xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/Attributor.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CallGraph.h"
25 #include "llvm/Analysis/CallGraphSCCPass.h"
26 #include "llvm/Analysis/InlineCost.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MustExecute.h"
29 #include "llvm/IR/AttributeMask.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/ConstantFold.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/DebugCounter.h"
46 #include "llvm/Support/FileSystem.h"
47 #include "llvm/Support/GraphWriter.h"
48 #include "llvm/Support/ModRef.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Cloning.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include <cstdint>
54 #include <memory>
55 
56 #ifdef EXPENSIVE_CHECKS
57 #include "llvm/IR/Verifier.h"
58 #endif
59 
60 #include <cassert>
61 #include <optional>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "attributor"
67 #define VERBOSE_DEBUG_TYPE DEBUG_TYPE "-verbose"
68 
69 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
70               "Determine what attributes are manifested in the IR");
71 
72 STATISTIC(NumFnDeleted, "Number of function deleted");
73 STATISTIC(NumFnWithExactDefinition,
74           "Number of functions with exact definitions");
75 STATISTIC(NumFnWithoutExactDefinition,
76           "Number of functions without exact definitions");
77 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
78 STATISTIC(NumAttributesTimedOut,
79           "Number of abstract attributes timed out before fixpoint");
80 STATISTIC(NumAttributesValidFixpoint,
81           "Number of abstract attributes in a valid fixpoint state");
82 STATISTIC(NumAttributesManifested,
83           "Number of abstract attributes manifested in IR");
84 
85 // TODO: Determine a good default value.
86 //
87 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
88 // (when run with the first 5 abstract attributes). The results also indicate
89 // that we never reach 32 iterations but always find a fixpoint sooner.
90 //
91 // This will become more evolved once we perform two interleaved fixpoint
92 // iterations: bottom-up and top-down.
93 static cl::opt<unsigned>
94     SetFixpointIterations("attributor-max-iterations", cl::Hidden,
95                           cl::desc("Maximal number of fixpoint iterations."),
96                           cl::init(32));
97 
98 static cl::opt<unsigned>
99     MaxSpecializationPerCB("attributor-max-specializations-per-call-base",
100                            cl::Hidden,
101                            cl::desc("Maximal number of callees specialized for "
102                                     "a call base"),
103                            cl::init(UINT32_MAX));
104 
105 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
106     "attributor-max-initialization-chain-length", cl::Hidden,
107     cl::desc(
108         "Maximal number of chained initializations (to avoid stack overflows)"),
109     cl::location(MaxInitializationChainLength), cl::init(1024));
110 unsigned llvm::MaxInitializationChainLength;
111 
112 static cl::opt<bool> AnnotateDeclarationCallSites(
113     "attributor-annotate-decl-cs", cl::Hidden,
114     cl::desc("Annotate call sites of function declarations."), cl::init(false));
115 
116 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
117                                        cl::init(true), cl::Hidden);
118 
119 static cl::opt<bool>
120     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
121                          cl::desc("Allow the Attributor to create shallow "
122                                   "wrappers for non-exact definitions."),
123                          cl::init(false));
124 
125 static cl::opt<bool>
126     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
127                      cl::desc("Allow the Attributor to use IP information "
128                               "derived from non-exact functions via cloning"),
129                      cl::init(false));
130 
131 // These options can only used for debug builds.
132 #ifndef NDEBUG
133 static cl::list<std::string>
134     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
135                   cl::desc("Comma seperated list of attribute names that are "
136                            "allowed to be seeded."),
137                   cl::CommaSeparated);
138 
139 static cl::list<std::string> FunctionSeedAllowList(
140     "attributor-function-seed-allow-list", cl::Hidden,
141     cl::desc("Comma seperated list of function names that are "
142              "allowed to be seeded."),
143     cl::CommaSeparated);
144 #endif
145 
146 static cl::opt<bool>
147     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
148                  cl::desc("Dump the dependency graph to dot files."),
149                  cl::init(false));
150 
151 static cl::opt<std::string> DepGraphDotFileNamePrefix(
152     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
153     cl::desc("The prefix used for the CallGraph dot file names."));
154 
155 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
156                                   cl::desc("View the dependency graph."),
157                                   cl::init(false));
158 
159 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
160                                        cl::desc("Print attribute dependencies"),
161                                        cl::init(false));
162 
163 static cl::opt<bool> EnableCallSiteSpecific(
164     "attributor-enable-call-site-specific-deduction", cl::Hidden,
165     cl::desc("Allow the Attributor to do call site specific analysis"),
166     cl::init(false));
167 
168 static cl::opt<bool>
169     PrintCallGraph("attributor-print-call-graph", cl::Hidden,
170                    cl::desc("Print Attributor's internal call graph"),
171                    cl::init(false));
172 
173 static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
174                                       cl::Hidden,
175                                       cl::desc("Try to simplify all loads."),
176                                       cl::init(true));
177 
178 static cl::opt<bool> CloseWorldAssumption(
179     "attributor-assume-closed-world", cl::Hidden,
180     cl::desc("Should a closed world be assumed, or not. Default if not set."));
181 
182 /// Logic operators for the change status enum class.
183 ///
184 ///{
185 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
186   return L == ChangeStatus::CHANGED ? L : R;
187 }
188 ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
189   L = L | R;
190   return L;
191 }
192 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
193   return L == ChangeStatus::UNCHANGED ? L : R;
194 }
195 ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
196   L = L & R;
197   return L;
198 }
199 ///}
200 
201 bool AA::isGPU(const Module &M) {
202   Triple T(M.getTargetTriple());
203   return T.isAMDGPU() || T.isNVPTX();
204 }
205 
206 bool AA::isNoSyncInst(Attributor &A, const Instruction &I,
207                       const AbstractAttribute &QueryingAA) {
208   // We are looking for volatile instructions or non-relaxed atomics.
209   if (const auto *CB = dyn_cast<CallBase>(&I)) {
210     if (CB->hasFnAttr(Attribute::NoSync))
211       return true;
212 
213     // Non-convergent and readnone imply nosync.
214     if (!CB->isConvergent() && !CB->mayReadOrWriteMemory())
215       return true;
216 
217     if (AANoSync::isNoSyncIntrinsic(&I))
218       return true;
219 
220     bool IsKnownNoSync;
221     return AA::hasAssumedIRAttr<Attribute::NoSync>(
222         A, &QueryingAA, IRPosition::callsite_function(*CB),
223         DepClassTy::OPTIONAL, IsKnownNoSync);
224   }
225 
226   if (!I.mayReadOrWriteMemory())
227     return true;
228 
229   return !I.isVolatile() && !AANoSync::isNonRelaxedAtomic(&I);
230 }
231 
232 bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
233                              const Value &V, bool ForAnalysisOnly) {
234   // TODO: See the AAInstanceInfo class comment.
235   if (!ForAnalysisOnly)
236     return false;
237   auto *InstanceInfoAA = A.getAAFor<AAInstanceInfo>(
238       QueryingAA, IRPosition::value(V), DepClassTy::OPTIONAL);
239   return InstanceInfoAA && InstanceInfoAA->isAssumedUniqueForAnalysis();
240 }
241 
242 Constant *
243 AA::getInitialValueForObj(Attributor &A, const AbstractAttribute &QueryingAA,
244                           Value &Obj, Type &Ty, const TargetLibraryInfo *TLI,
245                           const DataLayout &DL, AA::RangeTy *RangePtr) {
246   if (isa<AllocaInst>(Obj))
247     return UndefValue::get(&Ty);
248   if (Constant *Init = getInitialValueOfAllocation(&Obj, TLI, &Ty))
249     return Init;
250   auto *GV = dyn_cast<GlobalVariable>(&Obj);
251   if (!GV)
252     return nullptr;
253 
254   bool UsedAssumedInformation = false;
255   Constant *Initializer = nullptr;
256   if (A.hasGlobalVariableSimplificationCallback(*GV)) {
257     auto AssumedGV = A.getAssumedInitializerFromCallBack(
258         *GV, &QueryingAA, UsedAssumedInformation);
259     Initializer = *AssumedGV;
260     if (!Initializer)
261       return nullptr;
262   } else {
263     if (!GV->hasLocalLinkage() &&
264         (GV->isInterposable() || !(GV->isConstant() && GV->hasInitializer())))
265       return nullptr;
266     if (!GV->hasInitializer())
267       return UndefValue::get(&Ty);
268 
269     if (!Initializer)
270       Initializer = GV->getInitializer();
271   }
272 
273   if (RangePtr && !RangePtr->offsetOrSizeAreUnknown()) {
274     APInt Offset = APInt(64, RangePtr->Offset);
275     return ConstantFoldLoadFromConst(Initializer, &Ty, Offset, DL);
276   }
277 
278   return ConstantFoldLoadFromUniformValue(Initializer, &Ty);
279 }
280 
281 bool AA::isValidInScope(const Value &V, const Function *Scope) {
282   if (isa<Constant>(V))
283     return true;
284   if (auto *I = dyn_cast<Instruction>(&V))
285     return I->getFunction() == Scope;
286   if (auto *A = dyn_cast<Argument>(&V))
287     return A->getParent() == Scope;
288   return false;
289 }
290 
291 bool AA::isValidAtPosition(const AA::ValueAndContext &VAC,
292                            InformationCache &InfoCache) {
293   if (isa<Constant>(VAC.getValue()) || VAC.getValue() == VAC.getCtxI())
294     return true;
295   const Function *Scope = nullptr;
296   const Instruction *CtxI = VAC.getCtxI();
297   if (CtxI)
298     Scope = CtxI->getFunction();
299   if (auto *A = dyn_cast<Argument>(VAC.getValue()))
300     return A->getParent() == Scope;
301   if (auto *I = dyn_cast<Instruction>(VAC.getValue())) {
302     if (I->getFunction() == Scope) {
303       if (const DominatorTree *DT =
304               InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
305                   *Scope))
306         return DT->dominates(I, CtxI);
307       // Local dominance check mostly for the old PM passes.
308       if (CtxI && I->getParent() == CtxI->getParent())
309         return llvm::any_of(
310             make_range(I->getIterator(), I->getParent()->end()),
311             [&](const Instruction &AfterI) { return &AfterI == CtxI; });
312     }
313   }
314   return false;
315 }
316 
317 Value *AA::getWithType(Value &V, Type &Ty) {
318   if (V.getType() == &Ty)
319     return &V;
320   if (isa<PoisonValue>(V))
321     return PoisonValue::get(&Ty);
322   if (isa<UndefValue>(V))
323     return UndefValue::get(&Ty);
324   if (auto *C = dyn_cast<Constant>(&V)) {
325     if (C->isNullValue())
326       return Constant::getNullValue(&Ty);
327     if (C->getType()->isPointerTy() && Ty.isPointerTy())
328       return ConstantExpr::getPointerCast(C, &Ty);
329     if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
330       if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
331         return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
332       if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
333         return ConstantFoldCastInstruction(Instruction::FPTrunc, C, &Ty);
334     }
335   }
336   return nullptr;
337 }
338 
339 std::optional<Value *>
340 AA::combineOptionalValuesInAAValueLatice(const std::optional<Value *> &A,
341                                          const std::optional<Value *> &B,
342                                          Type *Ty) {
343   if (A == B)
344     return A;
345   if (!B)
346     return A;
347   if (*B == nullptr)
348     return nullptr;
349   if (!A)
350     return Ty ? getWithType(**B, *Ty) : nullptr;
351   if (*A == nullptr)
352     return nullptr;
353   if (!Ty)
354     Ty = (*A)->getType();
355   if (isa_and_nonnull<UndefValue>(*A))
356     return getWithType(**B, *Ty);
357   if (isa<UndefValue>(*B))
358     return A;
359   if (*A && *B && *A == getWithType(**B, *Ty))
360     return A;
361   return nullptr;
362 }
363 
364 template <bool IsLoad, typename Ty>
365 static bool getPotentialCopiesOfMemoryValue(
366     Attributor &A, Ty &I, SmallSetVector<Value *, 4> &PotentialCopies,
367     SmallSetVector<Instruction *, 4> *PotentialValueOrigins,
368     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
369     bool OnlyExact) {
370   LLVM_DEBUG(dbgs() << "Trying to determine the potential copies of " << I
371                     << " (only exact: " << OnlyExact << ")\n";);
372 
373   Value &Ptr = *I.getPointerOperand();
374   // Containers to remember the pointer infos and new copies while we are not
375   // sure that we can find all of them. If we abort we want to avoid spurious
376   // dependences and potential copies in the provided container.
377   SmallVector<const AAPointerInfo *> PIs;
378   SmallSetVector<Value *, 8> NewCopies;
379   SmallSetVector<Instruction *, 8> NewCopyOrigins;
380 
381   const auto *TLI =
382       A.getInfoCache().getTargetLibraryInfoForFunction(*I.getFunction());
383 
384   auto Pred = [&](Value &Obj) {
385     LLVM_DEBUG(dbgs() << "Visit underlying object " << Obj << "\n");
386     if (isa<UndefValue>(&Obj))
387       return true;
388     if (isa<ConstantPointerNull>(&Obj)) {
389       // A null pointer access can be undefined but any offset from null may
390       // be OK. We do not try to optimize the latter.
391       if (!NullPointerIsDefined(I.getFunction(),
392                                 Ptr.getType()->getPointerAddressSpace()) &&
393           A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation,
394                                  AA::Interprocedural) == &Obj)
395         return true;
396       LLVM_DEBUG(
397           dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
398       return false;
399     }
400     // TODO: Use assumed noalias return.
401     if (!isa<AllocaInst>(&Obj) && !isa<GlobalVariable>(&Obj) &&
402         !(IsLoad ? isAllocationFn(&Obj, TLI) : isNoAliasCall(&Obj))) {
403       LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << Obj
404                         << "\n";);
405       return false;
406     }
407     if (auto *GV = dyn_cast<GlobalVariable>(&Obj))
408       if (!GV->hasLocalLinkage() &&
409           !(GV->isConstant() && GV->hasInitializer())) {
410         LLVM_DEBUG(dbgs() << "Underlying object is global with external "
411                              "linkage, not supported yet: "
412                           << Obj << "\n";);
413         return false;
414       }
415 
416     bool NullOnly = true;
417     bool NullRequired = false;
418     auto CheckForNullOnlyAndUndef = [&](std::optional<Value *> V,
419                                         bool IsExact) {
420       if (!V || *V == nullptr)
421         NullOnly = false;
422       else if (isa<UndefValue>(*V))
423         /* No op */;
424       else if (isa<Constant>(*V) && cast<Constant>(*V)->isNullValue())
425         NullRequired = !IsExact;
426       else
427         NullOnly = false;
428     };
429 
430     auto AdjustWrittenValueType = [&](const AAPointerInfo::Access &Acc,
431                                       Value &V) {
432       Value *AdjV = AA::getWithType(V, *I.getType());
433       if (!AdjV) {
434         LLVM_DEBUG(dbgs() << "Underlying object written but stored value "
435                              "cannot be converted to read type: "
436                           << *Acc.getRemoteInst() << " : " << *I.getType()
437                           << "\n";);
438       }
439       return AdjV;
440     };
441 
442     auto SkipCB = [&](const AAPointerInfo::Access &Acc) {
443       if ((IsLoad && !Acc.isWriteOrAssumption()) || (!IsLoad && !Acc.isRead()))
444         return true;
445       if (IsLoad) {
446         if (Acc.isWrittenValueYetUndetermined())
447           return true;
448         if (PotentialValueOrigins && !isa<AssumeInst>(Acc.getRemoteInst()))
449           return false;
450         if (!Acc.isWrittenValueUnknown())
451           if (Value *V = AdjustWrittenValueType(Acc, *Acc.getWrittenValue()))
452             if (NewCopies.count(V)) {
453               NewCopyOrigins.insert(Acc.getRemoteInst());
454               return true;
455             }
456         if (auto *SI = dyn_cast<StoreInst>(Acc.getRemoteInst()))
457           if (Value *V = AdjustWrittenValueType(Acc, *SI->getValueOperand()))
458             if (NewCopies.count(V)) {
459               NewCopyOrigins.insert(Acc.getRemoteInst());
460               return true;
461             }
462       }
463       return false;
464     };
465 
466     auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
467       if ((IsLoad && !Acc.isWriteOrAssumption()) || (!IsLoad && !Acc.isRead()))
468         return true;
469       if (IsLoad && Acc.isWrittenValueYetUndetermined())
470         return true;
471       CheckForNullOnlyAndUndef(Acc.getContent(), IsExact);
472       if (OnlyExact && !IsExact && !NullOnly &&
473           !isa_and_nonnull<UndefValue>(Acc.getWrittenValue())) {
474         LLVM_DEBUG(dbgs() << "Non exact access " << *Acc.getRemoteInst()
475                           << ", abort!\n");
476         return false;
477       }
478       if (NullRequired && !NullOnly) {
479         LLVM_DEBUG(dbgs() << "Required all `null` accesses due to non exact "
480                              "one, however found non-null one: "
481                           << *Acc.getRemoteInst() << ", abort!\n");
482         return false;
483       }
484       if (IsLoad) {
485         assert(isa<LoadInst>(I) && "Expected load or store instruction only!");
486         if (!Acc.isWrittenValueUnknown()) {
487           Value *V = AdjustWrittenValueType(Acc, *Acc.getWrittenValue());
488           if (!V)
489             return false;
490           NewCopies.insert(V);
491           if (PotentialValueOrigins)
492             NewCopyOrigins.insert(Acc.getRemoteInst());
493           return true;
494         }
495         auto *SI = dyn_cast<StoreInst>(Acc.getRemoteInst());
496         if (!SI) {
497           LLVM_DEBUG(dbgs() << "Underlying object written through a non-store "
498                                "instruction not supported yet: "
499                             << *Acc.getRemoteInst() << "\n";);
500           return false;
501         }
502         Value *V = AdjustWrittenValueType(Acc, *SI->getValueOperand());
503         if (!V)
504           return false;
505         NewCopies.insert(V);
506         if (PotentialValueOrigins)
507           NewCopyOrigins.insert(SI);
508       } else {
509         assert(isa<StoreInst>(I) && "Expected load or store instruction only!");
510         auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
511         if (!LI && OnlyExact) {
512           LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
513                                "instruction not supported yet: "
514                             << *Acc.getRemoteInst() << "\n";);
515           return false;
516         }
517         NewCopies.insert(Acc.getRemoteInst());
518       }
519       return true;
520     };
521 
522     // If the value has been written to we don't need the initial value of the
523     // object.
524     bool HasBeenWrittenTo = false;
525 
526     AA::RangeTy Range;
527     auto *PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(Obj),
528                                          DepClassTy::NONE);
529     if (!PI || !PI->forallInterferingAccesses(
530                    A, QueryingAA, I,
531                    /* FindInterferingWrites */ IsLoad,
532                    /* FindInterferingReads */ !IsLoad, CheckAccess,
533                    HasBeenWrittenTo, Range, SkipCB)) {
534       LLVM_DEBUG(
535           dbgs()
536           << "Failed to verify all interfering accesses for underlying object: "
537           << Obj << "\n");
538       return false;
539     }
540 
541     if (IsLoad && !HasBeenWrittenTo && !Range.isUnassigned()) {
542       const DataLayout &DL = A.getDataLayout();
543       Value *InitialValue = AA::getInitialValueForObj(
544           A, QueryingAA, Obj, *I.getType(), TLI, DL, &Range);
545       if (!InitialValue) {
546         LLVM_DEBUG(dbgs() << "Could not determine required initial value of "
547                              "underlying object, abort!\n");
548         return false;
549       }
550       CheckForNullOnlyAndUndef(InitialValue, /* IsExact */ true);
551       if (NullRequired && !NullOnly) {
552         LLVM_DEBUG(dbgs() << "Non exact access but initial value that is not "
553                              "null or undef, abort!\n");
554         return false;
555       }
556 
557       NewCopies.insert(InitialValue);
558       if (PotentialValueOrigins)
559         NewCopyOrigins.insert(nullptr);
560     }
561 
562     PIs.push_back(PI);
563 
564     return true;
565   };
566 
567   const auto *AAUO = A.getAAFor<AAUnderlyingObjects>(
568       QueryingAA, IRPosition::value(Ptr), DepClassTy::OPTIONAL);
569   if (!AAUO || !AAUO->forallUnderlyingObjects(Pred)) {
570     LLVM_DEBUG(
571         dbgs() << "Underlying objects stored into could not be determined\n";);
572     return false;
573   }
574 
575   // Only if we were successful collection all potential copies we record
576   // dependences (on non-fix AAPointerInfo AAs). We also only then modify the
577   // given PotentialCopies container.
578   for (const auto *PI : PIs) {
579     if (!PI->getState().isAtFixpoint())
580       UsedAssumedInformation = true;
581     A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
582   }
583   PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
584   if (PotentialValueOrigins)
585     PotentialValueOrigins->insert(NewCopyOrigins.begin(), NewCopyOrigins.end());
586 
587   return true;
588 }
589 
590 bool AA::getPotentiallyLoadedValues(
591     Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues,
592     SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
593     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
594     bool OnlyExact) {
595   return getPotentialCopiesOfMemoryValue</* IsLoad */ true>(
596       A, LI, PotentialValues, &PotentialValueOrigins, QueryingAA,
597       UsedAssumedInformation, OnlyExact);
598 }
599 
600 bool AA::getPotentialCopiesOfStoredValue(
601     Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
602     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
603     bool OnlyExact) {
604   return getPotentialCopiesOfMemoryValue</* IsLoad */ false>(
605       A, SI, PotentialCopies, nullptr, QueryingAA, UsedAssumedInformation,
606       OnlyExact);
607 }
608 
609 static bool isAssumedReadOnlyOrReadNone(Attributor &A, const IRPosition &IRP,
610                                         const AbstractAttribute &QueryingAA,
611                                         bool RequireReadNone, bool &IsKnown) {
612   if (RequireReadNone) {
613     if (AA::hasAssumedIRAttr<Attribute::ReadNone>(
614             A, &QueryingAA, IRP, DepClassTy::OPTIONAL, IsKnown,
615             /* IgnoreSubsumingPositions */ true))
616       return true;
617   } else if (AA::hasAssumedIRAttr<Attribute::ReadOnly>(
618                  A, &QueryingAA, IRP, DepClassTy::OPTIONAL, IsKnown,
619                  /* IgnoreSubsumingPositions */ true))
620     return true;
621 
622   IRPosition::Kind Kind = IRP.getPositionKind();
623   if (Kind == IRPosition::IRP_FUNCTION || Kind == IRPosition::IRP_CALL_SITE) {
624     const auto *MemLocAA =
625         A.getAAFor<AAMemoryLocation>(QueryingAA, IRP, DepClassTy::NONE);
626     if (MemLocAA && MemLocAA->isAssumedReadNone()) {
627       IsKnown = MemLocAA->isKnownReadNone();
628       if (!IsKnown)
629         A.recordDependence(*MemLocAA, QueryingAA, DepClassTy::OPTIONAL);
630       return true;
631     }
632   }
633 
634   const auto *MemBehaviorAA =
635       A.getAAFor<AAMemoryBehavior>(QueryingAA, IRP, DepClassTy::NONE);
636   if (MemBehaviorAA &&
637       (MemBehaviorAA->isAssumedReadNone() ||
638        (!RequireReadNone && MemBehaviorAA->isAssumedReadOnly()))) {
639     IsKnown = RequireReadNone ? MemBehaviorAA->isKnownReadNone()
640                               : MemBehaviorAA->isKnownReadOnly();
641     if (!IsKnown)
642       A.recordDependence(*MemBehaviorAA, QueryingAA, DepClassTy::OPTIONAL);
643     return true;
644   }
645 
646   return false;
647 }
648 
649 bool AA::isAssumedReadOnly(Attributor &A, const IRPosition &IRP,
650                            const AbstractAttribute &QueryingAA, bool &IsKnown) {
651   return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
652                                      /* RequireReadNone */ false, IsKnown);
653 }
654 bool AA::isAssumedReadNone(Attributor &A, const IRPosition &IRP,
655                            const AbstractAttribute &QueryingAA, bool &IsKnown) {
656   return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
657                                      /* RequireReadNone */ true, IsKnown);
658 }
659 
660 static bool
661 isPotentiallyReachable(Attributor &A, const Instruction &FromI,
662                        const Instruction *ToI, const Function &ToFn,
663                        const AbstractAttribute &QueryingAA,
664                        const AA::InstExclusionSetTy *ExclusionSet,
665                        std::function<bool(const Function &F)> GoBackwardsCB) {
666   DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, {
667     dbgs() << "[AA] isPotentiallyReachable @" << ToFn.getName() << " from "
668            << FromI << " [GBCB: " << bool(GoBackwardsCB) << "][#ExS: "
669            << (ExclusionSet ? std::to_string(ExclusionSet->size()) : "none")
670            << "]\n";
671     if (ExclusionSet)
672       for (auto *ES : *ExclusionSet)
673         dbgs() << *ES << "\n";
674   });
675 
676   // We know kernels (generally) cannot be called from within the module. Thus,
677   // for reachability we would need to step back from a kernel which would allow
678   // us to reach anything anyway. Even if a kernel is invoked from another
679   // kernel, values like allocas and shared memory are not accessible. We
680   // implicitly check for this situation to avoid costly lookups.
681   if (GoBackwardsCB && &ToFn != FromI.getFunction() &&
682       !GoBackwardsCB(*FromI.getFunction()) && ToFn.hasFnAttribute("kernel") &&
683       FromI.getFunction()->hasFnAttribute("kernel")) {
684     LLVM_DEBUG(dbgs() << "[AA] assume kernel cannot be reached from within the "
685                          "module; success\n";);
686     return false;
687   }
688 
689   // If we can go arbitrarily backwards we will eventually reach an entry point
690   // that can reach ToI. Only if a set of blocks through which we cannot go is
691   // provided, or once we track internal functions not accessible from the
692   // outside, it makes sense to perform backwards analysis in the absence of a
693   // GoBackwardsCB.
694   if (!GoBackwardsCB && !ExclusionSet) {
695     LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from " << FromI
696                       << " is not checked backwards and does not have an "
697                          "exclusion set, abort\n");
698     return true;
699   }
700 
701   SmallPtrSet<const Instruction *, 8> Visited;
702   SmallVector<const Instruction *> Worklist;
703   Worklist.push_back(&FromI);
704 
705   while (!Worklist.empty()) {
706     const Instruction *CurFromI = Worklist.pop_back_val();
707     if (!Visited.insert(CurFromI).second)
708       continue;
709 
710     const Function *FromFn = CurFromI->getFunction();
711     if (FromFn == &ToFn) {
712       if (!ToI)
713         return true;
714       LLVM_DEBUG(dbgs() << "[AA] check " << *ToI << " from " << *CurFromI
715                         << " intraprocedurally\n");
716       const auto *ReachabilityAA = A.getAAFor<AAIntraFnReachability>(
717           QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL);
718       bool Result = !ReachabilityAA || ReachabilityAA->isAssumedReachable(
719                                            A, *CurFromI, *ToI, ExclusionSet);
720       LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " "
721                         << (Result ? "can potentially " : "cannot ") << "reach "
722                         << *ToI << " [Intra]\n");
723       if (Result)
724         return true;
725     }
726 
727     bool Result = true;
728     if (!ToFn.isDeclaration() && ToI) {
729       const auto *ToReachabilityAA = A.getAAFor<AAIntraFnReachability>(
730           QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL);
731       const Instruction &EntryI = ToFn.getEntryBlock().front();
732       Result = !ToReachabilityAA || ToReachabilityAA->isAssumedReachable(
733                                         A, EntryI, *ToI, ExclusionSet);
734       LLVM_DEBUG(dbgs() << "[AA] Entry " << EntryI << " of @" << ToFn.getName()
735                         << " " << (Result ? "can potentially " : "cannot ")
736                         << "reach @" << *ToI << " [ToFn]\n");
737     }
738 
739     if (Result) {
740       // The entry of the ToFn can reach the instruction ToI. If the current
741       // instruction is already known to reach the ToFn.
742       const auto *FnReachabilityAA = A.getAAFor<AAInterFnReachability>(
743           QueryingAA, IRPosition::function(*FromFn), DepClassTy::OPTIONAL);
744       Result = !FnReachabilityAA || FnReachabilityAA->instructionCanReach(
745                                         A, *CurFromI, ToFn, ExclusionSet);
746       LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " in @" << FromFn->getName()
747                         << " " << (Result ? "can potentially " : "cannot ")
748                         << "reach @" << ToFn.getName() << " [FromFn]\n");
749       if (Result)
750         return true;
751     }
752 
753     // TODO: Check assumed nounwind.
754     const auto *ReachabilityAA = A.getAAFor<AAIntraFnReachability>(
755         QueryingAA, IRPosition::function(*FromFn), DepClassTy::OPTIONAL);
756     auto ReturnInstCB = [&](Instruction &Ret) {
757       bool Result = !ReachabilityAA || ReachabilityAA->isAssumedReachable(
758                                            A, *CurFromI, Ret, ExclusionSet);
759       LLVM_DEBUG(dbgs() << "[AA][Ret] " << *CurFromI << " "
760                         << (Result ? "can potentially " : "cannot ") << "reach "
761                         << Ret << " [Intra]\n");
762       return !Result;
763     };
764 
765     // Check if we can reach returns.
766     bool UsedAssumedInformation = false;
767     if (A.checkForAllInstructions(ReturnInstCB, FromFn, &QueryingAA,
768                                   {Instruction::Ret}, UsedAssumedInformation)) {
769       LLVM_DEBUG(dbgs() << "[AA] No return is reachable, done\n");
770       continue;
771     }
772 
773     if (!GoBackwardsCB) {
774       LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from " << FromI
775                         << " is not checked backwards, abort\n");
776       return true;
777     }
778 
779     // If we do not go backwards from the FromFn we are done here and so far we
780     // could not find a way to reach ToFn/ToI.
781     if (!GoBackwardsCB(*FromFn))
782       continue;
783 
784     LLVM_DEBUG(dbgs() << "Stepping backwards to the call sites of @"
785                       << FromFn->getName() << "\n");
786 
787     auto CheckCallSite = [&](AbstractCallSite ACS) {
788       CallBase *CB = ACS.getInstruction();
789       if (!CB)
790         return false;
791 
792       if (isa<InvokeInst>(CB))
793         return false;
794 
795       Instruction *Inst = CB->getNextNonDebugInstruction();
796       Worklist.push_back(Inst);
797       return true;
798     };
799 
800     Result = !A.checkForAllCallSites(CheckCallSite, *FromFn,
801                                      /* RequireAllCallSites */ true,
802                                      &QueryingAA, UsedAssumedInformation);
803     if (Result) {
804       LLVM_DEBUG(dbgs() << "[AA] stepping back to call sites from " << *CurFromI
805                         << " in @" << FromFn->getName()
806                         << " failed, give up\n");
807       return true;
808     }
809 
810     LLVM_DEBUG(dbgs() << "[AA] stepped back to call sites from " << *CurFromI
811                       << " in @" << FromFn->getName()
812                       << " worklist size is: " << Worklist.size() << "\n");
813   }
814   return false;
815 }
816 
817 bool AA::isPotentiallyReachable(
818     Attributor &A, const Instruction &FromI, const Instruction &ToI,
819     const AbstractAttribute &QueryingAA,
820     const AA::InstExclusionSetTy *ExclusionSet,
821     std::function<bool(const Function &F)> GoBackwardsCB) {
822   const Function *ToFn = ToI.getFunction();
823   return ::isPotentiallyReachable(A, FromI, &ToI, *ToFn, QueryingAA,
824                                   ExclusionSet, GoBackwardsCB);
825 }
826 
827 bool AA::isPotentiallyReachable(
828     Attributor &A, const Instruction &FromI, const Function &ToFn,
829     const AbstractAttribute &QueryingAA,
830     const AA::InstExclusionSetTy *ExclusionSet,
831     std::function<bool(const Function &F)> GoBackwardsCB) {
832   return ::isPotentiallyReachable(A, FromI, /* ToI */ nullptr, ToFn, QueryingAA,
833                                   ExclusionSet, GoBackwardsCB);
834 }
835 
836 bool AA::isAssumedThreadLocalObject(Attributor &A, Value &Obj,
837                                     const AbstractAttribute &QueryingAA) {
838   if (isa<UndefValue>(Obj))
839     return true;
840   if (isa<AllocaInst>(Obj)) {
841     InformationCache &InfoCache = A.getInfoCache();
842     if (!InfoCache.stackIsAccessibleByOtherThreads()) {
843       LLVM_DEBUG(
844           dbgs() << "[AA] Object '" << Obj
845                  << "' is thread local; stack objects are thread local.\n");
846       return true;
847     }
848     bool IsKnownNoCapture;
849     bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
850         A, &QueryingAA, IRPosition::value(Obj), DepClassTy::OPTIONAL,
851         IsKnownNoCapture);
852     LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj << "' is "
853                       << (IsAssumedNoCapture ? "" : "not") << " thread local; "
854                       << (IsAssumedNoCapture ? "non-" : "")
855                       << "captured stack object.\n");
856     return IsAssumedNoCapture;
857   }
858   if (auto *GV = dyn_cast<GlobalVariable>(&Obj)) {
859     if (GV->isConstant()) {
860       LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
861                         << "' is thread local; constant global\n");
862       return true;
863     }
864     if (GV->isThreadLocal()) {
865       LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
866                         << "' is thread local; thread local global\n");
867       return true;
868     }
869   }
870 
871   if (A.getInfoCache().targetIsGPU()) {
872     if (Obj.getType()->getPointerAddressSpace() ==
873         (int)AA::GPUAddressSpace::Local) {
874       LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
875                         << "' is thread local; GPU local memory\n");
876       return true;
877     }
878     if (Obj.getType()->getPointerAddressSpace() ==
879         (int)AA::GPUAddressSpace::Constant) {
880       LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
881                         << "' is thread local; GPU constant memory\n");
882       return true;
883     }
884   }
885 
886   LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj << "' is not thread local\n");
887   return false;
888 }
889 
890 bool AA::isPotentiallyAffectedByBarrier(Attributor &A, const Instruction &I,
891                                         const AbstractAttribute &QueryingAA) {
892   if (!I.mayHaveSideEffects() && !I.mayReadFromMemory())
893     return false;
894 
895   SmallSetVector<const Value *, 8> Ptrs;
896 
897   auto AddLocationPtr = [&](std::optional<MemoryLocation> Loc) {
898     if (!Loc || !Loc->Ptr) {
899       LLVM_DEBUG(
900           dbgs() << "[AA] Access to unknown location; -> requires barriers\n");
901       return false;
902     }
903     Ptrs.insert(Loc->Ptr);
904     return true;
905   };
906 
907   if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&I)) {
908     if (!AddLocationPtr(MemoryLocation::getForDest(MI)))
909       return true;
910     if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(&I))
911       if (!AddLocationPtr(MemoryLocation::getForSource(MTI)))
912         return true;
913   } else if (!AddLocationPtr(MemoryLocation::getOrNone(&I)))
914     return true;
915 
916   return isPotentiallyAffectedByBarrier(A, Ptrs.getArrayRef(), QueryingAA, &I);
917 }
918 
919 bool AA::isPotentiallyAffectedByBarrier(Attributor &A,
920                                         ArrayRef<const Value *> Ptrs,
921                                         const AbstractAttribute &QueryingAA,
922                                         const Instruction *CtxI) {
923   for (const Value *Ptr : Ptrs) {
924     if (!Ptr) {
925       LLVM_DEBUG(dbgs() << "[AA] nullptr; -> requires barriers\n");
926       return true;
927     }
928 
929     auto Pred = [&](Value &Obj) {
930       if (AA::isAssumedThreadLocalObject(A, Obj, QueryingAA))
931         return true;
932       LLVM_DEBUG(dbgs() << "[AA] Access to '" << Obj << "' via '" << *Ptr
933                         << "'; -> requires barrier\n");
934       return false;
935     };
936 
937     const auto *UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>(
938         QueryingAA, IRPosition::value(*Ptr), DepClassTy::OPTIONAL);
939     if (!UnderlyingObjsAA || !UnderlyingObjsAA->forallUnderlyingObjects(Pred))
940       return true;
941   }
942   return false;
943 }
944 
945 /// Return true if \p New is equal or worse than \p Old.
946 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
947   if (!Old.isIntAttribute())
948     return true;
949 
950   return Old.getValueAsInt() >= New.getValueAsInt();
951 }
952 
953 /// Return true if the information provided by \p Attr was added to the
954 /// attribute set \p AttrSet. This is only the case if it was not already
955 /// present in \p AttrSet.
956 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
957                              AttributeSet AttrSet, bool ForceReplace,
958                              AttrBuilder &AB) {
959 
960   if (Attr.isEnumAttribute()) {
961     Attribute::AttrKind Kind = Attr.getKindAsEnum();
962     if (AttrSet.hasAttribute(Kind))
963       return false;
964     AB.addAttribute(Kind);
965     return true;
966   }
967   if (Attr.isStringAttribute()) {
968     StringRef Kind = Attr.getKindAsString();
969     if (AttrSet.hasAttribute(Kind)) {
970       if (!ForceReplace)
971         return false;
972     }
973     AB.addAttribute(Kind, Attr.getValueAsString());
974     return true;
975   }
976   if (Attr.isIntAttribute()) {
977     Attribute::AttrKind Kind = Attr.getKindAsEnum();
978     if (!ForceReplace && Kind == Attribute::Memory) {
979       MemoryEffects ME = Attr.getMemoryEffects() & AttrSet.getMemoryEffects();
980       if (ME == AttrSet.getMemoryEffects())
981         return false;
982       AB.addMemoryAttr(ME);
983       return true;
984     }
985     if (AttrSet.hasAttribute(Kind)) {
986       if (!ForceReplace && isEqualOrWorse(Attr, AttrSet.getAttribute(Kind)))
987         return false;
988     }
989     AB.addAttribute(Attr);
990     return true;
991   }
992 
993   llvm_unreachable("Expected enum or string attribute!");
994 }
995 
996 Argument *IRPosition::getAssociatedArgument() const {
997   if (getPositionKind() == IRP_ARGUMENT)
998     return cast<Argument>(&getAnchorValue());
999 
1000   // Not an Argument and no argument number means this is not a call site
1001   // argument, thus we cannot find a callback argument to return.
1002   int ArgNo = getCallSiteArgNo();
1003   if (ArgNo < 0)
1004     return nullptr;
1005 
1006   // Use abstract call sites to make the connection between the call site
1007   // values and the ones in callbacks. If a callback was found that makes use
1008   // of the underlying call site operand, we want the corresponding callback
1009   // callee argument and not the direct callee argument.
1010   std::optional<Argument *> CBCandidateArg;
1011   SmallVector<const Use *, 4> CallbackUses;
1012   const auto &CB = cast<CallBase>(getAnchorValue());
1013   AbstractCallSite::getCallbackUses(CB, CallbackUses);
1014   for (const Use *U : CallbackUses) {
1015     AbstractCallSite ACS(U);
1016     assert(ACS && ACS.isCallbackCall());
1017     if (!ACS.getCalledFunction())
1018       continue;
1019 
1020     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
1021 
1022       // Test if the underlying call site operand is argument number u of the
1023       // callback callee.
1024       if (ACS.getCallArgOperandNo(u) != ArgNo)
1025         continue;
1026 
1027       assert(ACS.getCalledFunction()->arg_size() > u &&
1028              "ACS mapped into var-args arguments!");
1029       if (CBCandidateArg) {
1030         CBCandidateArg = nullptr;
1031         break;
1032       }
1033       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
1034     }
1035   }
1036 
1037   // If we found a unique callback candidate argument, return it.
1038   if (CBCandidateArg && *CBCandidateArg)
1039     return *CBCandidateArg;
1040 
1041   // If no callbacks were found, or none used the underlying call site operand
1042   // exclusively, use the direct callee argument if available.
1043   auto *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
1044   if (Callee && Callee->arg_size() > unsigned(ArgNo))
1045     return Callee->getArg(ArgNo);
1046 
1047   return nullptr;
1048 }
1049 
1050 ChangeStatus AbstractAttribute::update(Attributor &A) {
1051   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
1052   if (getState().isAtFixpoint())
1053     return HasChanged;
1054 
1055   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
1056 
1057   HasChanged = updateImpl(A);
1058 
1059   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
1060                     << "\n");
1061 
1062   return HasChanged;
1063 }
1064 
1065 Attributor::Attributor(SetVector<Function *> &Functions,
1066                        InformationCache &InfoCache,
1067                        AttributorConfig Configuration)
1068     : Allocator(InfoCache.Allocator), Functions(Functions),
1069       InfoCache(InfoCache), Configuration(Configuration) {
1070   if (!isClosedWorldModule())
1071     return;
1072   for (Function *Fn : Functions)
1073     if (Fn->hasAddressTaken(/*PutOffender=*/nullptr,
1074                             /*IgnoreCallbackUses=*/false,
1075                             /*IgnoreAssumeLikeCalls=*/true,
1076                             /*IgnoreLLVMUsed=*/true,
1077                             /*IgnoreARCAttachedCall=*/false,
1078                             /*IgnoreCastedDirectCall=*/true))
1079       InfoCache.IndirectlyCallableFunctions.push_back(Fn);
1080 }
1081 
1082 bool Attributor::getAttrsFromAssumes(const IRPosition &IRP,
1083                                      Attribute::AttrKind AK,
1084                                      SmallVectorImpl<Attribute> &Attrs) {
1085   assert(IRP.getPositionKind() != IRPosition::IRP_INVALID &&
1086          "Did expect a valid position!");
1087   MustBeExecutedContextExplorer *Explorer =
1088       getInfoCache().getMustBeExecutedContextExplorer();
1089   if (!Explorer)
1090     return false;
1091 
1092   Value &AssociatedValue = IRP.getAssociatedValue();
1093 
1094   const Assume2KnowledgeMap &A2K =
1095       getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
1096 
1097   // Check if we found any potential assume use, if not we don't need to create
1098   // explorer iterators.
1099   if (A2K.empty())
1100     return false;
1101 
1102   LLVMContext &Ctx = AssociatedValue.getContext();
1103   unsigned AttrsSize = Attrs.size();
1104   auto EIt = Explorer->begin(IRP.getCtxI()),
1105        EEnd = Explorer->end(IRP.getCtxI());
1106   for (const auto &It : A2K)
1107     if (Explorer->findInContextOf(It.first, EIt, EEnd))
1108       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
1109   return AttrsSize != Attrs.size();
1110 }
1111 
1112 template <typename DescTy>
1113 ChangeStatus
1114 Attributor::updateAttrMap(const IRPosition &IRP, ArrayRef<DescTy> AttrDescs,
1115                           function_ref<bool(const DescTy &, AttributeSet,
1116                                             AttributeMask &, AttrBuilder &)>
1117                               CB) {
1118   if (AttrDescs.empty())
1119     return ChangeStatus::UNCHANGED;
1120   switch (IRP.getPositionKind()) {
1121   case IRPosition::IRP_FLOAT:
1122   case IRPosition::IRP_INVALID:
1123     return ChangeStatus::UNCHANGED;
1124   default:
1125     break;
1126   };
1127 
1128   AttributeList AL;
1129   Value *AttrListAnchor = IRP.getAttrListAnchor();
1130   auto It = AttrsMap.find(AttrListAnchor);
1131   if (It == AttrsMap.end())
1132     AL = IRP.getAttrList();
1133   else
1134     AL = It->getSecond();
1135 
1136   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
1137   auto AttrIdx = IRP.getAttrIdx();
1138   AttributeSet AS = AL.getAttributes(AttrIdx);
1139   AttributeMask AM;
1140   AttrBuilder AB(Ctx);
1141 
1142   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
1143   for (const DescTy &AttrDesc : AttrDescs)
1144     if (CB(AttrDesc, AS, AM, AB))
1145       HasChanged = ChangeStatus::CHANGED;
1146 
1147   if (HasChanged == ChangeStatus::UNCHANGED)
1148     return ChangeStatus::UNCHANGED;
1149 
1150   AL = AL.removeAttributesAtIndex(Ctx, AttrIdx, AM);
1151   AL = AL.addAttributesAtIndex(Ctx, AttrIdx, AB);
1152   AttrsMap[AttrListAnchor] = AL;
1153   return ChangeStatus::CHANGED;
1154 }
1155 
1156 bool Attributor::hasAttr(const IRPosition &IRP,
1157                          ArrayRef<Attribute::AttrKind> AttrKinds,
1158                          bool IgnoreSubsumingPositions,
1159                          Attribute::AttrKind ImpliedAttributeKind) {
1160   bool Implied = false;
1161   bool HasAttr = false;
1162   auto HasAttrCB = [&](const Attribute::AttrKind &Kind, AttributeSet AttrSet,
1163                        AttributeMask &, AttrBuilder &) {
1164     if (AttrSet.hasAttribute(Kind)) {
1165       Implied |= Kind != ImpliedAttributeKind;
1166       HasAttr = true;
1167     }
1168     return false;
1169   };
1170   for (const IRPosition &EquivIRP : SubsumingPositionIterator(IRP)) {
1171     updateAttrMap<Attribute::AttrKind>(EquivIRP, AttrKinds, HasAttrCB);
1172     if (HasAttr)
1173       break;
1174     // The first position returned by the SubsumingPositionIterator is
1175     // always the position itself. If we ignore subsuming positions we
1176     // are done after the first iteration.
1177     if (IgnoreSubsumingPositions)
1178       break;
1179     Implied = true;
1180   }
1181   if (!HasAttr) {
1182     Implied = true;
1183     SmallVector<Attribute> Attrs;
1184     for (Attribute::AttrKind AK : AttrKinds)
1185       if (getAttrsFromAssumes(IRP, AK, Attrs)) {
1186         HasAttr = true;
1187         break;
1188       }
1189   }
1190 
1191   // Check if we should manifest the implied attribute kind at the IRP.
1192   if (ImpliedAttributeKind != Attribute::None && HasAttr && Implied)
1193     manifestAttrs(IRP, {Attribute::get(IRP.getAnchorValue().getContext(),
1194                                        ImpliedAttributeKind)});
1195   return HasAttr;
1196 }
1197 
1198 void Attributor::getAttrs(const IRPosition &IRP,
1199                           ArrayRef<Attribute::AttrKind> AttrKinds,
1200                           SmallVectorImpl<Attribute> &Attrs,
1201                           bool IgnoreSubsumingPositions) {
1202   auto CollectAttrCB = [&](const Attribute::AttrKind &Kind,
1203                            AttributeSet AttrSet, AttributeMask &,
1204                            AttrBuilder &) {
1205     if (AttrSet.hasAttribute(Kind))
1206       Attrs.push_back(AttrSet.getAttribute(Kind));
1207     return false;
1208   };
1209   for (const IRPosition &EquivIRP : SubsumingPositionIterator(IRP)) {
1210     updateAttrMap<Attribute::AttrKind>(EquivIRP, AttrKinds, CollectAttrCB);
1211     // The first position returned by the SubsumingPositionIterator is
1212     // always the position itself. If we ignore subsuming positions we
1213     // are done after the first iteration.
1214     if (IgnoreSubsumingPositions)
1215       break;
1216   }
1217   for (Attribute::AttrKind AK : AttrKinds)
1218     getAttrsFromAssumes(IRP, AK, Attrs);
1219 }
1220 
1221 ChangeStatus Attributor::removeAttrs(const IRPosition &IRP,
1222                                      ArrayRef<Attribute::AttrKind> AttrKinds) {
1223   auto RemoveAttrCB = [&](const Attribute::AttrKind &Kind, AttributeSet AttrSet,
1224                           AttributeMask &AM, AttrBuilder &) {
1225     if (!AttrSet.hasAttribute(Kind))
1226       return false;
1227     AM.addAttribute(Kind);
1228     return true;
1229   };
1230   return updateAttrMap<Attribute::AttrKind>(IRP, AttrKinds, RemoveAttrCB);
1231 }
1232 
1233 ChangeStatus Attributor::removeAttrs(const IRPosition &IRP,
1234                                      ArrayRef<StringRef> Attrs) {
1235   auto RemoveAttrCB = [&](StringRef Attr, AttributeSet AttrSet,
1236                           AttributeMask &AM, AttrBuilder &) -> bool {
1237     if (!AttrSet.hasAttribute(Attr))
1238       return false;
1239     AM.addAttribute(Attr);
1240     return true;
1241   };
1242 
1243   return updateAttrMap<StringRef>(IRP, Attrs, RemoveAttrCB);
1244 }
1245 
1246 ChangeStatus Attributor::manifestAttrs(const IRPosition &IRP,
1247                                        ArrayRef<Attribute> Attrs,
1248                                        bool ForceReplace) {
1249   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
1250   auto AddAttrCB = [&](const Attribute &Attr, AttributeSet AttrSet,
1251                        AttributeMask &, AttrBuilder &AB) {
1252     return addIfNotExistent(Ctx, Attr, AttrSet, ForceReplace, AB);
1253   };
1254   return updateAttrMap<Attribute>(IRP, Attrs, AddAttrCB);
1255 }
1256 
1257 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
1258 const IRPosition
1259     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
1260 
1261 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
1262   IRPositions.emplace_back(IRP);
1263 
1264   // Helper to determine if operand bundles on a call site are benign or
1265   // potentially problematic. We handle only llvm.assume for now.
1266   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
1267     return (isa<IntrinsicInst>(CB) &&
1268             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
1269   };
1270 
1271   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
1272   switch (IRP.getPositionKind()) {
1273   case IRPosition::IRP_INVALID:
1274   case IRPosition::IRP_FLOAT:
1275   case IRPosition::IRP_FUNCTION:
1276     return;
1277   case IRPosition::IRP_ARGUMENT:
1278   case IRPosition::IRP_RETURNED:
1279     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
1280     return;
1281   case IRPosition::IRP_CALL_SITE:
1282     assert(CB && "Expected call site!");
1283     // TODO: We need to look at the operand bundles similar to the redirection
1284     //       in CallBase.
1285     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
1286       if (auto *Callee = dyn_cast_if_present<Function>(CB->getCalledOperand()))
1287         IRPositions.emplace_back(IRPosition::function(*Callee));
1288     return;
1289   case IRPosition::IRP_CALL_SITE_RETURNED:
1290     assert(CB && "Expected call site!");
1291     // TODO: We need to look at the operand bundles similar to the redirection
1292     //       in CallBase.
1293     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
1294       if (auto *Callee =
1295               dyn_cast_if_present<Function>(CB->getCalledOperand())) {
1296         IRPositions.emplace_back(IRPosition::returned(*Callee));
1297         IRPositions.emplace_back(IRPosition::function(*Callee));
1298         for (const Argument &Arg : Callee->args())
1299           if (Arg.hasReturnedAttr()) {
1300             IRPositions.emplace_back(
1301                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
1302             IRPositions.emplace_back(
1303                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
1304             IRPositions.emplace_back(IRPosition::argument(Arg));
1305           }
1306       }
1307     }
1308     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
1309     return;
1310   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
1311     assert(CB && "Expected call site!");
1312     // TODO: We need to look at the operand bundles similar to the redirection
1313     //       in CallBase.
1314     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
1315       auto *Callee = dyn_cast_if_present<Function>(CB->getCalledOperand());
1316       if (Callee) {
1317         if (Argument *Arg = IRP.getAssociatedArgument())
1318           IRPositions.emplace_back(IRPosition::argument(*Arg));
1319         IRPositions.emplace_back(IRPosition::function(*Callee));
1320       }
1321     }
1322     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
1323     return;
1324   }
1325   }
1326 }
1327 
1328 void IRPosition::verify() {
1329 #ifdef EXPENSIVE_CHECKS
1330   switch (getPositionKind()) {
1331   case IRP_INVALID:
1332     assert((CBContext == nullptr) &&
1333            "Invalid position must not have CallBaseContext!");
1334     assert(!Enc.getOpaqueValue() &&
1335            "Expected a nullptr for an invalid position!");
1336     return;
1337   case IRP_FLOAT:
1338     assert((!isa<Argument>(&getAssociatedValue())) &&
1339            "Expected specialized kind for argument values!");
1340     return;
1341   case IRP_RETURNED:
1342     assert(isa<Function>(getAsValuePtr()) &&
1343            "Expected function for a 'returned' position!");
1344     assert(getAsValuePtr() == &getAssociatedValue() &&
1345            "Associated value mismatch!");
1346     return;
1347   case IRP_CALL_SITE_RETURNED:
1348     assert((CBContext == nullptr) &&
1349            "'call site returned' position must not have CallBaseContext!");
1350     assert((isa<CallBase>(getAsValuePtr())) &&
1351            "Expected call base for 'call site returned' position!");
1352     assert(getAsValuePtr() == &getAssociatedValue() &&
1353            "Associated value mismatch!");
1354     return;
1355   case IRP_CALL_SITE:
1356     assert((CBContext == nullptr) &&
1357            "'call site function' position must not have CallBaseContext!");
1358     assert((isa<CallBase>(getAsValuePtr())) &&
1359            "Expected call base for 'call site function' position!");
1360     assert(getAsValuePtr() == &getAssociatedValue() &&
1361            "Associated value mismatch!");
1362     return;
1363   case IRP_FUNCTION:
1364     assert(isa<Function>(getAsValuePtr()) &&
1365            "Expected function for a 'function' position!");
1366     assert(getAsValuePtr() == &getAssociatedValue() &&
1367            "Associated value mismatch!");
1368     return;
1369   case IRP_ARGUMENT:
1370     assert(isa<Argument>(getAsValuePtr()) &&
1371            "Expected argument for a 'argument' position!");
1372     assert(getAsValuePtr() == &getAssociatedValue() &&
1373            "Associated value mismatch!");
1374     return;
1375   case IRP_CALL_SITE_ARGUMENT: {
1376     assert((CBContext == nullptr) &&
1377            "'call site argument' position must not have CallBaseContext!");
1378     Use *U = getAsUsePtr();
1379     (void)U; // Silence unused variable warning.
1380     assert(U && "Expected use for a 'call site argument' position!");
1381     assert(isa<CallBase>(U->getUser()) &&
1382            "Expected call base user for a 'call site argument' position!");
1383     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
1384            "Expected call base argument operand for a 'call site argument' "
1385            "position");
1386     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
1387                unsigned(getCallSiteArgNo()) &&
1388            "Argument number mismatch!");
1389     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
1390     return;
1391   }
1392   }
1393 #endif
1394 }
1395 
1396 std::optional<Constant *>
1397 Attributor::getAssumedConstant(const IRPosition &IRP,
1398                                const AbstractAttribute &AA,
1399                                bool &UsedAssumedInformation) {
1400   // First check all callbacks provided by outside AAs. If any of them returns
1401   // a non-null value that is different from the associated value, or
1402   // std::nullopt, we assume it's simplified.
1403   for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
1404     std::optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
1405     if (!SimplifiedV)
1406       return std::nullopt;
1407     if (isa_and_nonnull<Constant>(*SimplifiedV))
1408       return cast<Constant>(*SimplifiedV);
1409     return nullptr;
1410   }
1411   if (auto *C = dyn_cast<Constant>(&IRP.getAssociatedValue()))
1412     return C;
1413   SmallVector<AA::ValueAndContext> Values;
1414   if (getAssumedSimplifiedValues(IRP, &AA, Values,
1415                                  AA::ValueScope::Interprocedural,
1416                                  UsedAssumedInformation)) {
1417     if (Values.empty())
1418       return std::nullopt;
1419     if (auto *C = dyn_cast_or_null<Constant>(
1420             AAPotentialValues::getSingleValue(*this, AA, IRP, Values)))
1421       return C;
1422   }
1423   return nullptr;
1424 }
1425 
1426 std::optional<Value *> Attributor::getAssumedSimplified(
1427     const IRPosition &IRP, const AbstractAttribute *AA,
1428     bool &UsedAssumedInformation, AA::ValueScope S) {
1429   // First check all callbacks provided by outside AAs. If any of them returns
1430   // a non-null value that is different from the associated value, or
1431   // std::nullopt, we assume it's simplified.
1432   for (auto &CB : SimplificationCallbacks.lookup(IRP))
1433     return CB(IRP, AA, UsedAssumedInformation);
1434 
1435   SmallVector<AA::ValueAndContext> Values;
1436   if (!getAssumedSimplifiedValues(IRP, AA, Values, S, UsedAssumedInformation))
1437     return &IRP.getAssociatedValue();
1438   if (Values.empty())
1439     return std::nullopt;
1440   if (AA)
1441     if (Value *V = AAPotentialValues::getSingleValue(*this, *AA, IRP, Values))
1442       return V;
1443   if (IRP.getPositionKind() == IRPosition::IRP_RETURNED ||
1444       IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_RETURNED)
1445     return nullptr;
1446   return &IRP.getAssociatedValue();
1447 }
1448 
1449 bool Attributor::getAssumedSimplifiedValues(
1450     const IRPosition &InitialIRP, const AbstractAttribute *AA,
1451     SmallVectorImpl<AA::ValueAndContext> &Values, AA::ValueScope S,
1452     bool &UsedAssumedInformation, bool RecurseForSelectAndPHI) {
1453   SmallPtrSet<Value *, 8> Seen;
1454   SmallVector<IRPosition, 8> Worklist;
1455   Worklist.push_back(InitialIRP);
1456   while (!Worklist.empty()) {
1457     const IRPosition &IRP = Worklist.pop_back_val();
1458 
1459     // First check all callbacks provided by outside AAs. If any of them returns
1460     // a non-null value that is different from the associated value, or
1461     // std::nullopt, we assume it's simplified.
1462     int NV = Values.size();
1463     const auto &SimplificationCBs = SimplificationCallbacks.lookup(IRP);
1464     for (const auto &CB : SimplificationCBs) {
1465       std::optional<Value *> CBResult = CB(IRP, AA, UsedAssumedInformation);
1466       if (!CBResult.has_value())
1467         continue;
1468       Value *V = *CBResult;
1469       if (!V)
1470         return false;
1471       if ((S & AA::ValueScope::Interprocedural) ||
1472           AA::isValidInScope(*V, IRP.getAnchorScope()))
1473         Values.push_back(AA::ValueAndContext{*V, nullptr});
1474       else
1475         return false;
1476     }
1477     if (SimplificationCBs.empty()) {
1478       // If no high-level/outside simplification occurred, use
1479       // AAPotentialValues.
1480       const auto *PotentialValuesAA =
1481           getOrCreateAAFor<AAPotentialValues>(IRP, AA, DepClassTy::OPTIONAL);
1482       if (PotentialValuesAA && PotentialValuesAA->getAssumedSimplifiedValues(*this, Values, S)) {
1483         UsedAssumedInformation |= !PotentialValuesAA->isAtFixpoint();
1484       } else if (IRP.getPositionKind() != IRPosition::IRP_RETURNED) {
1485         Values.push_back({IRP.getAssociatedValue(), IRP.getCtxI()});
1486       } else {
1487         // TODO: We could visit all returns and add the operands.
1488         return false;
1489       }
1490     }
1491 
1492     if (!RecurseForSelectAndPHI)
1493       break;
1494 
1495     for (int I = NV, E = Values.size(); I < E; ++I) {
1496       Value *V = Values[I].getValue();
1497       if (!isa<PHINode>(V) && !isa<SelectInst>(V))
1498         continue;
1499       if (!Seen.insert(V).second)
1500         continue;
1501       // Move the last element to this slot.
1502       Values[I] = Values[E - 1];
1503       // Eliminate the last slot, adjust the indices.
1504       Values.pop_back();
1505       --E;
1506       --I;
1507       // Add a new value (select or phi) to the worklist.
1508       Worklist.push_back(IRPosition::value(*V));
1509     }
1510   }
1511   return true;
1512 }
1513 
1514 std::optional<Value *> Attributor::translateArgumentToCallSiteContent(
1515     std::optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
1516     bool &UsedAssumedInformation) {
1517   if (!V)
1518     return V;
1519   if (*V == nullptr || isa<Constant>(*V))
1520     return V;
1521   if (auto *Arg = dyn_cast<Argument>(*V))
1522     if (CB.getCalledOperand() == Arg->getParent() &&
1523         CB.arg_size() > Arg->getArgNo())
1524       if (!Arg->hasPointeeInMemoryValueAttr())
1525         return getAssumedSimplified(
1526             IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
1527             UsedAssumedInformation, AA::Intraprocedural);
1528   return nullptr;
1529 }
1530 
1531 Attributor::~Attributor() {
1532   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
1533   // thus we cannot delete them. We can, and want to, destruct them though.
1534   for (auto &It : AAMap) {
1535     AbstractAttribute *AA = It.getSecond();
1536     AA->~AbstractAttribute();
1537   }
1538 }
1539 
1540 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
1541                                const AAIsDead *FnLivenessAA,
1542                                bool &UsedAssumedInformation,
1543                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1544   if (!Configuration.UseLiveness)
1545     return false;
1546   const IRPosition &IRP = AA.getIRPosition();
1547   if (!Functions.count(IRP.getAnchorScope()))
1548     return false;
1549   return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
1550                        CheckBBLivenessOnly, DepClass);
1551 }
1552 
1553 bool Attributor::isAssumedDead(const Use &U,
1554                                const AbstractAttribute *QueryingAA,
1555                                const AAIsDead *FnLivenessAA,
1556                                bool &UsedAssumedInformation,
1557                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1558   if (!Configuration.UseLiveness)
1559     return false;
1560   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
1561   if (!UserI)
1562     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
1563                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1564 
1565   if (auto *CB = dyn_cast<CallBase>(UserI)) {
1566     // For call site argument uses we can check if the argument is
1567     // unused/dead.
1568     if (CB->isArgOperand(&U)) {
1569       const IRPosition &CSArgPos =
1570           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
1571       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
1572                            UsedAssumedInformation, CheckBBLivenessOnly,
1573                            DepClass);
1574     }
1575   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
1576     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
1577     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
1578                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1579   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
1580     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
1581     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
1582                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1583   } else if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
1584     if (!CheckBBLivenessOnly && SI->getPointerOperand() != U.get()) {
1585       const IRPosition IRP = IRPosition::inst(*SI);
1586       const AAIsDead *IsDeadAA =
1587           getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1588       if (IsDeadAA && IsDeadAA->isRemovableStore()) {
1589         if (QueryingAA)
1590           recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1591         if (!IsDeadAA->isKnown(AAIsDead::IS_REMOVABLE))
1592           UsedAssumedInformation = true;
1593         return true;
1594       }
1595     }
1596   }
1597 
1598   return isAssumedDead(IRPosition::inst(*UserI), QueryingAA, FnLivenessAA,
1599                        UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1600 }
1601 
1602 bool Attributor::isAssumedDead(const Instruction &I,
1603                                const AbstractAttribute *QueryingAA,
1604                                const AAIsDead *FnLivenessAA,
1605                                bool &UsedAssumedInformation,
1606                                bool CheckBBLivenessOnly, DepClassTy DepClass,
1607                                bool CheckForDeadStore) {
1608   if (!Configuration.UseLiveness)
1609     return false;
1610   const IRPosition::CallBaseContext *CBCtx =
1611       QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
1612 
1613   if (ManifestAddedBlocks.contains(I.getParent()))
1614     return false;
1615 
1616   const Function &F = *I.getFunction();
1617   if (!FnLivenessAA || FnLivenessAA->getAnchorScope() != &F)
1618     FnLivenessAA = getOrCreateAAFor<AAIsDead>(IRPosition::function(F, CBCtx),
1619                                               QueryingAA, DepClassTy::NONE);
1620 
1621   // Don't use recursive reasoning.
1622   if (!FnLivenessAA || QueryingAA == FnLivenessAA)
1623     return false;
1624 
1625   // If we have a context instruction and a liveness AA we use it.
1626   if (CheckBBLivenessOnly ? FnLivenessAA->isAssumedDead(I.getParent())
1627                           : FnLivenessAA->isAssumedDead(&I)) {
1628     if (QueryingAA)
1629       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1630     if (!FnLivenessAA->isKnownDead(&I))
1631       UsedAssumedInformation = true;
1632     return true;
1633   }
1634 
1635   if (CheckBBLivenessOnly)
1636     return false;
1637 
1638   const IRPosition IRP = IRPosition::inst(I, CBCtx);
1639   const AAIsDead *IsDeadAA =
1640       getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1641 
1642   // Don't use recursive reasoning.
1643   if (!IsDeadAA || QueryingAA == IsDeadAA)
1644     return false;
1645 
1646   if (IsDeadAA->isAssumedDead()) {
1647     if (QueryingAA)
1648       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1649     if (!IsDeadAA->isKnownDead())
1650       UsedAssumedInformation = true;
1651     return true;
1652   }
1653 
1654   if (CheckForDeadStore && isa<StoreInst>(I) && IsDeadAA->isRemovableStore()) {
1655     if (QueryingAA)
1656       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1657     if (!IsDeadAA->isKnownDead())
1658       UsedAssumedInformation = true;
1659     return true;
1660   }
1661 
1662   return false;
1663 }
1664 
1665 bool Attributor::isAssumedDead(const IRPosition &IRP,
1666                                const AbstractAttribute *QueryingAA,
1667                                const AAIsDead *FnLivenessAA,
1668                                bool &UsedAssumedInformation,
1669                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1670   if (!Configuration.UseLiveness)
1671     return false;
1672   // Don't check liveness for constants, e.g. functions, used as (floating)
1673   // values since the context instruction and such is here meaningless.
1674   if (IRP.getPositionKind() == IRPosition::IRP_FLOAT &&
1675       isa<Constant>(IRP.getAssociatedValue())) {
1676     return false;
1677   }
1678 
1679   Instruction *CtxI = IRP.getCtxI();
1680   if (CtxI &&
1681       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
1682                     /* CheckBBLivenessOnly */ true,
1683                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
1684     return true;
1685 
1686   if (CheckBBLivenessOnly)
1687     return false;
1688 
1689   // If we haven't succeeded we query the specific liveness info for the IRP.
1690   const AAIsDead *IsDeadAA;
1691   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
1692     IsDeadAA = getOrCreateAAFor<AAIsDead>(
1693         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
1694         QueryingAA, DepClassTy::NONE);
1695   else
1696     IsDeadAA = getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1697 
1698   // Don't use recursive reasoning.
1699   if (!IsDeadAA || QueryingAA == IsDeadAA)
1700     return false;
1701 
1702   if (IsDeadAA->isAssumedDead()) {
1703     if (QueryingAA)
1704       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1705     if (!IsDeadAA->isKnownDead())
1706       UsedAssumedInformation = true;
1707     return true;
1708   }
1709 
1710   return false;
1711 }
1712 
1713 bool Attributor::isAssumedDead(const BasicBlock &BB,
1714                                const AbstractAttribute *QueryingAA,
1715                                const AAIsDead *FnLivenessAA,
1716                                DepClassTy DepClass) {
1717   if (!Configuration.UseLiveness)
1718     return false;
1719   const Function &F = *BB.getParent();
1720   if (!FnLivenessAA || FnLivenessAA->getAnchorScope() != &F)
1721     FnLivenessAA = getOrCreateAAFor<AAIsDead>(IRPosition::function(F),
1722                                               QueryingAA, DepClassTy::NONE);
1723 
1724   // Don't use recursive reasoning.
1725   if (!FnLivenessAA || QueryingAA == FnLivenessAA)
1726     return false;
1727 
1728   if (FnLivenessAA->isAssumedDead(&BB)) {
1729     if (QueryingAA)
1730       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1731     return true;
1732   }
1733 
1734   return false;
1735 }
1736 
1737 bool Attributor::checkForAllCallees(
1738     function_ref<bool(ArrayRef<const Function *>)> Pred,
1739     const AbstractAttribute &QueryingAA, const CallBase &CB) {
1740   if (const Function *Callee = dyn_cast<Function>(CB.getCalledOperand()))
1741     return Pred(Callee);
1742 
1743   const auto *CallEdgesAA = getAAFor<AACallEdges>(
1744       QueryingAA, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
1745   if (!CallEdgesAA || CallEdgesAA->hasUnknownCallee())
1746     return false;
1747 
1748   const auto &Callees = CallEdgesAA->getOptimisticEdges();
1749   return Pred(Callees.getArrayRef());
1750 }
1751 
1752 bool Attributor::checkForAllUses(
1753     function_ref<bool(const Use &, bool &)> Pred,
1754     const AbstractAttribute &QueryingAA, const Value &V,
1755     bool CheckBBLivenessOnly, DepClassTy LivenessDepClass,
1756     bool IgnoreDroppableUses,
1757     function_ref<bool(const Use &OldU, const Use &NewU)> EquivalentUseCB) {
1758 
1759   // Check virtual uses first.
1760   for (VirtualUseCallbackTy &CB : VirtualUseCallbacks.lookup(&V))
1761     if (!CB(*this, &QueryingAA))
1762       return false;
1763 
1764   // Check the trivial case first as it catches void values.
1765   if (V.use_empty())
1766     return true;
1767 
1768   const IRPosition &IRP = QueryingAA.getIRPosition();
1769   SmallVector<const Use *, 16> Worklist;
1770   SmallPtrSet<const Use *, 16> Visited;
1771 
1772   auto AddUsers = [&](const Value &V, const Use *OldUse) {
1773     for (const Use &UU : V.uses()) {
1774       if (OldUse && EquivalentUseCB && !EquivalentUseCB(*OldUse, UU)) {
1775         LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was "
1776                              "rejected by the equivalence call back: "
1777                           << *UU << "!\n");
1778         return false;
1779       }
1780 
1781       Worklist.push_back(&UU);
1782     }
1783     return true;
1784   };
1785 
1786   AddUsers(V, /* OldUse */ nullptr);
1787 
1788   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
1789                     << " initial uses to check\n");
1790 
1791   const Function *ScopeFn = IRP.getAnchorScope();
1792   const auto *LivenessAA =
1793       ScopeFn ? getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1794                                    DepClassTy::NONE)
1795               : nullptr;
1796 
1797   while (!Worklist.empty()) {
1798     const Use *U = Worklist.pop_back_val();
1799     if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1800       continue;
1801     DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, {
1802       if (auto *Fn = dyn_cast<Function>(U->getUser()))
1803         dbgs() << "[Attributor] Check use: " << **U << " in " << Fn->getName()
1804                << "\n";
1805       else
1806         dbgs() << "[Attributor] Check use: " << **U << " in " << *U->getUser()
1807                << "\n";
1808     });
1809     bool UsedAssumedInformation = false;
1810     if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1811                       CheckBBLivenessOnly, LivenessDepClass)) {
1812       DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
1813                       dbgs() << "[Attributor] Dead use, skip!\n");
1814       continue;
1815     }
1816     if (IgnoreDroppableUses && U->getUser()->isDroppable()) {
1817       DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
1818                       dbgs() << "[Attributor] Droppable user, skip!\n");
1819       continue;
1820     }
1821 
1822     if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1823       if (&SI->getOperandUse(0) == U) {
1824         if (!Visited.insert(U).second)
1825           continue;
1826         SmallSetVector<Value *, 4> PotentialCopies;
1827         if (AA::getPotentialCopiesOfStoredValue(
1828                 *this, *SI, PotentialCopies, QueryingAA, UsedAssumedInformation,
1829                 /* OnlyExact */ true)) {
1830           DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
1831                           dbgs()
1832                               << "[Attributor] Value is stored, continue with "
1833                               << PotentialCopies.size()
1834                               << " potential copies instead!\n");
1835           for (Value *PotentialCopy : PotentialCopies)
1836             if (!AddUsers(*PotentialCopy, U))
1837               return false;
1838           continue;
1839         }
1840       }
1841     }
1842 
1843     bool Follow = false;
1844     if (!Pred(*U, Follow))
1845       return false;
1846     if (!Follow)
1847       continue;
1848 
1849     User &Usr = *U->getUser();
1850     AddUsers(Usr, /* OldUse */ nullptr);
1851 
1852     auto *RI = dyn_cast<ReturnInst>(&Usr);
1853     if (!RI)
1854       continue;
1855 
1856     Function &F = *RI->getFunction();
1857     auto CallSitePred = [&](AbstractCallSite ACS) {
1858       return AddUsers(*ACS.getInstruction(), U);
1859     };
1860     if (!checkForAllCallSites(CallSitePred, F, /* RequireAllCallSites */ true,
1861                               &QueryingAA, UsedAssumedInformation)) {
1862       LLVM_DEBUG(dbgs() << "[Attributor] Could not follow return instruction "
1863                            "to all call sites: "
1864                         << *RI << "\n");
1865       return false;
1866     }
1867   }
1868 
1869   return true;
1870 }
1871 
1872 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1873                                       const AbstractAttribute &QueryingAA,
1874                                       bool RequireAllCallSites,
1875                                       bool &UsedAssumedInformation) {
1876   // We can try to determine information from
1877   // the call sites. However, this is only possible all call sites are known,
1878   // hence the function has internal linkage.
1879   const IRPosition &IRP = QueryingAA.getIRPosition();
1880   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1881   if (!AssociatedFunction) {
1882     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1883                       << "\n");
1884     return false;
1885   }
1886 
1887   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1888                               &QueryingAA, UsedAssumedInformation);
1889 }
1890 
1891 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1892                                       const Function &Fn,
1893                                       bool RequireAllCallSites,
1894                                       const AbstractAttribute *QueryingAA,
1895                                       bool &UsedAssumedInformation,
1896                                       bool CheckPotentiallyDead) {
1897   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1898     LLVM_DEBUG(
1899         dbgs()
1900         << "[Attributor] Function " << Fn.getName()
1901         << " has no internal linkage, hence not all call sites are known\n");
1902     return false;
1903   }
1904   // Check virtual uses first.
1905   for (VirtualUseCallbackTy &CB : VirtualUseCallbacks.lookup(&Fn))
1906     if (!CB(*this, QueryingAA))
1907       return false;
1908 
1909   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1910   for (unsigned u = 0; u < Uses.size(); ++u) {
1911     const Use &U = *Uses[u];
1912     DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, {
1913       if (auto *Fn = dyn_cast<Function>(U))
1914         dbgs() << "[Attributor] Check use: " << Fn->getName() << " in "
1915                << *U.getUser() << "\n";
1916       else
1917         dbgs() << "[Attributor] Check use: " << *U << " in " << *U.getUser()
1918                << "\n";
1919     });
1920     if (!CheckPotentiallyDead &&
1921         isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1922                       /* CheckBBLivenessOnly */ true)) {
1923       DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
1924                       dbgs() << "[Attributor] Dead use, skip!\n");
1925       continue;
1926     }
1927     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1928       if (CE->isCast() && CE->getType()->isPointerTy()) {
1929         DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, {
1930           dbgs() << "[Attributor] Use, is constant cast expression, add "
1931                  << CE->getNumUses() << " uses of that expression instead!\n";
1932         });
1933         for (const Use &CEU : CE->uses())
1934           Uses.push_back(&CEU);
1935         continue;
1936       }
1937     }
1938 
1939     AbstractCallSite ACS(&U);
1940     if (!ACS) {
1941       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
1942                         << " has non call site use " << *U.get() << " in "
1943                         << *U.getUser() << "\n");
1944       // BlockAddress users are allowed.
1945       if (isa<BlockAddress>(U.getUser()))
1946         continue;
1947       return false;
1948     }
1949 
1950     const Use *EffectiveUse =
1951         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1952     if (!ACS.isCallee(EffectiveUse)) {
1953       if (!RequireAllCallSites) {
1954         LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1955                           << " is not a call of " << Fn.getName()
1956                           << ", skip use\n");
1957         continue;
1958       }
1959       LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1960                         << " is an invalid use of " << Fn.getName() << "\n");
1961       return false;
1962     }
1963 
1964     // Make sure the arguments that can be matched between the call site and the
1965     // callee argee on their type. It is unlikely they do not and it doesn't
1966     // make sense for all attributes to know/care about this.
1967     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
1968     unsigned MinArgsParams =
1969         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1970     for (unsigned u = 0; u < MinArgsParams; ++u) {
1971       Value *CSArgOp = ACS.getCallArgOperand(u);
1972       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1973         LLVM_DEBUG(
1974             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1975                    << u << "@" << Fn.getName() << ": "
1976                    << *Fn.getArg(u)->getType() << " vs. "
1977                    << *ACS.getCallArgOperand(u)->getType() << "\n");
1978         return false;
1979       }
1980     }
1981 
1982     if (Pred(ACS))
1983       continue;
1984 
1985     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1986                       << *ACS.getInstruction() << "\n");
1987     return false;
1988   }
1989 
1990   return true;
1991 }
1992 
1993 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1994   // TODO: Maintain a cache of Values that are
1995   // on the pathway from a Argument to a Instruction that would effect the
1996   // liveness/return state etc.
1997   return EnableCallSiteSpecific;
1998 }
1999 
2000 bool Attributor::checkForAllReturnedValues(function_ref<bool(Value &)> Pred,
2001                                            const AbstractAttribute &QueryingAA,
2002                                            AA::ValueScope S,
2003                                            bool RecurseForSelectAndPHI) {
2004 
2005   const IRPosition &IRP = QueryingAA.getIRPosition();
2006   const Function *AssociatedFunction = IRP.getAssociatedFunction();
2007   if (!AssociatedFunction)
2008     return false;
2009 
2010   bool UsedAssumedInformation = false;
2011   SmallVector<AA::ValueAndContext> Values;
2012   if (!getAssumedSimplifiedValues(
2013           IRPosition::returned(*AssociatedFunction), &QueryingAA, Values, S,
2014           UsedAssumedInformation, RecurseForSelectAndPHI))
2015     return false;
2016 
2017   return llvm::all_of(Values, [&](const AA::ValueAndContext &VAC) {
2018     return Pred(*VAC.getValue());
2019   });
2020 }
2021 
2022 static bool checkForAllInstructionsImpl(
2023     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
2024     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
2025     const AAIsDead *LivenessAA, ArrayRef<unsigned> Opcodes,
2026     bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
2027     bool CheckPotentiallyDead = false) {
2028   for (unsigned Opcode : Opcodes) {
2029     // Check if we have instructions with this opcode at all first.
2030     auto *Insts = OpcodeInstMap.lookup(Opcode);
2031     if (!Insts)
2032       continue;
2033 
2034     for (Instruction *I : *Insts) {
2035       // Skip dead instructions.
2036       if (A && !CheckPotentiallyDead &&
2037           A->isAssumedDead(IRPosition::inst(*I), QueryingAA, LivenessAA,
2038                            UsedAssumedInformation, CheckBBLivenessOnly)) {
2039         DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
2040                         dbgs() << "[Attributor] Instruction " << *I
2041                                << " is potentially dead, skip!\n";);
2042         continue;
2043       }
2044 
2045       if (!Pred(*I))
2046         return false;
2047     }
2048   }
2049   return true;
2050 }
2051 
2052 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
2053                                          const Function *Fn,
2054                                          const AbstractAttribute *QueryingAA,
2055                                          ArrayRef<unsigned> Opcodes,
2056                                          bool &UsedAssumedInformation,
2057                                          bool CheckBBLivenessOnly,
2058                                          bool CheckPotentiallyDead) {
2059   // Since we need to provide instructions we have to have an exact definition.
2060   if (!Fn || Fn->isDeclaration())
2061     return false;
2062 
2063   const IRPosition &QueryIRP = IRPosition::function(*Fn);
2064   const auto *LivenessAA =
2065       CheckPotentiallyDead && QueryingAA
2066           ? (getAAFor<AAIsDead>(*QueryingAA, QueryIRP, DepClassTy::NONE))
2067           : nullptr;
2068 
2069   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2070   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, QueryingAA,
2071                                    LivenessAA, Opcodes, UsedAssumedInformation,
2072                                    CheckBBLivenessOnly, CheckPotentiallyDead))
2073     return false;
2074 
2075   return true;
2076 }
2077 
2078 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
2079                                          const AbstractAttribute &QueryingAA,
2080                                          ArrayRef<unsigned> Opcodes,
2081                                          bool &UsedAssumedInformation,
2082                                          bool CheckBBLivenessOnly,
2083                                          bool CheckPotentiallyDead) {
2084   const IRPosition &IRP = QueryingAA.getIRPosition();
2085   const Function *AssociatedFunction = IRP.getAssociatedFunction();
2086   return checkForAllInstructions(Pred, AssociatedFunction, &QueryingAA, Opcodes,
2087                                  UsedAssumedInformation, CheckBBLivenessOnly,
2088                                  CheckPotentiallyDead);
2089 }
2090 
2091 bool Attributor::checkForAllReadWriteInstructions(
2092     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
2093     bool &UsedAssumedInformation) {
2094   TimeTraceScope TS("checkForAllReadWriteInstructions");
2095 
2096   const Function *AssociatedFunction =
2097       QueryingAA.getIRPosition().getAssociatedFunction();
2098   if (!AssociatedFunction)
2099     return false;
2100 
2101   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
2102   const auto *LivenessAA =
2103       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
2104 
2105   for (Instruction *I :
2106        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
2107     // Skip dead instructions.
2108     if (isAssumedDead(IRPosition::inst(*I), &QueryingAA, LivenessAA,
2109                       UsedAssumedInformation))
2110       continue;
2111 
2112     if (!Pred(*I))
2113       return false;
2114   }
2115 
2116   return true;
2117 }
2118 
2119 void Attributor::runTillFixpoint() {
2120   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
2121   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
2122                     << DG.SyntheticRoot.Deps.size()
2123                     << " abstract attributes.\n");
2124 
2125   // Now that all abstract attributes are collected and initialized we start
2126   // the abstract analysis.
2127 
2128   unsigned IterationCounter = 1;
2129   unsigned MaxIterations =
2130       Configuration.MaxFixpointIterations.value_or(SetFixpointIterations);
2131 
2132   SmallVector<AbstractAttribute *, 32> ChangedAAs;
2133   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
2134   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
2135 
2136   do {
2137     // Remember the size to determine new attributes.
2138     size_t NumAAs = DG.SyntheticRoot.Deps.size();
2139     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
2140                       << ", Worklist size: " << Worklist.size() << "\n");
2141 
2142     // For invalid AAs we can fix dependent AAs that have a required dependence,
2143     // thereby folding long dependence chains in a single step without the need
2144     // to run updates.
2145     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
2146       AbstractAttribute *InvalidAA = InvalidAAs[u];
2147 
2148       // Check the dependences to fast track invalidation.
2149       DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
2150                       dbgs() << "[Attributor] InvalidAA: " << *InvalidAA
2151                              << " has " << InvalidAA->Deps.size()
2152                              << " required & optional dependences\n");
2153       for (auto &DepIt : InvalidAA->Deps) {
2154         AbstractAttribute *DepAA = cast<AbstractAttribute>(DepIt.getPointer());
2155         if (DepIt.getInt() == unsigned(DepClassTy::OPTIONAL)) {
2156           DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
2157                           dbgs() << " - recompute: " << *DepAA);
2158           Worklist.insert(DepAA);
2159           continue;
2160         }
2161         DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, dbgs()
2162                                                 << " - invalidate: " << *DepAA);
2163         DepAA->getState().indicatePessimisticFixpoint();
2164         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
2165         if (!DepAA->getState().isValidState())
2166           InvalidAAs.insert(DepAA);
2167         else
2168           ChangedAAs.push_back(DepAA);
2169       }
2170       InvalidAA->Deps.clear();
2171     }
2172 
2173     // Add all abstract attributes that are potentially dependent on one that
2174     // changed to the work list.
2175     for (AbstractAttribute *ChangedAA : ChangedAAs) {
2176       for (auto &DepIt : ChangedAA->Deps)
2177         Worklist.insert(cast<AbstractAttribute>(DepIt.getPointer()));
2178       ChangedAA->Deps.clear();
2179     }
2180 
2181     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
2182                       << ", Worklist+Dependent size: " << Worklist.size()
2183                       << "\n");
2184 
2185     // Reset the changed and invalid set.
2186     ChangedAAs.clear();
2187     InvalidAAs.clear();
2188 
2189     // Update all abstract attribute in the work list and record the ones that
2190     // changed.
2191     for (AbstractAttribute *AA : Worklist) {
2192       const auto &AAState = AA->getState();
2193       if (!AAState.isAtFixpoint())
2194         if (updateAA(*AA) == ChangeStatus::CHANGED)
2195           ChangedAAs.push_back(AA);
2196 
2197       // Use the InvalidAAs vector to propagate invalid states fast transitively
2198       // without requiring updates.
2199       if (!AAState.isValidState())
2200         InvalidAAs.insert(AA);
2201     }
2202 
2203     // Add attributes to the changed set if they have been created in the last
2204     // iteration.
2205     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
2206                       DG.SyntheticRoot.end());
2207 
2208     // Reset the work list and repopulate with the changed abstract attributes.
2209     // Note that dependent ones are added above.
2210     Worklist.clear();
2211     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
2212     Worklist.insert(QueryAAsAwaitingUpdate.begin(),
2213                     QueryAAsAwaitingUpdate.end());
2214     QueryAAsAwaitingUpdate.clear();
2215 
2216   } while (!Worklist.empty() && (IterationCounter++ < MaxIterations));
2217 
2218   if (IterationCounter > MaxIterations && !Functions.empty()) {
2219     auto Remark = [&](OptimizationRemarkMissed ORM) {
2220       return ORM << "Attributor did not reach a fixpoint after "
2221                  << ore::NV("Iterations", MaxIterations) << " iterations.";
2222     };
2223     Function *F = Functions.front();
2224     emitRemark<OptimizationRemarkMissed>(F, "FixedPoint", Remark);
2225   }
2226 
2227   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
2228                     << IterationCounter << "/" << MaxIterations
2229                     << " iterations\n");
2230 
2231   // Reset abstract arguments not settled in a sound fixpoint by now. This
2232   // happens when we stopped the fixpoint iteration early. Note that only the
2233   // ones marked as "changed" *and* the ones transitively depending on them
2234   // need to be reverted to a pessimistic state. Others might not be in a
2235   // fixpoint state but we can use the optimistic results for them anyway.
2236   SmallPtrSet<AbstractAttribute *, 32> Visited;
2237   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
2238     AbstractAttribute *ChangedAA = ChangedAAs[u];
2239     if (!Visited.insert(ChangedAA).second)
2240       continue;
2241 
2242     AbstractState &State = ChangedAA->getState();
2243     if (!State.isAtFixpoint()) {
2244       State.indicatePessimisticFixpoint();
2245 
2246       NumAttributesTimedOut++;
2247     }
2248 
2249     for (auto &DepIt : ChangedAA->Deps)
2250       ChangedAAs.push_back(cast<AbstractAttribute>(DepIt.getPointer()));
2251     ChangedAA->Deps.clear();
2252   }
2253 
2254   LLVM_DEBUG({
2255     if (!Visited.empty())
2256       dbgs() << "\n[Attributor] Finalized " << Visited.size()
2257              << " abstract attributes.\n";
2258   });
2259 }
2260 
2261 void Attributor::registerForUpdate(AbstractAttribute &AA) {
2262   assert(AA.isQueryAA() &&
2263          "Non-query AAs should not be required to register for updates!");
2264   QueryAAsAwaitingUpdate.insert(&AA);
2265 }
2266 
2267 ChangeStatus Attributor::manifestAttributes() {
2268   TimeTraceScope TimeScope("Attributor::manifestAttributes");
2269   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
2270 
2271   unsigned NumManifested = 0;
2272   unsigned NumAtFixpoint = 0;
2273   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
2274   for (auto &DepAA : DG.SyntheticRoot.Deps) {
2275     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
2276     AbstractState &State = AA->getState();
2277 
2278     // If there is not already a fixpoint reached, we can now take the
2279     // optimistic state. This is correct because we enforced a pessimistic one
2280     // on abstract attributes that were transitively dependent on a changed one
2281     // already above.
2282     if (!State.isAtFixpoint())
2283       State.indicateOptimisticFixpoint();
2284 
2285     // We must not manifest Attributes that use Callbase info.
2286     if (AA->hasCallBaseContext())
2287       continue;
2288     // If the state is invalid, we do not try to manifest it.
2289     if (!State.isValidState())
2290       continue;
2291 
2292     if (AA->getCtxI() && !isRunOn(*AA->getAnchorScope()))
2293       continue;
2294 
2295     // Skip dead code.
2296     bool UsedAssumedInformation = false;
2297     if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
2298                       /* CheckBBLivenessOnly */ true))
2299       continue;
2300     // Check if the manifest debug counter that allows skipping manifestation of
2301     // AAs
2302     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
2303       continue;
2304     // Manifest the state and record if we changed the IR.
2305     ChangeStatus LocalChange = AA->manifest(*this);
2306     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
2307       AA->trackStatistics();
2308     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
2309                       << "\n");
2310 
2311     ManifestChange = ManifestChange | LocalChange;
2312 
2313     NumAtFixpoint++;
2314     NumManifested += (LocalChange == ChangeStatus::CHANGED);
2315   }
2316 
2317   (void)NumManifested;
2318   (void)NumAtFixpoint;
2319   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
2320                     << " arguments while " << NumAtFixpoint
2321                     << " were in a valid fixpoint state\n");
2322 
2323   NumAttributesManifested += NumManifested;
2324   NumAttributesValidFixpoint += NumAtFixpoint;
2325 
2326   (void)NumFinalAAs;
2327   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
2328     auto DepIt = DG.SyntheticRoot.Deps.begin();
2329     for (unsigned u = 0; u < NumFinalAAs; ++u)
2330       ++DepIt;
2331     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size();
2332          ++u, ++DepIt) {
2333       errs() << "Unexpected abstract attribute: "
2334              << cast<AbstractAttribute>(DepIt->getPointer()) << " :: "
2335              << cast<AbstractAttribute>(DepIt->getPointer())
2336                     ->getIRPosition()
2337                     .getAssociatedValue()
2338              << "\n";
2339     }
2340     llvm_unreachable("Expected the final number of abstract attributes to "
2341                      "remain unchanged!");
2342   }
2343 
2344   for (auto &It : AttrsMap) {
2345     AttributeList &AL = It.getSecond();
2346     const IRPosition &IRP =
2347         isa<Function>(It.getFirst())
2348             ? IRPosition::function(*cast<Function>(It.getFirst()))
2349             : IRPosition::callsite_function(*cast<CallBase>(It.getFirst()));
2350     IRP.setAttrList(AL);
2351   }
2352 
2353   return ManifestChange;
2354 }
2355 
2356 void Attributor::identifyDeadInternalFunctions() {
2357   // Early exit if we don't intend to delete functions.
2358   if (!Configuration.DeleteFns)
2359     return;
2360 
2361   // To avoid triggering an assertion in the lazy call graph we will not delete
2362   // any internal library functions. We should modify the assertion though and
2363   // allow internals to be deleted.
2364   const auto *TLI =
2365       isModulePass()
2366           ? nullptr
2367           : getInfoCache().getTargetLibraryInfoForFunction(*Functions.back());
2368   LibFunc LF;
2369 
2370   // Identify dead internal functions and delete them. This happens outside
2371   // the other fixpoint analysis as we might treat potentially dead functions
2372   // as live to lower the number of iterations. If they happen to be dead, the
2373   // below fixpoint loop will identify and eliminate them.
2374 
2375   SmallVector<Function *, 8> InternalFns;
2376   for (Function *F : Functions)
2377     if (F->hasLocalLinkage() && (isModulePass() || !TLI->getLibFunc(*F, LF)))
2378       InternalFns.push_back(F);
2379 
2380   SmallPtrSet<Function *, 8> LiveInternalFns;
2381   bool FoundLiveInternal = true;
2382   while (FoundLiveInternal) {
2383     FoundLiveInternal = false;
2384     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
2385       Function *F = InternalFns[u];
2386       if (!F)
2387         continue;
2388 
2389       bool UsedAssumedInformation = false;
2390       if (checkForAllCallSites(
2391               [&](AbstractCallSite ACS) {
2392                 Function *Callee = ACS.getInstruction()->getFunction();
2393                 return ToBeDeletedFunctions.count(Callee) ||
2394                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
2395                         !LiveInternalFns.count(Callee));
2396               },
2397               *F, true, nullptr, UsedAssumedInformation)) {
2398         continue;
2399       }
2400 
2401       LiveInternalFns.insert(F);
2402       InternalFns[u] = nullptr;
2403       FoundLiveInternal = true;
2404     }
2405   }
2406 
2407   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
2408     if (Function *F = InternalFns[u])
2409       ToBeDeletedFunctions.insert(F);
2410 }
2411 
2412 ChangeStatus Attributor::cleanupIR() {
2413   TimeTraceScope TimeScope("Attributor::cleanupIR");
2414   // Delete stuff at the end to avoid invalid references and a nice order.
2415   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
2416                     << ToBeDeletedFunctions.size() << " functions and "
2417                     << ToBeDeletedBlocks.size() << " blocks and "
2418                     << ToBeDeletedInsts.size() << " instructions and "
2419                     << ToBeChangedValues.size() << " values and "
2420                     << ToBeChangedUses.size() << " uses. To insert "
2421                     << ToBeChangedToUnreachableInsts.size()
2422                     << " unreachables.\n"
2423                     << "Preserve manifest added " << ManifestAddedBlocks.size()
2424                     << " blocks\n");
2425 
2426   SmallVector<WeakTrackingVH, 32> DeadInsts;
2427   SmallVector<Instruction *, 32> TerminatorsToFold;
2428 
2429   auto ReplaceUse = [&](Use *U, Value *NewV) {
2430     Value *OldV = U->get();
2431 
2432     // If we plan to replace NewV we need to update it at this point.
2433     do {
2434       const auto &Entry = ToBeChangedValues.lookup(NewV);
2435       if (!get<0>(Entry))
2436         break;
2437       NewV = get<0>(Entry);
2438     } while (true);
2439 
2440     Instruction *I = dyn_cast<Instruction>(U->getUser());
2441     assert((!I || isRunOn(*I->getFunction())) &&
2442            "Cannot replace an instruction outside the current SCC!");
2443 
2444     // Do not replace uses in returns if the value is a must-tail call we will
2445     // not delete.
2446     if (auto *RI = dyn_cast_or_null<ReturnInst>(I)) {
2447       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
2448         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
2449           return;
2450       // If we rewrite a return and the new value is not an argument, strip the
2451       // `returned` attribute as it is wrong now.
2452       if (!isa<Argument>(NewV))
2453         for (auto &Arg : RI->getFunction()->args())
2454           Arg.removeAttr(Attribute::Returned);
2455     }
2456 
2457     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
2458                       << " instead of " << *OldV << "\n");
2459     U->set(NewV);
2460 
2461     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
2462       CGModifiedFunctions.insert(I->getFunction());
2463       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
2464           isInstructionTriviallyDead(I))
2465         DeadInsts.push_back(I);
2466     }
2467     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
2468       auto *CB = cast<CallBase>(U->getUser());
2469       if (CB->isArgOperand(U)) {
2470         unsigned Idx = CB->getArgOperandNo(U);
2471         CB->removeParamAttr(Idx, Attribute::NoUndef);
2472         auto *Callee = dyn_cast_if_present<Function>(CB->getCalledOperand());
2473         if (Callee && Callee->arg_size() > Idx)
2474           Callee->removeParamAttr(Idx, Attribute::NoUndef);
2475       }
2476     }
2477     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
2478       Instruction *UserI = cast<Instruction>(U->getUser());
2479       if (isa<UndefValue>(NewV)) {
2480         ToBeChangedToUnreachableInsts.insert(UserI);
2481       } else {
2482         TerminatorsToFold.push_back(UserI);
2483       }
2484     }
2485   };
2486 
2487   for (auto &It : ToBeChangedUses) {
2488     Use *U = It.first;
2489     Value *NewV = It.second;
2490     ReplaceUse(U, NewV);
2491   }
2492 
2493   SmallVector<Use *, 4> Uses;
2494   for (auto &It : ToBeChangedValues) {
2495     Value *OldV = It.first;
2496     auto [NewV, Done] = It.second;
2497     Uses.clear();
2498     for (auto &U : OldV->uses())
2499       if (Done || !U.getUser()->isDroppable())
2500         Uses.push_back(&U);
2501     for (Use *U : Uses) {
2502       if (auto *I = dyn_cast<Instruction>(U->getUser()))
2503         if (!isRunOn(*I->getFunction()))
2504           continue;
2505       ReplaceUse(U, NewV);
2506     }
2507   }
2508 
2509   for (const auto &V : InvokeWithDeadSuccessor)
2510     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
2511       assert(isRunOn(*II->getFunction()) &&
2512              "Cannot replace an invoke outside the current SCC!");
2513       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
2514       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
2515       bool Invoke2CallAllowed =
2516           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
2517       assert((UnwindBBIsDead || NormalBBIsDead) &&
2518              "Invoke does not have dead successors!");
2519       BasicBlock *BB = II->getParent();
2520       BasicBlock *NormalDestBB = II->getNormalDest();
2521       if (UnwindBBIsDead) {
2522         Instruction *NormalNextIP = &NormalDestBB->front();
2523         if (Invoke2CallAllowed) {
2524           changeToCall(II);
2525           NormalNextIP = BB->getTerminator();
2526         }
2527         if (NormalBBIsDead)
2528           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
2529       } else {
2530         assert(NormalBBIsDead && "Broken invariant!");
2531         if (!NormalDestBB->getUniquePredecessor())
2532           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
2533         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
2534       }
2535     }
2536   for (Instruction *I : TerminatorsToFold) {
2537     assert(isRunOn(*I->getFunction()) &&
2538            "Cannot replace a terminator outside the current SCC!");
2539     CGModifiedFunctions.insert(I->getFunction());
2540     ConstantFoldTerminator(I->getParent());
2541   }
2542   for (const auto &V : ToBeChangedToUnreachableInsts)
2543     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
2544       LLVM_DEBUG(dbgs() << "[Attributor] Change to unreachable: " << *I
2545                         << "\n");
2546       assert(isRunOn(*I->getFunction()) &&
2547              "Cannot replace an instruction outside the current SCC!");
2548       CGModifiedFunctions.insert(I->getFunction());
2549       changeToUnreachable(I);
2550     }
2551 
2552   for (const auto &V : ToBeDeletedInsts) {
2553     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
2554       if (auto *CB = dyn_cast<CallBase>(I)) {
2555         assert((isa<IntrinsicInst>(CB) || isRunOn(*I->getFunction())) &&
2556                "Cannot delete an instruction outside the current SCC!");
2557         if (!isa<IntrinsicInst>(CB))
2558           Configuration.CGUpdater.removeCallSite(*CB);
2559       }
2560       I->dropDroppableUses();
2561       CGModifiedFunctions.insert(I->getFunction());
2562       if (!I->getType()->isVoidTy())
2563         I->replaceAllUsesWith(UndefValue::get(I->getType()));
2564       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
2565         DeadInsts.push_back(I);
2566       else
2567         I->eraseFromParent();
2568     }
2569   }
2570 
2571   llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) { return !I; });
2572 
2573   LLVM_DEBUG({
2574     dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
2575     for (auto &I : DeadInsts)
2576       if (I)
2577         dbgs() << "  - " << *I << "\n";
2578   });
2579 
2580   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
2581 
2582   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
2583     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
2584     ToBeDeletedBBs.reserve(NumDeadBlocks);
2585     for (BasicBlock *BB : ToBeDeletedBlocks) {
2586       assert(isRunOn(*BB->getParent()) &&
2587              "Cannot delete a block outside the current SCC!");
2588       CGModifiedFunctions.insert(BB->getParent());
2589       // Do not delete BBs added during manifests of AAs.
2590       if (ManifestAddedBlocks.contains(BB))
2591         continue;
2592       ToBeDeletedBBs.push_back(BB);
2593     }
2594     // Actually we do not delete the blocks but squash them into a single
2595     // unreachable but untangling branches that jump here is something we need
2596     // to do in a more generic way.
2597     detachDeadBlocks(ToBeDeletedBBs, nullptr);
2598   }
2599 
2600   identifyDeadInternalFunctions();
2601 
2602   // Rewrite the functions as requested during manifest.
2603   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
2604 
2605   for (Function *Fn : CGModifiedFunctions)
2606     if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
2607       Configuration.CGUpdater.reanalyzeFunction(*Fn);
2608 
2609   for (Function *Fn : ToBeDeletedFunctions) {
2610     if (!Functions.count(Fn))
2611       continue;
2612     Configuration.CGUpdater.removeFunction(*Fn);
2613   }
2614 
2615   if (!ToBeChangedUses.empty())
2616     ManifestChange = ChangeStatus::CHANGED;
2617 
2618   if (!ToBeChangedToUnreachableInsts.empty())
2619     ManifestChange = ChangeStatus::CHANGED;
2620 
2621   if (!ToBeDeletedFunctions.empty())
2622     ManifestChange = ChangeStatus::CHANGED;
2623 
2624   if (!ToBeDeletedBlocks.empty())
2625     ManifestChange = ChangeStatus::CHANGED;
2626 
2627   if (!ToBeDeletedInsts.empty())
2628     ManifestChange = ChangeStatus::CHANGED;
2629 
2630   if (!InvokeWithDeadSuccessor.empty())
2631     ManifestChange = ChangeStatus::CHANGED;
2632 
2633   if (!DeadInsts.empty())
2634     ManifestChange = ChangeStatus::CHANGED;
2635 
2636   NumFnDeleted += ToBeDeletedFunctions.size();
2637 
2638   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
2639                     << " functions after manifest.\n");
2640 
2641 #ifdef EXPENSIVE_CHECKS
2642   for (Function *F : Functions) {
2643     if (ToBeDeletedFunctions.count(F))
2644       continue;
2645     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
2646   }
2647 #endif
2648 
2649   return ManifestChange;
2650 }
2651 
2652 ChangeStatus Attributor::run() {
2653   TimeTraceScope TimeScope("Attributor::run");
2654   AttributorCallGraph ACallGraph(*this);
2655 
2656   if (PrintCallGraph)
2657     ACallGraph.populateAll();
2658 
2659   Phase = AttributorPhase::UPDATE;
2660   runTillFixpoint();
2661 
2662   // dump graphs on demand
2663   if (DumpDepGraph)
2664     DG.dumpGraph();
2665 
2666   if (ViewDepGraph)
2667     DG.viewGraph();
2668 
2669   if (PrintDependencies)
2670     DG.print();
2671 
2672   Phase = AttributorPhase::MANIFEST;
2673   ChangeStatus ManifestChange = manifestAttributes();
2674 
2675   Phase = AttributorPhase::CLEANUP;
2676   ChangeStatus CleanupChange = cleanupIR();
2677 
2678   if (PrintCallGraph)
2679     ACallGraph.print();
2680 
2681   return ManifestChange | CleanupChange;
2682 }
2683 
2684 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
2685   TimeTraceScope TimeScope("updateAA", [&]() {
2686     return AA.getName() + std::to_string(AA.getIRPosition().getPositionKind());
2687   });
2688   assert(Phase == AttributorPhase::UPDATE &&
2689          "We can update AA only in the update stage!");
2690 
2691   // Use a new dependence vector for this update.
2692   DependenceVector DV;
2693   DependenceStack.push_back(&DV);
2694 
2695   auto &AAState = AA.getState();
2696   ChangeStatus CS = ChangeStatus::UNCHANGED;
2697   bool UsedAssumedInformation = false;
2698   if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
2699                      /* CheckBBLivenessOnly */ true))
2700     CS = AA.update(*this);
2701 
2702   if (!AA.isQueryAA() && DV.empty() && !AA.getState().isAtFixpoint()) {
2703     // If the AA did not rely on outside information but changed, we run it
2704     // again to see if it found a fixpoint. Most AAs do but we don't require
2705     // them to. Hence, it might take the AA multiple iterations to get to a
2706     // fixpoint even if it does not rely on outside information, which is fine.
2707     ChangeStatus RerunCS = ChangeStatus::UNCHANGED;
2708     if (CS == ChangeStatus::CHANGED)
2709       RerunCS = AA.update(*this);
2710 
2711     // If the attribute did not change during the run or rerun, and it still did
2712     // not query any non-fix information, the state will not change and we can
2713     // indicate that right at this point.
2714     if (RerunCS == ChangeStatus::UNCHANGED && !AA.isQueryAA() && DV.empty())
2715       AAState.indicateOptimisticFixpoint();
2716   }
2717 
2718   if (!AAState.isAtFixpoint())
2719     rememberDependences();
2720 
2721   // Verify the stack was used properly, that is we pop the dependence vector we
2722   // put there earlier.
2723   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
2724   (void)PoppedDV;
2725   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
2726 
2727   return CS;
2728 }
2729 
2730 void Attributor::createShallowWrapper(Function &F) {
2731   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
2732 
2733   Module &M = *F.getParent();
2734   LLVMContext &Ctx = M.getContext();
2735   FunctionType *FnTy = F.getFunctionType();
2736 
2737   Function *Wrapper =
2738       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
2739   F.setName(""); // set the inside function anonymous
2740   M.getFunctionList().insert(F.getIterator(), Wrapper);
2741 
2742   F.setLinkage(GlobalValue::InternalLinkage);
2743 
2744   F.replaceAllUsesWith(Wrapper);
2745   assert(F.use_empty() && "Uses remained after wrapper was created!");
2746 
2747   // Move the COMDAT section to the wrapper.
2748   // TODO: Check if we need to keep it for F as well.
2749   Wrapper->setComdat(F.getComdat());
2750   F.setComdat(nullptr);
2751 
2752   // Copy all metadata and attributes but keep them on F as well.
2753   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2754   F.getAllMetadata(MDs);
2755   for (auto MDIt : MDs)
2756     Wrapper->addMetadata(MDIt.first, *MDIt.second);
2757   Wrapper->setAttributes(F.getAttributes());
2758 
2759   // Create the call in the wrapper.
2760   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
2761 
2762   SmallVector<Value *, 8> Args;
2763   Argument *FArgIt = F.arg_begin();
2764   for (Argument &Arg : Wrapper->args()) {
2765     Args.push_back(&Arg);
2766     Arg.setName((FArgIt++)->getName());
2767   }
2768 
2769   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
2770   CI->setTailCall(true);
2771   CI->addFnAttr(Attribute::NoInline);
2772   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
2773 
2774   NumFnShallowWrappersCreated++;
2775 }
2776 
2777 bool Attributor::isInternalizable(Function &F) {
2778   if (F.isDeclaration() || F.hasLocalLinkage() ||
2779       GlobalValue::isInterposableLinkage(F.getLinkage()))
2780     return false;
2781   return true;
2782 }
2783 
2784 Function *Attributor::internalizeFunction(Function &F, bool Force) {
2785   if (!AllowDeepWrapper && !Force)
2786     return nullptr;
2787   if (!isInternalizable(F))
2788     return nullptr;
2789 
2790   SmallPtrSet<Function *, 2> FnSet = {&F};
2791   DenseMap<Function *, Function *> InternalizedFns;
2792   internalizeFunctions(FnSet, InternalizedFns);
2793 
2794   return InternalizedFns[&F];
2795 }
2796 
2797 bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
2798                                       DenseMap<Function *, Function *> &FnMap) {
2799   for (Function *F : FnSet)
2800     if (!Attributor::isInternalizable(*F))
2801       return false;
2802 
2803   FnMap.clear();
2804   // Generate the internalized version of each function.
2805   for (Function *F : FnSet) {
2806     Module &M = *F->getParent();
2807     FunctionType *FnTy = F->getFunctionType();
2808 
2809     // Create a copy of the current function
2810     Function *Copied =
2811         Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
2812                          F->getName() + ".internalized");
2813     ValueToValueMapTy VMap;
2814     auto *NewFArgIt = Copied->arg_begin();
2815     for (auto &Arg : F->args()) {
2816       auto ArgName = Arg.getName();
2817       NewFArgIt->setName(ArgName);
2818       VMap[&Arg] = &(*NewFArgIt++);
2819     }
2820     SmallVector<ReturnInst *, 8> Returns;
2821 
2822     // Copy the body of the original function to the new one
2823     CloneFunctionInto(Copied, F, VMap,
2824                       CloneFunctionChangeType::LocalChangesOnly, Returns);
2825 
2826     // Set the linakage and visibility late as CloneFunctionInto has some
2827     // implicit requirements.
2828     Copied->setVisibility(GlobalValue::DefaultVisibility);
2829     Copied->setLinkage(GlobalValue::PrivateLinkage);
2830 
2831     // Copy metadata
2832     SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2833     F->getAllMetadata(MDs);
2834     for (auto MDIt : MDs)
2835       if (!Copied->hasMetadata())
2836         Copied->addMetadata(MDIt.first, *MDIt.second);
2837 
2838     M.getFunctionList().insert(F->getIterator(), Copied);
2839     Copied->setDSOLocal(true);
2840     FnMap[F] = Copied;
2841   }
2842 
2843   // Replace all uses of the old function with the new internalized function
2844   // unless the caller is a function that was just internalized.
2845   for (Function *F : FnSet) {
2846     auto &InternalizedFn = FnMap[F];
2847     auto IsNotInternalized = [&](Use &U) -> bool {
2848       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2849         return !FnMap.lookup(CB->getCaller());
2850       return false;
2851     };
2852     F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2853   }
2854 
2855   return true;
2856 }
2857 
2858 bool Attributor::isValidFunctionSignatureRewrite(
2859     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2860 
2861   if (!Configuration.RewriteSignatures)
2862     return false;
2863 
2864   Function *Fn = Arg.getParent();
2865   auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2866     // Forbid the call site to cast the function return type. If we need to
2867     // rewrite these functions we need to re-create a cast for the new call site
2868     // (if the old had uses).
2869     if (!ACS.getCalledFunction() ||
2870         ACS.getInstruction()->getType() !=
2871             ACS.getCalledFunction()->getReturnType())
2872       return false;
2873     if (cast<CallBase>(ACS.getInstruction())->getCalledOperand()->getType() !=
2874         Fn->getType())
2875       return false;
2876     if (ACS.getNumArgOperands() != Fn->arg_size())
2877       return false;
2878     // Forbid must-tail calls for now.
2879     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2880   };
2881 
2882   // Avoid var-arg functions for now.
2883   if (Fn->isVarArg()) {
2884     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2885     return false;
2886   }
2887 
2888   // Avoid functions with complicated argument passing semantics.
2889   AttributeList FnAttributeList = Fn->getAttributes();
2890   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2891       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2892       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2893       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2894     LLVM_DEBUG(
2895         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2896     return false;
2897   }
2898 
2899   // Avoid callbacks for now.
2900   bool UsedAssumedInformation = false;
2901   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2902                             UsedAssumedInformation,
2903                             /* CheckPotentiallyDead */ true)) {
2904     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2905     return false;
2906   }
2907 
2908   auto InstPred = [](Instruction &I) {
2909     if (auto *CI = dyn_cast<CallInst>(&I))
2910       return !CI->isMustTailCall();
2911     return true;
2912   };
2913 
2914   // Forbid must-tail calls for now.
2915   // TODO:
2916   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2917   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2918                                    nullptr, {Instruction::Call},
2919                                    UsedAssumedInformation)) {
2920     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2921     return false;
2922   }
2923 
2924   return true;
2925 }
2926 
2927 bool Attributor::registerFunctionSignatureRewrite(
2928     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2929     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2930     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2931   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2932                     << Arg.getParent()->getName() << " with "
2933                     << ReplacementTypes.size() << " replacements\n");
2934   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
2935          "Cannot register an invalid rewrite");
2936 
2937   Function *Fn = Arg.getParent();
2938   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2939       ArgumentReplacementMap[Fn];
2940   if (ARIs.empty())
2941     ARIs.resize(Fn->arg_size());
2942 
2943   // If we have a replacement already with less than or equal new arguments,
2944   // ignore this request.
2945   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2946   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2947     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2948     return false;
2949   }
2950 
2951   // If we have a replacement already but we like the new one better, delete
2952   // the old.
2953   ARI.reset();
2954 
2955   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2956                     << Arg.getParent()->getName() << " with "
2957                     << ReplacementTypes.size() << " replacements\n");
2958 
2959   // Remember the replacement.
2960   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2961                                         std::move(CalleeRepairCB),
2962                                         std::move(ACSRepairCB)));
2963 
2964   return true;
2965 }
2966 
2967 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2968   bool Result = true;
2969 #ifndef NDEBUG
2970   if (SeedAllowList.size() != 0)
2971     Result = llvm::is_contained(SeedAllowList, AA.getName());
2972   Function *Fn = AA.getAnchorScope();
2973   if (FunctionSeedAllowList.size() != 0 && Fn)
2974     Result &= llvm::is_contained(FunctionSeedAllowList, Fn->getName());
2975 #endif
2976   return Result;
2977 }
2978 
2979 ChangeStatus Attributor::rewriteFunctionSignatures(
2980     SmallSetVector<Function *, 8> &ModifiedFns) {
2981   ChangeStatus Changed = ChangeStatus::UNCHANGED;
2982 
2983   for (auto &It : ArgumentReplacementMap) {
2984     Function *OldFn = It.getFirst();
2985 
2986     // Deleted functions do not require rewrites.
2987     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2988       continue;
2989 
2990     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2991         It.getSecond();
2992     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
2993 
2994     SmallVector<Type *, 16> NewArgumentTypes;
2995     SmallVector<AttributeSet, 16> NewArgumentAttributes;
2996 
2997     // Collect replacement argument types and copy over existing attributes.
2998     AttributeList OldFnAttributeList = OldFn->getAttributes();
2999     for (Argument &Arg : OldFn->args()) {
3000       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
3001               ARIs[Arg.getArgNo()]) {
3002         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
3003                                 ARI->ReplacementTypes.end());
3004         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
3005                                      AttributeSet());
3006       } else {
3007         NewArgumentTypes.push_back(Arg.getType());
3008         NewArgumentAttributes.push_back(
3009             OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
3010       }
3011     }
3012 
3013     uint64_t LargestVectorWidth = 0;
3014     for (auto *I : NewArgumentTypes)
3015       if (auto *VT = dyn_cast<llvm::VectorType>(I))
3016         LargestVectorWidth =
3017             std::max(LargestVectorWidth,
3018                      VT->getPrimitiveSizeInBits().getKnownMinValue());
3019 
3020     FunctionType *OldFnTy = OldFn->getFunctionType();
3021     Type *RetTy = OldFnTy->getReturnType();
3022 
3023     // Construct the new function type using the new arguments types.
3024     FunctionType *NewFnTy =
3025         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
3026 
3027     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
3028                       << "' from " << *OldFn->getFunctionType() << " to "
3029                       << *NewFnTy << "\n");
3030 
3031     // Create the new function body and insert it into the module.
3032     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
3033                                        OldFn->getAddressSpace(), "");
3034     Functions.insert(NewFn);
3035     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
3036     NewFn->takeName(OldFn);
3037     NewFn->copyAttributesFrom(OldFn);
3038 
3039     // Patch the pointer to LLVM function in debug info descriptor.
3040     NewFn->setSubprogram(OldFn->getSubprogram());
3041     OldFn->setSubprogram(nullptr);
3042 
3043     // Recompute the parameter attributes list based on the new arguments for
3044     // the function.
3045     LLVMContext &Ctx = OldFn->getContext();
3046     NewFn->setAttributes(AttributeList::get(
3047         Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
3048         NewArgumentAttributes));
3049     AttributeFuncs::updateMinLegalVectorWidthAttr(*NewFn, LargestVectorWidth);
3050 
3051     // Remove argmem from the memory effects if we have no more pointer
3052     // arguments, or they are readnone.
3053     MemoryEffects ME = NewFn->getMemoryEffects();
3054     int ArgNo = -1;
3055     if (ME.doesAccessArgPointees() && all_of(NewArgumentTypes, [&](Type *T) {
3056           ++ArgNo;
3057           return !T->isPtrOrPtrVectorTy() ||
3058                  NewFn->hasParamAttribute(ArgNo, Attribute::ReadNone);
3059         })) {
3060       NewFn->setMemoryEffects(ME - MemoryEffects::argMemOnly());
3061     }
3062 
3063     // Since we have now created the new function, splice the body of the old
3064     // function right into the new function, leaving the old rotting hulk of the
3065     // function empty.
3066     NewFn->splice(NewFn->begin(), OldFn);
3067 
3068     // Fixup block addresses to reference new function.
3069     SmallVector<BlockAddress *, 8u> BlockAddresses;
3070     for (User *U : OldFn->users())
3071       if (auto *BA = dyn_cast<BlockAddress>(U))
3072         BlockAddresses.push_back(BA);
3073     for (auto *BA : BlockAddresses)
3074       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
3075 
3076     // Set of all "call-like" instructions that invoke the old function mapped
3077     // to their new replacements.
3078     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
3079 
3080     // Callback to create a new "call-like" instruction for a given one.
3081     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
3082       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
3083       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
3084 
3085       // Collect the new argument operands for the replacement call site.
3086       SmallVector<Value *, 16> NewArgOperands;
3087       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
3088       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
3089         unsigned NewFirstArgNum = NewArgOperands.size();
3090         (void)NewFirstArgNum; // only used inside assert.
3091         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
3092                 ARIs[OldArgNum]) {
3093           if (ARI->ACSRepairCB)
3094             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
3095           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
3096                      NewArgOperands.size() &&
3097                  "ACS repair callback did not provide as many operand as new "
3098                  "types were registered!");
3099           // TODO: Exose the attribute set to the ACS repair callback
3100           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
3101                                          AttributeSet());
3102         } else {
3103           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
3104           NewArgOperandAttributes.push_back(
3105               OldCallAttributeList.getParamAttrs(OldArgNum));
3106         }
3107       }
3108 
3109       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
3110              "Mismatch # argument operands vs. # argument operand attributes!");
3111       assert(NewArgOperands.size() == NewFn->arg_size() &&
3112              "Mismatch # argument operands vs. # function arguments!");
3113 
3114       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
3115       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
3116 
3117       // Create a new call or invoke instruction to replace the old one.
3118       CallBase *NewCB;
3119       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
3120         NewCB =
3121             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
3122                                NewArgOperands, OperandBundleDefs, "", OldCB);
3123       } else {
3124         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
3125                                        "", OldCB);
3126         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
3127         NewCB = NewCI;
3128       }
3129 
3130       // Copy over various properties and the new attributes.
3131       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
3132       NewCB->setCallingConv(OldCB->getCallingConv());
3133       NewCB->takeName(OldCB);
3134       NewCB->setAttributes(AttributeList::get(
3135           Ctx, OldCallAttributeList.getFnAttrs(),
3136           OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
3137 
3138       AttributeFuncs::updateMinLegalVectorWidthAttr(*NewCB->getCaller(),
3139                                                     LargestVectorWidth);
3140 
3141       CallSitePairs.push_back({OldCB, NewCB});
3142       return true;
3143     };
3144 
3145     // Use the CallSiteReplacementCreator to create replacement call sites.
3146     bool UsedAssumedInformation = false;
3147     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
3148                                         true, nullptr, UsedAssumedInformation,
3149                                         /* CheckPotentiallyDead */ true);
3150     (void)Success;
3151     assert(Success && "Assumed call site replacement to succeed!");
3152 
3153     // Rewire the arguments.
3154     Argument *OldFnArgIt = OldFn->arg_begin();
3155     Argument *NewFnArgIt = NewFn->arg_begin();
3156     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
3157          ++OldArgNum, ++OldFnArgIt) {
3158       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
3159               ARIs[OldArgNum]) {
3160         if (ARI->CalleeRepairCB)
3161           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
3162         if (ARI->ReplacementTypes.empty())
3163           OldFnArgIt->replaceAllUsesWith(
3164               PoisonValue::get(OldFnArgIt->getType()));
3165         NewFnArgIt += ARI->ReplacementTypes.size();
3166       } else {
3167         NewFnArgIt->takeName(&*OldFnArgIt);
3168         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
3169         ++NewFnArgIt;
3170       }
3171     }
3172 
3173     // Eliminate the instructions *after* we visited all of them.
3174     for (auto &CallSitePair : CallSitePairs) {
3175       CallBase &OldCB = *CallSitePair.first;
3176       CallBase &NewCB = *CallSitePair.second;
3177       assert(OldCB.getType() == NewCB.getType() &&
3178              "Cannot handle call sites with different types!");
3179       ModifiedFns.insert(OldCB.getFunction());
3180       Configuration.CGUpdater.replaceCallSite(OldCB, NewCB);
3181       OldCB.replaceAllUsesWith(&NewCB);
3182       OldCB.eraseFromParent();
3183     }
3184 
3185     // Replace the function in the call graph (if any).
3186     Configuration.CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
3187 
3188     // If the old function was modified and needed to be reanalyzed, the new one
3189     // does now.
3190     if (ModifiedFns.remove(OldFn))
3191       ModifiedFns.insert(NewFn);
3192 
3193     Changed = ChangeStatus::CHANGED;
3194   }
3195 
3196   return Changed;
3197 }
3198 
3199 void InformationCache::initializeInformationCache(const Function &CF,
3200                                                   FunctionInfo &FI) {
3201   // As we do not modify the function here we can remove the const
3202   // withouth breaking implicit assumptions. At the end of the day, we could
3203   // initialize the cache eagerly which would look the same to the users.
3204   Function &F = const_cast<Function &>(CF);
3205 
3206   // Walk all instructions to find interesting instructions that might be
3207   // queried by abstract attributes during their initialization or update.
3208   // This has to happen before we create attributes.
3209 
3210   DenseMap<const Value *, std::optional<short>> AssumeUsesMap;
3211 
3212   // Add \p V to the assume uses map which track the number of uses outside of
3213   // "visited" assumes. If no outside uses are left the value is added to the
3214   // assume only use vector.
3215   auto AddToAssumeUsesMap = [&](const Value &V) -> void {
3216     SmallVector<const Instruction *> Worklist;
3217     if (auto *I = dyn_cast<Instruction>(&V))
3218       Worklist.push_back(I);
3219     while (!Worklist.empty()) {
3220       const Instruction *I = Worklist.pop_back_val();
3221       std::optional<short> &NumUses = AssumeUsesMap[I];
3222       if (!NumUses)
3223         NumUses = I->getNumUses();
3224       NumUses = *NumUses - /* this assume */ 1;
3225       if (*NumUses != 0)
3226         continue;
3227       AssumeOnlyValues.insert(I);
3228       for (const Value *Op : I->operands())
3229         if (auto *OpI = dyn_cast<Instruction>(Op))
3230           Worklist.push_back(OpI);
3231     }
3232   };
3233 
3234   for (Instruction &I : instructions(&F)) {
3235     bool IsInterestingOpcode = false;
3236 
3237     // To allow easy access to all instructions in a function with a given
3238     // opcode we store them in the InfoCache. As not all opcodes are interesting
3239     // to concrete attributes we only cache the ones that are as identified in
3240     // the following switch.
3241     // Note: There are no concrete attributes now so this is initially empty.
3242     switch (I.getOpcode()) {
3243     default:
3244       assert(!isa<CallBase>(&I) &&
3245              "New call base instruction type needs to be known in the "
3246              "Attributor.");
3247       break;
3248     case Instruction::Call:
3249       // Calls are interesting on their own, additionally:
3250       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
3251       // For `must-tail` calls we remember the caller and callee.
3252       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
3253         AssumeOnlyValues.insert(Assume);
3254         fillMapFromAssume(*Assume, KnowledgeMap);
3255         AddToAssumeUsesMap(*Assume->getArgOperand(0));
3256       } else if (cast<CallInst>(I).isMustTailCall()) {
3257         FI.ContainsMustTailCall = true;
3258         if (auto *Callee = dyn_cast_if_present<Function>(
3259                 cast<CallInst>(I).getCalledOperand()))
3260           getFunctionInfo(*Callee).CalledViaMustTail = true;
3261       }
3262       [[fallthrough]];
3263     case Instruction::CallBr:
3264     case Instruction::Invoke:
3265     case Instruction::CleanupRet:
3266     case Instruction::CatchSwitch:
3267     case Instruction::AtomicRMW:
3268     case Instruction::AtomicCmpXchg:
3269     case Instruction::Br:
3270     case Instruction::Resume:
3271     case Instruction::Ret:
3272     case Instruction::Load:
3273       // The alignment of a pointer is interesting for loads.
3274     case Instruction::Store:
3275       // The alignment of a pointer is interesting for stores.
3276     case Instruction::Alloca:
3277     case Instruction::AddrSpaceCast:
3278       IsInterestingOpcode = true;
3279     }
3280     if (IsInterestingOpcode) {
3281       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
3282       if (!Insts)
3283         Insts = new (Allocator) InstructionVectorTy();
3284       Insts->push_back(&I);
3285     }
3286     if (I.mayReadOrWriteMemory())
3287       FI.RWInsts.push_back(&I);
3288   }
3289 
3290   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
3291       isInlineViable(F).isSuccess())
3292     InlineableFunctions.insert(&F);
3293 }
3294 
3295 InformationCache::FunctionInfo::~FunctionInfo() {
3296   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
3297   // manually destroy them.
3298   for (auto &It : OpcodeInstMap)
3299     It.getSecond()->~InstructionVectorTy();
3300 }
3301 
3302 const ArrayRef<Function *>
3303 InformationCache::getIndirectlyCallableFunctions(Attributor &A) const {
3304   assert(A.isClosedWorldModule() && "Cannot see all indirect callees!");
3305   return IndirectlyCallableFunctions;
3306 }
3307 
3308 void Attributor::recordDependence(const AbstractAttribute &FromAA,
3309                                   const AbstractAttribute &ToAA,
3310                                   DepClassTy DepClass) {
3311   if (DepClass == DepClassTy::NONE)
3312     return;
3313   // If we are outside of an update, thus before the actual fixpoint iteration
3314   // started (= when we create AAs), we do not track dependences because we will
3315   // put all AAs into the initial worklist anyway.
3316   if (DependenceStack.empty())
3317     return;
3318   if (FromAA.getState().isAtFixpoint())
3319     return;
3320   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
3321 }
3322 
3323 void Attributor::rememberDependences() {
3324   assert(!DependenceStack.empty() && "No dependences to remember!");
3325 
3326   for (DepInfo &DI : *DependenceStack.back()) {
3327     assert((DI.DepClass == DepClassTy::REQUIRED ||
3328             DI.DepClass == DepClassTy::OPTIONAL) &&
3329            "Expected required or optional dependence (1 bit)!");
3330     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
3331     DepAAs.insert(AbstractAttribute::DepTy(
3332         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
3333   }
3334 }
3335 
3336 template <Attribute::AttrKind AK, typename AAType>
3337 void Attributor::checkAndQueryIRAttr(const IRPosition &IRP,
3338                                      AttributeSet Attrs) {
3339   bool IsKnown;
3340   if (!Attrs.hasAttribute(AK))
3341     if (!Configuration.Allowed || Configuration.Allowed->count(&AAType::ID))
3342       if (!AA::hasAssumedIRAttr<AK>(*this, nullptr, IRP, DepClassTy::NONE,
3343                                     IsKnown))
3344         getOrCreateAAFor<AAType>(IRP);
3345 }
3346 
3347 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
3348   if (!VisitedFunctions.insert(&F).second)
3349     return;
3350   if (F.isDeclaration())
3351     return;
3352 
3353   // In non-module runs we need to look at the call sites of a function to
3354   // determine if it is part of a must-tail call edge. This will influence what
3355   // attributes we can derive.
3356   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
3357   if (!isModulePass() && !FI.CalledViaMustTail) {
3358     for (const Use &U : F.uses())
3359       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
3360         if (CB->isCallee(&U) && CB->isMustTailCall())
3361           FI.CalledViaMustTail = true;
3362   }
3363 
3364   IRPosition FPos = IRPosition::function(F);
3365   bool IsIPOAmendable = isFunctionIPOAmendable(F);
3366   auto Attrs = F.getAttributes();
3367   auto FnAttrs = Attrs.getFnAttrs();
3368 
3369   // Check for dead BasicBlocks in every function.
3370   // We need dead instruction detection because we do not want to deal with
3371   // broken IR in which SSA rules do not apply.
3372   getOrCreateAAFor<AAIsDead>(FPos);
3373 
3374   // Every function might contain instructions that cause "undefined
3375   // behavior".
3376   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
3377 
3378   // Every function might be applicable for Heap-To-Stack conversion.
3379   if (EnableHeapToStack)
3380     getOrCreateAAFor<AAHeapToStack>(FPos);
3381 
3382   // Every function might be "must-progress".
3383   checkAndQueryIRAttr<Attribute::MustProgress, AAMustProgress>(FPos, FnAttrs);
3384 
3385   // Every function might be "no-free".
3386   checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(FPos, FnAttrs);
3387 
3388   // Every function might be "will-return".
3389   checkAndQueryIRAttr<Attribute::WillReturn, AAWillReturn>(FPos, FnAttrs);
3390 
3391   // Every function might be marked "nosync"
3392   checkAndQueryIRAttr<Attribute::NoSync, AANoSync>(FPos, FnAttrs);
3393 
3394   // Everything that is visible from the outside (=function, argument, return
3395   // positions), cannot be changed if the function is not IPO amendable. We can
3396   // however analyse the code inside.
3397   if (IsIPOAmendable) {
3398 
3399     // Every function can be nounwind.
3400     checkAndQueryIRAttr<Attribute::NoUnwind, AANoUnwind>(FPos, FnAttrs);
3401 
3402     // Every function might be "no-return".
3403     checkAndQueryIRAttr<Attribute::NoReturn, AANoReturn>(FPos, FnAttrs);
3404 
3405     // Every function might be "no-recurse".
3406     checkAndQueryIRAttr<Attribute::NoRecurse, AANoRecurse>(FPos, FnAttrs);
3407 
3408     // Every function can be "non-convergent".
3409     if (Attrs.hasFnAttr(Attribute::Convergent))
3410       getOrCreateAAFor<AANonConvergent>(FPos);
3411 
3412     // Every function might be "readnone/readonly/writeonly/...".
3413     getOrCreateAAFor<AAMemoryBehavior>(FPos);
3414 
3415     // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
3416     getOrCreateAAFor<AAMemoryLocation>(FPos);
3417 
3418     // Every function can track active assumptions.
3419     getOrCreateAAFor<AAAssumptionInfo>(FPos);
3420 
3421     // If we're not using a dynamic mode for float, there's nothing worthwhile
3422     // to infer. This misses the edge case denormal-fp-math="dynamic" and
3423     // denormal-fp-math-f32=something, but that likely has no real world use.
3424     DenormalMode Mode = F.getDenormalMode(APFloat::IEEEsingle());
3425     if (Mode.Input == DenormalMode::Dynamic ||
3426         Mode.Output == DenormalMode::Dynamic)
3427       getOrCreateAAFor<AADenormalFPMath>(FPos);
3428 
3429     // Return attributes are only appropriate if the return type is non void.
3430     Type *ReturnType = F.getReturnType();
3431     if (!ReturnType->isVoidTy()) {
3432       IRPosition RetPos = IRPosition::returned(F);
3433       AttributeSet RetAttrs = Attrs.getRetAttrs();
3434 
3435       // Every returned value might be dead.
3436       getOrCreateAAFor<AAIsDead>(RetPos);
3437 
3438       // Every function might be simplified.
3439       bool UsedAssumedInformation = false;
3440       getAssumedSimplified(RetPos, nullptr, UsedAssumedInformation,
3441                            AA::Intraprocedural);
3442 
3443       // Every returned value might be marked noundef.
3444       checkAndQueryIRAttr<Attribute::NoUndef, AANoUndef>(RetPos, RetAttrs);
3445 
3446       if (ReturnType->isPointerTy()) {
3447 
3448         // Every function with pointer return type might be marked align.
3449         getOrCreateAAFor<AAAlign>(RetPos);
3450 
3451         // Every function with pointer return type might be marked nonnull.
3452         checkAndQueryIRAttr<Attribute::NonNull, AANonNull>(RetPos, RetAttrs);
3453 
3454         // Every function with pointer return type might be marked noalias.
3455         checkAndQueryIRAttr<Attribute::NoAlias, AANoAlias>(RetPos, RetAttrs);
3456 
3457         // Every function with pointer return type might be marked
3458         // dereferenceable.
3459         getOrCreateAAFor<AADereferenceable>(RetPos);
3460       } else if (AttributeFuncs::isNoFPClassCompatibleType(ReturnType)) {
3461         getOrCreateAAFor<AANoFPClass>(RetPos);
3462       }
3463     }
3464   }
3465 
3466   for (Argument &Arg : F.args()) {
3467     IRPosition ArgPos = IRPosition::argument(Arg);
3468     auto ArgNo = Arg.getArgNo();
3469     AttributeSet ArgAttrs = Attrs.getParamAttrs(ArgNo);
3470 
3471     if (!IsIPOAmendable) {
3472       if (Arg.getType()->isPointerTy())
3473         // Every argument with pointer type might be marked nofree.
3474         checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(ArgPos, ArgAttrs);
3475       continue;
3476     }
3477 
3478     // Every argument might be simplified. We have to go through the
3479     // Attributor interface though as outside AAs can register custom
3480     // simplification callbacks.
3481     bool UsedAssumedInformation = false;
3482     getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation,
3483                          AA::Intraprocedural);
3484 
3485     // Every argument might be dead.
3486     getOrCreateAAFor<AAIsDead>(ArgPos);
3487 
3488     // Every argument might be marked noundef.
3489     checkAndQueryIRAttr<Attribute::NoUndef, AANoUndef>(ArgPos, ArgAttrs);
3490 
3491     if (Arg.getType()->isPointerTy()) {
3492       // Every argument with pointer type might be marked nonnull.
3493       checkAndQueryIRAttr<Attribute::NonNull, AANonNull>(ArgPos, ArgAttrs);
3494 
3495       // Every argument with pointer type might be marked noalias.
3496       checkAndQueryIRAttr<Attribute::NoAlias, AANoAlias>(ArgPos, ArgAttrs);
3497 
3498       // Every argument with pointer type might be marked dereferenceable.
3499       getOrCreateAAFor<AADereferenceable>(ArgPos);
3500 
3501       // Every argument with pointer type might be marked align.
3502       getOrCreateAAFor<AAAlign>(ArgPos);
3503 
3504       // Every argument with pointer type might be marked nocapture.
3505       checkAndQueryIRAttr<Attribute::NoCapture, AANoCapture>(ArgPos, ArgAttrs);
3506 
3507       // Every argument with pointer type might be marked
3508       // "readnone/readonly/writeonly/..."
3509       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
3510 
3511       // Every argument with pointer type might be marked nofree.
3512       checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(ArgPos, ArgAttrs);
3513 
3514       // Every argument with pointer type might be privatizable (or
3515       // promotable)
3516       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
3517     } else if (AttributeFuncs::isNoFPClassCompatibleType(Arg.getType())) {
3518       getOrCreateAAFor<AANoFPClass>(ArgPos);
3519     }
3520   }
3521 
3522   auto CallSitePred = [&](Instruction &I) -> bool {
3523     auto &CB = cast<CallBase>(I);
3524     IRPosition CBInstPos = IRPosition::inst(CB);
3525     IRPosition CBFnPos = IRPosition::callsite_function(CB);
3526 
3527     // Call sites might be dead if they do not have side effects and no live
3528     // users. The return value might be dead if there are no live users.
3529     getOrCreateAAFor<AAIsDead>(CBInstPos);
3530 
3531     Function *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
3532     // TODO: Even if the callee is not known now we might be able to simplify
3533     //       the call/callee.
3534     if (!Callee) {
3535       getOrCreateAAFor<AAIndirectCallInfo>(CBFnPos);
3536       return true;
3537     }
3538 
3539     // Every call site can track active assumptions.
3540     getOrCreateAAFor<AAAssumptionInfo>(CBFnPos);
3541 
3542     // Skip declarations except if annotations on their call sites were
3543     // explicitly requested.
3544     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
3545         !Callee->hasMetadata(LLVMContext::MD_callback))
3546       return true;
3547 
3548     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
3549       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
3550       bool UsedAssumedInformation = false;
3551       getAssumedSimplified(CBRetPos, nullptr, UsedAssumedInformation,
3552                            AA::Intraprocedural);
3553 
3554       if (AttributeFuncs::isNoFPClassCompatibleType(Callee->getReturnType()))
3555         getOrCreateAAFor<AANoFPClass>(CBInstPos);
3556     }
3557 
3558     const AttributeList &CBAttrs = CBFnPos.getAttrList();
3559     for (int I = 0, E = CB.arg_size(); I < E; ++I) {
3560 
3561       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
3562       AttributeSet CBArgAttrs = CBAttrs.getParamAttrs(I);
3563 
3564       // Every call site argument might be dead.
3565       getOrCreateAAFor<AAIsDead>(CBArgPos);
3566 
3567       // Call site argument might be simplified. We have to go through the
3568       // Attributor interface though as outside AAs can register custom
3569       // simplification callbacks.
3570       bool UsedAssumedInformation = false;
3571       getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation,
3572                            AA::Intraprocedural);
3573 
3574       // Every call site argument might be marked "noundef".
3575       checkAndQueryIRAttr<Attribute::NoUndef, AANoUndef>(CBArgPos, CBArgAttrs);
3576 
3577       Type *ArgTy = CB.getArgOperand(I)->getType();
3578 
3579       if (!ArgTy->isPointerTy()) {
3580         if (AttributeFuncs::isNoFPClassCompatibleType(ArgTy))
3581           getOrCreateAAFor<AANoFPClass>(CBArgPos);
3582 
3583         continue;
3584       }
3585 
3586       // Call site argument attribute "non-null".
3587       checkAndQueryIRAttr<Attribute::NonNull, AANonNull>(CBArgPos, CBArgAttrs);
3588 
3589       // Call site argument attribute "nocapture".
3590       checkAndQueryIRAttr<Attribute::NoCapture, AANoCapture>(CBArgPos,
3591                                                              CBArgAttrs);
3592 
3593       // Call site argument attribute "no-alias".
3594       checkAndQueryIRAttr<Attribute::NoAlias, AANoAlias>(CBArgPos, CBArgAttrs);
3595 
3596       // Call site argument attribute "dereferenceable".
3597       getOrCreateAAFor<AADereferenceable>(CBArgPos);
3598 
3599       // Call site argument attribute "align".
3600       getOrCreateAAFor<AAAlign>(CBArgPos);
3601 
3602       // Call site argument attribute
3603       // "readnone/readonly/writeonly/..."
3604       if (!CBAttrs.hasParamAttr(I, Attribute::ReadNone))
3605         getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
3606 
3607       // Call site argument attribute "nofree".
3608       checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(CBArgPos, CBArgAttrs);
3609     }
3610     return true;
3611   };
3612 
3613   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
3614   [[maybe_unused]] bool Success;
3615   bool UsedAssumedInformation = false;
3616   Success = checkForAllInstructionsImpl(
3617       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
3618       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
3619        (unsigned)Instruction::Call},
3620       UsedAssumedInformation);
3621   assert(Success && "Expected the check call to be successful!");
3622 
3623   auto LoadStorePred = [&](Instruction &I) -> bool {
3624     if (auto *LI = dyn_cast<LoadInst>(&I)) {
3625       getOrCreateAAFor<AAAlign>(IRPosition::value(*LI->getPointerOperand()));
3626       if (SimplifyAllLoads)
3627         getAssumedSimplified(IRPosition::value(I), nullptr,
3628                              UsedAssumedInformation, AA::Intraprocedural);
3629       getOrCreateAAFor<AAAddressSpace>(
3630           IRPosition::value(*LI->getPointerOperand()));
3631     } else {
3632       auto &SI = cast<StoreInst>(I);
3633       getOrCreateAAFor<AAIsDead>(IRPosition::inst(I));
3634       getAssumedSimplified(IRPosition::value(*SI.getValueOperand()), nullptr,
3635                            UsedAssumedInformation, AA::Intraprocedural);
3636       getOrCreateAAFor<AAAlign>(IRPosition::value(*SI.getPointerOperand()));
3637       getOrCreateAAFor<AAAddressSpace>(
3638           IRPosition::value(*SI.getPointerOperand()));
3639     }
3640     return true;
3641   };
3642   Success = checkForAllInstructionsImpl(
3643       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
3644       {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
3645       UsedAssumedInformation);
3646   assert(Success && "Expected the check call to be successful!");
3647 
3648   // AllocaInstPredicate
3649   auto AAAllocationInfoPred = [&](Instruction &I) -> bool {
3650     getOrCreateAAFor<AAAllocationInfo>(IRPosition::value(I));
3651     return true;
3652   };
3653 
3654   Success = checkForAllInstructionsImpl(
3655       nullptr, OpcodeInstMap, AAAllocationInfoPred, nullptr, nullptr,
3656       {(unsigned)Instruction::Alloca}, UsedAssumedInformation);
3657   assert(Success && "Expected the check call to be successful!");
3658 }
3659 
3660 bool Attributor::isClosedWorldModule() const {
3661   if (CloseWorldAssumption.getNumOccurrences())
3662     return CloseWorldAssumption;
3663   return isModulePass() && Configuration.IsClosedWorldModule;
3664 }
3665 
3666 /// Helpers to ease debugging through output streams and print calls.
3667 ///
3668 ///{
3669 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
3670   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
3671 }
3672 
3673 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
3674   switch (AP) {
3675   case IRPosition::IRP_INVALID:
3676     return OS << "inv";
3677   case IRPosition::IRP_FLOAT:
3678     return OS << "flt";
3679   case IRPosition::IRP_RETURNED:
3680     return OS << "fn_ret";
3681   case IRPosition::IRP_CALL_SITE_RETURNED:
3682     return OS << "cs_ret";
3683   case IRPosition::IRP_FUNCTION:
3684     return OS << "fn";
3685   case IRPosition::IRP_CALL_SITE:
3686     return OS << "cs";
3687   case IRPosition::IRP_ARGUMENT:
3688     return OS << "arg";
3689   case IRPosition::IRP_CALL_SITE_ARGUMENT:
3690     return OS << "cs_arg";
3691   }
3692   llvm_unreachable("Unknown attribute position!");
3693 }
3694 
3695 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
3696   const Value &AV = Pos.getAssociatedValue();
3697   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
3698      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
3699 
3700   if (Pos.hasCallBaseContext())
3701     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
3702   return OS << "}";
3703 }
3704 
3705 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
3706   OS << "range-state(" << S.getBitWidth() << ")<";
3707   S.getKnown().print(OS);
3708   OS << " / ";
3709   S.getAssumed().print(OS);
3710   OS << ">";
3711 
3712   return OS << static_cast<const AbstractState &>(S);
3713 }
3714 
3715 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
3716   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
3717 }
3718 
3719 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
3720   AA.print(OS);
3721   return OS;
3722 }
3723 
3724 raw_ostream &llvm::operator<<(raw_ostream &OS,
3725                               const PotentialConstantIntValuesState &S) {
3726   OS << "set-state(< {";
3727   if (!S.isValidState())
3728     OS << "full-set";
3729   else {
3730     for (const auto &It : S.getAssumedSet())
3731       OS << It << ", ";
3732     if (S.undefIsContained())
3733       OS << "undef ";
3734   }
3735   OS << "} >)";
3736 
3737   return OS;
3738 }
3739 
3740 raw_ostream &llvm::operator<<(raw_ostream &OS,
3741                               const PotentialLLVMValuesState &S) {
3742   OS << "set-state(< {";
3743   if (!S.isValidState())
3744     OS << "full-set";
3745   else {
3746     for (const auto &It : S.getAssumedSet()) {
3747       if (auto *F = dyn_cast<Function>(It.first.getValue()))
3748         OS << "@" << F->getName() << "[" << int(It.second) << "], ";
3749       else
3750         OS << *It.first.getValue() << "[" << int(It.second) << "], ";
3751     }
3752     if (S.undefIsContained())
3753       OS << "undef ";
3754   }
3755   OS << "} >)";
3756 
3757   return OS;
3758 }
3759 
3760 void AbstractAttribute::print(Attributor *A, raw_ostream &OS) const {
3761   OS << "[";
3762   OS << getName();
3763   OS << "] for CtxI ";
3764 
3765   if (auto *I = getCtxI()) {
3766     OS << "'";
3767     I->print(OS);
3768     OS << "'";
3769   } else
3770     OS << "<<null inst>>";
3771 
3772   OS << " at position " << getIRPosition() << " with state " << getAsStr(A)
3773      << '\n';
3774 }
3775 
3776 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
3777   print(OS);
3778 
3779   for (const auto &DepAA : Deps) {
3780     auto *AA = DepAA.getPointer();
3781     OS << "  updates ";
3782     AA->print(OS);
3783   }
3784 
3785   OS << '\n';
3786 }
3787 
3788 raw_ostream &llvm::operator<<(raw_ostream &OS,
3789                               const AAPointerInfo::Access &Acc) {
3790   OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
3791   if (Acc.getLocalInst() != Acc.getRemoteInst())
3792     OS << " via " << *Acc.getLocalInst();
3793   if (Acc.getContent()) {
3794     if (*Acc.getContent())
3795       OS << " [" << **Acc.getContent() << "]";
3796     else
3797       OS << " [ <unknown> ]";
3798   }
3799   return OS;
3800 }
3801 ///}
3802 
3803 /// ----------------------------------------------------------------------------
3804 ///                       Pass (Manager) Boilerplate
3805 /// ----------------------------------------------------------------------------
3806 
3807 static bool runAttributorOnFunctions(InformationCache &InfoCache,
3808                                      SetVector<Function *> &Functions,
3809                                      AnalysisGetter &AG,
3810                                      CallGraphUpdater &CGUpdater,
3811                                      bool DeleteFns, bool IsModulePass) {
3812   if (Functions.empty())
3813     return false;
3814 
3815   LLVM_DEBUG({
3816     dbgs() << "[Attributor] Run on module with " << Functions.size()
3817            << " functions:\n";
3818     for (Function *Fn : Functions)
3819       dbgs() << "  - " << Fn->getName() << "\n";
3820   });
3821 
3822   // Create an Attributor and initially empty information cache that is filled
3823   // while we identify default attribute opportunities.
3824   AttributorConfig AC(CGUpdater);
3825   AC.IsModulePass = IsModulePass;
3826   AC.DeleteFns = DeleteFns;
3827 
3828   /// Tracking callback for specialization of indirect calls.
3829   DenseMap<CallBase *, std::unique_ptr<SmallPtrSet<Function *, 8>>>
3830       IndirectCalleeTrackingMap;
3831   if (MaxSpecializationPerCB.getNumOccurrences()) {
3832     AC.IndirectCalleeSpecializationCallback =
3833         [&](Attributor &, const AbstractAttribute &AA, CallBase &CB,
3834             Function &Callee) {
3835           if (MaxSpecializationPerCB == 0)
3836             return false;
3837           auto &Set = IndirectCalleeTrackingMap[&CB];
3838           if (!Set)
3839             Set = std::make_unique<SmallPtrSet<Function *, 8>>();
3840           if (Set->size() >= MaxSpecializationPerCB)
3841             return Set->contains(&Callee);
3842           Set->insert(&Callee);
3843           return true;
3844         };
3845   }
3846 
3847   Attributor A(Functions, InfoCache, AC);
3848 
3849   // Create shallow wrappers for all functions that are not IPO amendable
3850   if (AllowShallowWrappers)
3851     for (Function *F : Functions)
3852       if (!A.isFunctionIPOAmendable(*F))
3853         Attributor::createShallowWrapper(*F);
3854 
3855   // Internalize non-exact functions
3856   // TODO: for now we eagerly internalize functions without calculating the
3857   //       cost, we need a cost interface to determine whether internalizing
3858   //       a function is "beneficial"
3859   if (AllowDeepWrapper) {
3860     unsigned FunSize = Functions.size();
3861     for (unsigned u = 0; u < FunSize; u++) {
3862       Function *F = Functions[u];
3863       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
3864           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
3865         Function *NewF = Attributor::internalizeFunction(*F);
3866         assert(NewF && "Could not internalize function.");
3867         Functions.insert(NewF);
3868 
3869         // Update call graph
3870         CGUpdater.replaceFunctionWith(*F, *NewF);
3871         for (const Use &U : NewF->uses())
3872           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
3873             auto *CallerF = CB->getCaller();
3874             CGUpdater.reanalyzeFunction(*CallerF);
3875           }
3876       }
3877     }
3878   }
3879 
3880   for (Function *F : Functions) {
3881     if (F->hasExactDefinition())
3882       NumFnWithExactDefinition++;
3883     else
3884       NumFnWithoutExactDefinition++;
3885 
3886     // We look at internal functions only on-demand but if any use is not a
3887     // direct call or outside the current set of analyzed functions, we have
3888     // to do it eagerly.
3889     if (F->hasLocalLinkage()) {
3890       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
3891             const auto *CB = dyn_cast<CallBase>(U.getUser());
3892             return CB && CB->isCallee(&U) &&
3893                    Functions.count(const_cast<Function *>(CB->getCaller()));
3894           }))
3895         continue;
3896     }
3897 
3898     // Populate the Attributor with abstract attribute opportunities in the
3899     // function and the information cache with IR information.
3900     A.identifyDefaultAbstractAttributes(*F);
3901   }
3902 
3903   ChangeStatus Changed = A.run();
3904 
3905   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
3906                     << " functions, result: " << Changed << ".\n");
3907   return Changed == ChangeStatus::CHANGED;
3908 }
3909 
3910 static bool runAttributorLightOnFunctions(InformationCache &InfoCache,
3911                                           SetVector<Function *> &Functions,
3912                                           AnalysisGetter &AG,
3913                                           CallGraphUpdater &CGUpdater,
3914                                           FunctionAnalysisManager &FAM,
3915                                           bool IsModulePass) {
3916   if (Functions.empty())
3917     return false;
3918 
3919   LLVM_DEBUG({
3920     dbgs() << "[AttributorLight] Run on module with " << Functions.size()
3921            << " functions:\n";
3922     for (Function *Fn : Functions)
3923       dbgs() << "  - " << Fn->getName() << "\n";
3924   });
3925 
3926   // Create an Attributor and initially empty information cache that is filled
3927   // while we identify default attribute opportunities.
3928   AttributorConfig AC(CGUpdater);
3929   AC.IsModulePass = IsModulePass;
3930   AC.DeleteFns = false;
3931   DenseSet<const char *> Allowed(
3932       {&AAWillReturn::ID, &AANoUnwind::ID, &AANoRecurse::ID, &AANoSync::ID,
3933        &AANoFree::ID, &AANoReturn::ID, &AAMemoryLocation::ID,
3934        &AAMemoryBehavior::ID, &AAUnderlyingObjects::ID, &AANoCapture::ID,
3935        &AAInterFnReachability::ID, &AAIntraFnReachability::ID, &AACallEdges::ID,
3936        &AANoFPClass::ID, &AAMustProgress::ID, &AANonNull::ID});
3937   AC.Allowed = &Allowed;
3938   AC.UseLiveness = false;
3939 
3940   Attributor A(Functions, InfoCache, AC);
3941 
3942   for (Function *F : Functions) {
3943     if (F->hasExactDefinition())
3944       NumFnWithExactDefinition++;
3945     else
3946       NumFnWithoutExactDefinition++;
3947 
3948     // We look at internal functions only on-demand but if any use is not a
3949     // direct call or outside the current set of analyzed functions, we have
3950     // to do it eagerly.
3951     if (F->hasLocalLinkage()) {
3952       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
3953             const auto *CB = dyn_cast<CallBase>(U.getUser());
3954             return CB && CB->isCallee(&U) &&
3955                    Functions.count(const_cast<Function *>(CB->getCaller()));
3956           }))
3957         continue;
3958     }
3959 
3960     // Populate the Attributor with abstract attribute opportunities in the
3961     // function and the information cache with IR information.
3962     A.identifyDefaultAbstractAttributes(*F);
3963   }
3964 
3965   ChangeStatus Changed = A.run();
3966 
3967   if (Changed == ChangeStatus::CHANGED) {
3968     // Invalidate analyses for modified functions so that we don't have to
3969     // invalidate all analyses for all functions in this SCC.
3970     PreservedAnalyses FuncPA;
3971     // We haven't changed the CFG for modified functions.
3972     FuncPA.preserveSet<CFGAnalyses>();
3973     for (Function *Changed : A.getModifiedFunctions()) {
3974       FAM.invalidate(*Changed, FuncPA);
3975       // Also invalidate any direct callers of changed functions since analyses
3976       // may care about attributes of direct callees. For example, MemorySSA
3977       // cares about whether or not a call's callee modifies memory and queries
3978       // that through function attributes.
3979       for (auto *U : Changed->users()) {
3980         if (auto *Call = dyn_cast<CallBase>(U)) {
3981           if (Call->getCalledFunction() == Changed)
3982             FAM.invalidate(*Call->getFunction(), FuncPA);
3983         }
3984       }
3985     }
3986   }
3987   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
3988                     << " functions, result: " << Changed << ".\n");
3989   return Changed == ChangeStatus::CHANGED;
3990 }
3991 
3992 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
3993 
3994 void AADepGraph::dumpGraph() {
3995   static std::atomic<int> CallTimes;
3996   std::string Prefix;
3997 
3998   if (!DepGraphDotFileNamePrefix.empty())
3999     Prefix = DepGraphDotFileNamePrefix;
4000   else
4001     Prefix = "dep_graph";
4002   std::string Filename =
4003       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
4004 
4005   outs() << "Dependency graph dump to " << Filename << ".\n";
4006 
4007   std::error_code EC;
4008 
4009   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
4010   if (!EC)
4011     llvm::WriteGraph(File, this);
4012 
4013   CallTimes++;
4014 }
4015 
4016 void AADepGraph::print() {
4017   for (auto DepAA : SyntheticRoot.Deps)
4018     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
4019 }
4020 
4021 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
4022   FunctionAnalysisManager &FAM =
4023       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
4024   AnalysisGetter AG(FAM);
4025 
4026   SetVector<Function *> Functions;
4027   for (Function &F : M)
4028     Functions.insert(&F);
4029 
4030   CallGraphUpdater CGUpdater;
4031   BumpPtrAllocator Allocator;
4032   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
4033   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
4034                                /* DeleteFns */ true, /* IsModulePass */ true)) {
4035     // FIXME: Think about passes we will preserve and add them here.
4036     return PreservedAnalyses::none();
4037   }
4038   return PreservedAnalyses::all();
4039 }
4040 
4041 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
4042                                            CGSCCAnalysisManager &AM,
4043                                            LazyCallGraph &CG,
4044                                            CGSCCUpdateResult &UR) {
4045   FunctionAnalysisManager &FAM =
4046       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
4047   AnalysisGetter AG(FAM);
4048 
4049   SetVector<Function *> Functions;
4050   for (LazyCallGraph::Node &N : C)
4051     Functions.insert(&N.getFunction());
4052 
4053   if (Functions.empty())
4054     return PreservedAnalyses::all();
4055 
4056   Module &M = *Functions.back()->getParent();
4057   CallGraphUpdater CGUpdater;
4058   CGUpdater.initialize(CG, C, AM, UR);
4059   BumpPtrAllocator Allocator;
4060   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
4061   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
4062                                /* DeleteFns */ false,
4063                                /* IsModulePass */ false)) {
4064     // FIXME: Think about passes we will preserve and add them here.
4065     PreservedAnalyses PA;
4066     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
4067     return PA;
4068   }
4069   return PreservedAnalyses::all();
4070 }
4071 
4072 PreservedAnalyses AttributorLightPass::run(Module &M,
4073                                            ModuleAnalysisManager &AM) {
4074   FunctionAnalysisManager &FAM =
4075       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
4076   AnalysisGetter AG(FAM, /* CachedOnly */ true);
4077 
4078   SetVector<Function *> Functions;
4079   for (Function &F : M)
4080     Functions.insert(&F);
4081 
4082   CallGraphUpdater CGUpdater;
4083   BumpPtrAllocator Allocator;
4084   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
4085   if (runAttributorLightOnFunctions(InfoCache, Functions, AG, CGUpdater, FAM,
4086                                     /* IsModulePass */ true)) {
4087     PreservedAnalyses PA;
4088     // We have not added or removed functions.
4089     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
4090     // We already invalidated all relevant function analyses above.
4091     PA.preserveSet<AllAnalysesOn<Function>>();
4092     return PA;
4093   }
4094   return PreservedAnalyses::all();
4095 }
4096 
4097 PreservedAnalyses AttributorLightCGSCCPass::run(LazyCallGraph::SCC &C,
4098                                                 CGSCCAnalysisManager &AM,
4099                                                 LazyCallGraph &CG,
4100                                                 CGSCCUpdateResult &UR) {
4101   FunctionAnalysisManager &FAM =
4102       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
4103   AnalysisGetter AG(FAM);
4104 
4105   SetVector<Function *> Functions;
4106   for (LazyCallGraph::Node &N : C)
4107     Functions.insert(&N.getFunction());
4108 
4109   if (Functions.empty())
4110     return PreservedAnalyses::all();
4111 
4112   Module &M = *Functions.back()->getParent();
4113   CallGraphUpdater CGUpdater;
4114   CGUpdater.initialize(CG, C, AM, UR);
4115   BumpPtrAllocator Allocator;
4116   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
4117   if (runAttributorLightOnFunctions(InfoCache, Functions, AG, CGUpdater, FAM,
4118                                     /* IsModulePass */ false)) {
4119     PreservedAnalyses PA;
4120     // We have not added or removed functions.
4121     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
4122     // We already invalidated all relevant function analyses above.
4123     PA.preserveSet<AllAnalysesOn<Function>>();
4124     return PA;
4125   }
4126   return PreservedAnalyses::all();
4127 }
4128 namespace llvm {
4129 
4130 template <> struct GraphTraits<AADepGraphNode *> {
4131   using NodeRef = AADepGraphNode *;
4132   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
4133   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
4134 
4135   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
4136   static NodeRef DepGetVal(const DepTy &DT) { return DT.getPointer(); }
4137 
4138   using ChildIteratorType =
4139       mapped_iterator<AADepGraphNode::DepSetTy::iterator, decltype(&DepGetVal)>;
4140   using ChildEdgeIteratorType = AADepGraphNode::DepSetTy::iterator;
4141 
4142   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
4143 
4144   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
4145 };
4146 
4147 template <>
4148 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
4149   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
4150 
4151   using nodes_iterator =
4152       mapped_iterator<AADepGraphNode::DepSetTy::iterator, decltype(&DepGetVal)>;
4153 
4154   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
4155 
4156   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
4157 };
4158 
4159 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
4160   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
4161 
4162   static std::string getNodeLabel(const AADepGraphNode *Node,
4163                                   const AADepGraph *DG) {
4164     std::string AAString;
4165     raw_string_ostream O(AAString);
4166     Node->print(O);
4167     return AAString;
4168   }
4169 };
4170 
4171 } // end namespace llvm
4172