base(IRP, A) {}
9080 
9081   /// See AbstractAttribute::initialize(...).
9082   void initialize(Attributor &A) override {
9083     if (!A.isFunctionIPOAmendable(*getAssociatedFunction()))
9084       indicatePessimisticFixpoint();
9085   }
9086 
9087   /// See AbstractAttribute::trackStatistics()
9088   void trackStatistics() const override {
9089     STATS_DECLTRACK_FNRET_ATTR(value_range)
9090   }
9091 };
9092 
9093 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
9094   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
9095       : AAValueConstantRangeImpl(IRP, A) {}
9096 
9097   /// See AbstractAttribute::initialize(...).
9098   void initialize(Attributor &A) override {
9099     AAValueConstantRangeImpl::initialize(A);
9100     if (isAtFixpoint())
9101       return;
9102 
9103     Value &V = getAssociatedValue();
9104 
9105     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9106       unionAssumed(ConstantRange(C->getValue()));
9107       indicateOptimisticFixpoint();
9108       return;
9109     }
9110 
9111     if (isa<UndefValue>(&V)) {
9112       // Collapse the undef state to 0.
9113       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
9114       indicateOptimisticFixpoint();
9115       return;
9116     }
9117 
9118     if (isa<CallBase>(&V))
9119       return;
9120 
9121     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
9122       return;
9123 
9124     // If it is a load instruction with range metadata, use it.
9125     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
9126       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
9127         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
9128         return;
9129       }
9130 
9131     // We can work with PHI and select instruction as we traverse their operands
9132     // during update.
9133     if (isa<SelectInst>(V) || isa<PHINode>(V))
9134       return;
9135 
9136     // Otherwise we give up.
9137     indicatePessimisticFixpoint();
9138 
9139     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
9140                       << getAssociatedValue() << "\n");
9141   }
9142 
9143   bool calculateBinaryOperator(
9144       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
9145       const Instruction *CtxI,
9146       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
9147     Value *LHS = BinOp->getOperand(0);
9148     Value *RHS = BinOp->getOperand(1);
9149 
9150     // Simplify the operands first.
9151     bool UsedAssumedInformation = false;
9152     const auto &SimplifiedLHS = A.getAssumedSimplified(
9153         IRPosition::value(*LHS, getCallBaseContext()), *this,
9154         UsedAssumedInformation, AA::Interprocedural);
9155     if (!SimplifiedLHS.has_value())
9156       return true;
9157     if (!*SimplifiedLHS)
9158       return false;
9159     LHS = *SimplifiedLHS;
9160 
9161     const auto &SimplifiedRHS = A.getAssumedSimplified(
9162         IRPosition::value(*RHS, getCallBaseContext()), *this,
9163         UsedAssumedInformation, AA::Interprocedural);
9164     if (!SimplifiedRHS.has_value())
9165       return true;
9166     if (!*SimplifiedRHS)
9167       return false;
9168     RHS = *SimplifiedRHS;
9169 
9170     // TODO: Allow non integers as well.
9171     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9172       return false;
9173 
9174     auto *LHSAA = A.getAAFor<AAValueConstantRange>(
9175         *this, IRPosition::value(*LHS, getCallBaseContext()),
9176         DepClassTy::REQUIRED);
9177     if (!LHSAA)
9178       return false;
9179     QuerriedAAs.push_back(LHSAA);
9180     auto LHSAARange = LHSAA->getAssumedConstantRange(A, CtxI);
9181 
9182     auto *RHSAA = A.getAAFor<AAValueConstantRange>(
9183         *this, IRPosition::value(*RHS, getCallBaseContext()),
9184         DepClassTy::REQUIRED);
9185     if (!RHSAA)
9186       return false;
9187     QuerriedAAs.push_back(RHSAA);
9188     auto RHSAARange = RHSAA->getAssumedConstantRange(A, CtxI);
9189 
9190     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
9191 
9192     T.unionAssumed(AssumedRange);
9193 
9194     // TODO: Track a known state too.
9195 
9196     return T.isValidState();
9197   }
9198 
9199   bool calculateCastInst(
9200       Attributor &A, CastInst *CastI, IntegerRangeState &T,
9201       const Instruction *CtxI,
9202       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
9203     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
9204     // TODO: Allow non integers as well.
9205     Value *OpV = CastI->getOperand(0);
9206 
9207     // Simplify the operand first.
9208     bool UsedAssumedInformation = false;
9209     const auto &SimplifiedOpV = A.getAssumedSimplified(
9210         IRPosition::value(*OpV, getCallBaseContext()), *this,
9211         UsedAssumedInformation, AA::Interprocedural);
9212     if (!SimplifiedOpV.has_value())
9213       return true;
9214     if (!*SimplifiedOpV)
9215       return false;
9216     OpV = *SimplifiedOpV;
9217 
9218     if (!OpV->getType()->isIntegerTy())
9219       return false;
9220 
9221     auto *OpAA = A.getAAFor<AAValueConstantRange>(
9222         *this, IRPosition::value(*OpV, getCallBaseContext()),
9223         DepClassTy::REQUIRED);
9224     if (!OpAA)
9225       return false;
9226     QuerriedAAs.push_back(OpAA);
9227     T.unionAssumed(OpAA->getAssumed().castOp(CastI->getOpcode(),
9228                                              getState().getBitWidth()));
9229     return T.isValidState();
9230   }
9231 
9232   bool
9233   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
9234                    const Instruction *CtxI,
9235                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
9236     Value *LHS = CmpI->getOperand(0);
9237     Value *RHS = CmpI->getOperand(1);
9238 
9239     // Simplify the operands first.
9240     bool UsedAssumedInformation = false;
9241     const auto &SimplifiedLHS = A.getAssumedSimplified(
9242         IRPosition::value(*LHS, getCallBaseContext()), *this,
9243         UsedAssumedInformation, AA::Interprocedural);
9244     if (!SimplifiedLHS.has_value())
9245       return true;
9246     if (!*SimplifiedLHS)
9247       return false;
9248     LHS = *SimplifiedLHS;
9249 
9250     const auto &SimplifiedRHS = A.getAssumedSimplified(
9251         IRPosition::value(*RHS, getCallBaseContext()), *this,
9252         UsedAssumedInformation, AA::Interprocedural);
9253     if (!SimplifiedRHS.has_value())
9254       return true;
9255     if (!*SimplifiedRHS)
9256       return false;
9257     RHS = *SimplifiedRHS;
9258 
9259     // TODO: Allow non integers as well.
9260     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
9261       return false;
9262 
9263     auto *LHSAA = A.getAAFor<AAValueConstantRange>(
9264         *this, IRPosition::value(*LHS, getCallBaseContext()),
9265         DepClassTy::REQUIRED);
9266     if (!LHSAA)
9267       return false;
9268     QuerriedAAs.push_back(LHSAA);
9269     auto *RHSAA = A.getAAFor<AAValueConstantRange>(
9270         *this, IRPosition::value(*RHS, getCallBaseContext()),
9271         DepClassTy::REQUIRED);
9272     if (!RHSAA)
9273       return false;
9274     QuerriedAAs.push_back(RHSAA);
9275     auto LHSAARange = LHSAA->getAssumedConstantRange(A, CtxI);
9276     auto RHSAARange = RHSAA->getAssumedConstantRange(A, CtxI);
9277 
9278     // If one of them is empty set, we can't decide.
9279     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
9280       return true;
9281 
9282     bool MustTrue = false, MustFalse = false;
9283 
9284     auto AllowedRegion =
9285         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
9286 
9287     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
9288       MustFalse = true;
9289 
9290     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
9291       MustTrue = true;
9292 
9293     assert((!MustTrue || !MustFalse) &&
9294            "Either MustTrue or MustFalse should be false!");
9295 
9296     if (MustTrue)
9297       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
9298     else if (MustFalse)
9299       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
9300     else
9301       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
9302 
9303     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " after "
9304                       << (MustTrue ? "true" : (MustFalse ? "false" : "unknown"))
9305                       << ": " << T << "\n\t" << *LHSAA << "\t<op>\n\t"
9306                       << *RHSAA);
9307 
9308     // TODO: Track a known state too.
9309     return T.isValidState();
9310   }
9311 
9312   /// See AbstractAttribute::updateImpl(...).
9313   ChangeStatus updateImpl(Attributor &A) override {
9314 
9315     IntegerRangeState T(getBitWidth());
9316     auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
9317       Instruction *I = dyn_cast<Instruction>(&V);
9318       if (!I || isa<CallBase>(I)) {
9319 
9320         // Simplify the operand first.
9321         bool UsedAssumedInformation = false;
9322         const auto &SimplifiedOpV = A.getAssumedSimplified(
9323             IRPosition::value(V, getCallBaseContext()), *this,
9324             UsedAssumedInformation, AA::Interprocedural);
9325         if (!SimplifiedOpV.has_value())
9326           return true;
9327         if (!*SimplifiedOpV)
9328           return false;
9329         Value *VPtr = *SimplifiedOpV;
9330 
9331         // If the value is not instruction, we query AA to Attributor.
9332         const auto *AA = A.getAAFor<AAValueConstantRange>(
9333             *this, IRPosition::value(*VPtr, getCallBaseContext()),
9334             DepClassTy::REQUIRED);
9335 
9336         // Clamp operator is not used to utilize a program point CtxI.
9337         if (AA)
9338           T.unionAssumed(AA->getAssumedConstantRange(A, CtxI));
9339         else
9340           return false;
9341 
9342         return T.isValidState();
9343       }
9344 
9345       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
9346       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
9347         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
9348           return false;
9349       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
9350         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
9351           return false;
9352       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
9353         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
9354           return false;
9355       } else {
9356         // Give up with other instructions.
9357         // TODO: Add other instructions
9358 
9359         T.indicatePessimisticFixpoint();
9360         return false;
9361       }
9362 
9363       // Catch circular reasoning in a pessimistic way for now.
9364       // TODO: Check how the range evolves and if we stripped anything, see also
9365       //       AADereferenceable or AAAlign for similar situations.
9366       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
9367         if (QueriedAA != this)
9368           continue;
9369         // If we are in a stady state we do not need to worry.
9370         if (T.getAssumed() == getState().getAssumed())
9371           continue;
9372         T.indicatePessimisticFixpoint();
9373       }
9374 
9375       return T.isValidState();
9376     };
9377 
9378     if (!VisitValueCB(getAssociatedValue(), getCtxI()))
9379       return indicatePessimisticFixpoint();
9380 
9381     // Ensure that long def-use chains can't cause circular reasoning either by
9382     // introducing a cutoff below.
9383     if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
9384       return ChangeStatus::UNCHANGED;
9385     if (++NumChanges > MaxNumChanges) {
9386       LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
9387                         << " but only " << MaxNumChanges
9388                         << " are allowed to avoid cyclic reasoning.");
9389       return indicatePessimisticFixpoint();
9390     }
9391     return ChangeStatus::CHANGED;
9392   }
9393 
9394   /// See AbstractAttribute::trackStatistics()
9395   void trackStatistics() const override {
9396     STATS_DECLTRACK_FLOATING_ATTR(value_range)
9397   }
9398 
9399   /// Tracker to bail after too many widening steps of the constant range.
9400   int NumChanges = 0;
9401 
9402   /// Upper bound for the number of allowed changes (=widening steps) for the
9403   /// constant range before we give up.
9404   static constexpr int MaxNumChanges = 5;
9405 };
9406 
9407 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
9408   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
9409       : AAValueConstantRangeImpl(IRP, A) {}
9410 
9411   /// See AbstractAttribute::initialize(...).
9412   ChangeStatus updateImpl(Attributor &A) override {
9413     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
9414                      "not be called");
9415   }
9416 
9417   /// See AbstractAttribute::trackStatistics()
9418   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
9419 };
9420 
9421 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
9422   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
9423       : AAValueConstantRangeFunction(IRP, A) {}
9424 
9425   /// See AbstractAttribute::trackStatistics()
9426   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
9427 };
9428 
9429 struct AAValueConstantRangeCallSiteReturned
9430     : AACallSiteReturnedFromReturned<AAValueConstantRange,
9431                                      AAValueConstantRangeImpl,
9432                                      AAValueConstantRangeImpl::StateType,
9433                                      /* IntroduceCallBaseContext */ true> {
9434   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
9435       : AACallSiteReturnedFromReturned<AAValueConstantRange,
9436                                        AAValueConstantRangeImpl,
9437                                        AAValueConstantRangeImpl::StateType,
9438                                        /* IntroduceCallBaseContext */ true>(IRP,
9439                                                                             A) {
9440   }
9441 
9442   /// See AbstractAttribute::initialize(...).
9443   void initialize(Attributor &A) override {
9444     // If it is a load instruction with range metadata, use the metadata.
9445     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
9446       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
9447         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
9448 
9449     AAValueConstantRangeImpl::initialize(A);
9450   }
9451 
9452   /// See AbstractAttribute::trackStatistics()
9453   void trackStatistics() const override {
9454     STATS_DECLTRACK_CSRET_ATTR(value_range)
9455   }
9456 };
9457 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
9458   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
9459       : AAValueConstantRangeFloating(IRP, A) {}
9460 
9461   /// See AbstractAttribute::manifest()
9462   ChangeStatus manifest(Attributor &A) override {
9463     return ChangeStatus::UNCHANGED;
9464   }
9465 
9466   /// See AbstractAttribute::trackStatistics()
9467   void trackStatistics() const override {
9468     STATS_DECLTRACK_CSARG_ATTR(value_range)
9469   }
9470 };
9471 } // namespace
9472 
9473 /// ------------------ Potential Values Attribute -------------------------
9474 
9475 namespace {
9476 struct AAPotentialConstantValuesImpl : AAPotentialConstantValues {
9477   using StateType = PotentialConstantIntValuesState;
9478 
9479   AAPotentialConstantValuesImpl(const IRPosition &IRP, Attributor &A)
9480       : AAPotentialConstantValues(IRP, A) {}
9481 
9482   /// See AbstractAttribute::initialize(..).
9483   void initialize(Attributor &A) override {
9484     if (A.hasSimplificationCallback(getIRPosition()))
9485       indicatePessimisticFixpoint();
9486     else
9487       AAPotentialConstantValues::initialize(A);
9488   }
9489 
9490   bool fillSetWithConstantValues(Attributor &A, const IRPosition &IRP, SetTy &S,
9491                                  bool &ContainsUndef, bool ForSelf) {
9492     SmallVector<AA::ValueAndContext> Values;
9493     bool UsedAssumedInformation = false;
9494     if (!A.getAssumedSimplifiedValues(IRP, *this, Values, AA::Interprocedural,
9495                                       UsedAssumedInformation)) {
9496       // Avoid recursion when the caller is computing constant values for this
9497       // IRP itself.
9498       if (ForSelf)
9499         return false;
9500       if (!IRP.getAssociatedType()->isIntegerTy())
9501         return false;
9502       auto *PotentialValuesAA = A.getAAFor<AAPotentialConstantValues>(
9503           *this, IRP, DepClassTy::REQUIRED);
9504       if (!PotentialValuesAA || !PotentialValuesAA->getState().isValidState())
9505         return false;
9506       ContainsUndef = PotentialValuesAA->getState().undefIsContained();
9507       S = PotentialValuesAA->getState().getAssumedSet();
9508       return true;
9509     }
9510 
9511     // Copy all the constant values, except UndefValue. ContainsUndef is true
9512     // iff Values contains only UndefValue instances. If there are other known
9513     // constants, then UndefValue is dropped.
9514     ContainsUndef = false;
9515     for (auto &It : Values) {
9516       if (isa<UndefValue>(It.getValue())) {
9517         ContainsUndef = true;
9518         continue;
9519       }
9520       auto *CI = dyn_cast<ConstantInt>(It.getValue());
9521       if (!CI)
9522         return false;
9523       S.insert(CI->getValue());
9524     }
9525     ContainsUndef &= S.empty();
9526 
9527     return true;
9528   }
9529 
9530   /// See AbstractAttribute::getAsStr().
9531   const std::string getAsStr(Attributor *A) const override {
9532     std::string Str;
9533     llvm::raw_string_ostream OS(Str);
9534     OS << getState();
9535     return OS.str();
9536   }
9537 
9538   /// See AbstractAttribute::updateImpl(...).
9539   ChangeStatus updateImpl(Attributor &A) override {
9540     return indicatePessimisticFixpoint();
9541   }
9542 };
9543 
9544 struct AAPotentialConstantValuesArgument final
9545     : AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
9546                                       AAPotentialConstantValuesImpl,
9547                                       PotentialConstantIntValuesState> {
9548   using Base = AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
9549                                                AAPotentialConstantValuesImpl,
9550                                                PotentialConstantIntValuesState>;
9551   AAPotentialConstantValuesArgument(const IRPosition &IRP, Attributor &A)
9552       : Base(IRP, A) {}
9553 
9554   /// See AbstractAttribute::trackStatistics()
9555   void trackStatistics() const override {
9556     STATS_DECLTRACK_ARG_ATTR(potential_values)
9557   }
9558 };
9559 
9560 struct AAPotentialConstantValuesReturned
9561     : AAReturnedFromReturnedValues<AAPotentialConstantValues,
9562                                    AAPotentialConstantValuesImpl> {
9563   using Base = AAReturnedFromReturnedValues<AAPotentialConstantValues,
9564                                             AAPotentialConstantValuesImpl>;
9565   AAPotentialConstantValuesReturned(const IRPosition &IRP, Attributor &A)
9566       : Base(IRP, A) {}
9567 
9568   void initialize(Attributor &A) override {
9569     if (!A.isFunctionIPOAmendable(*getAssociatedFunction()))
9570       indicatePessimisticFixpoint();
9571     Base::initialize(A);
9572   }
9573 
9574   /// See AbstractAttribute::trackStatistics()
9575   void trackStatistics() const override {
9576     STATS_DECLTRACK_FNRET_ATTR(potential_values)
9577   }
9578 };
9579 
9580 struct AAPotentialConstantValuesFloating : AAPotentialConstantValuesImpl {
9581   AAPotentialConstantValuesFloating(const IRPosition &IRP, Attributor &A)
9582       : AAPotentialConstantValuesImpl(IRP, A) {}
9583 
9584   /// See AbstractAttribute::initialize(..).
9585   void initialize(Attributor &A) override {
9586     AAPotentialConstantValuesImpl::initialize(A);
9587     if (isAtFixpoint())
9588       return;
9589 
9590     Value &V = getAssociatedValue();
9591 
9592     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9593       unionAssumed(C->getValue());
9594       indicateOptimisticFixpoint();
9595       return;
9596     }
9597 
9598     if (isa<UndefValue>(&V)) {
9599       unionAssumedWithUndef();
9600       indicateOptimisticFixpoint();
9601       return;
9602     }
9603 
9604     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
9605       return;
9606 
9607     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
9608       return;
9609 
9610     indicatePessimisticFixpoint();
9611 
9612     LLVM_DEBUG(dbgs() << "[AAPotentialConstantValues] We give up: "
9613                       << getAssociatedValue() << "\n");
9614   }
9615 
9616   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
9617                                 const APInt &RHS) {
9618     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
9619   }
9620 
9621   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
9622                                  uint32_t ResultBitWidth) {
9623     Instruction::CastOps CastOp = CI->getOpcode();
9624     switch (CastOp) {
9625     default:
9626       llvm_unreachable("unsupported or not integer cast");
9627     case Instruction::Trunc:
9628       return Src.trunc(ResultBitWidth);
9629     case Instruction::SExt:
9630       return Src.sext(ResultBitWidth);
9631     case Instruction::ZExt:
9632       return Src.zext(ResultBitWidth);
9633     case Instruction::BitCast:
9634       return Src;
9635     }
9636   }
9637 
9638   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
9639                                        const APInt &LHS, const APInt &RHS,
9640                                        bool &SkipOperation, bool &Unsupported) {
9641     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
9642     // Unsupported is set to true when the binary operator is not supported.
9643     // SkipOperation is set to true when UB occur with the given operand pair
9644     // (LHS, RHS).
9645     // TODO: we should look at nsw and nuw keywords to handle operations
9646     //       that create poison or undef value.
9647     switch (BinOpcode) {
9648     default:
9649       Unsupported = true;
9650       return LHS;
9651     case Instruction::Add:
9652       return LHS + RHS;
9653     case Instruction::Sub:
9654       return LHS - RHS;
9655     case Instruction::Mul:
9656       return LHS * RHS;
9657     case Instruction::UDiv:
9658       if (RHS.isZero()) {
9659         SkipOperation = true;
9660         return LHS;
9661       }
9662       return LHS.udiv(RHS);
9663     case Instruction::SDiv:
9664       if (RHS.isZero()) {
9665         SkipOperation = true;
9666         return LHS;
9667       }
9668       return LHS.sdiv(RHS);
9669     case Instruction::URem:
9670       if (RHS.isZero()) {
9671         SkipOperation = true;
9672         return LHS;
9673       }
9674       return LHS.urem(RHS);
9675     case Instruction::SRem:
9676       if (RHS.isZero()) {
9677         SkipOperation = true;
9678         return LHS;
9679       }
9680       return LHS.srem(RHS);
9681     case Instruction::Shl:
9682       return LHS.shl(RHS);
9683     case Instruction::LShr:
9684       return LHS.lshr(RHS);
9685     case Instruction::AShr:
9686       return LHS.ashr(RHS);
9687     case Instruction::And:
9688       return LHS & RHS;
9689     case Instruction::Or:
9690       return LHS | RHS;
9691     case Instruction::Xor:
9692       return LHS ^ RHS;
9693     }
9694   }
9695 
9696   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
9697                                            const APInt &LHS, const APInt &RHS) {
9698     bool SkipOperation = false;
9699     bool Unsupported = false;
9700     APInt Result =
9701         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
9702     if (Unsupported)
9703       return false;
9704     // If SkipOperation is true, we can ignore this operand pair (L, R).
9705     if (!SkipOperation)
9706       unionAssumed(Result);
9707     return isValidState();
9708   }
9709 
9710   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
9711     auto AssumedBefore = getAssumed();
9712     Value *LHS = ICI->getOperand(0);
9713     Value *RHS = ICI->getOperand(1);
9714 
9715     bool LHSContainsUndef = false, RHSContainsUndef = false;
9716     SetTy LHSAAPVS, RHSAAPVS;
9717     if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
9718                                    LHSContainsUndef, /* ForSelf */ false) ||
9719         !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
9720                                    RHSContainsUndef, /* ForSelf */ false))
9721       return indicatePessimisticFixpoint();
9722 
9723     // TODO: make use of undef flag to limit potential values aggressively.
9724     bool MaybeTrue = false, MaybeFalse = false;
9725     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
9726     if (LHSContainsUndef && RHSContainsUndef) {
9727       // The result of any comparison between undefs can be soundly replaced
9728       // with undef.
9729       unionAssumedWithUndef();
9730     } else if (LHSContainsUndef) {
9731       for (const APInt &R : RHSAAPVS) {
9732         bool CmpResult = calculateICmpInst(ICI, Zero, R);
9733         MaybeTrue |= CmpResult;
9734         MaybeFalse |= !CmpResult;
9735         if (MaybeTrue & MaybeFalse)
9736           return indicatePessimisticFixpoint();
9737       }
9738     } else if (RHSContainsUndef) {
9739       for (const APInt &L : LHSAAPVS) {
9740         bool CmpResult = calculateICmpInst(ICI, L, Zero);
9741         MaybeTrue |= CmpResult;
9742         MaybeFalse |= !CmpResult;
9743         if (MaybeTrue & MaybeFalse)
9744           return indicatePessimisticFixpoint();
9745       }
9746     } else {
9747       for (const APInt &L : LHSAAPVS) {
9748         for (const APInt &R : RHSAAPVS) {
9749           bool CmpResult = calculateICmpInst(ICI, L, R);
9750           MaybeTrue |= CmpResult;
9751           MaybeFalse |= !CmpResult;
9752           if (MaybeTrue & MaybeFalse)
9753             return indicatePessimisticFixpoint();
9754         }
9755       }
9756     }
9757     if (MaybeTrue)
9758       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
9759     if (MaybeFalse)
9760       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
9761     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9762                                          : ChangeStatus::CHANGED;
9763   }
9764 
9765   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
9766     auto AssumedBefore = getAssumed();
9767     Value *LHS = SI->getTrueValue();
9768     Value *RHS = SI->getFalseValue();
9769 
9770     bool UsedAssumedInformation = false;
9771     std::optional<Constant *> C = A.getAssumedConstant(
9772         *SI->getCondition(), *this, UsedAssumedInformation);
9773 
9774     // Check if we only need one operand.
9775     bool OnlyLeft = false, OnlyRight = false;
9776     if (C && *C && (*C)->isOneValue())
9777       OnlyLeft = true;
9778     else if (C && *C && (*C)->isZeroValue())
9779       OnlyRight = true;
9780 
9781     bool LHSContainsUndef = false, RHSContainsUndef = false;
9782     SetTy LHSAAPVS, RHSAAPVS;
9783     if (!OnlyRight &&
9784         !fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
9785                                    LHSContainsUndef, /* ForSelf */ false))
9786       return indicatePessimisticFixpoint();
9787 
9788     if (!OnlyLeft &&
9789         !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
9790                                    RHSContainsUndef, /* ForSelf */ false))
9791       return indicatePessimisticFixpoint();
9792 
9793     if (OnlyLeft || OnlyRight) {
9794       // select (true/false), lhs, rhs
9795       auto *OpAA = OnlyLeft ? &LHSAAPVS : &RHSAAPVS;
9796       auto Undef = OnlyLeft ? LHSContainsUndef : RHSContainsUndef;
9797 
9798       if (Undef)
9799         unionAssumedWithUndef();
9800       else {
9801         for (const auto &It : *OpAA)
9802           unionAssumed(It);
9803       }
9804 
9805     } else if (LHSContainsUndef && RHSContainsUndef) {
9806       // select i1 *, undef , undef => undef
9807       unionAssumedWithUndef();
9808     } else {
9809       for (const auto &It : LHSAAPVS)
9810         unionAssumed(It);
9811       for (const auto &It : RHSAAPVS)
9812         unionAssumed(It);
9813     }
9814     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9815                                          : ChangeStatus::CHANGED;
9816   }
9817 
9818   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
9819     auto AssumedBefore = getAssumed();
9820     if (!CI->isIntegerCast())
9821       return indicatePessimisticFixpoint();
9822     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
9823     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
9824     Value *Src = CI->getOperand(0);
9825 
9826     bool SrcContainsUndef = false;
9827     SetTy SrcPVS;
9828     if (!fillSetWithConstantValues(A, IRPosition::value(*Src), SrcPVS,
9829                                    SrcContainsUndef, /* ForSelf */ false))
9830       return indicatePessimisticFixpoint();
9831 
9832     if (SrcContainsUndef)
9833       unionAssumedWithUndef();
9834     else {
9835       for (const APInt &S : SrcPVS) {
9836         APInt T = calculateCastInst(CI, S, ResultBitWidth);
9837         unionAssumed(T);
9838       }
9839     }
9840     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9841                                          : ChangeStatus::CHANGED;
9842   }
9843 
9844   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
9845     auto AssumedBefore = getAssumed();
9846     Value *LHS = BinOp->getOperand(0);
9847     Value *RHS = BinOp->getOperand(1);
9848 
9849     bool LHSContainsUndef = false, RHSContainsUndef = false;
9850     SetTy LHSAAPVS, RHSAAPVS;
9851     if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
9852                                    LHSContainsUndef, /* ForSelf */ false) ||
9853         !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
9854                                    RHSContainsUndef, /* ForSelf */ false))
9855       return indicatePessimisticFixpoint();
9856 
9857     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9858 
9859     // TODO: make use of undef flag to limit potential values aggressively.
9860     if (LHSContainsUndef && RHSContainsUndef) {
9861       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9862         return indicatePessimisticFixpoint();
9863     } else if (LHSContainsUndef) {
9864       for (const APInt &R : RHSAAPVS) {
9865         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9866           return indicatePessimisticFixpoint();
9867       }
9868     } else if (RHSContainsUndef) {
9869       for (const APInt &L : LHSAAPVS) {
9870         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9871           return indicatePessimisticFixpoint();
9872       }
9873     } else {
9874       for (const APInt &L : LHSAAPVS) {
9875         for (const APInt &R : RHSAAPVS) {
9876           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9877             return indicatePessimisticFixpoint();
9878         }
9879       }
9880     }
9881     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9882                                          : ChangeStatus::CHANGED;
9883   }
9884 
9885   ChangeStatus updateWithInstruction(Attributor &A, Instruction *Inst) {
9886     auto AssumedBefore = getAssumed();
9887     SetTy Incoming;
9888     bool ContainsUndef;
9889     if (!fillSetWithConstantValues(A, IRPosition::value(*Inst), Incoming,
9890                                    ContainsUndef, /* ForSelf */ true))
9891       return indicatePessimisticFixpoint();
9892     if (ContainsUndef) {
9893       unionAssumedWithUndef();
9894     } else {
9895       for (const auto &It : Incoming)
9896         unionAssumed(It);
9897     }
9898     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9899                                          : ChangeStatus::CHANGED;
9900   }
9901 
9902   /// See AbstractAttribute::updateImpl(...).
9903   ChangeStatus updateImpl(Attributor &A) override {
9904     Value &V = getAssociatedValue();
9905     Instruction *I = dyn_cast<Instruction>(&V);
9906 
9907     if (auto *ICI = dyn_cast<ICmpInst>(I))
9908       return updateWithICmpInst(A, ICI);
9909 
9910     if (auto *SI = dyn_cast<SelectInst>(I))
9911       return updateWithSelectInst(A, SI);
9912 
9913     if (auto *CI = dyn_cast<CastInst>(I))
9914       return updateWithCastInst(A, CI);
9915 
9916     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9917       return updateWithBinaryOperator(A, BinOp);
9918 
9919     if (isa<PHINode>(I) || isa<LoadInst>(I))
9920       return updateWithInstruction(A, I);
9921 
9922     return indicatePessimisticFixpoint();
9923   }
9924 
9925   /// See AbstractAttribute::trackStatistics()
9926   void trackStatistics() const override {
9927     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9928   }
9929 };
9930 
9931 struct AAPotentialConstantValuesFunction : AAPotentialConstantValuesImpl {
9932   AAPotentialConstantValuesFunction(const IRPosition &IRP, Attributor &A)
9933       : AAPotentialConstantValuesImpl(IRP, A) {}
9934 
9935   /// See AbstractAttribute::initialize(...).
9936   ChangeStatus updateImpl(Attributor &A) override {
9937     llvm_unreachable(
9938         "AAPotentialConstantValues(Function|CallSite)::updateImpl will "
9939         "not be called");
9940   }
9941 
9942   /// See AbstractAttribute::trackStatistics()
9943   void trackStatistics() const override {
9944     STATS_DECLTRACK_FN_ATTR(potential_values)
9945   }
9946 };
9947 
9948 struct AAPotentialConstantValuesCallSite : AAPotentialConstantValuesFunction {
9949   AAPotentialConstantValuesCallSite(const IRPosition &IRP, Attributor &A)
9950       : AAPotentialConstantValuesFunction(IRP, A) {}
9951 
9952   /// See AbstractAttribute::trackStatistics()
9953   void trackStatistics() const override {
9954     STATS_DECLTRACK_CS_ATTR(potential_values)
9955   }
9956 };
9957 
9958 struct AAPotentialConstantValuesCallSiteReturned
9959     : AACallSiteReturnedFromReturned<AAPotentialConstantValues,
9960                                      AAPotentialConstantValuesImpl> {
9961   AAPotentialConstantValuesCallSiteReturned(const IRPosition &IRP,
9962                                             Attributor &A)
9963       : AACallSiteReturnedFromReturned<AAPotentialConstantValues,
9964                                        AAPotentialConstantValuesImpl>(IRP, A) {}
9965 
9966   /// See AbstractAttribute::trackStatistics()
9967   void trackStatistics() const override {
9968     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9969   }
9970 };
9971 
9972 struct AAPotentialConstantValuesCallSiteArgument
9973     : AAPotentialConstantValuesFloating {
9974   AAPotentialConstantValuesCallSiteArgument(const IRPosition &IRP,
9975                                             Attributor &A)
9976       : AAPotentialConstantValuesFloating(IRP, A) {}
9977 
9978   /// See AbstractAttribute::initialize(..).
9979   void initialize(Attributor &A) override {
9980     AAPotentialConstantValuesImpl::initialize(A);
9981     if (isAtFixpoint())
9982       return;
9983 
9984     Value &V = getAssociatedValue();
9985 
9986     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9987       unionAssumed(C->getValue());
9988       indicateOptimisticFixpoint();
9989       return;
9990     }
9991 
9992     if (isa<UndefValue>(&V)) {
9993       unionAssumedWithUndef();
9994       indicateOptimisticFixpoint();
9995       return;
9996     }
9997   }
9998 
9999   /// See AbstractAttribute::updateImpl(...).
10000   ChangeStatus updateImpl(Attributor &A) override {
10001     Value &V = getAssociatedValue();
10002     auto AssumedBefore = getAssumed();
10003     auto *AA = A.getAAFor<AAPotentialConstantValues>(
10004         *this, IRPosition::value(V), DepClassTy::REQUIRED);
10005     if (!AA)
10006       return indicatePessimisticFixpoint();
10007     const auto &S = AA->getAssumed();
10008     unionAssumed(S);
10009     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
10010                                          : ChangeStatus::CHANGED;
10011   }
10012 
10013   /// See AbstractAttribute::trackStatistics()
10014   void trackStatistics() const override {
10015     STATS_DECLTRACK_CSARG_ATTR(potential_values)
10016   }
10017 };
10018 } // namespace
10019 
10020 /// ------------------------ NoUndef Attribute ---------------------------------
10021 bool AANoUndef::isImpliedByIR(Attributor &A, const IRPosition &IRP,
10022                               Attribute::AttrKind ImpliedAttributeKind,
10023                               bool IgnoreSubsumingPositions) {
10024   assert(ImpliedAttributeKind == Attribute::NoUndef &&
10025          "Unexpected attribute kind");
10026   if (A.hasAttr(IRP, {Attribute::NoUndef}, IgnoreSubsumingPositions,
10027                 Attribute::NoUndef))
10028     return true;
10029 
10030   Value &Val = IRP.getAssociatedValue();
10031   if (IRP.getPositionKind() != IRPosition::IRP_RETURNED &&
10032       isGuaranteedNotToBeUndefOrPoison(&Val)) {
10033     LLVMContext &Ctx = Val.getContext();
10034     A.manifestAttrs(IRP, Attribute::get(Ctx, Attribute::NoUndef));
10035     return true;
10036   }
10037 
10038   return false;
10039 }
10040 
10041 namespace {
10042 struct AANoUndefImpl : AANoUndef {
10043   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
10044 
10045   /// See AbstractAttribute::initialize(...).
10046   void initialize(Attributor &A) override {
10047     Value &V = getAssociatedValue();
10048     if (isa<UndefValue>(V))
10049       indicatePessimisticFixpoint();
10050     assert(!isImpliedByIR(A, getIRPosition(), Attribute::NoUndef));
10051   }
10052 
10053   /// See followUsesInMBEC
10054   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
10055                        AANoUndef::StateType &State) {
10056     const Value *UseV = U->get();
10057     const DominatorTree *DT = nullptr;
10058     AssumptionCache *AC = nullptr;
10059     InformationCache &InfoCache = A.getInfoCache();
10060     if (Function *F = getAnchorScope()) {
10061       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
10062       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
10063     }
10064     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
10065     bool TrackUse = false;
10066     // Track use for instructions which must produce undef or poison bits when
10067     // at least one operand contains such bits.
10068     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
10069       TrackUse = true;
10070     return TrackUse;
10071   }
10072 
10073   /// See AbstractAttribute::getAsStr().
10074   const std::string getAsStr(Attributor *A) const override {
10075     return getAssumed() ? "noundef" : "may-undef-or-poison";
10076   }
10077 
10078   ChangeStatus manifest(Attributor &A) override {
10079     // We don't manifest noundef attribute for dead positions because the
10080     // associated values with dead positions would be replaced with undef
10081     // values.
10082     bool UsedAssumedInformation = false;
10083     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
10084                         UsedAssumedInformation))
10085       return ChangeStatus::UNCHANGED;
10086     // A position whose simplified value does not have any value is
10087     // considered to be dead. We don't manifest noundef in such positions for
10088     // the same reason above.
10089     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation,
10090                                 AA::Interprocedural)
10091              .has_value())
10092       return ChangeStatus::UNCHANGED;
10093     return AANoUndef::manifest(A);
10094   }
10095 };
10096 
10097 struct AANoUndefFloating : public AANoUndefImpl {
10098   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
10099       : AANoUndefImpl(IRP, A) {}
10100 
10101   /// See AbstractAttribute::initialize(...).
10102   void initialize(Attributor &A) override {
10103     AANoUndefImpl::initialize(A);
10104     if (!getState().isAtFixpoint())
10105       if (Instruction *CtxI = getCtxI())
10106         followUsesInMBEC(*this, A, getState(), *CtxI);
10107   }
10108 
10109   /// See AbstractAttribute::updateImpl(...).
10110   ChangeStatus updateImpl(Attributor &A) override {
10111     auto VisitValueCB = [&](const IRPosition &IRP) -> bool {
10112       bool IsKnownNoUndef;
10113       return AA::hasAssumedIRAttr<Attribute::NoUndef>(
10114           A, this, IRP, DepClassTy::REQUIRED, IsKnownNoUndef);
10115     };
10116 
10117     bool Stripped;
10118     bool UsedAssumedInformation = false;
10119     Value *AssociatedValue = &getAssociatedValue();
10120     SmallVector<AA::ValueAndContext> Values;
10121     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
10122                                       AA::AnyScope, UsedAssumedInformation))
10123       Stripped = false;
10124     else
10125       Stripped =
10126           Values.size() != 1 || Values.front().getValue() != AssociatedValue;
10127 
10128     if (!Stripped) {
10129       // If we haven't stripped anything we might still be able to use a
10130       // different AA, but only if the IRP changes. Effectively when we
10131       // interpret this not as a call site value but as a floating/argument
10132       // value.
10133       const IRPosition AVIRP = IRPosition::value(*AssociatedValue);
10134       if (AVIRP == getIRPosition() || !VisitValueCB(AVIRP))
10135         return indicatePessimisticFixpoint();
10136       return ChangeStatus::UNCHANGED;
10137     }
10138 
10139     for (const auto &VAC : Values)
10140       if (!VisitValueCB(IRPosition::value(*VAC.getValue())))
10141         return indicatePessimisticFixpoint();
10142 
10143     return ChangeStatus::UNCHANGED;
10144   }
10145 
10146   /// See AbstractAttribute::trackStatistics()
10147   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
10148 };
10149 
10150 struct AANoUndefReturned final
10151     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl,
10152                                    AANoUndef::StateType, false,
10153                                    Attribute::NoUndef> {
10154   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
10155       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl,
10156                                      AANoUndef::StateType, false,
10157                                      Attribute::NoUndef>(IRP, A) {}
10158 
10159   /// See AbstractAttribute::trackStatistics()
10160   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
10161 };
10162 
10163 struct AANoUndefArgument final
10164     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl,
10165                                       AANoUndef::StateType, false,
10166                                       Attribute::NoUndef> {
10167   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
10168       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl,
10169                                         AANoUndef::StateType, false,
10170                                         Attribute::NoUndef>(IRP, A) {}
10171 
10172   /// See AbstractAttribute::trackStatistics()
10173   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
10174 };
10175 
10176 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
10177   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
10178       : AANoUndefFloating(IRP, A) {}
10179 
10180   /// See AbstractAttribute::trackStatistics()
10181   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
10182 };
10183 
10184 struct AANoUndefCallSiteReturned final
10185     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl,
10186                                      AANoUndef::StateType, false,
10187                                      Attribute::NoUndef> {
10188   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
10189       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl,
10190                                        AANoUndef::StateType, false,
10191                                        Attribute::NoUndef>(IRP, A) {}
10192 
10193   /// See AbstractAttribute::trackStatistics()
10194   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
10195 };
10196 
10197 /// ------------------------ NoFPClass Attribute -------------------------------
10198 
10199 struct AANoFPClassImpl : AANoFPClass {
10200   AANoFPClassImpl(const IRPosition &IRP, Attributor &A) : AANoFPClass(IRP, A) {}
10201 
10202   void initialize(Attributor &A) override {
10203     const IRPosition &IRP = getIRPosition();
10204 
10205     Value &V = IRP.getAssociatedValue();
10206     if (isa<UndefValue>(V)) {
10207       indicateOptimisticFixpoint();
10208       return;
10209     }
10210 
10211     SmallVector<Attribute> Attrs;
10212     A.getAttrs(getIRPosition(), {Attribute::NoFPClass}, Attrs, false);
10213     for (const auto &Attr : Attrs) {
10214       addKnownBits(Attr.getNoFPClass());
10215       return;
10216     }
10217 
10218     const DataLayout &DL = A.getDataLayout();
10219     if (getPositionKind() != IRPosition::IRP_RETURNED) {
10220       KnownFPClass KnownFPClass = computeKnownFPClass(&V, DL);
10221       addKnownBits(~KnownFPClass.KnownFPClasses);
10222     }
10223 
10224     if (Instruction *CtxI = getCtxI())
10225       followUsesInMBEC(*this, A, getState(), *CtxI);
10226   }
10227 
10228   /// See followUsesInMBEC
10229   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
10230                        AANoFPClass::StateType &State) {
10231     const Value *UseV = U->get();
10232     const DominatorTree *DT = nullptr;
10233     AssumptionCache *AC = nullptr;
10234     const TargetLibraryInfo *TLI = nullptr;
10235     InformationCache &InfoCache = A.getInfoCache();
10236 
10237     if (Function *F = getAnchorScope()) {
10238       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
10239       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
10240       TLI = InfoCache.getTargetLibraryInfoForFunction(*F);
10241     }
10242 
10243     const DataLayout &DL = A.getDataLayout();
10244 
10245     KnownFPClass KnownFPClass =
10246         computeKnownFPClass(UseV, DL,
10247                             /*InterestedClasses=*/fcAllFlags,
10248                             /*Depth=*/0, TLI, AC, I, DT);
10249     State.addKnownBits(~KnownFPClass.KnownFPClasses);
10250 
10251     bool TrackUse = false;
10252     return TrackUse;
10253   }
10254 
10255   const std::string getAsStr(Attributor *A) const override {
10256     std::string Result = "nofpclass";
10257     raw_string_ostream OS(Result);
10258     OS << getAssumedNoFPClass();
10259     return Result;
10260   }
10261 
10262   void getDeducedAttributes(Attributor &A, LLVMContext &Ctx,
10263                             SmallVectorImpl<Attribute> &Attrs) const override {
10264     Attrs.emplace_back(Attribute::getWithNoFPClass(Ctx, getAssumedNoFPClass()));
10265   }
10266 };
10267 
10268 struct AANoFPClassFloating : public AANoFPClassImpl {
10269   AANoFPClassFloating(const IRPosition &IRP, Attributor &A)
10270       : AANoFPClassImpl(IRP, A) {}
10271 
10272   /// See AbstractAttribute::updateImpl(...).
10273   ChangeStatus updateImpl(Attributor &A) override {
10274     SmallVector<AA::ValueAndContext> Values;
10275     bool UsedAssumedInformation = false;
10276     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
10277                                       AA::AnyScope, UsedAssumedInformation)) {
10278       Values.push_back({getAssociatedValue(), getCtxI()});
10279     }
10280 
10281     StateType T;
10282     auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
10283       const auto *AA = A.getAAFor<AANoFPClass>(*this, IRPosition::value(V),
10284                                                DepClassTy::REQUIRED);
10285       if (!AA || this == AA) {
10286         T.indicatePessimisticFixpoint();
10287       } else {
10288         const AANoFPClass::StateType &S =
10289             static_cast<const AANoFPClass::StateType &>(AA->getState());
10290         T ^= S;
10291       }
10292       return T.isValidState();
10293     };
10294 
10295     for (const auto &VAC : Values)
10296       if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
10297         return indicatePessimisticFixpoint();
10298 
10299     return clampStateAndIndicateChange(getState(), T);
10300   }
10301 
10302   /// See AbstractAttribute::trackStatistics()
10303   void trackStatistics() const override {
10304     STATS_DECLTRACK_FNRET_ATTR(nofpclass)
10305   }
10306 };
10307 
10308 struct AANoFPClassReturned final
10309     : AAReturnedFromReturnedValues<AANoFPClass, AANoFPClassImpl,
10310                                    AANoFPClassImpl::StateType, false, Attribute::None, false> {
10311   AANoFPClassReturned(const IRPosition &IRP, Attributor &A)
10312       : AAReturnedFromReturnedValues<AANoFPClass, AANoFPClassImpl,
10313                                      AANoFPClassImpl::StateType, false, Attribute::None, false>(
10314             IRP, A) {}
10315 
10316   /// See AbstractAttribute::trackStatistics()
10317   void trackStatistics() const override {
10318     STATS_DECLTRACK_FNRET_ATTR(nofpclass)
10319   }
10320 };
10321 
10322 struct AANoFPClassArgument final
10323     : AAArgumentFromCallSiteArguments<AANoFPClass, AANoFPClassImpl> {
10324   AANoFPClassArgument(const IRPosition &IRP, Attributor &A)
10325       : AAArgumentFromCallSiteArguments<AANoFPClass, AANoFPClassImpl>(IRP, A) {}
10326 
10327   /// See AbstractAttribute::trackStatistics()
10328   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofpclass) }
10329 };
10330 
10331 struct AANoFPClassCallSiteArgument final : AANoFPClassFloating {
10332   AANoFPClassCallSiteArgument(const IRPosition &IRP, Attributor &A)
10333       : AANoFPClassFloating(IRP, A) {}
10334 
10335   /// See AbstractAttribute::trackStatistics()
10336   void trackStatistics() const override {
10337     STATS_DECLTRACK_CSARG_ATTR(nofpclass)
10338   }
10339 };
10340 
10341 struct AANoFPClassCallSiteReturned final
10342     : AACallSiteReturnedFromReturned<AANoFPClass, AANoFPClassImpl> {
10343   AANoFPClassCallSiteReturned(const IRPosition &IRP, Attributor &A)
10344       : AACallSiteReturnedFromReturned<AANoFPClass, AANoFPClassImpl>(IRP, A) {}
10345 
10346   /// See AbstractAttribute::trackStatistics()
10347   void trackStatistics() const override {
10348     STATS_DECLTRACK_CSRET_ATTR(nofpclass)
10349   }
10350 };
10351 
10352 struct AACallEdgesImpl : public AACallEdges {
10353   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
10354 
10355   const SetVector<Function *> &getOptimisticEdges() const override {
10356     return CalledFunctions;
10357   }
10358 
10359   bool hasUnknownCallee() const override { return HasUnknownCallee; }
10360 
10361   bool hasNonAsmUnknownCallee() const override {
10362     return HasUnknownCalleeNonAsm;
10363   }
10364 
10365   const std::string getAsStr(Attributor *A) const override {
10366     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
10367            std::to_string(CalledFunctions.size()) + "]";
10368   }
10369 
10370   void trackStatistics() const override {}
10371 
10372 protected:
10373   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
10374     if (CalledFunctions.insert(Fn)) {
10375       Change = ChangeStatus::CHANGED;
10376       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
10377                         << "\n");
10378     }
10379   }
10380 
10381   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
10382     if (!HasUnknownCallee)
10383       Change = ChangeStatus::CHANGED;
10384     if (NonAsm && !HasUnknownCalleeNonAsm)
10385       Change = ChangeStatus::CHANGED;
10386     HasUnknownCalleeNonAsm |= NonAsm;
10387     HasUnknownCallee = true;
10388   }
10389 
10390 private:
10391   /// Optimistic set of functions that might be called by this position.
10392   SetVector<Function *> CalledFunctions;
10393 
10394   /// Is there any call with a unknown callee.
10395   bool HasUnknownCallee = false;
10396 
10397   /// Is there any call with a unknown callee, excluding any inline asm.
10398   bool HasUnknownCalleeNonAsm = false;
10399 };
10400 
10401 struct AACallEdgesCallSite : public AACallEdgesImpl {
10402   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
10403       : AACallEdgesImpl(IRP, A) {}
10404   /// See AbstractAttribute::updateImpl(...).
10405   ChangeStatus updateImpl(Attributor &A) override {
10406     ChangeStatus Change = ChangeStatus::UNCHANGED;
10407 
10408     auto VisitValue = [&](Value &V, const Instruction *CtxI) -> bool {
10409       if (Function *Fn = dyn_cast<Function>(&V)) {
10410         addCalledFunction(Fn, Change);
10411       } else {
10412         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
10413         setHasUnknownCallee(true, Change);
10414       }
10415 
10416       // Explore all values.
10417       return true;
10418     };
10419 
10420     SmallVector<AA::ValueAndContext> Values;
10421     // Process any value that we might call.
10422     auto ProcessCalledOperand = [&](Value *V, Instruction *CtxI) {
10423       if (isa<Constant>(V)) {
10424         VisitValue(*V, CtxI);
10425         return;
10426       }
10427 
10428       bool UsedAssumedInformation = false;
10429       Values.clear();
10430       if (!A.getAssumedSimplifiedValues(IRPosition::value(*V), *this, Values,
10431                                         AA::AnyScope, UsedAssumedInformation)) {
10432         Values.push_back({*V, CtxI});
10433       }
10434       for (auto &VAC : Values)
10435         VisitValue(*VAC.getValue(), VAC.getCtxI());
10436     };
10437 
10438     CallBase *CB = cast<CallBase>(getCtxI());
10439 
10440     if (auto *IA = dyn_cast<InlineAsm>(CB->getCalledOperand())) {
10441       if (IA->hasSideEffects() &&
10442           !hasAssumption(*CB->getCaller(), "ompx_no_call_asm") &&
10443           !hasAssumption(*CB, "ompx_no_call_asm")) {
10444         setHasUnknownCallee(false, Change);
10445       }
10446       return Change;
10447     }
10448 
10449     // Process callee metadata if available.
10450     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
10451       for (const auto &Op : MD->operands()) {
10452         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
10453         if (Callee)
10454           addCalledFunction(Callee, Change);
10455       }
10456       return Change;
10457     }
10458 
10459     // The most simple case.
10460     ProcessCalledOperand(CB->getCalledOperand(), CB);
10461 
10462     // Process callback functions.
10463     SmallVector<const Use *, 4u> CallbackUses;
10464     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
10465     for (const Use *U : CallbackUses)
10466       ProcessCalledOperand(U->get(), CB);
10467 
10468     return Change;
10469   }
10470 };
10471 
10472 struct AACallEdgesFunction : public AACallEdgesImpl {
10473   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
10474       : AACallEdgesImpl(IRP, A) {}
10475 
10476   /// See AbstractAttribute::updateImpl(...).
10477   ChangeStatus updateImpl(Attributor &A) override {
10478     ChangeStatus Change = ChangeStatus::UNCHANGED;
10479 
10480     auto ProcessCallInst = [&](Instruction &Inst) {
10481       CallBase &CB = cast<CallBase>(Inst);
10482 
10483       auto *CBEdges = A.getAAFor<AACallEdges>(
10484           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
10485       if (!CBEdges)
10486         return false;
10487       if (CBEdges->hasNonAsmUnknownCallee())
10488         setHasUnknownCallee(true, Change);
10489       if (CBEdges->hasUnknownCallee())
10490         setHasUnknownCallee(false, Change);
10491 
10492       for (Function *F : CBEdges->getOptimisticEdges())
10493         addCalledFunction(F, Change);
10494 
10495       return true;
10496     };
10497 
10498     // Visit all callable instructions.
10499     bool UsedAssumedInformation = false;
10500     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
10501                                            UsedAssumedInformation,
10502                                            /* CheckBBLivenessOnly */ true)) {
10503       // If we haven't looked at all call like instructions, assume that there
10504       // are unknown callees.
10505       setHasUnknownCallee(true, Change);
10506     }
10507 
10508     return Change;
10509   }
10510 };
10511 
10512 /// -------------------AAInterFnReachability Attribute--------------------------
10513 
10514 struct AAInterFnReachabilityFunction
10515     : public CachedReachabilityAA<AAInterFnReachability, Function> {
10516   using Base = CachedReachabilityAA<AAInterFnReachability, Function>;
10517   AAInterFnReachabilityFunction(const IRPosition &IRP, Attributor &A)
10518       : Base(IRP, A) {}
10519 
10520   bool instructionCanReach(
10521       Attributor &A, const Instruction &From, const Function &To,
10522       const AA::InstExclusionSetTy *ExclusionSet,
10523       SmallPtrSet<const Function *, 16> *Visited) const override {
10524     assert(From.getFunction() == getAnchorScope() && "Queried the wrong AA!");
10525     auto *NonConstThis = const_cast<AAInterFnReachabilityFunction *>(this);
10526 
10527     RQITy StackRQI(A, From, To, ExclusionSet, false);
10528     typename RQITy::Reachable Result;
10529     if (!NonConstThis->checkQueryCache(A, StackRQI, Result))
10530       return NonConstThis->isReachableImpl(A, StackRQI);
10531     return Result == RQITy::Reachable::Yes;
10532   }
10533 
10534   bool isReachableImpl(Attributor &A, RQITy &RQI) override {
10535     return isReachableImpl(A, RQI, nullptr);
10536   }
10537 
10538   bool isReachableImpl(Attributor &A, RQITy &RQI,
10539                        SmallPtrSet<const Function *, 16> *Visited) {
10540 
10541     SmallPtrSet<const Function *, 16> LocalVisited;
10542     if (!Visited)
10543       Visited = &LocalVisited;
10544 
10545     auto CheckReachableCallBase = [&](CallBase *CB) {
10546       auto *CBEdges = A.getAAFor<AACallEdges>(
10547           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
10548       if (!CBEdges || !CBEdges->getState().isValidState())
10549         return false;
10550       // TODO Check To backwards in this case.
10551       if (CBEdges->hasUnknownCallee())
10552         return false;
10553 
10554       for (Function *Fn : CBEdges->getOptimisticEdges()) {
10555         if (Fn == RQI.To)
10556           return false;
10557         if (!Visited->insert(Fn).second)
10558           continue;
10559         if (Fn->isDeclaration()) {
10560           if (Fn->hasFnAttribute(Attribute::NoCallback))
10561             continue;
10562           // TODO Check To backwards in this case.
10563           return false;
10564         }
10565 
10566         const AAInterFnReachability *InterFnReachability = this;
10567         if (Fn != getAnchorScope())
10568           InterFnReachability = A.getAAFor<AAInterFnReachability>(
10569               *this, IRPosition::function(*Fn), DepClassTy::OPTIONAL);
10570 
10571         const Instruction &FnFirstInst = Fn->getEntryBlock().front();
10572         if (!InterFnReachability ||
10573             InterFnReachability->instructionCanReach(A, FnFirstInst, *RQI.To,
10574                                                      RQI.ExclusionSet, Visited))
10575           return false;
10576       }
10577       return true;
10578     };
10579 
10580     const auto *IntraFnReachability = A.getAAFor<AAIntraFnReachability>(
10581         *this, IRPosition::function(*RQI.From->getFunction()),
10582         DepClassTy::OPTIONAL);
10583 
10584     // Determine call like instructions that we can reach from the inst.
10585     auto CheckCallBase = [&](Instruction &CBInst) {
10586       if (!IntraFnReachability || !IntraFnReachability->isAssumedReachable(
10587                                       A, *RQI.From, CBInst, RQI.ExclusionSet))
10588         return true;
10589       return CheckReachableCallBase(cast<CallBase>(&CBInst));
10590     };
10591 
10592     bool UsedExclusionSet = /* conservative */ true;
10593     bool UsedAssumedInformation = false;
10594     if (!A.checkForAllCallLikeInstructions(CheckCallBase, *this,
10595                                            UsedAssumedInformation,
10596                                            /* CheckBBLivenessOnly */ true))
10597       return rememberResult(A, RQITy::Reachable::Yes, RQI, UsedExclusionSet);
10598 
10599     return rememberResult(A, RQITy::Reachable::No, RQI, UsedExclusionSet);
10600   }
10601 
10602   void trackStatistics() const override {}
10603 
10604 private:
10605   SmallVector<RQITy *> QueryVector;
10606   DenseSet<RQITy *> QueryCache;
10607 };
10608 } // namespace
10609 
10610 template <typename AAType>
10611 static std::optional<Constant *>
10612 askForAssumedConstant(Attributor &A, const AbstractAttribute &QueryingAA,
10613                       const IRPosition &IRP, Type &Ty) {
10614   if (!Ty.isIntegerTy())
10615     return nullptr;
10616 
10617   // This will also pass the call base context.
10618   const auto *AA = A.getAAFor<AAType>(QueryingAA, IRP, DepClassTy::NONE);
10619   if (!AA)
10620     return nullptr;
10621 
10622   std::optional<Constant *> COpt = AA->getAssumedConstant(A);
10623 
10624   if (!COpt.has_value()) {
10625     A.recordDependence(*AA, QueryingAA, DepClassTy::OPTIONAL);
10626     return std::nullopt;
10627   }
10628   if (auto *C = *COpt) {
10629     A.recordDependence(*AA, QueryingAA, DepClassTy::OPTIONAL);
10630     return C;
10631   }
10632   return nullptr;
10633 }
10634 
10635 Value *AAPotentialValues::getSingleValue(
10636     Attributor &A, const AbstractAttribute &AA, const IRPosition &IRP,
10637     SmallVectorImpl<AA::ValueAndContext> &Values) {
10638   Type &Ty = *IRP.getAssociatedType();
10639   std::optional<Value *> V;
10640   for (auto &It : Values) {
10641     V = AA::combineOptionalValuesInAAValueLatice(V, It.getValue(), &Ty);
10642     if (V.has_value() && !*V)
10643       break;
10644   }
10645   if (!V.has_value())
10646     return UndefValue::get(&Ty);
10647   return *V;
10648 }
10649 
10650 namespace {
10651 struct AAPotentialValuesImpl : AAPotentialValues {
10652   using StateType = PotentialLLVMValuesState;
10653 
10654   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
10655       : AAPotentialValues(IRP, A) {}
10656 
10657   /// See AbstractAttribute::initialize(..).
10658   void initialize(Attributor &A) override {
10659     if (A.hasSimplificationCallback(getIRPosition())) {
10660       indicatePessimisticFixpoint();
10661       return;
10662     }
10663     Value *Stripped = getAssociatedValue().stripPointerCasts();
10664     auto *CE = dyn_cast<ConstantExpr>(Stripped);
10665     if (isa<Constant>(Stripped) &&
10666         (!CE || CE->getOpcode() != Instruction::ICmp)) {
10667       addValue(A, getState(), *Stripped, getCtxI(), AA::AnyScope,
10668                getAnchorScope());
10669       indicateOptimisticFixpoint();
10670       return;
10671     }
10672     AAPotentialValues::initialize(A);
10673   }
10674 
10675   /// See AbstractAttribute::getAsStr().
10676   const std::string getAsStr(Attributor *A) const override {
10677     std::string Str;
10678     llvm::raw_string_ostream OS(Str);
10679     OS << getState();
10680     return OS.str();
10681   }
10682 
10683   template <typename AAType>
10684   static std::optional<Value *> askOtherAA(Attributor &A,
10685                                            const AbstractAttribute &AA,
10686                                            const IRPosition &IRP, Type &Ty) {
10687     if (isa<Constant>(IRP.getAssociatedValue()))
10688       return &IRP.getAssociatedValue();
10689     std::optional<Constant *> C = askForAssumedConstant<AAType>(A, AA, IRP, Ty);
10690     if (!C)
10691       return std::nullopt;
10692     if (*C)
10693       if (auto *CC = AA::getWithType(**C, Ty))
10694         return CC;
10695     return nullptr;
10696   }
10697 
10698   virtual void addValue(Attributor &A, StateType &State, Value &V,
10699                         const Instruction *CtxI, AA::ValueScope S,
10700                         Function *AnchorScope) const {
10701 
10702     IRPosition ValIRP = IRPosition::value(V);
10703     if (auto *CB = dyn_cast_or_null<CallBase>(CtxI)) {
10704       for (const auto &U : CB->args()) {
10705         if (U.get() != &V)
10706           continue;
10707         ValIRP = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
10708         break;
10709       }
10710     }
10711 
10712     Value *VPtr = &V;
10713     if (ValIRP.getAssociatedType()->isIntegerTy()) {
10714       Type &Ty = *getAssociatedType();
10715       std::optional<Value *> SimpleV =
10716           askOtherAA<AAValueConstantRange>(A, *this, ValIRP, Ty);
10717       if (SimpleV.has_value() && !*SimpleV) {
10718         auto *PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
10719             *this, ValIRP, DepClassTy::OPTIONAL);
10720         if (PotentialConstantsAA && PotentialConstantsAA->isValidState()) {
10721           for (const auto &It : PotentialConstantsAA->getAssumedSet())
10722             State.unionAssumed({{*ConstantInt::get(&Ty, It), nullptr}, S});
10723           if (PotentialConstantsAA->undefIsContained())
10724             State.unionAssumed({{*UndefValue::get(&Ty), nullptr}, S});
10725           return;
10726         }
10727       }
10728       if (!SimpleV.has_value())
10729         return;
10730 
10731       if (*SimpleV)
10732         VPtr = *SimpleV;
10733     }
10734 
10735     if (isa<ConstantInt>(VPtr))
10736       CtxI = nullptr;
10737     if (!AA::isValidInScope(*VPtr, AnchorScope))
10738       S = AA::ValueScope(S | AA::Interprocedural);
10739 
10740     State.unionAssumed({{*VPtr, CtxI}, S});
10741   }
10742 
10743   /// Helper struct to tie a value+context pair together with the scope for
10744   /// which this is the simplified version.
10745   struct ItemInfo {
10746     AA::ValueAndContext I;
10747     AA::ValueScope S;
10748 
10749     bool operator==(const ItemInfo &II) const {
10750       return II.I == I && II.S == S;
10751     };
10752     bool operator<(const ItemInfo &II) const {
10753       if (I == II.I)
10754         return S < II.S;
10755       return I < II.I;
10756     };
10757   };
10758 
10759   bool recurseForValue(Attributor &A, const IRPosition &IRP, AA::ValueScope S) {
10760     SmallMapVector<AA::ValueAndContext, int, 8> ValueScopeMap;
10761     for (auto CS : {AA::Intraprocedural, AA::Interprocedural}) {
10762       if (!(CS & S))
10763         continue;
10764 
10765       bool UsedAssumedInformation = false;
10766       SmallVector<AA::ValueAndContext> Values;
10767       if (!A.getAssumedSimplifiedValues(IRP, this, Values, CS,
10768                                         UsedAssumedInformation))
10769         return false;
10770 
10771       for (auto &It : Values)
10772         ValueScopeMap[It] += CS;
10773     }
10774     for (auto &It : ValueScopeMap)
10775       addValue(A, getState(), *It.first.getValue(), It.first.getCtxI(),
10776                AA::ValueScope(It.second), getAnchorScope());
10777 
10778     return true;
10779   }
10780 
10781   void giveUpOnIntraprocedural(Attributor &A) {
10782     auto NewS = StateType::getBestState(getState());
10783     for (const auto &It : getAssumedSet()) {
10784       if (It.second == AA::Intraprocedural)
10785         continue;
10786       addValue(A, NewS, *It.first.getValue(), It.first.getCtxI(),
10787                AA::Interprocedural, getAnchorScope());
10788     }
10789     assert(!undefIsContained() && "Undef should be an explicit value!");
10790     addValue(A, NewS, getAssociatedValue(), getCtxI(), AA::Intraprocedural,
10791              getAnchorScope());
10792     getState() = NewS;
10793   }
10794 
10795   /// See AbstractState::indicatePessimisticFixpoint(...).
10796   ChangeStatus indicatePessimisticFixpoint() override {
10797     getState() = StateType::getBestState(getState());
10798     getState().unionAssumed({{getAssociatedValue(), getCtxI()}, AA::AnyScope});
10799     AAPotentialValues::indicateOptimisticFixpoint();
10800     return ChangeStatus::CHANGED;
10801   }
10802 
10803   /// See AbstractAttribute::updateImpl(...).
10804   ChangeStatus updateImpl(Attributor &A) override {
10805     return indicatePessimisticFixpoint();
10806   }
10807 
10808   /// See AbstractAttribute::manifest(...).
10809   ChangeStatus manifest(Attributor &A) override {
10810     SmallVector<AA::ValueAndContext> Values;
10811     for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
10812       Values.clear();
10813       if (!getAssumedSimplifiedValues(A, Values, S))
10814         continue;
10815       Value &OldV = getAssociatedValue();
10816       if (isa<UndefValue>(OldV))
10817         continue;
10818       Value *NewV = getSingleValue(A, *this, getIRPosition(), Values);
10819       if (!NewV || NewV == &OldV)
10820         continue;
10821       if (getCtxI() &&
10822           !AA::isValidAtPosition({*NewV, *getCtxI()}, A.getInfoCache()))
10823         continue;
10824       if (A.changeAfterManifest(getIRPosition(), *NewV))
10825         return ChangeStatus::CHANGED;
10826     }
10827     return ChangeStatus::UNCHANGED;
10828   }
10829 
10830   bool getAssumedSimplifiedValues(
10831       Attributor &A, SmallVectorImpl<AA::ValueAndContext> &Values,
10832       AA::ValueScope S, bool RecurseForSelectAndPHI = false) const override {
10833     if (!isValidState())
10834       return false;
10835     bool UsedAssumedInformation = false;
10836     for (const auto &It : getAssumedSet())
10837       if (It.second & S) {
10838         if (RecurseForSelectAndPHI && (isa<PHINode>(It.first.getValue()) ||
10839                                        isa<SelectInst>(It.first.getValue()))) {
10840           if (A.getAssumedSimplifiedValues(
10841                   IRPosition::inst(*cast<Instruction>(It.first.getValue())),
10842                   this, Values, S, UsedAssumedInformation))
10843             continue;
10844         }
10845         Values.push_back(It.first);
10846       }
10847     assert(!undefIsContained() && "Undef should be an explicit value!");
10848     return true;
10849   }
10850 };
10851 
10852 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
10853   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
10854       : AAPotentialValuesImpl(IRP, A) {}
10855 
10856   /// See AbstractAttribute::updateImpl(...).
10857   ChangeStatus updateImpl(Attributor &A) override {
10858     auto AssumedBefore = getAssumed();
10859 
10860     genericValueTraversal(A, &getAssociatedValue());
10861 
10862     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
10863                                            : ChangeStatus::CHANGED;
10864   }
10865 
10866   /// Helper struct to remember which AAIsDead instances we actually used.
10867   struct LivenessInfo {
10868     const AAIsDead *LivenessAA = nullptr;
10869     bool AnyDead = false;
10870   };
10871 
10872   /// Check if \p Cmp is a comparison we can simplify.
10873   ///
10874   /// We handle multiple cases, one in which at least one operand is an
10875   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
10876   /// operand. Return true if successful, in that case Worklist will be updated.
10877   bool handleCmp(Attributor &A, Value &Cmp, Value *LHS, Value *RHS,
10878                  CmpInst::Predicate Pred, ItemInfo II,
10879                  SmallVectorImpl<ItemInfo> &Worklist) {
10880 
10881     // Simplify the operands first.
10882     bool UsedAssumedInformation = false;
10883     const auto &SimplifiedLHS = A.getAssumedSimplified(
10884         IRPosition::value(*LHS, getCallBaseContext()), *this,
10885         UsedAssumedInformation, AA::Intraprocedural);
10886     if (!SimplifiedLHS.has_value())
10887       return true;
10888     if (!*SimplifiedLHS)
10889       return false;
10890     LHS = *SimplifiedLHS;
10891 
10892     const auto &SimplifiedRHS = A.getAssumedSimplified(
10893         IRPosition::value(*RHS, getCallBaseContext()), *this,
10894         UsedAssumedInformation, AA::Intraprocedural);
10895     if (!SimplifiedRHS.has_value())
10896       return true;
10897     if (!*SimplifiedRHS)
10898       return false;
10899     RHS = *SimplifiedRHS;
10900 
10901     LLVMContext &Ctx = LHS->getContext();
10902     // Handle the trivial case first in which we don't even need to think about
10903     // null or non-null.
10904     if (LHS == RHS &&
10905         (CmpInst::isTrueWhenEqual(Pred) || CmpInst::isFalseWhenEqual(Pred))) {
10906       Constant *NewV = ConstantInt::get(Type::getInt1Ty(Ctx),
10907                                         CmpInst::isTrueWhenEqual(Pred));
10908       addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
10909                getAnchorScope());
10910       return true;
10911     }
10912 
10913     // From now on we only handle equalities (==, !=).
10914     if (!CmpInst::isEquality(Pred))
10915       return false;
10916 
10917     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
10918     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
10919     if (!LHSIsNull && !RHSIsNull)
10920       return false;
10921 
10922     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
10923     // non-nullptr operand and if we assume it's non-null we can conclude the
10924     // result of the comparison.
10925     assert((LHSIsNull || RHSIsNull) &&
10926            "Expected nullptr versus non-nullptr comparison at this point");
10927 
10928     // The index is the operand that we assume is not null.
10929     unsigned PtrIdx = LHSIsNull;
10930     bool IsKnownNonNull;
10931     bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>(
10932         A, this, IRPosition::value(*(PtrIdx ? RHS : LHS)), DepClassTy::REQUIRED,
10933         IsKnownNonNull);
10934     if (!IsAssumedNonNull)
10935       return false;
10936 
10937     // The new value depends on the predicate, true for != and false for ==.
10938     Constant *NewV =
10939         ConstantInt::get(Type::getInt1Ty(Ctx), Pred == CmpInst::ICMP_NE);
10940     addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S, getAnchorScope());
10941     return true;
10942   }
10943 
10944   bool handleSelectInst(Attributor &A, SelectInst &SI, ItemInfo II,
10945                         SmallVectorImpl<ItemInfo> &Worklist) {
10946     const Instruction *CtxI = II.I.getCtxI();
10947     bool UsedAssumedInformation = false;
10948 
10949     std::optional<Constant *> C =
10950         A.getAssumedConstant(*SI.getCondition(), *this, UsedAssumedInformation);
10951     bool NoValueYet = !C.has_value();
10952     if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
10953       return true;
10954     if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
10955       if (CI->isZero())
10956         Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
10957       else
10958         Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
10959     } else if (&SI == &getAssociatedValue()) {
10960       // We could not simplify the condition, assume both values.
10961       Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
10962       Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
10963     } else {
10964       std::optional<Value *> SimpleV = A.getAssumedSimplified(
10965           IRPosition::inst(SI), *this, UsedAssumedInformation, II.S);
10966       if (!SimpleV.has_value())
10967         return true;
10968       if (*SimpleV) {
10969         addValue(A, getState(), **SimpleV, CtxI, II.S, getAnchorScope());
10970         return true;
10971       }
10972       return false;
10973     }
10974     return true;
10975   }
10976 
10977   bool handleLoadInst(Attributor &A, LoadInst &LI, ItemInfo II,
10978                       SmallVectorImpl<ItemInfo> &Worklist) {
10979     SmallSetVector<Value *, 4> PotentialCopies;
10980     SmallSetVector<Instruction *, 4> PotentialValueOrigins;
10981     bool UsedAssumedInformation = false;
10982     if (!AA::getPotentiallyLoadedValues(A, LI, PotentialCopies,
10983                                         PotentialValueOrigins, *this,
10984                                         UsedAssumedInformation,
10985                                         /* OnlyExact */ true)) {
10986       LLVM_DEBUG(dbgs() << "[AAPotentialValues] Failed to get potentially "
10987                            "loaded values for load instruction "
10988                         << LI << "\n");
10989       return false;
10990     }
10991 
10992     // Do not simplify loads that are only used in llvm.assume if we cannot also
10993     // remove all stores that may feed into the load. The reason is that the
10994     // assume is probably worth something as long as the stores are around.
10995     InformationCache &InfoCache = A.getInfoCache();
10996     if (InfoCache.isOnlyUsedByAssume(LI)) {
10997       if (!llvm::all_of(PotentialValueOrigins, [&](Instruction *I) {
10998             if (!I || isa<AssumeInst>(I))
10999               return true;
11000             if (auto *SI = dyn_cast<StoreInst>(I))
11001               return A.isAssumedDead(SI->getOperandUse(0), this,
11002                                      /* LivenessAA */ nullptr,
11003                                      UsedAssumedInformation,
11004                                      /* CheckBBLivenessOnly */ false);
11005             return A.isAssumedDead(*I, this, /* LivenessAA */ nullptr,
11006                                    UsedAssumedInformation,
11007                                    /* CheckBBLivenessOnly */ false);
11008           })) {
11009         LLVM_DEBUG(dbgs() << "[AAPotentialValues] Load is onl used by assumes "
11010                              "and we cannot delete all the stores: "
11011                           << LI << "\n");
11012         return false;
11013       }
11014     }
11015 
11016     // Values have to be dynamically unique or we loose the fact that a
11017     // single llvm::Value might represent two runtime values (e.g.,
11018     // stack locations in different recursive calls).
11019     const Instruction *CtxI = II.I.getCtxI();
11020     bool ScopeIsLocal = (II.S & AA::Intraprocedural);
11021     bool AllLocal = ScopeIsLocal;
11022     bool DynamicallyUnique = llvm::all_of(PotentialCopies, [&](Value *PC) {
11023       AllLocal &= AA::isValidInScope(*PC, getAnchorScope());
11024       return AA::isDynamicallyUnique(A, *this, *PC);
11025     });
11026     if (!DynamicallyUnique) {
11027       LLVM_DEBUG(dbgs() << "[AAPotentialValues] Not all potentially loaded "
11028                            "values are dynamically unique: "
11029                         << LI << "\n");
11030       return false;
11031     }
11032 
11033     for (auto *PotentialCopy : PotentialCopies) {
11034       if (AllLocal) {
11035         Worklist.push_back({{*PotentialCopy, CtxI}, II.S});
11036       } else {
11037         Worklist.push_back({{*PotentialCopy, CtxI}, AA::Interprocedural});
11038       }
11039     }
11040     if (!AllLocal && ScopeIsLocal)
11041       addValue(A, getState(), LI, CtxI, AA::Intraprocedural, getAnchorScope());
11042     return true;
11043   }
11044 
11045   bool handlePHINode(
11046       Attributor &A, PHINode &PHI, ItemInfo II,
11047       SmallVectorImpl<ItemInfo> &Worklist,
11048       SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
11049     auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
11050       LivenessInfo &LI = LivenessAAs[&F];
11051       if (!LI.LivenessAA)
11052         LI.LivenessAA = A.getAAFor<AAIsDead>(*this, IRPosition::function(F),
11053                                              DepClassTy::NONE);
11054       return LI;
11055     };
11056 
11057     if (&PHI == &getAssociatedValue()) {
11058       LivenessInfo &LI = GetLivenessInfo(*PHI.getFunction());
11059       const auto *CI =
11060           A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(
11061               *PHI.getFunction());
11062 
11063       Cycle *C = nullptr;
11064       bool CyclePHI = mayBeInCycle(CI, &PHI, /* HeaderOnly */ true, &C);
11065       for (unsigned u = 0, e = PHI.getNumIncomingValues(); u < e; u++) {
11066         BasicBlock *IncomingBB = PHI.getIncomingBlock(u);
11067         if (LI.LivenessAA &&
11068             LI.LivenessAA->isEdgeDead(IncomingBB, PHI.getParent())) {
11069           LI.AnyDead = true;
11070           continue;
11071         }
11072         Value *V = PHI.getIncomingValue(u);
11073         if (V == &PHI)
11074           continue;
11075 
11076         // If the incoming value is not the PHI but an instruction in the same
11077         // cycle we might have multiple versions of it flying around.
11078         if (CyclePHI && isa<Instruction>(V) &&
11079             (!C || C->contains(cast<Instruction>(V)->getParent())))
11080           return false;
11081 
11082         Worklist.push_back({{*V, IncomingBB->getTerminator()}, II.S});
11083       }
11084       return true;
11085     }
11086 
11087     bool UsedAssumedInformation = false;
11088     std::optional<Value *> SimpleV = A.getAssumedSimplified(
11089         IRPosition::inst(PHI), *this, UsedAssumedInformation, II.S);
11090     if (!SimpleV.has_value())
11091       return true;
11092     if (!(*SimpleV))
11093       return false;
11094     addValue(A, getState(), **SimpleV, &PHI, II.S, getAnchorScope());
11095     return true;
11096   }
11097 
11098   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
11099   /// simplify any operand of the instruction \p I. Return true if successful,
11100   /// in that case Worklist will be updated.
11101   bool handleGenericInst(Attributor &A, Instruction &I, ItemInfo II,
11102                          SmallVectorImpl<ItemInfo> &Worklist) {
11103     bool SomeSimplified = false;
11104     bool UsedAssumedInformation = false;
11105 
11106     SmallVector<Value *, 8> NewOps(I.getNumOperands());
11107     int Idx = 0;
11108     for (Value *Op : I.operands()) {
11109       const auto &SimplifiedOp = A.getAssumedSimplified(
11110           IRPosition::value(*Op, getCallBaseContext()), *this,
11111           UsedAssumedInformation, AA::Intraprocedural);
11112       // If we are not sure about any operand we are not sure about the entire
11113       // instruction, we'll wait.
11114       if (!SimplifiedOp.has_value())
11115         return true;
11116 
11117       if (*SimplifiedOp)
11118         NewOps[Idx] = *SimplifiedOp;
11119       else
11120         NewOps[Idx] = Op;
11121 
11122       SomeSimplified |= (NewOps[Idx] != Op);
11123       ++Idx;
11124     }
11125 
11126     // We won't bother with the InstSimplify interface if we didn't simplify any
11127     // operand ourselves.
11128     if (!SomeSimplified)
11129       return false;
11130 
11131     InformationCache &InfoCache = A.getInfoCache();
11132     Function *F = I.getFunction();
11133     const auto *DT =
11134         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
11135     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
11136     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
11137 
11138     const DataLayout &DL = I.getModule()->getDataLayout();
11139     SimplifyQuery Q(DL, TLI, DT, AC, &I);
11140     Value *NewV = simplifyInstructionWithOperands(&I, NewOps, Q);
11141     if (!NewV || NewV == &I)
11142       return false;
11143 
11144     LLVM_DEBUG(dbgs() << "Generic inst " << I << " assumed simplified to "
11145                       << *NewV << "\n");
11146     Worklist.push_back({{*NewV, II.I.getCtxI()}, II.S});
11147     return true;
11148   }
11149 
11150   bool simplifyInstruction(
11151       Attributor &A, Instruction &I, ItemInfo II,
11152       SmallVectorImpl<ItemInfo> &Worklist,
11153       SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
11154     if (auto *CI = dyn_cast<CmpInst>(&I))
11155       if (handleCmp(A, *CI, CI->getOperand(0), CI->getOperand(1),
11156                     CI->getPredicate(), II, Worklist))
11157         return true;
11158 
11159     switch (I.getOpcode()) {
11160     case Instruction::Select:
11161       return handleSelectInst(A, cast<SelectInst>(I), II, Worklist);
11162     case Instruction::PHI:
11163       return handlePHINode(A, cast<PHINode>(I), II, Worklist, LivenessAAs);
11164     case Instruction::Load:
11165       return handleLoadInst(A, cast<LoadInst>(I), II, Worklist);
11166     default:
11167       return handleGenericInst(A, I, II, Worklist);
11168     };
11169     return false;
11170   }
11171 
11172   void genericValueTraversal(Attributor &A, Value *InitialV) {
11173     SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
11174 
11175     SmallSet<ItemInfo, 16> Visited;
11176     SmallVector<ItemInfo, 16> Worklist;
11177     Worklist.push_back({{*InitialV, getCtxI()}, AA::AnyScope});
11178 
11179     int Iteration = 0;
11180     do {
11181       ItemInfo II = Worklist.pop_back_val();
11182       Value *V = II.I.getValue();
11183       assert(V);
11184       const Instruction *CtxI = II.I.getCtxI();
11185       AA::ValueScope S = II.S;
11186 
11187       // Check if we should process the current value. To prevent endless
11188       // recursion keep a record of the values we followed!
11189       if (!Visited.insert(II).second)
11190         continue;
11191 
11192       // Make sure we limit the compile time for complex expressions.
11193       if (Iteration++ >= MaxPotentialValuesIterations) {
11194         LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
11195                           << Iteration << "!\n");
11196         addValue(A, getState(), *V, CtxI, S, getAnchorScope());
11197         continue;
11198       }
11199 
11200       // Explicitly look through calls with a "returned" attribute if we do
11201       // not have a pointer as stripPointerCasts only works on them.
11202       Value *NewV = nullptr;
11203       if (V->getType()->isPointerTy()) {
11204         NewV = AA::getWithType(*V->stripPointerCasts(), *V->getType());
11205       } else {
11206         if (auto *CB = dyn_cast<CallBase>(V))
11207           if (auto *Callee =
11208                   dyn_cast_if_present<Function>(CB->getCalledOperand())) {
11209             for (Argument &Arg : Callee->args())
11210               if (Arg.hasReturnedAttr()) {
11211                 NewV = CB->getArgOperand(Arg.getArgNo());
11212                 break;
11213               }
11214           }
11215       }
11216       if (NewV && NewV != V) {
11217         Worklist.push_back({{*NewV, CtxI}, S});
11218         continue;
11219       }
11220 
11221       if (auto *CE = dyn_cast<ConstantExpr>(V)) {
11222         if (CE->getOpcode() == Instruction::ICmp)
11223           if (handleCmp(A, *CE, CE->getOperand(0), CE->getOperand(1),
11224                         CmpInst::Predicate(CE->getPredicate()), II, Worklist))
11225             continue;
11226       }
11227 
11228       if (auto *I = dyn_cast<Instruction>(V)) {
11229         if (simplifyInstruction(A, *I, II, Worklist, LivenessAAs))
11230           continue;
11231       }
11232 
11233       if (V != InitialV || isa<Argument>(V))
11234         if (recurseForValue(A, IRPosition::value(*V), II.S))
11235           continue;
11236 
11237       // If we haven't stripped anything we give up.
11238       if (V == InitialV && CtxI == getCtxI()) {
11239         indicatePessimisticFixpoint();
11240         return;
11241       }
11242 
11243       addValue(A, getState(), *V, CtxI, S, getAnchorScope());
11244     } while (!Worklist.empty());
11245 
11246     // If we actually used liveness information so we have to record a
11247     // dependence.
11248     for (auto &It : LivenessAAs)
11249       if (It.second.AnyDead)
11250         A.recordDependence(*It.second.LivenessAA, *this, DepClassTy::OPTIONAL);
11251   }
11252 
11253   /// See AbstractAttribute::trackStatistics()
11254   void trackStatistics() const override {
11255     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
11256   }
11257 };
11258 
11259 struct AAPotentialValuesArgument final : AAPotentialValuesImpl {
11260   using Base = AAPotentialValuesImpl;
11261   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
11262       : Base(IRP, A) {}
11263 
11264   /// See AbstractAttribute::initialize(..).
11265   void initialize(Attributor &A) override {
11266     auto &Arg = cast<Argument>(getAssociatedValue());
11267     if (Arg.hasPointeeInMemoryValueAttr())
11268       indicatePessimisticFixpoint();
11269   }
11270 
11271   /// See AbstractAttribute::updateImpl(...).
11272   ChangeStatus updateImpl(Attributor &A) override {
11273     auto AssumedBefore = getAssumed();
11274 
11275     unsigned CSArgNo = getCallSiteArgNo();
11276 
11277     bool UsedAssumedInformation = false;
11278     SmallVector<AA::ValueAndContext> Values;
11279     auto CallSitePred = [&](AbstractCallSite ACS) {
11280       const auto CSArgIRP = IRPosition::callsite_argument(ACS, CSArgNo);
11281       if (CSArgIRP.getPositionKind() == IRP_INVALID)
11282         return false;
11283 
11284       if (!A.getAssumedSimplifiedValues(CSArgIRP, this, Values,
11285                                         AA::Interprocedural,
11286                                         UsedAssumedInformation))
11287         return false;
11288 
11289       return isValidState();
11290     };
11291 
11292     if (!A.checkForAllCallSites(CallSitePred, *this,
11293                                 /* RequireAllCallSites */ true,
11294                                 UsedAssumedInformation))
11295       return indicatePessimisticFixpoint();
11296 
11297     Function *Fn = getAssociatedFunction();
11298     bool AnyNonLocal = false;
11299     for (auto &It : Values) {
11300       if (isa<Constant>(It.getValue())) {
11301         addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
11302                  getAnchorScope());
11303         continue;
11304       }
11305       if (!AA::isDynamicallyUnique(A, *this, *It.getValue()))
11306         return indicatePessimisticFixpoint();
11307 
11308       if (auto *Arg = dyn_cast<Argument>(It.getValue()))
11309         if (Arg->getParent() == Fn) {
11310           addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
11311                    getAnchorScope());
11312           continue;
11313         }
11314       addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::Interprocedural,
11315                getAnchorScope());
11316       AnyNonLocal = true;
11317     }
11318     assert(!undefIsContained() && "Undef should be an explicit value!");
11319     if (AnyNonLocal)
11320       giveUpOnIntraprocedural(A);
11321 
11322     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
11323                                            : ChangeStatus::CHANGED;
11324   }
11325 
11326   /// See AbstractAttribute::trackStatistics()
11327   void trackStatistics() const override {
11328     STATS_DECLTRACK_ARG_ATTR(potential_values)
11329   }
11330 };
11331 
11332 struct AAPotentialValuesReturned : public AAPotentialValuesFloating {
11333   using Base = AAPotentialValuesFloating;
11334   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
11335       : Base(IRP, A) {}
11336 
11337   /// See AbstractAttribute::initialize(..).
11338   void initialize(Attributor &A) override {
11339     Function *F = getAssociatedFunction();
11340     if (!F || F->isDeclaration() || F->getReturnType()->isVoidTy()) {
11341       indicatePessimisticFixpoint();
11342       return;
11343     }
11344 
11345     for (Argument &Arg : F->args())
11346       if (Arg.hasReturnedAttr()) {
11347         addValue(A, getState(), Arg, nullptr, AA::AnyScope, F);
11348         ReturnedArg = &Arg;
11349         break;
11350       }
11351     if (!A.isFunctionIPOAmendable(*F) ||
11352         A.hasSimplificationCallback(getIRPosition())) {
11353       if (!ReturnedArg)
11354         indicatePessimisticFixpoint();
11355       else
11356         indicateOptimisticFixpoint();
11357     }
11358   }
11359 
11360   /// See AbstractAttribute::updateImpl(...).
11361   ChangeStatus updateImpl(Attributor &A) override {
11362     auto AssumedBefore = getAssumed();
11363     bool UsedAssumedInformation = false;
11364 
11365     SmallVector<AA::ValueAndContext> Values;
11366     Function *AnchorScope = getAnchorScope();
11367     auto HandleReturnedValue = [&](Value &V, Instruction *CtxI,
11368                                    bool AddValues) {
11369       for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
11370         Values.clear();
11371         if (!A.getAssumedSimplifiedValues(IRPosition::value(V), this, Values, S,
11372                                           UsedAssumedInformation,
11373                                           /* RecurseForSelectAndPHI */ true))
11374           return false;
11375         if (!AddValues)
11376           continue;
11377         for (const AA::ValueAndContext &VAC : Values)
11378           addValue(A, getState(), *VAC.getValue(),
11379                    VAC.getCtxI() ? VAC.getCtxI() : CtxI, S, AnchorScope);
11380       }
11381       return true;
11382     };
11383 
11384     if (ReturnedArg) {
11385       HandleReturnedValue(*ReturnedArg, nullptr, true);
11386     } else {
11387       auto RetInstPred = [&](Instruction &RetI) {
11388         bool AddValues = true;
11389         if (isa<PHINode>(RetI.getOperand(0)) ||
11390             isa<SelectInst>(RetI.getOperand(0))) {
11391           addValue(A, getState(), *RetI.getOperand(0), &RetI, AA::AnyScope,
11392                    AnchorScope);
11393           AddValues = false;
11394         }
11395         return HandleReturnedValue(*RetI.getOperand(0), &RetI, AddValues);
11396       };
11397 
11398       if (!A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
11399                                      UsedAssumedInformation,
11400                                      /* CheckBBLivenessOnly */ true))
11401         return indicatePessimisticFixpoint();
11402     }
11403 
11404     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
11405                                            : ChangeStatus::CHANGED;
11406   }
11407 
11408   void addValue(Attributor &A, StateType &State, Value &V,
11409                 const Instruction *CtxI, AA::ValueScope S,
11410                 Function *AnchorScope) const override {
11411     Function *F = getAssociatedFunction();
11412     if (auto *CB = dyn_cast<CallBase>(&V))
11413       if (CB->getCalledOperand() == F)
11414         return;
11415     Base::addValue(A, State, V, CtxI, S, AnchorScope);
11416   }
11417 
11418   ChangeStatus manifest(Attributor &A) override {
11419     if (ReturnedArg)
11420       return ChangeStatus::UNCHANGED;
11421     SmallVector<AA::ValueAndContext> Values;
11422     if (!getAssumedSimplifiedValues(A, Values, AA::ValueScope::Intraprocedural,
11423                                     /* RecurseForSelectAndPHI */ true))
11424       return ChangeStatus::UNCHANGED;
11425     Value *NewVal = getSingleValue(A, *this, getIRPosition(), Values);
11426     if (!NewVal)
11427       return ChangeStatus::UNCHANGED;
11428 
11429     ChangeStatus Changed = ChangeStatus::UNCHANGED;
11430     if (auto *Arg = dyn_cast<Argument>(NewVal)) {
11431       STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
11432                       "Number of function with unique return");
11433       Changed |= A.manifestAttrs(
11434           IRPosition::argument(*Arg),
11435           {Attribute::get(Arg->getContext(), Attribute::Returned)});
11436       STATS_DECLTRACK_ARG_ATTR(returned);
11437     }
11438 
11439     auto RetInstPred = [&](Instruction &RetI) {
11440       Value *RetOp = RetI.getOperand(0);
11441       if (isa<UndefValue>(RetOp) || RetOp == NewVal)
11442         return true;
11443       if (AA::isValidAtPosition({*NewVal, RetI}, A.getInfoCache()))
11444         if (A.changeUseAfterManifest(RetI.getOperandUse(0), *NewVal))
11445           Changed = ChangeStatus::CHANGED;
11446       return true;
11447     };
11448     bool UsedAssumedInformation = false;
11449     (void)A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
11450                                     UsedAssumedInformation,
11451                                     /* CheckBBLivenessOnly */ true);
11452     return Changed;
11453   }
11454 
11455   ChangeStatus indicatePessimisticFixpoint() override {
11456     return AAPotentialValues::indicatePessimisticFixpoint();
11457   }
11458 
11459   /// See AbstractAttribute::trackStatistics()
11460   void trackStatistics() const override{
11461       STATS_DECLTRACK_FNRET_ATTR(potential_values)}
11462 
11463   /// The argumented with an existing `returned` attribute.
11464   Argument *ReturnedArg = nullptr;
11465 };
11466 
11467 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
11468   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
11469       : AAPotentialValuesImpl(IRP, A) {}
11470 
11471   /// See AbstractAttribute::updateImpl(...).
11472   ChangeStatus updateImpl(Attributor &A) override {
11473     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
11474                      "not be called");
11475   }
11476 
11477   /// See AbstractAttribute::trackStatistics()
11478   void trackStatistics() const override {
11479     STATS_DECLTRACK_FN_ATTR(potential_values)
11480   }
11481 };
11482 
11483 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
11484   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
11485       : AAPotentialValuesFunction(IRP, A) {}
11486 
11487   /// See AbstractAttribute::trackStatistics()
11488   void trackStatistics() const override {
11489     STATS_DECLTRACK_CS_ATTR(potential_values)
11490   }
11491 };
11492 
11493 struct AAPotentialValuesCallSiteReturned : AAPotentialValuesImpl {
11494   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
11495       : AAPotentialValuesImpl(IRP, A) {}
11496 
11497   /// See AbstractAttribute::updateImpl(...).
11498   ChangeStatus updateImpl(Attributor &A) override {
11499     auto AssumedBefore = getAssumed();
11500 
11501     Function *Callee = getAssociatedFunction();
11502     if (!Callee)
11503       return indicatePessimisticFixpoint();
11504 
11505     bool UsedAssumedInformation = false;
11506     auto *CB = cast<CallBase>(getCtxI());
11507     if (CB->isMustTailCall() &&
11508         !A.isAssumedDead(IRPosition::inst(*CB), this, nullptr,
11509                          UsedAssumedInformation))
11510       return indicatePessimisticFixpoint();
11511 
11512     SmallVector<AA::ValueAndContext> Values;
11513     if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
11514                                       Values, AA::Intraprocedural,
11515                                       UsedAssumedInformation))
11516       return indicatePessimisticFixpoint();
11517 
11518     Function *Caller = CB->getCaller();
11519 
11520     bool AnyNonLocal = false;
11521     for (auto &It : Values) {
11522       Value *V = It.getValue();
11523       std::optional<Value *> CallerV = A.translateArgumentToCallSiteContent(
11524           V, *CB, *this, UsedAssumedInformation);
11525       if (!CallerV.has_value()) {
11526         // Nothing to do as long as no value was determined.
11527         continue;
11528       }
11529       V = *CallerV ? *CallerV : V;
11530       if (AA::isDynamicallyUnique(A, *this, *V) &&
11531           AA::isValidInScope(*V, Caller)) {
11532         if (*CallerV) {
11533           SmallVector<AA::ValueAndContext> ArgValues;
11534           IRPosition IRP = IRPosition::value(*V);
11535           if (auto *Arg = dyn_cast<Argument>(V))
11536             if (Arg->getParent() == CB->getCalledOperand())
11537               IRP = IRPosition::callsite_argument(*CB, Arg->getArgNo());
11538           if (recurseForValue(A, IRP, AA::AnyScope))
11539             continue;
11540         }
11541         addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
11542       } else {
11543         AnyNonLocal = true;
11544         break;
11545       }
11546     }
11547     if (AnyNonLocal) {
11548       Values.clear();
11549       if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
11550                                         Values, AA::Interprocedural,
11551                                         UsedAssumedInformation))
11552         return indicatePessimisticFixpoint();
11553       AnyNonLocal = false;
11554       getState() = PotentialLLVMValuesState::getBestState();
11555       for (auto &It : Values) {
11556         Value *V = It.getValue();
11557         if (!AA::isDynamicallyUnique(A, *this, *V))
11558           return indicatePessimisticFixpoint();
11559         if (AA::isValidInScope(*V, Caller)) {
11560           addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
11561         } else {
11562           AnyNonLocal = true;
11563           addValue(A, getState(), *V, CB, AA::Interprocedural,
11564                    getAnchorScope());
11565         }
11566       }
11567       if (AnyNonLocal)
11568         giveUpOnIntraprocedural(A);
11569     }
11570     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
11571                                            : ChangeStatus::CHANGED;
11572   }
11573 
11574   ChangeStatus indicatePessimisticFixpoint() override {
11575     return AAPotentialValues::indicatePessimisticFixpoint();
11576   }
11577 
11578   /// See AbstractAttribute::trackStatistics()
11579   void trackStatistics() const override {
11580     STATS_DECLTRACK_CSRET_ATTR(potential_values)
11581   }
11582 };
11583 
11584 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
11585   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
11586       : AAPotentialValuesFloating(IRP, A) {}
11587 
11588   /// See AbstractAttribute::trackStatistics()
11589   void trackStatistics() const override {
11590     STATS_DECLTRACK_CSARG_ATTR(potential_values)
11591   }
11592 };
11593 } // namespace
11594 
11595 /// ---------------------- Assumption Propagation ------------------------------
11596 namespace {
11597 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
11598   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
11599                        const DenseSet<StringRef> &Known)
11600       : AAAssumptionInfo(IRP, A, Known) {}
11601 
11602   /// See AbstractAttribute::manifest(...).
11603   ChangeStatus manifest(Attributor &A) override {
11604     // Don't manifest a universal set if it somehow made it here.
11605     if (getKnown().isUniversal())
11606       return ChangeStatus::UNCHANGED;
11607 
11608     const IRPosition &IRP = getIRPosition();
11609     return A.manifestAttrs(
11610         IRP,
11611         Attribute::get(IRP.getAnchorValue().getContext(), AssumptionAttrKey,
11612                        llvm::join(getAssumed().getSet(), ",")),
11613         /* ForceReplace */ true);
11614   }
11615 
11616   bool hasAssumption(const StringRef Assumption) const override {
11617     return isValidState() && setContains(Assumption);
11618   }
11619 
11620   /// See AbstractAttribute::getAsStr()
11621   const std::string getAsStr(Attributor *A) const override {
11622     const SetContents &Known = getKnown();
11623     const SetContents &Assumed = getAssumed();
11624 
11625     const std::string KnownStr =
11626         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
11627     const std::string AssumedStr =
11628         (Assumed.isUniversal())
11629             ? "Universal"
11630             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
11631 
11632     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
11633   }
11634 };
11635 
11636 /// Propagates assumption information from parent functions to all of their
11637 /// successors. An assumption can be propagated if the containing function
11638 /// dominates the called function.
11639 ///
11640 /// We start with a "known" set of assumptions already valid for the associated
11641 /// function and an "assumed" set that initially contains all possible
11642 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
11643 /// contents as concrete values are known. The concrete values are seeded by the
11644 /// first nodes that are either entries into the call graph, or contains no
11645 /// assumptions. Each node is updated as the intersection of the assumed state
11646 /// with all of its predecessors.
11647 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
11648   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
11649       : AAAssumptionInfoImpl(IRP, A,
11650                              getAssumptions(*IRP.getAssociatedFunction())) {}
11651 
11652   /// See AbstractAttribute::updateImpl(...).
11653   ChangeStatus updateImpl(Attributor &A) override {
11654     bool Changed = false;
11655 
11656     auto CallSitePred = [&](AbstractCallSite ACS) {
11657       const auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>(
11658           *this, IRPosition::callsite_function(*ACS.getInstruction()),
11659           DepClassTy::REQUIRED);
11660       if (!AssumptionAA)
11661         return false;
11662       // Get the set of assumptions shared by all of this function's callers.
11663       Changed |= getIntersection(AssumptionAA->getAssumed());
11664       return !getAssumed().empty() || !getKnown().empty();
11665     };
11666 
11667     bool UsedAssumedInformation = false;
11668     // Get the intersection of all assumptions held by this node's predecessors.
11669     // If we don't know all the call sites then this is either an entry into the
11670     // call graph or an empty node. This node is known to only contain its own
11671     // assumptions and can be propagated to its successors.
11672     if (!A.checkForAllCallSites(CallSitePred, *this, true,
11673                                 UsedAssumedInformation))
11674       return indicatePessimisticFixpoint();
11675 
11676     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
11677   }
11678 
11679   void trackStatistics() const override {}
11680 };
11681 
11682 /// Assumption Info defined for call sites.
11683 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
11684 
11685   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
11686       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
11687 
11688   /// See AbstractAttribute::initialize(...).
11689   void initialize(Attributor &A) override {
11690     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
11691     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
11692   }
11693 
11694   /// See AbstractAttribute::updateImpl(...).
11695   ChangeStatus updateImpl(Attributor &A) override {
11696     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
11697     auto *AssumptionAA =
11698         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
11699     if (!AssumptionAA)
11700       return indicatePessimisticFixpoint();
11701     bool Changed = getIntersection(AssumptionAA->getAssumed());
11702     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
11703   }
11704 
11705   /// See AbstractAttribute::trackStatistics()
11706   void trackStatistics() const override {}
11707 
11708 private:
11709   /// Helper to initialized the known set as all the assumptions this call and
11710   /// the callee contain.
11711   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
11712     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
11713     auto Assumptions = getAssumptions(CB);
11714     if (const Function *F = CB.getCaller())
11715       set_union(Assumptions, getAssumptions(*F));
11716     if (Function *F = IRP.getAssociatedFunction())
11717       set_union(Assumptions, getAssumptions(*F));
11718     return Assumptions;
11719   }
11720 };
11721 } // namespace
11722 
11723 AACallGraphNode *AACallEdgeIterator::operator*() const {
11724   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
11725       A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
11726 }
11727 
11728 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
11729 
11730 /// ------------------------ UnderlyingObjects ---------------------------------
11731 
11732 namespace {
11733 struct AAUnderlyingObjectsImpl
11734     : StateWrapper<BooleanState, AAUnderlyingObjects> {
11735   using BaseTy = StateWrapper<BooleanState, AAUnderlyingObjects>;
11736   AAUnderlyingObjectsImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
11737 
11738   /// See AbstractAttribute::getAsStr().
11739   const std::string getAsStr(Attributor *A) const override {
11740     return std::string("UnderlyingObjects ") +
11741            (isValidState()
11742                 ? (std::string("inter #") +
11743                    std::to_string(InterAssumedUnderlyingObjects.size()) +
11744                    " objs" + std::string(", intra #") +
11745                    std::to_string(IntraAssumedUnderlyingObjects.size()) +
11746                    " objs")
11747                 : "<invalid>");
11748   }
11749 
11750   /// See AbstractAttribute::trackStatistics()
11751   void trackStatistics() const override {}
11752 
11753   /// See AbstractAttribute::updateImpl(...).
11754   ChangeStatus updateImpl(Attributor &A) override {
11755     auto &Ptr = getAssociatedValue();
11756 
11757     auto DoUpdate = [&](SmallSetVector<Value *, 8> &UnderlyingObjects,
11758                         AA::ValueScope Scope) {
11759       bool UsedAssumedInformation = false;
11760       SmallPtrSet<Value *, 8> SeenObjects;
11761       SmallVector<AA::ValueAndContext> Values;
11762 
11763       if (!A.getAssumedSimplifiedValues(IRPosition::value(Ptr), *this, Values,
11764                                         Scope, UsedAssumedInformation))
11765         return UnderlyingObjects.insert(&Ptr);
11766 
11767       bool Changed = false;
11768 
11769       for (unsigned I = 0; I < Values.size(); ++I) {
11770         auto &VAC = Values[I];
11771         auto *Obj = VAC.getValue();
11772         Value *UO = getUnderlyingObject(Obj);
11773         if (UO && UO != VAC.getValue() && SeenObjects.insert(UO).second) {
11774           const auto *OtherAA = A.getAAFor<AAUnderlyingObjects>(
11775               *this, IRPosition::value(*UO), DepClassTy::OPTIONAL);
11776           auto Pred = [&Values](Value &V) {
11777             Values.emplace_back(V, nullptr);
11778             return true;
11779           };
11780 
11781           if (!OtherAA || !OtherAA->forallUnderlyingObjects(Pred, Scope))
11782             llvm_unreachable(
11783                 "The forall call should not return false at this position");
11784 
11785           continue;
11786         }
11787 
11788         if (isa<SelectInst>(Obj)) {
11789           Changed |= handleIndirect(A, *Obj, UnderlyingObjects, Scope);
11790           continue;
11791         }
11792         if (auto *PHI = dyn_cast<PHINode>(Obj)) {
11793           // Explicitly look through PHIs as we do not care about dynamically
11794           // uniqueness.
11795           for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
11796             Changed |= handleIndirect(A, *PHI->getIncomingValue(u),
11797                                       UnderlyingObjects, Scope);
11798           }
11799           continue;
11800         }
11801 
11802         Changed |= UnderlyingObjects.insert(Obj);
11803       }
11804 
11805       return Changed;
11806     };
11807 
11808     bool Changed = false;
11809     Changed |= DoUpdate(IntraAssumedUnderlyingObjects, AA::Intraprocedural);
11810     Changed |= DoUpdate(InterAssumedUnderlyingObjects, AA::Interprocedural);
11811 
11812     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
11813   }
11814 
11815   bool forallUnderlyingObjects(
11816       function_ref<bool(Value &)> Pred,
11817       AA::ValueScope Scope = AA::Interprocedural) const override {
11818     if (!isValidState())
11819       return Pred(getAssociatedValue());
11820 
11821     auto &AssumedUnderlyingObjects = Scope == AA::Intraprocedural
11822                                          ? IntraAssumedUnderlyingObjects
11823                                          : InterAssumedUnderlyingObjects;
11824     for (Value *Obj : AssumedUnderlyingObjects)
11825       if (!Pred(*Obj))
11826         return false;
11827 
11828     return true;
11829   }
11830 
11831 private:
11832   /// Handle the case where the value is not the actual underlying value, such
11833   /// as a phi node or a select instruction.
11834   bool handleIndirect(Attributor &A, Value &V,
11835                       SmallSetVector<Value *, 8> &UnderlyingObjects,
11836                       AA::ValueScope Scope) {
11837     bool Changed = false;
11838     const auto *AA = A.getAAFor<AAUnderlyingObjects>(
11839         *this, IRPosition::value(V), DepClassTy::OPTIONAL);
11840     auto Pred = [&](Value &V) {
11841       Changed |= UnderlyingObjects.insert(&V);
11842       return true;
11843     };
11844     if (!AA || !AA->forallUnderlyingObjects(Pred, Scope))
11845       llvm_unreachable(
11846           "The forall call should not return false at this position");
11847     return Changed;
11848   }
11849 
11850   /// All the underlying objects collected so far via intra procedural scope.
11851   SmallSetVector<Value *, 8> IntraAssumedUnderlyingObjects;
11852   /// All the underlying objects collected so far via inter procedural scope.
11853   SmallSetVector<Value *, 8> InterAssumedUnderlyingObjects;
11854 };
11855 
11856 struct AAUnderlyingObjectsFloating final : AAUnderlyingObjectsImpl {
11857   AAUnderlyingObjectsFloating(const IRPosition &IRP, Attributor &A)
11858       : AAUnderlyingObjectsImpl(IRP, A) {}
11859 };
11860 
11861 struct AAUnderlyingObjectsArgument final : AAUnderlyingObjectsImpl {
11862   AAUnderlyingObjectsArgument(const IRPosition &IRP, Attributor &A)
11863       : AAUnderlyingObjectsImpl(IRP, A) {}
11864 };
11865 
11866 struct AAUnderlyingObjectsCallSite final : AAUnderlyingObjectsImpl {
11867   AAUnderlyingObjectsCallSite(const IRPosition &IRP, Attributor &A)
11868       : AAUnderlyingObjectsImpl(IRP, A) {}
11869 };
11870 
11871 struct AAUnderlyingObjectsCallSiteArgument final : AAUnderlyingObjectsImpl {
11872   AAUnderlyingObjectsCallSiteArgument(const IRPosition &IRP, Attributor &A)
11873       : AAUnderlyingObjectsImpl(IRP, A) {}
11874 };
11875 
11876 struct AAUnderlyingObjectsReturned final : AAUnderlyingObjectsImpl {
11877   AAUnderlyingObjectsReturned(const IRPosition &IRP, Attributor &A)
11878       : AAUnderlyingObjectsImpl(IRP, A) {}
11879 };
11880 
11881 struct AAUnderlyingObjectsCallSiteReturned final : AAUnderlyingObjectsImpl {
11882   AAUnderlyingObjectsCallSiteReturned(const IRPosition &IRP, Attributor &A)
11883       : AAUnderlyingObjectsImpl(IRP, A) {}
11884 };
11885 
11886 struct AAUnderlyingObjectsFunction final : AAUnderlyingObjectsImpl {
11887   AAUnderlyingObjectsFunction(const IRPosition &IRP, Attributor &A)
11888       : AAUnderlyingObjectsImpl(IRP, A) {}
11889 };
11890 } // namespace
11891 
11892 /// ------------------------ Address Space  ------------------------------------
11893 namespace {
11894 struct AAAddressSpaceImpl : public AAAddressSpace {
11895   AAAddressSpaceImpl(const IRPosition &IRP, Attributor &A)
11896       : AAAddressSpace(IRP, A) {}
11897 
11898   int32_t getAddressSpace() const override {
11899     assert(isValidState() && "the AA is invalid");
11900     return AssumedAddressSpace;
11901   }
11902 
11903   /// See AbstractAttribute::initialize(...).
11904   void initialize(Attributor &A) override {
11905     assert(getAssociatedType()->isPtrOrPtrVectorTy() &&
11906            "Associated value is not a pointer");
11907   }
11908 
11909   ChangeStatus updateImpl(Attributor &A) override {
11910     int32_t OldAddressSpace = AssumedAddressSpace;
11911     auto *AUO = A.getOrCreateAAFor<AAUnderlyingObjects>(getIRPosition(), this,
11912                                                         DepClassTy::REQUIRED);
11913     auto Pred = [&](Value &Obj) {
11914       if (isa<UndefValue>(&Obj))
11915         return true;
11916       return takeAddressSpace(Obj.getType()->getPointerAddressSpace());
11917     };
11918 
11919     if (!AUO->forallUnderlyingObjects(Pred))
11920       return indicatePessimisticFixpoint();
11921 
11922     return OldAddressSpace == AssumedAddressSpace ? ChangeStatus::UNCHANGED
11923                                                   : ChangeStatus::CHANGED;
11924   }
11925 
11926   /// See AbstractAttribute::manifest(...).
11927   ChangeStatus manifest(Attributor &A) override {
11928     Value *AssociatedValue = &getAssociatedValue();
11929     Value *OriginalValue = peelAddrspacecast(AssociatedValue);
11930     if (getAddressSpace() == NoAddressSpace ||
11931         static_cast<uint32_t>(getAddressSpace()) ==
11932             getAssociatedType()->getPointerAddressSpace())
11933       return ChangeStatus::UNCHANGED;
11934 
11935     Type *NewPtrTy = PointerType::get(getAssociatedType()->getContext(),
11936                                       static_cast<uint32_t>(getAddressSpace()));
11937     bool UseOriginalValue =
11938         OriginalValue->getType()->getPointerAddressSpace() ==
11939         static_cast<uint32_t>(getAddressSpace());
11940 
11941     bool Changed = false;
11942 
11943     auto MakeChange = [&](Instruction *I, Use &U) {
11944       Changed = true;
11945       if (UseOriginalValue) {
11946         A.changeUseAfterManifest(U, *OriginalValue);
11947         return;
11948       }
11949       Instruction *CastInst = new AddrSpaceCastInst(OriginalValue, NewPtrTy);
11950       CastInst->insertBefore(cast<Instruction>(I));
11951       A.changeUseAfterManifest(U, *CastInst);
11952     };
11953 
11954     auto Pred = [&](const Use &U, bool &) {
11955       if (U.get() != AssociatedValue)
11956         return true;
11957       auto *Inst = dyn_cast<Instruction>(U.getUser());
11958       if (!Inst)
11959         return true;
11960       // This is a WA to make sure we only change uses from the corresponding
11961       // CGSCC if the AA is run on CGSCC instead of the entire module.
11962       if (!A.isRunOn(Inst->getFunction()))
11963         return true;
11964       if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
11965         MakeChange(Inst, const_cast<Use &>(U));
11966       return true;
11967     };
11968 
11969     // It doesn't matter if we can't check all uses as we can simply
11970     // conservatively ignore those that can not be visited.
11971     (void)A.checkForAllUses(Pred, *this, getAssociatedValue(),
11972                             /* CheckBBLivenessOnly */ true);
11973 
11974     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
11975   }
11976 
11977   /// See AbstractAttribute::getAsStr().
11978   const std::string getAsStr(Attributor *A) const override {
11979     if (!isValidState())
11980       return "addrspace(<invalid>)";
11981     return "addrspace(" +
11982            (AssumedAddressSpace == NoAddressSpace
11983                 ? "none"
11984                 : std::to_string(AssumedAddressSpace)) +
11985            ")";
11986   }
11987 
11988 private:
11989   int32_t AssumedAddressSpace = NoAddressSpace;
11990 
11991   bool takeAddressSpace(int32_t AS) {
11992     if (AssumedAddressSpace == NoAddressSpace) {
11993       AssumedAddressSpace = AS;
11994       return true;
11995     }
11996     return AssumedAddressSpace == AS;
11997   }
11998 
11999   static Value *peelAddrspacecast(Value *V) {
12000     if (auto *I = dyn_cast<AddrSpaceCastInst>(V))
12001       return peelAddrspacecast(I->getPointerOperand());
12002     if (auto *C = dyn_cast<ConstantExpr>(V))
12003       if (C->getOpcode() == Instruction::AddrSpaceCast)
12004         return peelAddrspacecast(C->getOperand(0));
12005     return V;
12006   }
12007 };
12008 
12009 struct AAAddressSpaceFloating final : AAAddressSpaceImpl {
12010   AAAddressSpaceFloating(const IRPosition &IRP, Attributor &A)
12011       : AAAddressSpaceImpl(IRP, A) {}
12012 
12013   void trackStatistics() const override {
12014     STATS_DECLTRACK_FLOATING_ATTR(addrspace);
12015   }
12016 };
12017 
12018 struct AAAddressSpaceReturned final : AAAddressSpaceImpl {
12019   AAAddressSpaceReturned(const IRPosition &IRP, Attributor &A)
12020       : AAAddressSpaceImpl(IRP, A) {}
12021 
12022   /// See AbstractAttribute::initialize(...).
12023   void initialize(Attributor &A) override {
12024     // TODO: we don't rewrite function argument for now because it will need to
12025     // rewrite the function signature and all call sites.
12026     (void)indicatePessimisticFixpoint();
12027   }
12028 
12029   void trackStatistics() const override {
12030     STATS_DECLTRACK_FNRET_ATTR(addrspace);
12031   }
12032 };
12033 
12034 struct AAAddressSpaceCallSiteReturned final : AAAddressSpaceImpl {
12035   AAAddressSpaceCallSiteReturned(const IRPosition &IRP, Attributor &A)
12036       : AAAddressSpaceImpl(IRP, A) {}
12037 
12038   void trackStatistics() const override {
12039     STATS_DECLTRACK_CSRET_ATTR(addrspace);
12040   }
12041 };
12042 
12043 struct AAAddressSpaceArgument final : AAAddressSpaceImpl {
12044   AAAddressSpaceArgument(const IRPosition &IRP, Attributor &A)
12045       : AAAddressSpaceImpl(IRP, A) {}
12046 
12047   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(addrspace); }
12048 };
12049 
12050 struct AAAddressSpaceCallSiteArgument final : AAAddressSpaceImpl {
12051   AAAddressSpaceCallSiteArgument(const IRPosition &IRP, Attributor &A)
12052       : AAAddressSpaceImpl(IRP, A) {}
12053 
12054   /// See AbstractAttribute::initialize(...).
12055   void initialize(Attributor &A) override {
12056     // TODO: we don't rewrite call site argument for now because it will need to
12057     // rewrite the function signature of the callee.
12058     (void)indicatePessimisticFixpoint();
12059   }
12060 
12061   void trackStatistics() const override {
12062     STATS_DECLTRACK_CSARG_ATTR(addrspace);
12063   }
12064 };
12065 } // namespace
12066 
12067 const char AANoUnwind::ID = 0;
12068 const char AANoSync::ID = 0;
12069 const char AANoFree::ID = 0;
12070 const char AANonNull::ID = 0;
12071 const char AAMustProgress::ID = 0;
12072 const char AANoRecurse::ID = 0;
12073 const char AANonConvergent::ID = 0;
12074 const char AAWillReturn::ID = 0;
12075 const char AAUndefinedBehavior::ID = 0;
12076 const char AANoAlias::ID = 0;
12077 const char AAIntraFnReachability::ID = 0;
12078 const char AANoReturn::ID = 0;
12079 const char AAIsDead::ID = 0;
12080 const char AADereferenceable::ID = 0;
12081 const char AAAlign::ID = 0;
12082 const char AAInstanceInfo::ID = 0;
12083 const char AANoCapture::ID = 0;
12084 const char AAValueSimplify::ID = 0;
12085 const char AAHeapToStack::ID = 0;
12086 const char AAPrivatizablePtr::ID = 0;
12087 const char AAMemoryBehavior::ID = 0;
12088 const char AAMemoryLocation::ID = 0;
12089 const char AAValueConstantRange::ID = 0;
12090 const char AAPotentialConstantValues::ID = 0;
12091 const char AAPotentialValues::ID = 0;
12092 const char AANoUndef::ID = 0;
12093 const char AANoFPClass::ID = 0;
12094 const char AACallEdges::ID = 0;
12095 const char AAInterFnReachability::ID = 0;
12096 const char AAPointerInfo::ID = 0;
12097 const char AAAssumptionInfo::ID = 0;
12098 const char AAUnderlyingObjects::ID = 0;
12099 const char AAAddressSpace::ID = 0;
12100 
12101 // Macro magic to create the static generator function for attributes that
12102 // follow the naming scheme.
12103 
12104 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
12105   case IRPosition::PK:                                                         \
12106     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
12107 
12108 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
12109   case IRPosition::PK:                                                         \
12110     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
12111     ++NumAAs;                                                                  \
12112     break;
12113 
12114 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
12115   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
12116     CLASS *AA = nullptr;                                                       \
12117     switch (IRP.getPositionKind()) {                                           \
12118       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
12119       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
12120       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
12121       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
12122       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
12123       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
12124       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
12125       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
12126     }                                                                          \
12127     return *AA;                                                                \
12128   }
12129 
12130 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
12131   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
12132     CLASS *AA = nullptr;                                                       \
12133     switch (IRP.getPositionKind()) {                                           \
12134       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
12135       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
12136       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
12137       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
12138       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
12139       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
12140       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
12141       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
12142     }                                                                          \
12143     return *AA;                                                                \
12144   }
12145 
12146 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
12147   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
12148     CLASS *AA = nullptr;                                                       \
12149     switch (IRP.getPositionKind()) {                                           \
12150       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
12151       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
12152       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
12153       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
12154       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
12155       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
12156       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
12157       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
12158     }                                                                          \
12159     return *AA;                                                                \
12160   }
12161 
12162 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
12163   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
12164     CLASS *AA = nullptr;                                                       \
12165     switch (IRP.getPositionKind()) {                                           \
12166       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
12167       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
12168       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
12169       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
12170       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
12171       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
12172       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
12173       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
12174     }                                                                          \
12175     return *AA;                                                                \
12176   }
12177 
12178 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
12179   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
12180     CLASS *AA = nullptr;                                                       \
12181     switch (IRP.getPositionKind()) {                                           \
12182       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
12183       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
12184       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
12185       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
12186       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
12187       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
12188       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
12189       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
12190     }                                                                          \
12191     return *AA;                                                                \
12192   }
12193 
12194 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
12195 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
12196 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
12197 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
12198 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
12199 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
12200 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
12201 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
12202 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMustProgress)
12203 
12204 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
12205 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
12206 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
12207 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
12208 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
12209 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInstanceInfo)
12210 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
12211 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
12212 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialConstantValues)
12213 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
12214 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
12215 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFPClass)
12216 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
12217 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAddressSpace)
12218 
12219 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
12220 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
12221 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
12222 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUnderlyingObjects)
12223 
12224 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
12225 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
12226 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonConvergent)
12227 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIntraFnReachability)
12228 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInterFnReachability)
12229 
12230 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
12231 
12232 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
12233 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
12234 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
12235 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
12236 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
12237 #undef SWITCH_PK_CREATE
12238 #undef SWITCH_PK_INV
12239