xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/Attributor.cpp (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/CallGraphSCCPass.h"
25 #include "llvm/Analysis/InlineCost.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MustExecute.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/DebugCounter.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/GraphWriter.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Cloning.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 
49 #ifdef EXPENSIVE_CHECKS
50 #include "llvm/IR/Verifier.h"
51 #endif
52 
53 #include <cassert>
54 #include <string>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "attributor"
59 
60 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
61               "Determine what attributes are manifested in the IR");
62 
63 STATISTIC(NumFnDeleted, "Number of function deleted");
64 STATISTIC(NumFnWithExactDefinition,
65           "Number of functions with exact definitions");
66 STATISTIC(NumFnWithoutExactDefinition,
67           "Number of functions without exact definitions");
68 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
69 STATISTIC(NumAttributesTimedOut,
70           "Number of abstract attributes timed out before fixpoint");
71 STATISTIC(NumAttributesValidFixpoint,
72           "Number of abstract attributes in a valid fixpoint state");
73 STATISTIC(NumAttributesManifested,
74           "Number of abstract attributes manifested in IR");
75 
76 // TODO: Determine a good default value.
77 //
78 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
79 // (when run with the first 5 abstract attributes). The results also indicate
80 // that we never reach 32 iterations but always find a fixpoint sooner.
81 //
82 // This will become more evolved once we perform two interleaved fixpoint
83 // iterations: bottom-up and top-down.
84 static cl::opt<unsigned>
85     SetFixpointIterations("attributor-max-iterations", cl::Hidden,
86                           cl::desc("Maximal number of fixpoint iterations."),
87                           cl::init(32));
88 
89 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
90     "attributor-max-initialization-chain-length", cl::Hidden,
91     cl::desc(
92         "Maximal number of chained initializations (to avoid stack overflows)"),
93     cl::location(MaxInitializationChainLength), cl::init(1024));
94 unsigned llvm::MaxInitializationChainLength;
95 
96 static cl::opt<bool> VerifyMaxFixpointIterations(
97     "attributor-max-iterations-verify", cl::Hidden,
98     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
99     cl::init(false));
100 
101 static cl::opt<bool> AnnotateDeclarationCallSites(
102     "attributor-annotate-decl-cs", cl::Hidden,
103     cl::desc("Annotate call sites of function declarations."), cl::init(false));
104 
105 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
106                                        cl::init(true), cl::Hidden);
107 
108 static cl::opt<bool>
109     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
110                          cl::desc("Allow the Attributor to create shallow "
111                                   "wrappers for non-exact definitions."),
112                          cl::init(false));
113 
114 static cl::opt<bool>
115     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
116                      cl::desc("Allow the Attributor to use IP information "
117                               "derived from non-exact functions via cloning"),
118                      cl::init(false));
119 
120 // These options can only used for debug builds.
121 #ifndef NDEBUG
122 static cl::list<std::string>
123     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
124                   cl::desc("Comma seperated list of attribute names that are "
125                            "allowed to be seeded."),
126                   cl::CommaSeparated);
127 
128 static cl::list<std::string> FunctionSeedAllowList(
129     "attributor-function-seed-allow-list", cl::Hidden,
130     cl::desc("Comma seperated list of function names that are "
131              "allowed to be seeded."),
132     cl::CommaSeparated);
133 #endif
134 
135 static cl::opt<bool>
136     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
137                  cl::desc("Dump the dependency graph to dot files."),
138                  cl::init(false));
139 
140 static cl::opt<std::string> DepGraphDotFileNamePrefix(
141     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
142     cl::desc("The prefix used for the CallGraph dot file names."));
143 
144 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
145                                   cl::desc("View the dependency graph."),
146                                   cl::init(false));
147 
148 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
149                                        cl::desc("Print attribute dependencies"),
150                                        cl::init(false));
151 
152 static cl::opt<bool> EnableCallSiteSpecific(
153     "attributor-enable-call-site-specific-deduction", cl::Hidden,
154     cl::desc("Allow the Attributor to do call site specific analysis"),
155     cl::init(false));
156 
157 static cl::opt<bool>
158     PrintCallGraph("attributor-print-call-graph", cl::Hidden,
159                    cl::desc("Print Attributor's internal call graph"),
160                    cl::init(false));
161 
162 static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
163                                       cl::Hidden,
164                                       cl::desc("Try to simplify all loads."),
165                                       cl::init(true));
166 
167 /// Logic operators for the change status enum class.
168 ///
169 ///{
170 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
171   return L == ChangeStatus::CHANGED ? L : R;
172 }
173 ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
174   L = L | R;
175   return L;
176 }
177 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
178   return L == ChangeStatus::UNCHANGED ? L : R;
179 }
180 ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
181   L = L & R;
182   return L;
183 }
184 ///}
185 
186 bool AA::isNoSyncInst(Attributor &A, const Instruction &I,
187                       const AbstractAttribute &QueryingAA) {
188   // We are looking for volatile instructions or non-relaxed atomics.
189   if (const auto *CB = dyn_cast<CallBase>(&I)) {
190     if (CB->hasFnAttr(Attribute::NoSync))
191       return true;
192 
193     // Non-convergent and readnone imply nosync.
194     if (!CB->isConvergent() && !CB->mayReadOrWriteMemory())
195       return true;
196 
197     if (AANoSync::isNoSyncIntrinsic(&I))
198       return true;
199 
200     const auto &NoSyncAA = A.getAAFor<AANoSync>(
201         QueryingAA, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
202     return NoSyncAA.isAssumedNoSync();
203   }
204 
205   if (!I.mayReadOrWriteMemory())
206     return true;
207 
208   return !I.isVolatile() && !AANoSync::isNonRelaxedAtomic(&I);
209 }
210 
211 bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
212                              const Value &V, bool ForAnalysisOnly) {
213   // TODO: See the AAInstanceInfo class comment.
214   if (!ForAnalysisOnly)
215     return false;
216   auto &InstanceInfoAA = A.getAAFor<AAInstanceInfo>(
217       QueryingAA, IRPosition::value(V), DepClassTy::OPTIONAL);
218   return InstanceInfoAA.isAssumedUniqueForAnalysis();
219 }
220 
221 Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty,
222                                     const TargetLibraryInfo *TLI) {
223   if (isa<AllocaInst>(Obj))
224     return UndefValue::get(&Ty);
225   if (Constant *Init = getInitialValueOfAllocation(&Obj, TLI, &Ty))
226     return Init;
227   auto *GV = dyn_cast<GlobalVariable>(&Obj);
228   if (!GV)
229     return nullptr;
230   if (!GV->hasLocalLinkage() && !(GV->isConstant() && GV->hasInitializer()))
231     return nullptr;
232   if (!GV->hasInitializer())
233     return UndefValue::get(&Ty);
234   return dyn_cast_or_null<Constant>(getWithType(*GV->getInitializer(), Ty));
235 }
236 
237 bool AA::isValidInScope(const Value &V, const Function *Scope) {
238   if (isa<Constant>(V))
239     return true;
240   if (auto *I = dyn_cast<Instruction>(&V))
241     return I->getFunction() == Scope;
242   if (auto *A = dyn_cast<Argument>(&V))
243     return A->getParent() == Scope;
244   return false;
245 }
246 
247 bool AA::isValidAtPosition(const AA::ValueAndContext &VAC,
248                            InformationCache &InfoCache) {
249   if (isa<Constant>(VAC.getValue()) || VAC.getValue() == VAC.getCtxI())
250     return true;
251   const Function *Scope = nullptr;
252   const Instruction *CtxI = VAC.getCtxI();
253   if (CtxI)
254     Scope = CtxI->getFunction();
255   if (auto *A = dyn_cast<Argument>(VAC.getValue()))
256     return A->getParent() == Scope;
257   if (auto *I = dyn_cast<Instruction>(VAC.getValue())) {
258     if (I->getFunction() == Scope) {
259       if (const DominatorTree *DT =
260               InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
261                   *Scope))
262         return DT->dominates(I, CtxI);
263       // Local dominance check mostly for the old PM passes.
264       if (CtxI && I->getParent() == CtxI->getParent())
265         return llvm::any_of(
266             make_range(I->getIterator(), I->getParent()->end()),
267             [&](const Instruction &AfterI) { return &AfterI == CtxI; });
268     }
269   }
270   return false;
271 }
272 
273 Value *AA::getWithType(Value &V, Type &Ty) {
274   if (V.getType() == &Ty)
275     return &V;
276   if (isa<PoisonValue>(V))
277     return PoisonValue::get(&Ty);
278   if (isa<UndefValue>(V))
279     return UndefValue::get(&Ty);
280   if (auto *C = dyn_cast<Constant>(&V)) {
281     if (C->isNullValue())
282       return Constant::getNullValue(&Ty);
283     if (C->getType()->isPointerTy() && Ty.isPointerTy())
284       return ConstantExpr::getPointerCast(C, &Ty);
285     if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
286       if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
287         return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
288       if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
289         return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true);
290     }
291   }
292   return nullptr;
293 }
294 
295 Optional<Value *>
296 AA::combineOptionalValuesInAAValueLatice(const Optional<Value *> &A,
297                                          const Optional<Value *> &B, Type *Ty) {
298   if (A == B)
299     return A;
300   if (!B)
301     return A;
302   if (*B == nullptr)
303     return nullptr;
304   if (!A)
305     return Ty ? getWithType(**B, *Ty) : nullptr;
306   if (*A == nullptr)
307     return nullptr;
308   if (!Ty)
309     Ty = (*A)->getType();
310   if (isa_and_nonnull<UndefValue>(*A))
311     return getWithType(**B, *Ty);
312   if (isa<UndefValue>(*B))
313     return A;
314   if (*A && *B && *A == getWithType(**B, *Ty))
315     return A;
316   return nullptr;
317 }
318 
319 template <bool IsLoad, typename Ty>
320 static bool getPotentialCopiesOfMemoryValue(
321     Attributor &A, Ty &I, SmallSetVector<Value *, 4> &PotentialCopies,
322     SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
323     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
324     bool OnlyExact) {
325   LLVM_DEBUG(dbgs() << "Trying to determine the potential copies of " << I
326                     << " (only exact: " << OnlyExact << ")\n";);
327 
328   Value &Ptr = *I.getPointerOperand();
329   SmallSetVector<Value *, 8> Objects;
330   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &I,
331                                        UsedAssumedInformation)) {
332     LLVM_DEBUG(
333         dbgs() << "Underlying objects stored into could not be determined\n";);
334     return false;
335   }
336 
337   // Containers to remember the pointer infos and new copies while we are not
338   // sure that we can find all of them. If we abort we want to avoid spurious
339   // dependences and potential copies in the provided container.
340   SmallVector<const AAPointerInfo *> PIs;
341   SmallVector<Value *> NewCopies;
342   SmallVector<Instruction *> NewCopyOrigins;
343 
344   const auto *TLI =
345       A.getInfoCache().getTargetLibraryInfoForFunction(*I.getFunction());
346   LLVM_DEBUG(dbgs() << "Visit " << Objects.size() << " objects:\n");
347   for (Value *Obj : Objects) {
348     LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
349     if (isa<UndefValue>(Obj))
350       continue;
351     if (isa<ConstantPointerNull>(Obj)) {
352       // A null pointer access can be undefined but any offset from null may
353       // be OK. We do not try to optimize the latter.
354       if (!NullPointerIsDefined(I.getFunction(),
355                                 Ptr.getType()->getPointerAddressSpace()) &&
356           A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation,
357                                  AA::Interprocedural) == Obj)
358         continue;
359       LLVM_DEBUG(
360           dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
361       return false;
362     }
363     // TODO: Use assumed noalias return.
364     if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj) &&
365         !(IsLoad ? isAllocationFn(Obj, TLI) : isNoAliasCall(Obj))) {
366       LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Obj
367                         << "\n";);
368       return false;
369     }
370     if (auto *GV = dyn_cast<GlobalVariable>(Obj))
371       if (!GV->hasLocalLinkage() &&
372           !(GV->isConstant() && GV->hasInitializer())) {
373         LLVM_DEBUG(dbgs() << "Underlying object is global with external "
374                              "linkage, not supported yet: "
375                           << *Obj << "\n";);
376         return false;
377       }
378 
379     bool NullOnly = true;
380     bool NullRequired = false;
381     auto CheckForNullOnlyAndUndef = [&](Optional<Value *> V, bool IsExact) {
382       if (!V || *V == nullptr)
383         NullOnly = false;
384       else if (isa<UndefValue>(*V))
385         /* No op */;
386       else if (isa<Constant>(*V) && cast<Constant>(*V)->isNullValue())
387         NullRequired = !IsExact;
388       else
389         NullOnly = false;
390     };
391 
392     auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
393       if ((IsLoad && !Acc.isWrite()) || (!IsLoad && !Acc.isRead()))
394         return true;
395       if (IsLoad && Acc.isWrittenValueYetUndetermined())
396         return true;
397       CheckForNullOnlyAndUndef(Acc.getContent(), IsExact);
398       if (OnlyExact && !IsExact && !NullOnly &&
399           !isa_and_nonnull<UndefValue>(Acc.getWrittenValue())) {
400         LLVM_DEBUG(dbgs() << "Non exact access " << *Acc.getRemoteInst()
401                           << ", abort!\n");
402         return false;
403       }
404       if (NullRequired && !NullOnly) {
405         LLVM_DEBUG(dbgs() << "Required all `null` accesses due to non exact "
406                              "one, however found non-null one: "
407                           << *Acc.getRemoteInst() << ", abort!\n");
408         return false;
409       }
410       if (IsLoad) {
411         assert(isa<LoadInst>(I) && "Expected load or store instruction only!");
412         if (!Acc.isWrittenValueUnknown()) {
413           NewCopies.push_back(Acc.getWrittenValue());
414           NewCopyOrigins.push_back(Acc.getRemoteInst());
415           return true;
416         }
417         auto *SI = dyn_cast<StoreInst>(Acc.getRemoteInst());
418         if (!SI) {
419           LLVM_DEBUG(dbgs() << "Underlying object written through a non-store "
420                                "instruction not supported yet: "
421                             << *Acc.getRemoteInst() << "\n";);
422           return false;
423         }
424         NewCopies.push_back(SI->getValueOperand());
425         NewCopyOrigins.push_back(SI);
426       } else {
427         assert(isa<StoreInst>(I) && "Expected load or store instruction only!");
428         auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
429         if (!LI && OnlyExact) {
430           LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
431                                "instruction not supported yet: "
432                             << *Acc.getRemoteInst() << "\n";);
433           return false;
434         }
435         NewCopies.push_back(Acc.getRemoteInst());
436       }
437       return true;
438     };
439 
440     // If the value has been written to we don't need the initial value of the
441     // object.
442     bool HasBeenWrittenTo = false;
443 
444     auto &PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(*Obj),
445                                          DepClassTy::NONE);
446     if (!PI.forallInterferingAccesses(A, QueryingAA, I, CheckAccess,
447                                       HasBeenWrittenTo)) {
448       LLVM_DEBUG(
449           dbgs()
450           << "Failed to verify all interfering accesses for underlying object: "
451           << *Obj << "\n");
452       return false;
453     }
454 
455     if (IsLoad && !HasBeenWrittenTo) {
456       Value *InitialValue = AA::getInitialValueForObj(*Obj, *I.getType(), TLI);
457       if (!InitialValue)
458         return false;
459       CheckForNullOnlyAndUndef(InitialValue, /* IsExact */ true);
460       if (NullRequired && !NullOnly) {
461         LLVM_DEBUG(dbgs() << "Non exact access but initial value that is not "
462                              "null or undef, abort!\n");
463         return false;
464       }
465 
466       NewCopies.push_back(InitialValue);
467       NewCopyOrigins.push_back(nullptr);
468     }
469 
470     PIs.push_back(&PI);
471   }
472 
473   // Only if we were successful collection all potential copies we record
474   // dependences (on non-fix AAPointerInfo AAs). We also only then modify the
475   // given PotentialCopies container.
476   for (auto *PI : PIs) {
477     if (!PI->getState().isAtFixpoint())
478       UsedAssumedInformation = true;
479     A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
480   }
481   PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
482   PotentialValueOrigins.insert(NewCopyOrigins.begin(), NewCopyOrigins.end());
483 
484   return true;
485 }
486 
487 bool AA::getPotentiallyLoadedValues(
488     Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues,
489     SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
490     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
491     bool OnlyExact) {
492   return getPotentialCopiesOfMemoryValue</* IsLoad */ true>(
493       A, LI, PotentialValues, PotentialValueOrigins, QueryingAA,
494       UsedAssumedInformation, OnlyExact);
495 }
496 
497 bool AA::getPotentialCopiesOfStoredValue(
498     Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
499     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
500     bool OnlyExact) {
501   SmallSetVector<Instruction *, 4> PotentialValueOrigins;
502   return getPotentialCopiesOfMemoryValue</* IsLoad */ false>(
503       A, SI, PotentialCopies, PotentialValueOrigins, QueryingAA,
504       UsedAssumedInformation, OnlyExact);
505 }
506 
507 static bool isAssumedReadOnlyOrReadNone(Attributor &A, const IRPosition &IRP,
508                                         const AbstractAttribute &QueryingAA,
509                                         bool RequireReadNone, bool &IsKnown) {
510 
511   IRPosition::Kind Kind = IRP.getPositionKind();
512   if (Kind == IRPosition::IRP_FUNCTION || Kind == IRPosition::IRP_CALL_SITE) {
513     const auto &MemLocAA =
514         A.getAAFor<AAMemoryLocation>(QueryingAA, IRP, DepClassTy::NONE);
515     if (MemLocAA.isAssumedReadNone()) {
516       IsKnown = MemLocAA.isKnownReadNone();
517       if (!IsKnown)
518         A.recordDependence(MemLocAA, QueryingAA, DepClassTy::OPTIONAL);
519       return true;
520     }
521   }
522 
523   const auto &MemBehaviorAA =
524       A.getAAFor<AAMemoryBehavior>(QueryingAA, IRP, DepClassTy::NONE);
525   if (MemBehaviorAA.isAssumedReadNone() ||
526       (!RequireReadNone && MemBehaviorAA.isAssumedReadOnly())) {
527     IsKnown = RequireReadNone ? MemBehaviorAA.isKnownReadNone()
528                               : MemBehaviorAA.isKnownReadOnly();
529     if (!IsKnown)
530       A.recordDependence(MemBehaviorAA, QueryingAA, DepClassTy::OPTIONAL);
531     return true;
532   }
533 
534   return false;
535 }
536 
537 bool AA::isAssumedReadOnly(Attributor &A, const IRPosition &IRP,
538                            const AbstractAttribute &QueryingAA, bool &IsKnown) {
539   return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
540                                      /* RequireReadNone */ false, IsKnown);
541 }
542 bool AA::isAssumedReadNone(Attributor &A, const IRPosition &IRP,
543                            const AbstractAttribute &QueryingAA, bool &IsKnown) {
544   return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
545                                      /* RequireReadNone */ true, IsKnown);
546 }
547 
548 static bool
549 isPotentiallyReachable(Attributor &A, const Instruction &FromI,
550                        const Instruction *ToI, const Function &ToFn,
551                        const AbstractAttribute &QueryingAA,
552                        std::function<bool(const Function &F)> GoBackwardsCB) {
553   LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable @" << ToFn.getName()
554                     << " from " << FromI << " [GBCB: " << bool(GoBackwardsCB)
555                     << "]\n");
556 
557   // TODO: If we can go arbitrarily backwards we will eventually reach an
558   // entry point that can reach ToI. Only once this takes a set of blocks
559   // through which we cannot go, or once we track internal functions not
560   // accessible from the outside, it makes sense to perform backwards analysis
561   // in the absence of a GoBackwardsCB.
562   if (!GoBackwardsCB) {
563     LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from " << FromI
564                       << " is not checked backwards, abort\n");
565     return true;
566   }
567 
568   SmallPtrSet<const Instruction *, 8> Visited;
569   SmallVector<const Instruction *> Worklist;
570   Worklist.push_back(&FromI);
571 
572   while (!Worklist.empty()) {
573     const Instruction *CurFromI = Worklist.pop_back_val();
574     if (!Visited.insert(CurFromI).second)
575       continue;
576 
577     const Function *FromFn = CurFromI->getFunction();
578     if (FromFn == &ToFn) {
579       if (!ToI)
580         return true;
581       LLVM_DEBUG(dbgs() << "[AA] check " << *ToI << " from " << *CurFromI
582                         << " intraprocedurally\n");
583       const auto &ReachabilityAA = A.getAAFor<AAReachability>(
584           QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL);
585       bool Result = ReachabilityAA.isAssumedReachable(A, *CurFromI, *ToI);
586       LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " "
587                         << (Result ? "can potentially " : "cannot ") << "reach "
588                         << *ToI << " [Intra]\n");
589       if (Result)
590         return true;
591     }
592 
593     // Check if the current instruction is already known to reach the ToFn.
594     const auto &FnReachabilityAA = A.getAAFor<AAFunctionReachability>(
595         QueryingAA, IRPosition::function(*FromFn), DepClassTy::OPTIONAL);
596     bool Result = FnReachabilityAA.instructionCanReach(
597         A, *CurFromI, ToFn);
598     LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " in @" << FromFn->getName()
599                       << " " << (Result ? "can potentially " : "cannot ")
600                       << "reach @" << ToFn.getName() << " [FromFn]\n");
601     if (Result)
602       return true;
603 
604     // If we do not go backwards from the FromFn we are done here and so far we
605     // could not find a way to reach ToFn/ToI.
606     if (!GoBackwardsCB(*FromFn))
607       continue;
608 
609     LLVM_DEBUG(dbgs() << "Stepping backwards to the call sites of @"
610                       << FromFn->getName() << "\n");
611 
612     auto CheckCallSite = [&](AbstractCallSite ACS) {
613       CallBase *CB = ACS.getInstruction();
614       if (!CB)
615         return false;
616 
617       if (isa<InvokeInst>(CB))
618         return false;
619 
620       Instruction *Inst = CB->getNextNonDebugInstruction();
621       Worklist.push_back(Inst);
622       return true;
623     };
624 
625     bool UsedAssumedInformation = false;
626     Result = !A.checkForAllCallSites(CheckCallSite, *FromFn,
627                                      /* RequireAllCallSites */ true,
628                                      &QueryingAA, UsedAssumedInformation);
629     if (Result) {
630       LLVM_DEBUG(dbgs() << "[AA] stepping back to call sites from " << *CurFromI
631                         << " in @" << FromFn->getName()
632                         << " failed, give up\n");
633       return true;
634     }
635 
636     LLVM_DEBUG(dbgs() << "[AA] stepped back to call sites from " << *CurFromI
637                       << " in @" << FromFn->getName()
638                       << " worklist size is: " << Worklist.size() << "\n");
639   }
640   return false;
641 }
642 
643 bool AA::isPotentiallyReachable(
644     Attributor &A, const Instruction &FromI, const Instruction &ToI,
645     const AbstractAttribute &QueryingAA,
646     std::function<bool(const Function &F)> GoBackwardsCB) {
647   LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable " << ToI << " from "
648                     << FromI << " [GBCB: " << bool(GoBackwardsCB) << "]\n");
649   const Function *ToFn = ToI.getFunction();
650   return ::isPotentiallyReachable(A, FromI, &ToI, *ToFn, QueryingAA,
651                                   GoBackwardsCB);
652 }
653 
654 bool AA::isPotentiallyReachable(
655     Attributor &A, const Instruction &FromI, const Function &ToFn,
656     const AbstractAttribute &QueryingAA,
657     std::function<bool(const Function &F)> GoBackwardsCB) {
658   return ::isPotentiallyReachable(A, FromI, /* ToI */ nullptr, ToFn, QueryingAA,
659                                   GoBackwardsCB);
660 }
661 
662 /// Return true if \p New is equal or worse than \p Old.
663 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
664   if (!Old.isIntAttribute())
665     return true;
666 
667   return Old.getValueAsInt() >= New.getValueAsInt();
668 }
669 
670 /// Return true if the information provided by \p Attr was added to the
671 /// attribute list \p Attrs. This is only the case if it was not already present
672 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
673 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
674                              AttributeList &Attrs, int AttrIdx,
675                              bool ForceReplace = false) {
676 
677   if (Attr.isEnumAttribute()) {
678     Attribute::AttrKind Kind = Attr.getKindAsEnum();
679     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
680       if (!ForceReplace &&
681           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
682         return false;
683     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
684     return true;
685   }
686   if (Attr.isStringAttribute()) {
687     StringRef Kind = Attr.getKindAsString();
688     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
689       if (!ForceReplace &&
690           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
691         return false;
692     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
693     return true;
694   }
695   if (Attr.isIntAttribute()) {
696     Attribute::AttrKind Kind = Attr.getKindAsEnum();
697     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
698       if (!ForceReplace &&
699           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
700         return false;
701     Attrs = Attrs.removeAttributeAtIndex(Ctx, AttrIdx, Kind);
702     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
703     return true;
704   }
705 
706   llvm_unreachable("Expected enum or string attribute!");
707 }
708 
709 Argument *IRPosition::getAssociatedArgument() const {
710   if (getPositionKind() == IRP_ARGUMENT)
711     return cast<Argument>(&getAnchorValue());
712 
713   // Not an Argument and no argument number means this is not a call site
714   // argument, thus we cannot find a callback argument to return.
715   int ArgNo = getCallSiteArgNo();
716   if (ArgNo < 0)
717     return nullptr;
718 
719   // Use abstract call sites to make the connection between the call site
720   // values and the ones in callbacks. If a callback was found that makes use
721   // of the underlying call site operand, we want the corresponding callback
722   // callee argument and not the direct callee argument.
723   Optional<Argument *> CBCandidateArg;
724   SmallVector<const Use *, 4> CallbackUses;
725   const auto &CB = cast<CallBase>(getAnchorValue());
726   AbstractCallSite::getCallbackUses(CB, CallbackUses);
727   for (const Use *U : CallbackUses) {
728     AbstractCallSite ACS(U);
729     assert(ACS && ACS.isCallbackCall());
730     if (!ACS.getCalledFunction())
731       continue;
732 
733     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
734 
735       // Test if the underlying call site operand is argument number u of the
736       // callback callee.
737       if (ACS.getCallArgOperandNo(u) != ArgNo)
738         continue;
739 
740       assert(ACS.getCalledFunction()->arg_size() > u &&
741              "ACS mapped into var-args arguments!");
742       if (CBCandidateArg) {
743         CBCandidateArg = nullptr;
744         break;
745       }
746       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
747     }
748   }
749 
750   // If we found a unique callback candidate argument, return it.
751   if (CBCandidateArg && CBCandidateArg.value())
752     return CBCandidateArg.value();
753 
754   // If no callbacks were found, or none used the underlying call site operand
755   // exclusively, use the direct callee argument if available.
756   const Function *Callee = CB.getCalledFunction();
757   if (Callee && Callee->arg_size() > unsigned(ArgNo))
758     return Callee->getArg(ArgNo);
759 
760   return nullptr;
761 }
762 
763 ChangeStatus AbstractAttribute::update(Attributor &A) {
764   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
765   if (getState().isAtFixpoint())
766     return HasChanged;
767 
768   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
769 
770   HasChanged = updateImpl(A);
771 
772   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
773                     << "\n");
774 
775   return HasChanged;
776 }
777 
778 ChangeStatus
779 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
780                                    const ArrayRef<Attribute> &DeducedAttrs,
781                                    bool ForceReplace) {
782   Function *ScopeFn = IRP.getAnchorScope();
783   IRPosition::Kind PK = IRP.getPositionKind();
784 
785   // In the following some generic code that will manifest attributes in
786   // DeducedAttrs if they improve the current IR. Due to the different
787   // annotation positions we use the underlying AttributeList interface.
788 
789   AttributeList Attrs;
790   switch (PK) {
791   case IRPosition::IRP_INVALID:
792   case IRPosition::IRP_FLOAT:
793     return ChangeStatus::UNCHANGED;
794   case IRPosition::IRP_ARGUMENT:
795   case IRPosition::IRP_FUNCTION:
796   case IRPosition::IRP_RETURNED:
797     Attrs = ScopeFn->getAttributes();
798     break;
799   case IRPosition::IRP_CALL_SITE:
800   case IRPosition::IRP_CALL_SITE_RETURNED:
801   case IRPosition::IRP_CALL_SITE_ARGUMENT:
802     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
803     break;
804   }
805 
806   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
807   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
808   for (const Attribute &Attr : DeducedAttrs) {
809     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace))
810       continue;
811 
812     HasChanged = ChangeStatus::CHANGED;
813   }
814 
815   if (HasChanged == ChangeStatus::UNCHANGED)
816     return HasChanged;
817 
818   switch (PK) {
819   case IRPosition::IRP_ARGUMENT:
820   case IRPosition::IRP_FUNCTION:
821   case IRPosition::IRP_RETURNED:
822     ScopeFn->setAttributes(Attrs);
823     break;
824   case IRPosition::IRP_CALL_SITE:
825   case IRPosition::IRP_CALL_SITE_RETURNED:
826   case IRPosition::IRP_CALL_SITE_ARGUMENT:
827     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
828     break;
829   case IRPosition::IRP_INVALID:
830   case IRPosition::IRP_FLOAT:
831     break;
832   }
833 
834   return HasChanged;
835 }
836 
837 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
838 const IRPosition
839     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
840 
841 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
842   IRPositions.emplace_back(IRP);
843 
844   // Helper to determine if operand bundles on a call site are benin or
845   // potentially problematic. We handle only llvm.assume for now.
846   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
847     return (isa<IntrinsicInst>(CB) &&
848             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
849   };
850 
851   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
852   switch (IRP.getPositionKind()) {
853   case IRPosition::IRP_INVALID:
854   case IRPosition::IRP_FLOAT:
855   case IRPosition::IRP_FUNCTION:
856     return;
857   case IRPosition::IRP_ARGUMENT:
858   case IRPosition::IRP_RETURNED:
859     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
860     return;
861   case IRPosition::IRP_CALL_SITE:
862     assert(CB && "Expected call site!");
863     // TODO: We need to look at the operand bundles similar to the redirection
864     //       in CallBase.
865     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
866       if (const Function *Callee = CB->getCalledFunction())
867         IRPositions.emplace_back(IRPosition::function(*Callee));
868     return;
869   case IRPosition::IRP_CALL_SITE_RETURNED:
870     assert(CB && "Expected call site!");
871     // TODO: We need to look at the operand bundles similar to the redirection
872     //       in CallBase.
873     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
874       if (const Function *Callee = CB->getCalledFunction()) {
875         IRPositions.emplace_back(IRPosition::returned(*Callee));
876         IRPositions.emplace_back(IRPosition::function(*Callee));
877         for (const Argument &Arg : Callee->args())
878           if (Arg.hasReturnedAttr()) {
879             IRPositions.emplace_back(
880                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
881             IRPositions.emplace_back(
882                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
883             IRPositions.emplace_back(IRPosition::argument(Arg));
884           }
885       }
886     }
887     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
888     return;
889   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
890     assert(CB && "Expected call site!");
891     // TODO: We need to look at the operand bundles similar to the redirection
892     //       in CallBase.
893     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
894       const Function *Callee = CB->getCalledFunction();
895       if (Callee) {
896         if (Argument *Arg = IRP.getAssociatedArgument())
897           IRPositions.emplace_back(IRPosition::argument(*Arg));
898         IRPositions.emplace_back(IRPosition::function(*Callee));
899       }
900     }
901     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
902     return;
903   }
904   }
905 }
906 
907 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
908                          bool IgnoreSubsumingPositions, Attributor *A) const {
909   SmallVector<Attribute, 4> Attrs;
910   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
911     for (Attribute::AttrKind AK : AKs)
912       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
913         return true;
914     // The first position returned by the SubsumingPositionIterator is
915     // always the position itself. If we ignore subsuming positions we
916     // are done after the first iteration.
917     if (IgnoreSubsumingPositions)
918       break;
919   }
920   if (A)
921     for (Attribute::AttrKind AK : AKs)
922       if (getAttrsFromAssumes(AK, Attrs, *A))
923         return true;
924   return false;
925 }
926 
927 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
928                           SmallVectorImpl<Attribute> &Attrs,
929                           bool IgnoreSubsumingPositions, Attributor *A) const {
930   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
931     for (Attribute::AttrKind AK : AKs)
932       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
933     // The first position returned by the SubsumingPositionIterator is
934     // always the position itself. If we ignore subsuming positions we
935     // are done after the first iteration.
936     if (IgnoreSubsumingPositions)
937       break;
938   }
939   if (A)
940     for (Attribute::AttrKind AK : AKs)
941       getAttrsFromAssumes(AK, Attrs, *A);
942 }
943 
944 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
945                                     SmallVectorImpl<Attribute> &Attrs) const {
946   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
947     return false;
948 
949   AttributeList AttrList;
950   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
951     AttrList = CB->getAttributes();
952   else
953     AttrList = getAssociatedFunction()->getAttributes();
954 
955   bool HasAttr = AttrList.hasAttributeAtIndex(getAttrIdx(), AK);
956   if (HasAttr)
957     Attrs.push_back(AttrList.getAttributeAtIndex(getAttrIdx(), AK));
958   return HasAttr;
959 }
960 
961 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
962                                      SmallVectorImpl<Attribute> &Attrs,
963                                      Attributor &A) const {
964   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
965   Value &AssociatedValue = getAssociatedValue();
966 
967   const Assume2KnowledgeMap &A2K =
968       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
969 
970   // Check if we found any potential assume use, if not we don't need to create
971   // explorer iterators.
972   if (A2K.empty())
973     return false;
974 
975   LLVMContext &Ctx = AssociatedValue.getContext();
976   unsigned AttrsSize = Attrs.size();
977   MustBeExecutedContextExplorer &Explorer =
978       A.getInfoCache().getMustBeExecutedContextExplorer();
979   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
980   for (auto &It : A2K)
981     if (Explorer.findInContextOf(It.first, EIt, EEnd))
982       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
983   return AttrsSize != Attrs.size();
984 }
985 
986 void IRPosition::verify() {
987 #ifdef EXPENSIVE_CHECKS
988   switch (getPositionKind()) {
989   case IRP_INVALID:
990     assert((CBContext == nullptr) &&
991            "Invalid position must not have CallBaseContext!");
992     assert(!Enc.getOpaqueValue() &&
993            "Expected a nullptr for an invalid position!");
994     return;
995   case IRP_FLOAT:
996     assert((!isa<Argument>(&getAssociatedValue())) &&
997            "Expected specialized kind for argument values!");
998     return;
999   case IRP_RETURNED:
1000     assert(isa<Function>(getAsValuePtr()) &&
1001            "Expected function for a 'returned' position!");
1002     assert(getAsValuePtr() == &getAssociatedValue() &&
1003            "Associated value mismatch!");
1004     return;
1005   case IRP_CALL_SITE_RETURNED:
1006     assert((CBContext == nullptr) &&
1007            "'call site returned' position must not have CallBaseContext!");
1008     assert((isa<CallBase>(getAsValuePtr())) &&
1009            "Expected call base for 'call site returned' position!");
1010     assert(getAsValuePtr() == &getAssociatedValue() &&
1011            "Associated value mismatch!");
1012     return;
1013   case IRP_CALL_SITE:
1014     assert((CBContext == nullptr) &&
1015            "'call site function' position must not have CallBaseContext!");
1016     assert((isa<CallBase>(getAsValuePtr())) &&
1017            "Expected call base for 'call site function' position!");
1018     assert(getAsValuePtr() == &getAssociatedValue() &&
1019            "Associated value mismatch!");
1020     return;
1021   case IRP_FUNCTION:
1022     assert(isa<Function>(getAsValuePtr()) &&
1023            "Expected function for a 'function' position!");
1024     assert(getAsValuePtr() == &getAssociatedValue() &&
1025            "Associated value mismatch!");
1026     return;
1027   case IRP_ARGUMENT:
1028     assert(isa<Argument>(getAsValuePtr()) &&
1029            "Expected argument for a 'argument' position!");
1030     assert(getAsValuePtr() == &getAssociatedValue() &&
1031            "Associated value mismatch!");
1032     return;
1033   case IRP_CALL_SITE_ARGUMENT: {
1034     assert((CBContext == nullptr) &&
1035            "'call site argument' position must not have CallBaseContext!");
1036     Use *U = getAsUsePtr();
1037     (void)U; // Silence unused variable warning.
1038     assert(U && "Expected use for a 'call site argument' position!");
1039     assert(isa<CallBase>(U->getUser()) &&
1040            "Expected call base user for a 'call site argument' position!");
1041     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
1042            "Expected call base argument operand for a 'call site argument' "
1043            "position");
1044     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
1045                unsigned(getCallSiteArgNo()) &&
1046            "Argument number mismatch!");
1047     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
1048     return;
1049   }
1050   }
1051 #endif
1052 }
1053 
1054 Optional<Constant *>
1055 Attributor::getAssumedConstant(const IRPosition &IRP,
1056                                const AbstractAttribute &AA,
1057                                bool &UsedAssumedInformation) {
1058   // First check all callbacks provided by outside AAs. If any of them returns
1059   // a non-null value that is different from the associated value, or None, we
1060   // assume it's simplified.
1061   for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
1062     Optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
1063     if (!SimplifiedV)
1064       return llvm::None;
1065     if (isa_and_nonnull<Constant>(*SimplifiedV))
1066       return cast<Constant>(*SimplifiedV);
1067     return nullptr;
1068   }
1069   if (auto *C = dyn_cast<Constant>(&IRP.getAssociatedValue()))
1070     return C;
1071   SmallVector<AA::ValueAndContext> Values;
1072   if (getAssumedSimplifiedValues(IRP, &AA, Values,
1073                                  AA::ValueScope::Interprocedural,
1074                                  UsedAssumedInformation)) {
1075     if (Values.empty())
1076       return llvm::None;
1077     if (auto *C = dyn_cast_or_null<Constant>(
1078             AAPotentialValues::getSingleValue(*this, AA, IRP, Values)))
1079       return C;
1080   }
1081   return nullptr;
1082 }
1083 
1084 Optional<Value *> Attributor::getAssumedSimplified(const IRPosition &IRP,
1085                                                    const AbstractAttribute *AA,
1086                                                    bool &UsedAssumedInformation,
1087                                                    AA::ValueScope S) {
1088   // First check all callbacks provided by outside AAs. If any of them returns
1089   // a non-null value that is different from the associated value, or None, we
1090   // assume it's simplified.
1091   for (auto &CB : SimplificationCallbacks.lookup(IRP))
1092     return CB(IRP, AA, UsedAssumedInformation);
1093 
1094   SmallVector<AA::ValueAndContext> Values;
1095   if (!getAssumedSimplifiedValues(IRP, AA, Values, S, UsedAssumedInformation))
1096     return &IRP.getAssociatedValue();
1097   if (Values.empty())
1098     return llvm::None;
1099   if (AA)
1100     if (Value *V = AAPotentialValues::getSingleValue(*this, *AA, IRP, Values))
1101       return V;
1102   if (IRP.getPositionKind() == IRPosition::IRP_RETURNED ||
1103       IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_RETURNED)
1104     return nullptr;
1105   return &IRP.getAssociatedValue();
1106 }
1107 
1108 bool Attributor::getAssumedSimplifiedValues(
1109     const IRPosition &IRP, const AbstractAttribute *AA,
1110     SmallVectorImpl<AA::ValueAndContext> &Values, AA::ValueScope S,
1111     bool &UsedAssumedInformation) {
1112   // First check all callbacks provided by outside AAs. If any of them returns
1113   // a non-null value that is different from the associated value, or None, we
1114   // assume it's simplified.
1115   const auto &SimplificationCBs = SimplificationCallbacks.lookup(IRP);
1116   for (auto &CB : SimplificationCBs) {
1117     Optional<Value *> CBResult = CB(IRP, AA, UsedAssumedInformation);
1118     if (!CBResult.has_value())
1119       continue;
1120     Value *V = CBResult.value();
1121     if (!V)
1122       return false;
1123     if ((S & AA::ValueScope::Interprocedural) ||
1124         AA::isValidInScope(*V, IRP.getAnchorScope()))
1125       Values.push_back(AA::ValueAndContext{*V, nullptr});
1126     else
1127       return false;
1128   }
1129   if (!SimplificationCBs.empty())
1130     return true;
1131 
1132   // If no high-level/outside simplification occurred, use AAPotentialValues.
1133   const auto &PotentialValuesAA =
1134       getOrCreateAAFor<AAPotentialValues>(IRP, AA, DepClassTy::OPTIONAL);
1135   if (!PotentialValuesAA.getAssumedSimplifiedValues(*this, Values, S))
1136     return false;
1137   UsedAssumedInformation |= !PotentialValuesAA.isAtFixpoint();
1138   return true;
1139 }
1140 
1141 Optional<Value *> Attributor::translateArgumentToCallSiteContent(
1142     Optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
1143     bool &UsedAssumedInformation) {
1144   if (!V)
1145     return V;
1146   if (*V == nullptr || isa<Constant>(*V))
1147     return V;
1148   if (auto *Arg = dyn_cast<Argument>(*V))
1149     if (CB.getCalledFunction() == Arg->getParent())
1150       if (!Arg->hasPointeeInMemoryValueAttr())
1151         return getAssumedSimplified(
1152             IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
1153             UsedAssumedInformation, AA::Intraprocedural);
1154   return nullptr;
1155 }
1156 
1157 Attributor::~Attributor() {
1158   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
1159   // thus we cannot delete them. We can, and want to, destruct them though.
1160   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1161     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1162     AA->~AbstractAttribute();
1163   }
1164 }
1165 
1166 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
1167                                const AAIsDead *FnLivenessAA,
1168                                bool &UsedAssumedInformation,
1169                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1170   const IRPosition &IRP = AA.getIRPosition();
1171   if (!Functions.count(IRP.getAnchorScope()))
1172     return false;
1173   return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
1174                        CheckBBLivenessOnly, DepClass);
1175 }
1176 
1177 bool Attributor::isAssumedDead(const Use &U,
1178                                const AbstractAttribute *QueryingAA,
1179                                const AAIsDead *FnLivenessAA,
1180                                bool &UsedAssumedInformation,
1181                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1182   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
1183   if (!UserI)
1184     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
1185                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1186 
1187   if (auto *CB = dyn_cast<CallBase>(UserI)) {
1188     // For call site argument uses we can check if the argument is
1189     // unused/dead.
1190     if (CB->isArgOperand(&U)) {
1191       const IRPosition &CSArgPos =
1192           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
1193       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
1194                            UsedAssumedInformation, CheckBBLivenessOnly,
1195                            DepClass);
1196     }
1197   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
1198     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
1199     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
1200                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1201   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
1202     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
1203     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
1204                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1205   } else if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
1206     if (!CheckBBLivenessOnly && SI->getPointerOperand() != U.get()) {
1207       const IRPosition IRP = IRPosition::inst(*SI);
1208       const AAIsDead &IsDeadAA =
1209           getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1210       if (IsDeadAA.isRemovableStore()) {
1211         if (QueryingAA)
1212           recordDependence(IsDeadAA, *QueryingAA, DepClass);
1213         if (!IsDeadAA.isKnown(AAIsDead::IS_REMOVABLE))
1214           UsedAssumedInformation = true;
1215         return true;
1216       }
1217     }
1218   }
1219 
1220   return isAssumedDead(IRPosition::inst(*UserI), QueryingAA, FnLivenessAA,
1221                        UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1222 }
1223 
1224 bool Attributor::isAssumedDead(const Instruction &I,
1225                                const AbstractAttribute *QueryingAA,
1226                                const AAIsDead *FnLivenessAA,
1227                                bool &UsedAssumedInformation,
1228                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1229   const IRPosition::CallBaseContext *CBCtx =
1230       QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
1231 
1232   if (ManifestAddedBlocks.contains(I.getParent()))
1233     return false;
1234 
1235   if (!FnLivenessAA)
1236     FnLivenessAA =
1237         lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
1238                               QueryingAA, DepClassTy::NONE);
1239 
1240   // If we have a context instruction and a liveness AA we use it.
1241   if (FnLivenessAA &&
1242       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
1243       (CheckBBLivenessOnly ? FnLivenessAA->isAssumedDead(I.getParent())
1244                            : FnLivenessAA->isAssumedDead(&I))) {
1245     if (QueryingAA)
1246       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1247     if (!FnLivenessAA->isKnownDead(&I))
1248       UsedAssumedInformation = true;
1249     return true;
1250   }
1251 
1252   if (CheckBBLivenessOnly)
1253     return false;
1254 
1255   const IRPosition IRP = IRPosition::inst(I, CBCtx);
1256   const AAIsDead &IsDeadAA =
1257       getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1258   // Don't check liveness for AAIsDead.
1259   if (QueryingAA == &IsDeadAA)
1260     return false;
1261 
1262   if (IsDeadAA.isAssumedDead()) {
1263     if (QueryingAA)
1264       recordDependence(IsDeadAA, *QueryingAA, DepClass);
1265     if (!IsDeadAA.isKnownDead())
1266       UsedAssumedInformation = true;
1267     return true;
1268   }
1269 
1270   return false;
1271 }
1272 
1273 bool Attributor::isAssumedDead(const IRPosition &IRP,
1274                                const AbstractAttribute *QueryingAA,
1275                                const AAIsDead *FnLivenessAA,
1276                                bool &UsedAssumedInformation,
1277                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1278   Instruction *CtxI = IRP.getCtxI();
1279   if (CtxI &&
1280       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
1281                     /* CheckBBLivenessOnly */ true,
1282                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
1283     return true;
1284 
1285   if (CheckBBLivenessOnly)
1286     return false;
1287 
1288   // If we haven't succeeded we query the specific liveness info for the IRP.
1289   const AAIsDead *IsDeadAA;
1290   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
1291     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
1292         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
1293         QueryingAA, DepClassTy::NONE);
1294   else
1295     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1296   // Don't check liveness for AAIsDead.
1297   if (QueryingAA == IsDeadAA)
1298     return false;
1299 
1300   if (IsDeadAA->isAssumedDead()) {
1301     if (QueryingAA)
1302       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1303     if (!IsDeadAA->isKnownDead())
1304       UsedAssumedInformation = true;
1305     return true;
1306   }
1307 
1308   return false;
1309 }
1310 
1311 bool Attributor::isAssumedDead(const BasicBlock &BB,
1312                                const AbstractAttribute *QueryingAA,
1313                                const AAIsDead *FnLivenessAA,
1314                                DepClassTy DepClass) {
1315   if (!FnLivenessAA)
1316     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*BB.getParent()),
1317                                          QueryingAA, DepClassTy::NONE);
1318   if (FnLivenessAA->isAssumedDead(&BB)) {
1319     if (QueryingAA)
1320       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1321     return true;
1322   }
1323 
1324   return false;
1325 }
1326 
1327 bool Attributor::checkForAllUses(
1328     function_ref<bool(const Use &, bool &)> Pred,
1329     const AbstractAttribute &QueryingAA, const Value &V,
1330     bool CheckBBLivenessOnly, DepClassTy LivenessDepClass,
1331     bool IgnoreDroppableUses,
1332     function_ref<bool(const Use &OldU, const Use &NewU)> EquivalentUseCB) {
1333 
1334   // Check the trivial case first as it catches void values.
1335   if (V.use_empty())
1336     return true;
1337 
1338   const IRPosition &IRP = QueryingAA.getIRPosition();
1339   SmallVector<const Use *, 16> Worklist;
1340   SmallPtrSet<const Use *, 16> Visited;
1341 
1342   auto AddUsers = [&](const Value &V, const Use *OldUse) {
1343     for (const Use &UU : V.uses()) {
1344       if (OldUse && EquivalentUseCB && !EquivalentUseCB(*OldUse, UU)) {
1345         LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was "
1346                              "rejected by the equivalence call back: "
1347                           << *UU << "!\n");
1348         return false;
1349       }
1350 
1351       Worklist.push_back(&UU);
1352     }
1353     return true;
1354   };
1355 
1356   AddUsers(V, /* OldUse */ nullptr);
1357 
1358   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
1359                     << " initial uses to check\n");
1360 
1361   const Function *ScopeFn = IRP.getAnchorScope();
1362   const auto *LivenessAA =
1363       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1364                                     DepClassTy::NONE)
1365               : nullptr;
1366 
1367   while (!Worklist.empty()) {
1368     const Use *U = Worklist.pop_back_val();
1369     if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1370       continue;
1371     LLVM_DEBUG({
1372       if (auto *Fn = dyn_cast<Function>(U->getUser()))
1373         dbgs() << "[Attributor] Check use: " << **U << " in " << Fn->getName()
1374                << "\n";
1375       else
1376         dbgs() << "[Attributor] Check use: " << **U << " in " << *U->getUser()
1377                << "\n";
1378     });
1379     bool UsedAssumedInformation = false;
1380     if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1381                       CheckBBLivenessOnly, LivenessDepClass)) {
1382       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1383       continue;
1384     }
1385     if (IgnoreDroppableUses && U->getUser()->isDroppable()) {
1386       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
1387       continue;
1388     }
1389 
1390     if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1391       if (&SI->getOperandUse(0) == U) {
1392         if (!Visited.insert(U).second)
1393           continue;
1394         SmallSetVector<Value *, 4> PotentialCopies;
1395         if (AA::getPotentialCopiesOfStoredValue(
1396                 *this, *SI, PotentialCopies, QueryingAA, UsedAssumedInformation,
1397                 /* OnlyExact */ true)) {
1398           LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with "
1399                             << PotentialCopies.size()
1400                             << " potential copies instead!\n");
1401           for (Value *PotentialCopy : PotentialCopies)
1402             if (!AddUsers(*PotentialCopy, U))
1403               return false;
1404           continue;
1405         }
1406       }
1407     }
1408 
1409     bool Follow = false;
1410     if (!Pred(*U, Follow))
1411       return false;
1412     if (!Follow)
1413       continue;
1414 
1415     User &Usr = *U->getUser();
1416     AddUsers(Usr, /* OldUse */ nullptr);
1417 
1418     auto *RI = dyn_cast<ReturnInst>(&Usr);
1419     if (!RI)
1420       continue;
1421 
1422     Function &F = *RI->getFunction();
1423     auto CallSitePred = [&](AbstractCallSite ACS) {
1424       return AddUsers(*ACS.getInstruction(), U);
1425     };
1426     if (!checkForAllCallSites(CallSitePred, F, /* RequireAllCallSites */ true,
1427                               &QueryingAA, UsedAssumedInformation)) {
1428       LLVM_DEBUG(dbgs() << "[Attributor] Could not follow return instruction "
1429                            "to all call sites: "
1430                         << *RI << "\n");
1431       return false;
1432     }
1433   }
1434 
1435   return true;
1436 }
1437 
1438 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1439                                       const AbstractAttribute &QueryingAA,
1440                                       bool RequireAllCallSites,
1441                                       bool &UsedAssumedInformation) {
1442   // We can try to determine information from
1443   // the call sites. However, this is only possible all call sites are known,
1444   // hence the function has internal linkage.
1445   const IRPosition &IRP = QueryingAA.getIRPosition();
1446   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1447   if (!AssociatedFunction) {
1448     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1449                       << "\n");
1450     return false;
1451   }
1452 
1453   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1454                               &QueryingAA, UsedAssumedInformation);
1455 }
1456 
1457 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1458                                       const Function &Fn,
1459                                       bool RequireAllCallSites,
1460                                       const AbstractAttribute *QueryingAA,
1461                                       bool &UsedAssumedInformation) {
1462   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1463     LLVM_DEBUG(
1464         dbgs()
1465         << "[Attributor] Function " << Fn.getName()
1466         << " has no internal linkage, hence not all call sites are known\n");
1467     return false;
1468   }
1469 
1470   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1471   for (unsigned u = 0; u < Uses.size(); ++u) {
1472     const Use &U = *Uses[u];
1473     LLVM_DEBUG({
1474       if (auto *Fn = dyn_cast<Function>(U))
1475         dbgs() << "[Attributor] Check use: " << Fn->getName() << " in "
1476                << *U.getUser() << "\n";
1477       else
1478         dbgs() << "[Attributor] Check use: " << *U << " in " << *U.getUser()
1479                << "\n";
1480     });
1481     if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1482                       /* CheckBBLivenessOnly */ true)) {
1483       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1484       continue;
1485     }
1486     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1487       if (CE->isCast() && CE->getType()->isPointerTy()) {
1488         LLVM_DEBUG(
1489             dbgs() << "[Attributor] Use, is constant cast expression, add "
1490                    << CE->getNumUses()
1491                    << " uses of that expression instead!\n");
1492         for (const Use &CEU : CE->uses())
1493           Uses.push_back(&CEU);
1494         continue;
1495       }
1496     }
1497 
1498     AbstractCallSite ACS(&U);
1499     if (!ACS) {
1500       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
1501                         << " has non call site use " << *U.get() << " in "
1502                         << *U.getUser() << "\n");
1503       // BlockAddress users are allowed.
1504       if (isa<BlockAddress>(U.getUser()))
1505         continue;
1506       return false;
1507     }
1508 
1509     const Use *EffectiveUse =
1510         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1511     if (!ACS.isCallee(EffectiveUse)) {
1512       if (!RequireAllCallSites) {
1513         LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1514                           << " is not a call of " << Fn.getName()
1515                           << ", skip use\n");
1516         continue;
1517       }
1518       LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1519                         << " is an invalid use of " << Fn.getName() << "\n");
1520       return false;
1521     }
1522 
1523     // Make sure the arguments that can be matched between the call site and the
1524     // callee argee on their type. It is unlikely they do not and it doesn't
1525     // make sense for all attributes to know/care about this.
1526     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
1527     unsigned MinArgsParams =
1528         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1529     for (unsigned u = 0; u < MinArgsParams; ++u) {
1530       Value *CSArgOp = ACS.getCallArgOperand(u);
1531       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1532         LLVM_DEBUG(
1533             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1534                    << u << "@" << Fn.getName() << ": "
1535                    << *Fn.getArg(u)->getType() << " vs. "
1536                    << *ACS.getCallArgOperand(u)->getType() << "\n");
1537         return false;
1538       }
1539     }
1540 
1541     if (Pred(ACS))
1542       continue;
1543 
1544     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1545                       << *ACS.getInstruction() << "\n");
1546     return false;
1547   }
1548 
1549   return true;
1550 }
1551 
1552 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1553   // TODO: Maintain a cache of Values that are
1554   // on the pathway from a Argument to a Instruction that would effect the
1555   // liveness/return state etc.
1556   return EnableCallSiteSpecific;
1557 }
1558 
1559 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
1560     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
1561     const AbstractAttribute &QueryingAA) {
1562 
1563   const IRPosition &IRP = QueryingAA.getIRPosition();
1564   // Since we need to provide return instructions we have to have an exact
1565   // definition.
1566   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1567   if (!AssociatedFunction)
1568     return false;
1569 
1570   // If this is a call site query we use the call site specific return values
1571   // and liveness information.
1572   // TODO: use the function scope once we have call site AAReturnedValues.
1573   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1574   const auto &AARetVal =
1575       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1576   if (!AARetVal.getState().isValidState())
1577     return false;
1578 
1579   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
1580 }
1581 
1582 bool Attributor::checkForAllReturnedValues(
1583     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
1584 
1585   const IRPosition &IRP = QueryingAA.getIRPosition();
1586   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1587   if (!AssociatedFunction)
1588     return false;
1589 
1590   // TODO: use the function scope once we have call site AAReturnedValues.
1591   const IRPosition &QueryIRP = IRPosition::function(
1592       *AssociatedFunction, QueryingAA.getCallBaseContext());
1593   const auto &AARetVal =
1594       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1595   if (!AARetVal.getState().isValidState())
1596     return false;
1597 
1598   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
1599       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
1600         return Pred(RV);
1601       });
1602 }
1603 
1604 static bool checkForAllInstructionsImpl(
1605     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
1606     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
1607     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
1608     bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
1609     bool CheckPotentiallyDead = false) {
1610   for (unsigned Opcode : Opcodes) {
1611     // Check if we have instructions with this opcode at all first.
1612     auto *Insts = OpcodeInstMap.lookup(Opcode);
1613     if (!Insts)
1614       continue;
1615 
1616     for (Instruction *I : *Insts) {
1617       // Skip dead instructions.
1618       if (A && !CheckPotentiallyDead &&
1619           A->isAssumedDead(IRPosition::inst(*I), QueryingAA, LivenessAA,
1620                            UsedAssumedInformation, CheckBBLivenessOnly)) {
1621         LLVM_DEBUG(dbgs() << "[Attributor] Instruction " << *I
1622                           << " is potentially dead, skip!\n";);
1623         continue;
1624       }
1625 
1626       if (!Pred(*I))
1627         return false;
1628     }
1629   }
1630   return true;
1631 }
1632 
1633 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1634                                          const Function *Fn,
1635                                          const AbstractAttribute &QueryingAA,
1636                                          const ArrayRef<unsigned> &Opcodes,
1637                                          bool &UsedAssumedInformation,
1638                                          bool CheckBBLivenessOnly,
1639                                          bool CheckPotentiallyDead) {
1640   // Since we need to provide instructions we have to have an exact definition.
1641   if (!Fn || Fn->isDeclaration())
1642     return false;
1643 
1644   // TODO: use the function scope once we have call site AAReturnedValues.
1645   const IRPosition &QueryIRP = IRPosition::function(*Fn);
1646   const auto *LivenessAA =
1647       (CheckBBLivenessOnly || CheckPotentiallyDead)
1648           ? nullptr
1649           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
1650 
1651   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1652   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
1653                                    LivenessAA, Opcodes, UsedAssumedInformation,
1654                                    CheckBBLivenessOnly, CheckPotentiallyDead))
1655     return false;
1656 
1657   return true;
1658 }
1659 
1660 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1661                                          const AbstractAttribute &QueryingAA,
1662                                          const ArrayRef<unsigned> &Opcodes,
1663                                          bool &UsedAssumedInformation,
1664                                          bool CheckBBLivenessOnly,
1665                                          bool CheckPotentiallyDead) {
1666   const IRPosition &IRP = QueryingAA.getIRPosition();
1667   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1668   return checkForAllInstructions(Pred, AssociatedFunction, QueryingAA, Opcodes,
1669                                  UsedAssumedInformation, CheckBBLivenessOnly,
1670                                  CheckPotentiallyDead);
1671 }
1672 
1673 bool Attributor::checkForAllReadWriteInstructions(
1674     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
1675     bool &UsedAssumedInformation) {
1676 
1677   const Function *AssociatedFunction =
1678       QueryingAA.getIRPosition().getAssociatedFunction();
1679   if (!AssociatedFunction)
1680     return false;
1681 
1682   // TODO: use the function scope once we have call site AAReturnedValues.
1683   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1684   const auto &LivenessAA =
1685       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
1686 
1687   for (Instruction *I :
1688        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
1689     // Skip dead instructions.
1690     if (isAssumedDead(IRPosition::inst(*I), &QueryingAA, &LivenessAA,
1691                       UsedAssumedInformation))
1692       continue;
1693 
1694     if (!Pred(*I))
1695       return false;
1696   }
1697 
1698   return true;
1699 }
1700 
1701 void Attributor::runTillFixpoint() {
1702   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
1703   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
1704                     << DG.SyntheticRoot.Deps.size()
1705                     << " abstract attributes.\n");
1706 
1707   // Now that all abstract attributes are collected and initialized we start
1708   // the abstract analysis.
1709 
1710   unsigned IterationCounter = 1;
1711   unsigned MaxIterations =
1712       Configuration.MaxFixpointIterations.value_or(SetFixpointIterations);
1713 
1714   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1715   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1716   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1717 
1718   do {
1719     // Remember the size to determine new attributes.
1720     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1721     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1722                       << ", Worklist size: " << Worklist.size() << "\n");
1723 
1724     // For invalid AAs we can fix dependent AAs that have a required dependence,
1725     // thereby folding long dependence chains in a single step without the need
1726     // to run updates.
1727     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1728       AbstractAttribute *InvalidAA = InvalidAAs[u];
1729 
1730       // Check the dependences to fast track invalidation.
1731       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1732                         << InvalidAA->Deps.size()
1733                         << " required & optional dependences\n");
1734       while (!InvalidAA->Deps.empty()) {
1735         const auto &Dep = InvalidAA->Deps.back();
1736         InvalidAA->Deps.pop_back();
1737         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1738         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1739           LLVM_DEBUG(dbgs() << " - recompute: " << *DepAA);
1740           Worklist.insert(DepAA);
1741           continue;
1742         }
1743         LLVM_DEBUG(dbgs() << " - invalidate: " << *DepAA);
1744         DepAA->getState().indicatePessimisticFixpoint();
1745         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1746         if (!DepAA->getState().isValidState())
1747           InvalidAAs.insert(DepAA);
1748         else
1749           ChangedAAs.push_back(DepAA);
1750       }
1751     }
1752 
1753     // Add all abstract attributes that are potentially dependent on one that
1754     // changed to the work list.
1755     for (AbstractAttribute *ChangedAA : ChangedAAs)
1756       while (!ChangedAA->Deps.empty()) {
1757         Worklist.insert(
1758             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1759         ChangedAA->Deps.pop_back();
1760       }
1761 
1762     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1763                       << ", Worklist+Dependent size: " << Worklist.size()
1764                       << "\n");
1765 
1766     // Reset the changed and invalid set.
1767     ChangedAAs.clear();
1768     InvalidAAs.clear();
1769 
1770     // Update all abstract attribute in the work list and record the ones that
1771     // changed.
1772     for (AbstractAttribute *AA : Worklist) {
1773       const auto &AAState = AA->getState();
1774       if (!AAState.isAtFixpoint())
1775         if (updateAA(*AA) == ChangeStatus::CHANGED)
1776           ChangedAAs.push_back(AA);
1777 
1778       // Use the InvalidAAs vector to propagate invalid states fast transitively
1779       // without requiring updates.
1780       if (!AAState.isValidState())
1781         InvalidAAs.insert(AA);
1782     }
1783 
1784     // Add attributes to the changed set if they have been created in the last
1785     // iteration.
1786     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1787                       DG.SyntheticRoot.end());
1788 
1789     // Reset the work list and repopulate with the changed abstract attributes.
1790     // Note that dependent ones are added above.
1791     Worklist.clear();
1792     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1793     Worklist.insert(QueryAAsAwaitingUpdate.begin(),
1794                     QueryAAsAwaitingUpdate.end());
1795     QueryAAsAwaitingUpdate.clear();
1796 
1797   } while (!Worklist.empty() &&
1798            (IterationCounter++ < MaxIterations || VerifyMaxFixpointIterations));
1799 
1800   if (IterationCounter > MaxIterations && !Functions.empty()) {
1801     auto Remark = [&](OptimizationRemarkMissed ORM) {
1802       return ORM << "Attributor did not reach a fixpoint after "
1803                  << ore::NV("Iterations", MaxIterations) << " iterations.";
1804     };
1805     Function *F = Functions.front();
1806     emitRemark<OptimizationRemarkMissed>(F, "FixedPoint", Remark);
1807   }
1808 
1809   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1810                     << IterationCounter << "/" << MaxIterations
1811                     << " iterations\n");
1812 
1813   // Reset abstract arguments not settled in a sound fixpoint by now. This
1814   // happens when we stopped the fixpoint iteration early. Note that only the
1815   // ones marked as "changed" *and* the ones transitively depending on them
1816   // need to be reverted to a pessimistic state. Others might not be in a
1817   // fixpoint state but we can use the optimistic results for them anyway.
1818   SmallPtrSet<AbstractAttribute *, 32> Visited;
1819   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1820     AbstractAttribute *ChangedAA = ChangedAAs[u];
1821     if (!Visited.insert(ChangedAA).second)
1822       continue;
1823 
1824     AbstractState &State = ChangedAA->getState();
1825     if (!State.isAtFixpoint()) {
1826       State.indicatePessimisticFixpoint();
1827 
1828       NumAttributesTimedOut++;
1829     }
1830 
1831     while (!ChangedAA->Deps.empty()) {
1832       ChangedAAs.push_back(
1833           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1834       ChangedAA->Deps.pop_back();
1835     }
1836   }
1837 
1838   LLVM_DEBUG({
1839     if (!Visited.empty())
1840       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1841              << " abstract attributes.\n";
1842   });
1843 
1844   if (VerifyMaxFixpointIterations && IterationCounter != MaxIterations) {
1845     errs() << "\n[Attributor] Fixpoint iteration done after: "
1846            << IterationCounter << "/" << MaxIterations << " iterations\n";
1847     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1848                      "specified iterations!");
1849   }
1850 }
1851 
1852 void Attributor::registerForUpdate(AbstractAttribute &AA) {
1853   assert(AA.isQueryAA() &&
1854          "Non-query AAs should not be required to register for updates!");
1855   QueryAAsAwaitingUpdate.insert(&AA);
1856 }
1857 
1858 ChangeStatus Attributor::manifestAttributes() {
1859   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1860   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1861 
1862   unsigned NumManifested = 0;
1863   unsigned NumAtFixpoint = 0;
1864   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1865   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1866     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1867     AbstractState &State = AA->getState();
1868 
1869     // If there is not already a fixpoint reached, we can now take the
1870     // optimistic state. This is correct because we enforced a pessimistic one
1871     // on abstract attributes that were transitively dependent on a changed one
1872     // already above.
1873     if (!State.isAtFixpoint())
1874       State.indicateOptimisticFixpoint();
1875 
1876     // We must not manifest Attributes that use Callbase info.
1877     if (AA->hasCallBaseContext())
1878       continue;
1879     // If the state is invalid, we do not try to manifest it.
1880     if (!State.isValidState())
1881       continue;
1882 
1883     if (AA->getCtxI() && !isRunOn(*AA->getAnchorScope()))
1884       continue;
1885 
1886     // Skip dead code.
1887     bool UsedAssumedInformation = false;
1888     if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
1889                       /* CheckBBLivenessOnly */ true))
1890       continue;
1891     // Check if the manifest debug counter that allows skipping manifestation of
1892     // AAs
1893     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1894       continue;
1895     // Manifest the state and record if we changed the IR.
1896     ChangeStatus LocalChange = AA->manifest(*this);
1897     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1898       AA->trackStatistics();
1899     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1900                       << "\n");
1901 
1902     ManifestChange = ManifestChange | LocalChange;
1903 
1904     NumAtFixpoint++;
1905     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1906   }
1907 
1908   (void)NumManifested;
1909   (void)NumAtFixpoint;
1910   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1911                     << " arguments while " << NumAtFixpoint
1912                     << " were in a valid fixpoint state\n");
1913 
1914   NumAttributesManifested += NumManifested;
1915   NumAttributesValidFixpoint += NumAtFixpoint;
1916 
1917   (void)NumFinalAAs;
1918   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1919     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1920       errs() << "Unexpected abstract attribute: "
1921              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1922              << " :: "
1923              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1924                     ->getIRPosition()
1925                     .getAssociatedValue()
1926              << "\n";
1927     llvm_unreachable("Expected the final number of abstract attributes to "
1928                      "remain unchanged!");
1929   }
1930   return ManifestChange;
1931 }
1932 
1933 void Attributor::identifyDeadInternalFunctions() {
1934   // Early exit if we don't intend to delete functions.
1935   if (!Configuration.DeleteFns)
1936     return;
1937 
1938   // Identify dead internal functions and delete them. This happens outside
1939   // the other fixpoint analysis as we might treat potentially dead functions
1940   // as live to lower the number of iterations. If they happen to be dead, the
1941   // below fixpoint loop will identify and eliminate them.
1942   SmallVector<Function *, 8> InternalFns;
1943   for (Function *F : Functions)
1944     if (F->hasLocalLinkage())
1945       InternalFns.push_back(F);
1946 
1947   SmallPtrSet<Function *, 8> LiveInternalFns;
1948   bool FoundLiveInternal = true;
1949   while (FoundLiveInternal) {
1950     FoundLiveInternal = false;
1951     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1952       Function *F = InternalFns[u];
1953       if (!F)
1954         continue;
1955 
1956       bool UsedAssumedInformation = false;
1957       if (checkForAllCallSites(
1958               [&](AbstractCallSite ACS) {
1959                 Function *Callee = ACS.getInstruction()->getFunction();
1960                 return ToBeDeletedFunctions.count(Callee) ||
1961                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1962                         !LiveInternalFns.count(Callee));
1963               },
1964               *F, true, nullptr, UsedAssumedInformation)) {
1965         continue;
1966       }
1967 
1968       LiveInternalFns.insert(F);
1969       InternalFns[u] = nullptr;
1970       FoundLiveInternal = true;
1971     }
1972   }
1973 
1974   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1975     if (Function *F = InternalFns[u])
1976       ToBeDeletedFunctions.insert(F);
1977 }
1978 
1979 ChangeStatus Attributor::cleanupIR() {
1980   TimeTraceScope TimeScope("Attributor::cleanupIR");
1981   // Delete stuff at the end to avoid invalid references and a nice order.
1982   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
1983                     << ToBeDeletedFunctions.size() << " functions and "
1984                     << ToBeDeletedBlocks.size() << " blocks and "
1985                     << ToBeDeletedInsts.size() << " instructions and "
1986                     << ToBeChangedValues.size() << " values and "
1987                     << ToBeChangedUses.size() << " uses. To insert "
1988                     << ToBeChangedToUnreachableInsts.size()
1989                     << " unreachables.\n"
1990                     << "Preserve manifest added " << ManifestAddedBlocks.size()
1991                     << " blocks\n");
1992 
1993   SmallVector<WeakTrackingVH, 32> DeadInsts;
1994   SmallVector<Instruction *, 32> TerminatorsToFold;
1995 
1996   auto ReplaceUse = [&](Use *U, Value *NewV) {
1997     Value *OldV = U->get();
1998 
1999     // If we plan to replace NewV we need to update it at this point.
2000     do {
2001       const auto &Entry = ToBeChangedValues.lookup(NewV);
2002       if (!Entry.first)
2003         break;
2004       NewV = Entry.first;
2005     } while (true);
2006 
2007     Instruction *I = dyn_cast<Instruction>(U->getUser());
2008     assert((!I || isRunOn(*I->getFunction())) &&
2009            "Cannot replace an instruction outside the current SCC!");
2010 
2011     // Do not replace uses in returns if the value is a must-tail call we will
2012     // not delete.
2013     if (auto *RI = dyn_cast_or_null<ReturnInst>(I)) {
2014       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
2015         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
2016           return;
2017       // If we rewrite a return and the new value is not an argument, strip the
2018       // `returned` attribute as it is wrong now.
2019       if (!isa<Argument>(NewV))
2020         for (auto &Arg : RI->getFunction()->args())
2021           Arg.removeAttr(Attribute::Returned);
2022     }
2023 
2024     // Do not perform call graph altering changes outside the SCC.
2025     if (auto *CB = dyn_cast_or_null<CallBase>(I))
2026       if (CB->isCallee(U))
2027         return;
2028 
2029     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
2030                       << " instead of " << *OldV << "\n");
2031     U->set(NewV);
2032 
2033     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
2034       CGModifiedFunctions.insert(I->getFunction());
2035       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
2036           isInstructionTriviallyDead(I))
2037         DeadInsts.push_back(I);
2038     }
2039     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
2040       auto *CB = cast<CallBase>(U->getUser());
2041       if (CB->isArgOperand(U)) {
2042         unsigned Idx = CB->getArgOperandNo(U);
2043         CB->removeParamAttr(Idx, Attribute::NoUndef);
2044         Function *Fn = CB->getCalledFunction();
2045         if (Fn && Fn->arg_size() > Idx)
2046           Fn->removeParamAttr(Idx, Attribute::NoUndef);
2047       }
2048     }
2049     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
2050       Instruction *UserI = cast<Instruction>(U->getUser());
2051       if (isa<UndefValue>(NewV)) {
2052         ToBeChangedToUnreachableInsts.insert(UserI);
2053       } else {
2054         TerminatorsToFold.push_back(UserI);
2055       }
2056     }
2057   };
2058 
2059   for (auto &It : ToBeChangedUses) {
2060     Use *U = It.first;
2061     Value *NewV = It.second;
2062     ReplaceUse(U, NewV);
2063   }
2064 
2065   SmallVector<Use *, 4> Uses;
2066   for (auto &It : ToBeChangedValues) {
2067     Value *OldV = It.first;
2068     auto &Entry = It.second;
2069     Value *NewV = Entry.first;
2070     Uses.clear();
2071     for (auto &U : OldV->uses())
2072       if (Entry.second || !U.getUser()->isDroppable())
2073         Uses.push_back(&U);
2074     for (Use *U : Uses) {
2075       if (auto *I = dyn_cast<Instruction>(U->getUser()))
2076         if (!isRunOn(*I->getFunction()))
2077           continue;
2078       ReplaceUse(U, NewV);
2079     }
2080   }
2081 
2082   for (auto &V : InvokeWithDeadSuccessor)
2083     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
2084       assert(isRunOn(*II->getFunction()) &&
2085              "Cannot replace an invoke outside the current SCC!");
2086       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
2087       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
2088       bool Invoke2CallAllowed =
2089           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
2090       assert((UnwindBBIsDead || NormalBBIsDead) &&
2091              "Invoke does not have dead successors!");
2092       BasicBlock *BB = II->getParent();
2093       BasicBlock *NormalDestBB = II->getNormalDest();
2094       if (UnwindBBIsDead) {
2095         Instruction *NormalNextIP = &NormalDestBB->front();
2096         if (Invoke2CallAllowed) {
2097           changeToCall(II);
2098           NormalNextIP = BB->getTerminator();
2099         }
2100         if (NormalBBIsDead)
2101           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
2102       } else {
2103         assert(NormalBBIsDead && "Broken invariant!");
2104         if (!NormalDestBB->getUniquePredecessor())
2105           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
2106         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
2107       }
2108     }
2109   for (Instruction *I : TerminatorsToFold) {
2110     assert(isRunOn(*I->getFunction()) &&
2111            "Cannot replace a terminator outside the current SCC!");
2112     CGModifiedFunctions.insert(I->getFunction());
2113     ConstantFoldTerminator(I->getParent());
2114   }
2115   for (auto &V : ToBeChangedToUnreachableInsts)
2116     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
2117       LLVM_DEBUG(dbgs() << "[Attributor] Change to unreachable: " << *I
2118                         << "\n");
2119       assert(isRunOn(*I->getFunction()) &&
2120              "Cannot replace an instruction outside the current SCC!");
2121       CGModifiedFunctions.insert(I->getFunction());
2122       changeToUnreachable(I);
2123     }
2124 
2125   for (auto &V : ToBeDeletedInsts) {
2126     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
2127       if (auto *CB = dyn_cast<CallBase>(I)) {
2128         assert(isRunOn(*I->getFunction()) &&
2129                "Cannot delete an instruction outside the current SCC!");
2130         if (!isa<IntrinsicInst>(CB))
2131           Configuration.CGUpdater.removeCallSite(*CB);
2132       }
2133       I->dropDroppableUses();
2134       CGModifiedFunctions.insert(I->getFunction());
2135       if (!I->getType()->isVoidTy())
2136         I->replaceAllUsesWith(UndefValue::get(I->getType()));
2137       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
2138         DeadInsts.push_back(I);
2139       else
2140         I->eraseFromParent();
2141     }
2142   }
2143 
2144   llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) { return !I; });
2145 
2146   LLVM_DEBUG({
2147     dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
2148     for (auto &I : DeadInsts)
2149       if (I)
2150         dbgs() << "  - " << *I << "\n";
2151   });
2152 
2153   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
2154 
2155   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
2156     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
2157     ToBeDeletedBBs.reserve(NumDeadBlocks);
2158     for (BasicBlock *BB : ToBeDeletedBlocks) {
2159       assert(isRunOn(*BB->getParent()) &&
2160              "Cannot delete a block outside the current SCC!");
2161       CGModifiedFunctions.insert(BB->getParent());
2162       // Do not delete BBs added during manifests of AAs.
2163       if (ManifestAddedBlocks.contains(BB))
2164         continue;
2165       ToBeDeletedBBs.push_back(BB);
2166     }
2167     // Actually we do not delete the blocks but squash them into a single
2168     // unreachable but untangling branches that jump here is something we need
2169     // to do in a more generic way.
2170     detachDeadBlocks(ToBeDeletedBBs, nullptr);
2171   }
2172 
2173   identifyDeadInternalFunctions();
2174 
2175   // Rewrite the functions as requested during manifest.
2176   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
2177 
2178   for (Function *Fn : CGModifiedFunctions)
2179     if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
2180       Configuration.CGUpdater.reanalyzeFunction(*Fn);
2181 
2182   for (Function *Fn : ToBeDeletedFunctions) {
2183     if (!Functions.count(Fn))
2184       continue;
2185     Configuration.CGUpdater.removeFunction(*Fn);
2186   }
2187 
2188   if (!ToBeChangedUses.empty())
2189     ManifestChange = ChangeStatus::CHANGED;
2190 
2191   if (!ToBeChangedToUnreachableInsts.empty())
2192     ManifestChange = ChangeStatus::CHANGED;
2193 
2194   if (!ToBeDeletedFunctions.empty())
2195     ManifestChange = ChangeStatus::CHANGED;
2196 
2197   if (!ToBeDeletedBlocks.empty())
2198     ManifestChange = ChangeStatus::CHANGED;
2199 
2200   if (!ToBeDeletedInsts.empty())
2201     ManifestChange = ChangeStatus::CHANGED;
2202 
2203   if (!InvokeWithDeadSuccessor.empty())
2204     ManifestChange = ChangeStatus::CHANGED;
2205 
2206   if (!DeadInsts.empty())
2207     ManifestChange = ChangeStatus::CHANGED;
2208 
2209   NumFnDeleted += ToBeDeletedFunctions.size();
2210 
2211   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
2212                     << " functions after manifest.\n");
2213 
2214 #ifdef EXPENSIVE_CHECKS
2215   for (Function *F : Functions) {
2216     if (ToBeDeletedFunctions.count(F))
2217       continue;
2218     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
2219   }
2220 #endif
2221 
2222   return ManifestChange;
2223 }
2224 
2225 ChangeStatus Attributor::run() {
2226   TimeTraceScope TimeScope("Attributor::run");
2227   AttributorCallGraph ACallGraph(*this);
2228 
2229   if (PrintCallGraph)
2230     ACallGraph.populateAll();
2231 
2232   Phase = AttributorPhase::UPDATE;
2233   runTillFixpoint();
2234 
2235   // dump graphs on demand
2236   if (DumpDepGraph)
2237     DG.dumpGraph();
2238 
2239   if (ViewDepGraph)
2240     DG.viewGraph();
2241 
2242   if (PrintDependencies)
2243     DG.print();
2244 
2245   Phase = AttributorPhase::MANIFEST;
2246   ChangeStatus ManifestChange = manifestAttributes();
2247 
2248   Phase = AttributorPhase::CLEANUP;
2249   ChangeStatus CleanupChange = cleanupIR();
2250 
2251   if (PrintCallGraph)
2252     ACallGraph.print();
2253 
2254   return ManifestChange | CleanupChange;
2255 }
2256 
2257 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
2258   TimeTraceScope TimeScope(
2259       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
2260       "::updateAA");
2261   assert(Phase == AttributorPhase::UPDATE &&
2262          "We can update AA only in the update stage!");
2263 
2264   // Use a new dependence vector for this update.
2265   DependenceVector DV;
2266   DependenceStack.push_back(&DV);
2267 
2268   auto &AAState = AA.getState();
2269   ChangeStatus CS = ChangeStatus::UNCHANGED;
2270   bool UsedAssumedInformation = false;
2271   if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
2272                      /* CheckBBLivenessOnly */ true))
2273     CS = AA.update(*this);
2274 
2275   if (!AA.isQueryAA() && DV.empty()) {
2276     // If the attribute did not query any non-fix information, the state
2277     // will not change and we can indicate that right away.
2278     AAState.indicateOptimisticFixpoint();
2279   }
2280 
2281   if (!AAState.isAtFixpoint())
2282     rememberDependences();
2283 
2284   // Verify the stack was used properly, that is we pop the dependence vector we
2285   // put there earlier.
2286   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
2287   (void)PoppedDV;
2288   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
2289 
2290   return CS;
2291 }
2292 
2293 void Attributor::createShallowWrapper(Function &F) {
2294   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
2295 
2296   Module &M = *F.getParent();
2297   LLVMContext &Ctx = M.getContext();
2298   FunctionType *FnTy = F.getFunctionType();
2299 
2300   Function *Wrapper =
2301       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
2302   F.setName(""); // set the inside function anonymous
2303   M.getFunctionList().insert(F.getIterator(), Wrapper);
2304 
2305   F.setLinkage(GlobalValue::InternalLinkage);
2306 
2307   F.replaceAllUsesWith(Wrapper);
2308   assert(F.use_empty() && "Uses remained after wrapper was created!");
2309 
2310   // Move the COMDAT section to the wrapper.
2311   // TODO: Check if we need to keep it for F as well.
2312   Wrapper->setComdat(F.getComdat());
2313   F.setComdat(nullptr);
2314 
2315   // Copy all metadata and attributes but keep them on F as well.
2316   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2317   F.getAllMetadata(MDs);
2318   for (auto MDIt : MDs)
2319     Wrapper->addMetadata(MDIt.first, *MDIt.second);
2320   Wrapper->setAttributes(F.getAttributes());
2321 
2322   // Create the call in the wrapper.
2323   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
2324 
2325   SmallVector<Value *, 8> Args;
2326   Argument *FArgIt = F.arg_begin();
2327   for (Argument &Arg : Wrapper->args()) {
2328     Args.push_back(&Arg);
2329     Arg.setName((FArgIt++)->getName());
2330   }
2331 
2332   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
2333   CI->setTailCall(true);
2334   CI->addFnAttr(Attribute::NoInline);
2335   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
2336 
2337   NumFnShallowWrappersCreated++;
2338 }
2339 
2340 bool Attributor::isInternalizable(Function &F) {
2341   if (F.isDeclaration() || F.hasLocalLinkage() ||
2342       GlobalValue::isInterposableLinkage(F.getLinkage()))
2343     return false;
2344   return true;
2345 }
2346 
2347 Function *Attributor::internalizeFunction(Function &F, bool Force) {
2348   if (!AllowDeepWrapper && !Force)
2349     return nullptr;
2350   if (!isInternalizable(F))
2351     return nullptr;
2352 
2353   SmallPtrSet<Function *, 2> FnSet = {&F};
2354   DenseMap<Function *, Function *> InternalizedFns;
2355   internalizeFunctions(FnSet, InternalizedFns);
2356 
2357   return InternalizedFns[&F];
2358 }
2359 
2360 bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
2361                                       DenseMap<Function *, Function *> &FnMap) {
2362   for (Function *F : FnSet)
2363     if (!Attributor::isInternalizable(*F))
2364       return false;
2365 
2366   FnMap.clear();
2367   // Generate the internalized version of each function.
2368   for (Function *F : FnSet) {
2369     Module &M = *F->getParent();
2370     FunctionType *FnTy = F->getFunctionType();
2371 
2372     // Create a copy of the current function
2373     Function *Copied =
2374         Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
2375                          F->getName() + ".internalized");
2376     ValueToValueMapTy VMap;
2377     auto *NewFArgIt = Copied->arg_begin();
2378     for (auto &Arg : F->args()) {
2379       auto ArgName = Arg.getName();
2380       NewFArgIt->setName(ArgName);
2381       VMap[&Arg] = &(*NewFArgIt++);
2382     }
2383     SmallVector<ReturnInst *, 8> Returns;
2384 
2385     // Copy the body of the original function to the new one
2386     CloneFunctionInto(Copied, F, VMap,
2387                       CloneFunctionChangeType::LocalChangesOnly, Returns);
2388 
2389     // Set the linakage and visibility late as CloneFunctionInto has some
2390     // implicit requirements.
2391     Copied->setVisibility(GlobalValue::DefaultVisibility);
2392     Copied->setLinkage(GlobalValue::PrivateLinkage);
2393 
2394     // Copy metadata
2395     SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2396     F->getAllMetadata(MDs);
2397     for (auto MDIt : MDs)
2398       if (!Copied->hasMetadata())
2399         Copied->addMetadata(MDIt.first, *MDIt.second);
2400 
2401     M.getFunctionList().insert(F->getIterator(), Copied);
2402     Copied->setDSOLocal(true);
2403     FnMap[F] = Copied;
2404   }
2405 
2406   // Replace all uses of the old function with the new internalized function
2407   // unless the caller is a function that was just internalized.
2408   for (Function *F : FnSet) {
2409     auto &InternalizedFn = FnMap[F];
2410     auto IsNotInternalized = [&](Use &U) -> bool {
2411       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2412         return !FnMap.lookup(CB->getCaller());
2413       return false;
2414     };
2415     F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2416   }
2417 
2418   return true;
2419 }
2420 
2421 bool Attributor::isValidFunctionSignatureRewrite(
2422     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2423 
2424   if (!Configuration.RewriteSignatures)
2425     return false;
2426 
2427   Function *Fn = Arg.getParent();
2428   auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2429     // Forbid the call site to cast the function return type. If we need to
2430     // rewrite these functions we need to re-create a cast for the new call site
2431     // (if the old had uses).
2432     if (!ACS.getCalledFunction() ||
2433         ACS.getInstruction()->getType() !=
2434             ACS.getCalledFunction()->getReturnType())
2435       return false;
2436     if (ACS.getCalledOperand()->getType() != Fn->getType())
2437       return false;
2438     // Forbid must-tail calls for now.
2439     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2440   };
2441 
2442   // Avoid var-arg functions for now.
2443   if (Fn->isVarArg()) {
2444     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2445     return false;
2446   }
2447 
2448   // Avoid functions with complicated argument passing semantics.
2449   AttributeList FnAttributeList = Fn->getAttributes();
2450   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2451       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2452       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2453       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2454     LLVM_DEBUG(
2455         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2456     return false;
2457   }
2458 
2459   // Avoid callbacks for now.
2460   bool UsedAssumedInformation = false;
2461   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2462                             UsedAssumedInformation)) {
2463     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2464     return false;
2465   }
2466 
2467   auto InstPred = [](Instruction &I) {
2468     if (auto *CI = dyn_cast<CallInst>(&I))
2469       return !CI->isMustTailCall();
2470     return true;
2471   };
2472 
2473   // Forbid must-tail calls for now.
2474   // TODO:
2475   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2476   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2477                                    nullptr, {Instruction::Call},
2478                                    UsedAssumedInformation)) {
2479     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2480     return false;
2481   }
2482 
2483   return true;
2484 }
2485 
2486 bool Attributor::registerFunctionSignatureRewrite(
2487     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2488     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2489     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2490   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2491                     << Arg.getParent()->getName() << " with "
2492                     << ReplacementTypes.size() << " replacements\n");
2493   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
2494          "Cannot register an invalid rewrite");
2495 
2496   Function *Fn = Arg.getParent();
2497   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2498       ArgumentReplacementMap[Fn];
2499   if (ARIs.empty())
2500     ARIs.resize(Fn->arg_size());
2501 
2502   // If we have a replacement already with less than or equal new arguments,
2503   // ignore this request.
2504   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2505   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2506     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2507     return false;
2508   }
2509 
2510   // If we have a replacement already but we like the new one better, delete
2511   // the old.
2512   ARI.reset();
2513 
2514   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2515                     << Arg.getParent()->getName() << " with "
2516                     << ReplacementTypes.size() << " replacements\n");
2517 
2518   // Remember the replacement.
2519   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2520                                         std::move(CalleeRepairCB),
2521                                         std::move(ACSRepairCB)));
2522 
2523   return true;
2524 }
2525 
2526 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2527   bool Result = true;
2528 #ifndef NDEBUG
2529   if (SeedAllowList.size() != 0)
2530     Result = llvm::is_contained(SeedAllowList, AA.getName());
2531   Function *Fn = AA.getAnchorScope();
2532   if (FunctionSeedAllowList.size() != 0 && Fn)
2533     Result &= llvm::is_contained(FunctionSeedAllowList, Fn->getName());
2534 #endif
2535   return Result;
2536 }
2537 
2538 ChangeStatus Attributor::rewriteFunctionSignatures(
2539     SmallSetVector<Function *, 8> &ModifiedFns) {
2540   ChangeStatus Changed = ChangeStatus::UNCHANGED;
2541 
2542   for (auto &It : ArgumentReplacementMap) {
2543     Function *OldFn = It.getFirst();
2544 
2545     // Deleted functions do not require rewrites.
2546     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2547       continue;
2548 
2549     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2550         It.getSecond();
2551     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
2552 
2553     SmallVector<Type *, 16> NewArgumentTypes;
2554     SmallVector<AttributeSet, 16> NewArgumentAttributes;
2555 
2556     // Collect replacement argument types and copy over existing attributes.
2557     AttributeList OldFnAttributeList = OldFn->getAttributes();
2558     for (Argument &Arg : OldFn->args()) {
2559       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2560               ARIs[Arg.getArgNo()]) {
2561         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
2562                                 ARI->ReplacementTypes.end());
2563         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
2564                                      AttributeSet());
2565       } else {
2566         NewArgumentTypes.push_back(Arg.getType());
2567         NewArgumentAttributes.push_back(
2568             OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
2569       }
2570     }
2571 
2572     uint64_t LargestVectorWidth = 0;
2573     for (auto *I : NewArgumentTypes)
2574       if (auto *VT = dyn_cast<llvm::VectorType>(I))
2575         LargestVectorWidth = std::max(
2576             LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinSize());
2577 
2578     FunctionType *OldFnTy = OldFn->getFunctionType();
2579     Type *RetTy = OldFnTy->getReturnType();
2580 
2581     // Construct the new function type using the new arguments types.
2582     FunctionType *NewFnTy =
2583         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
2584 
2585     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
2586                       << "' from " << *OldFn->getFunctionType() << " to "
2587                       << *NewFnTy << "\n");
2588 
2589     // Create the new function body and insert it into the module.
2590     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
2591                                        OldFn->getAddressSpace(), "");
2592     Functions.insert(NewFn);
2593     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
2594     NewFn->takeName(OldFn);
2595     NewFn->copyAttributesFrom(OldFn);
2596 
2597     // Patch the pointer to LLVM function in debug info descriptor.
2598     NewFn->setSubprogram(OldFn->getSubprogram());
2599     OldFn->setSubprogram(nullptr);
2600 
2601     // Recompute the parameter attributes list based on the new arguments for
2602     // the function.
2603     LLVMContext &Ctx = OldFn->getContext();
2604     NewFn->setAttributes(AttributeList::get(
2605         Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
2606         NewArgumentAttributes));
2607     AttributeFuncs::updateMinLegalVectorWidthAttr(*NewFn, LargestVectorWidth);
2608 
2609     // Since we have now created the new function, splice the body of the old
2610     // function right into the new function, leaving the old rotting hulk of the
2611     // function empty.
2612     NewFn->getBasicBlockList().splice(NewFn->begin(),
2613                                       OldFn->getBasicBlockList());
2614 
2615     // Fixup block addresses to reference new function.
2616     SmallVector<BlockAddress *, 8u> BlockAddresses;
2617     for (User *U : OldFn->users())
2618       if (auto *BA = dyn_cast<BlockAddress>(U))
2619         BlockAddresses.push_back(BA);
2620     for (auto *BA : BlockAddresses)
2621       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
2622 
2623     // Set of all "call-like" instructions that invoke the old function mapped
2624     // to their new replacements.
2625     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
2626 
2627     // Callback to create a new "call-like" instruction for a given one.
2628     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
2629       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
2630       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
2631 
2632       // Collect the new argument operands for the replacement call site.
2633       SmallVector<Value *, 16> NewArgOperands;
2634       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
2635       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
2636         unsigned NewFirstArgNum = NewArgOperands.size();
2637         (void)NewFirstArgNum; // only used inside assert.
2638         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2639                 ARIs[OldArgNum]) {
2640           if (ARI->ACSRepairCB)
2641             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
2642           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
2643                      NewArgOperands.size() &&
2644                  "ACS repair callback did not provide as many operand as new "
2645                  "types were registered!");
2646           // TODO: Exose the attribute set to the ACS repair callback
2647           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
2648                                          AttributeSet());
2649         } else {
2650           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
2651           NewArgOperandAttributes.push_back(
2652               OldCallAttributeList.getParamAttrs(OldArgNum));
2653         }
2654       }
2655 
2656       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
2657              "Mismatch # argument operands vs. # argument operand attributes!");
2658       assert(NewArgOperands.size() == NewFn->arg_size() &&
2659              "Mismatch # argument operands vs. # function arguments!");
2660 
2661       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
2662       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
2663 
2664       // Create a new call or invoke instruction to replace the old one.
2665       CallBase *NewCB;
2666       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
2667         NewCB =
2668             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
2669                                NewArgOperands, OperandBundleDefs, "", OldCB);
2670       } else {
2671         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
2672                                        "", OldCB);
2673         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
2674         NewCB = NewCI;
2675       }
2676 
2677       // Copy over various properties and the new attributes.
2678       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
2679       NewCB->setCallingConv(OldCB->getCallingConv());
2680       NewCB->takeName(OldCB);
2681       NewCB->setAttributes(AttributeList::get(
2682           Ctx, OldCallAttributeList.getFnAttrs(),
2683           OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
2684 
2685       AttributeFuncs::updateMinLegalVectorWidthAttr(*NewCB->getCaller(),
2686                                                     LargestVectorWidth);
2687 
2688       CallSitePairs.push_back({OldCB, NewCB});
2689       return true;
2690     };
2691 
2692     // Use the CallSiteReplacementCreator to create replacement call sites.
2693     bool UsedAssumedInformation = false;
2694     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
2695                                         true, nullptr, UsedAssumedInformation);
2696     (void)Success;
2697     assert(Success && "Assumed call site replacement to succeed!");
2698 
2699     // Rewire the arguments.
2700     Argument *OldFnArgIt = OldFn->arg_begin();
2701     Argument *NewFnArgIt = NewFn->arg_begin();
2702     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
2703          ++OldArgNum, ++OldFnArgIt) {
2704       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2705               ARIs[OldArgNum]) {
2706         if (ARI->CalleeRepairCB)
2707           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
2708         if (ARI->ReplacementTypes.empty())
2709           OldFnArgIt->replaceAllUsesWith(
2710               PoisonValue::get(OldFnArgIt->getType()));
2711         NewFnArgIt += ARI->ReplacementTypes.size();
2712       } else {
2713         NewFnArgIt->takeName(&*OldFnArgIt);
2714         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
2715         ++NewFnArgIt;
2716       }
2717     }
2718 
2719     // Eliminate the instructions *after* we visited all of them.
2720     for (auto &CallSitePair : CallSitePairs) {
2721       CallBase &OldCB = *CallSitePair.first;
2722       CallBase &NewCB = *CallSitePair.second;
2723       assert(OldCB.getType() == NewCB.getType() &&
2724              "Cannot handle call sites with different types!");
2725       ModifiedFns.insert(OldCB.getFunction());
2726       Configuration.CGUpdater.replaceCallSite(OldCB, NewCB);
2727       OldCB.replaceAllUsesWith(&NewCB);
2728       OldCB.eraseFromParent();
2729     }
2730 
2731     // Replace the function in the call graph (if any).
2732     Configuration.CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
2733 
2734     // If the old function was modified and needed to be reanalyzed, the new one
2735     // does now.
2736     if (ModifiedFns.remove(OldFn))
2737       ModifiedFns.insert(NewFn);
2738 
2739     Changed = ChangeStatus::CHANGED;
2740   }
2741 
2742   return Changed;
2743 }
2744 
2745 void InformationCache::initializeInformationCache(const Function &CF,
2746                                                   FunctionInfo &FI) {
2747   // As we do not modify the function here we can remove the const
2748   // withouth breaking implicit assumptions. At the end of the day, we could
2749   // initialize the cache eagerly which would look the same to the users.
2750   Function &F = const_cast<Function &>(CF);
2751 
2752   // Walk all instructions to find interesting instructions that might be
2753   // queried by abstract attributes during their initialization or update.
2754   // This has to happen before we create attributes.
2755 
2756   DenseMap<const Value *, Optional<short>> AssumeUsesMap;
2757 
2758   // Add \p V to the assume uses map which track the number of uses outside of
2759   // "visited" assumes. If no outside uses are left the value is added to the
2760   // assume only use vector.
2761   auto AddToAssumeUsesMap = [&](const Value &V) -> void {
2762     SmallVector<const Instruction *> Worklist;
2763     if (auto *I = dyn_cast<Instruction>(&V))
2764       Worklist.push_back(I);
2765     while (!Worklist.empty()) {
2766       const Instruction *I = Worklist.pop_back_val();
2767       Optional<short> &NumUses = AssumeUsesMap[I];
2768       if (!NumUses)
2769         NumUses = I->getNumUses();
2770       NumUses = NumUses.value() - /* this assume */ 1;
2771       if (NumUses.value() != 0)
2772         continue;
2773       AssumeOnlyValues.insert(I);
2774       for (const Value *Op : I->operands())
2775         if (auto *OpI = dyn_cast<Instruction>(Op))
2776           Worklist.push_back(OpI);
2777     }
2778   };
2779 
2780   for (Instruction &I : instructions(&F)) {
2781     bool IsInterestingOpcode = false;
2782 
2783     // To allow easy access to all instructions in a function with a given
2784     // opcode we store them in the InfoCache. As not all opcodes are interesting
2785     // to concrete attributes we only cache the ones that are as identified in
2786     // the following switch.
2787     // Note: There are no concrete attributes now so this is initially empty.
2788     switch (I.getOpcode()) {
2789     default:
2790       assert(!isa<CallBase>(&I) &&
2791              "New call base instruction type needs to be known in the "
2792              "Attributor.");
2793       break;
2794     case Instruction::Call:
2795       // Calls are interesting on their own, additionally:
2796       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
2797       // For `must-tail` calls we remember the caller and callee.
2798       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
2799         fillMapFromAssume(*Assume, KnowledgeMap);
2800         AddToAssumeUsesMap(*Assume->getArgOperand(0));
2801       } else if (cast<CallInst>(I).isMustTailCall()) {
2802         FI.ContainsMustTailCall = true;
2803         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
2804           getFunctionInfo(*Callee).CalledViaMustTail = true;
2805       }
2806       LLVM_FALLTHROUGH;
2807     case Instruction::CallBr:
2808     case Instruction::Invoke:
2809     case Instruction::CleanupRet:
2810     case Instruction::CatchSwitch:
2811     case Instruction::AtomicRMW:
2812     case Instruction::AtomicCmpXchg:
2813     case Instruction::Br:
2814     case Instruction::Resume:
2815     case Instruction::Ret:
2816     case Instruction::Load:
2817       // The alignment of a pointer is interesting for loads.
2818     case Instruction::Store:
2819       // The alignment of a pointer is interesting for stores.
2820     case Instruction::Alloca:
2821     case Instruction::AddrSpaceCast:
2822       IsInterestingOpcode = true;
2823     }
2824     if (IsInterestingOpcode) {
2825       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
2826       if (!Insts)
2827         Insts = new (Allocator) InstructionVectorTy();
2828       Insts->push_back(&I);
2829     }
2830     if (I.mayReadOrWriteMemory())
2831       FI.RWInsts.push_back(&I);
2832   }
2833 
2834   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
2835       isInlineViable(F).isSuccess())
2836     InlineableFunctions.insert(&F);
2837 }
2838 
2839 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
2840   return AG.getAnalysis<AAManager>(F);
2841 }
2842 
2843 InformationCache::FunctionInfo::~FunctionInfo() {
2844   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
2845   // manually destroy them.
2846   for (auto &It : OpcodeInstMap)
2847     It.getSecond()->~InstructionVectorTy();
2848 }
2849 
2850 void Attributor::recordDependence(const AbstractAttribute &FromAA,
2851                                   const AbstractAttribute &ToAA,
2852                                   DepClassTy DepClass) {
2853   if (DepClass == DepClassTy::NONE)
2854     return;
2855   // If we are outside of an update, thus before the actual fixpoint iteration
2856   // started (= when we create AAs), we do not track dependences because we will
2857   // put all AAs into the initial worklist anyway.
2858   if (DependenceStack.empty())
2859     return;
2860   if (FromAA.getState().isAtFixpoint())
2861     return;
2862   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
2863 }
2864 
2865 void Attributor::rememberDependences() {
2866   assert(!DependenceStack.empty() && "No dependences to remember!");
2867 
2868   for (DepInfo &DI : *DependenceStack.back()) {
2869     assert((DI.DepClass == DepClassTy::REQUIRED ||
2870             DI.DepClass == DepClassTy::OPTIONAL) &&
2871            "Expected required or optional dependence (1 bit)!");
2872     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
2873     DepAAs.push_back(AbstractAttribute::DepTy(
2874         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
2875   }
2876 }
2877 
2878 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
2879   if (!VisitedFunctions.insert(&F).second)
2880     return;
2881   if (F.isDeclaration())
2882     return;
2883 
2884   // In non-module runs we need to look at the call sites of a function to
2885   // determine if it is part of a must-tail call edge. This will influence what
2886   // attributes we can derive.
2887   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2888   if (!isModulePass() && !FI.CalledViaMustTail) {
2889     for (const Use &U : F.uses())
2890       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2891         if (CB->isCallee(&U) && CB->isMustTailCall())
2892           FI.CalledViaMustTail = true;
2893   }
2894 
2895   IRPosition FPos = IRPosition::function(F);
2896 
2897   // Check for dead BasicBlocks in every function.
2898   // We need dead instruction detection because we do not want to deal with
2899   // broken IR in which SSA rules do not apply.
2900   getOrCreateAAFor<AAIsDead>(FPos);
2901 
2902   // Every function might be "will-return".
2903   getOrCreateAAFor<AAWillReturn>(FPos);
2904 
2905   // Every function might contain instructions that cause "undefined behavior".
2906   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2907 
2908   // Every function can be nounwind.
2909   getOrCreateAAFor<AANoUnwind>(FPos);
2910 
2911   // Every function might be marked "nosync"
2912   getOrCreateAAFor<AANoSync>(FPos);
2913 
2914   // Every function might be "no-free".
2915   getOrCreateAAFor<AANoFree>(FPos);
2916 
2917   // Every function might be "no-return".
2918   getOrCreateAAFor<AANoReturn>(FPos);
2919 
2920   // Every function might be "no-recurse".
2921   getOrCreateAAFor<AANoRecurse>(FPos);
2922 
2923   // Every function might be "readnone/readonly/writeonly/...".
2924   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2925 
2926   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2927   getOrCreateAAFor<AAMemoryLocation>(FPos);
2928 
2929   // Every function can track active assumptions.
2930   getOrCreateAAFor<AAAssumptionInfo>(FPos);
2931 
2932   // Every function might be applicable for Heap-To-Stack conversion.
2933   if (EnableHeapToStack)
2934     getOrCreateAAFor<AAHeapToStack>(FPos);
2935 
2936   // Return attributes are only appropriate if the return type is non void.
2937   Type *ReturnType = F.getReturnType();
2938   if (!ReturnType->isVoidTy()) {
2939     // Argument attribute "returned" --- Create only one per function even
2940     // though it is an argument attribute.
2941     getOrCreateAAFor<AAReturnedValues>(FPos);
2942 
2943     IRPosition RetPos = IRPosition::returned(F);
2944 
2945     // Every returned value might be dead.
2946     getOrCreateAAFor<AAIsDead>(RetPos);
2947 
2948     // Every function might be simplified.
2949     bool UsedAssumedInformation = false;
2950     getAssumedSimplified(RetPos, nullptr, UsedAssumedInformation,
2951                          AA::Intraprocedural);
2952 
2953     // Every returned value might be marked noundef.
2954     getOrCreateAAFor<AANoUndef>(RetPos);
2955 
2956     if (ReturnType->isPointerTy()) {
2957 
2958       // Every function with pointer return type might be marked align.
2959       getOrCreateAAFor<AAAlign>(RetPos);
2960 
2961       // Every function with pointer return type might be marked nonnull.
2962       getOrCreateAAFor<AANonNull>(RetPos);
2963 
2964       // Every function with pointer return type might be marked noalias.
2965       getOrCreateAAFor<AANoAlias>(RetPos);
2966 
2967       // Every function with pointer return type might be marked
2968       // dereferenceable.
2969       getOrCreateAAFor<AADereferenceable>(RetPos);
2970     }
2971   }
2972 
2973   for (Argument &Arg : F.args()) {
2974     IRPosition ArgPos = IRPosition::argument(Arg);
2975 
2976     // Every argument might be simplified. We have to go through the Attributor
2977     // interface though as outside AAs can register custom simplification
2978     // callbacks.
2979     bool UsedAssumedInformation = false;
2980     getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation,
2981                          AA::Intraprocedural);
2982 
2983     // Every argument might be dead.
2984     getOrCreateAAFor<AAIsDead>(ArgPos);
2985 
2986     // Every argument might be marked noundef.
2987     getOrCreateAAFor<AANoUndef>(ArgPos);
2988 
2989     if (Arg.getType()->isPointerTy()) {
2990       // Every argument with pointer type might be marked nonnull.
2991       getOrCreateAAFor<AANonNull>(ArgPos);
2992 
2993       // Every argument with pointer type might be marked noalias.
2994       getOrCreateAAFor<AANoAlias>(ArgPos);
2995 
2996       // Every argument with pointer type might be marked dereferenceable.
2997       getOrCreateAAFor<AADereferenceable>(ArgPos);
2998 
2999       // Every argument with pointer type might be marked align.
3000       getOrCreateAAFor<AAAlign>(ArgPos);
3001 
3002       // Every argument with pointer type might be marked nocapture.
3003       getOrCreateAAFor<AANoCapture>(ArgPos);
3004 
3005       // Every argument with pointer type might be marked
3006       // "readnone/readonly/writeonly/..."
3007       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
3008 
3009       // Every argument with pointer type might be marked nofree.
3010       getOrCreateAAFor<AANoFree>(ArgPos);
3011 
3012       // Every argument with pointer type might be privatizable (or promotable)
3013       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
3014     }
3015   }
3016 
3017   auto CallSitePred = [&](Instruction &I) -> bool {
3018     auto &CB = cast<CallBase>(I);
3019     IRPosition CBInstPos = IRPosition::inst(CB);
3020     IRPosition CBFnPos = IRPosition::callsite_function(CB);
3021 
3022     // Call sites might be dead if they do not have side effects and no live
3023     // users. The return value might be dead if there are no live users.
3024     getOrCreateAAFor<AAIsDead>(CBInstPos);
3025 
3026     Function *Callee = CB.getCalledFunction();
3027     // TODO: Even if the callee is not known now we might be able to simplify
3028     //       the call/callee.
3029     if (!Callee)
3030       return true;
3031 
3032     // Every call site can track active assumptions.
3033     getOrCreateAAFor<AAAssumptionInfo>(CBFnPos);
3034 
3035     // Skip declarations except if annotations on their call sites were
3036     // explicitly requested.
3037     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
3038         !Callee->hasMetadata(LLVMContext::MD_callback))
3039       return true;
3040 
3041     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
3042 
3043       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
3044       bool UsedAssumedInformation = false;
3045       getAssumedSimplified(CBRetPos, nullptr, UsedAssumedInformation,
3046                            AA::Intraprocedural);
3047     }
3048 
3049     for (int I = 0, E = CB.arg_size(); I < E; ++I) {
3050 
3051       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
3052 
3053       // Every call site argument might be dead.
3054       getOrCreateAAFor<AAIsDead>(CBArgPos);
3055 
3056       // Call site argument might be simplified. We have to go through the
3057       // Attributor interface though as outside AAs can register custom
3058       // simplification callbacks.
3059       bool UsedAssumedInformation = false;
3060       getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation,
3061                            AA::Intraprocedural);
3062 
3063       // Every call site argument might be marked "noundef".
3064       getOrCreateAAFor<AANoUndef>(CBArgPos);
3065 
3066       if (!CB.getArgOperand(I)->getType()->isPointerTy())
3067         continue;
3068 
3069       // Call site argument attribute "non-null".
3070       getOrCreateAAFor<AANonNull>(CBArgPos);
3071 
3072       // Call site argument attribute "nocapture".
3073       getOrCreateAAFor<AANoCapture>(CBArgPos);
3074 
3075       // Call site argument attribute "no-alias".
3076       getOrCreateAAFor<AANoAlias>(CBArgPos);
3077 
3078       // Call site argument attribute "dereferenceable".
3079       getOrCreateAAFor<AADereferenceable>(CBArgPos);
3080 
3081       // Call site argument attribute "align".
3082       getOrCreateAAFor<AAAlign>(CBArgPos);
3083 
3084       // Call site argument attribute
3085       // "readnone/readonly/writeonly/..."
3086       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
3087 
3088       // Call site argument attribute "nofree".
3089       getOrCreateAAFor<AANoFree>(CBArgPos);
3090     }
3091     return true;
3092   };
3093 
3094   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
3095   bool Success;
3096   bool UsedAssumedInformation = false;
3097   Success = checkForAllInstructionsImpl(
3098       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
3099       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
3100        (unsigned)Instruction::Call},
3101       UsedAssumedInformation);
3102   (void)Success;
3103   assert(Success && "Expected the check call to be successful!");
3104 
3105   auto LoadStorePred = [&](Instruction &I) -> bool {
3106     if (isa<LoadInst>(I)) {
3107       getOrCreateAAFor<AAAlign>(
3108           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
3109       if (SimplifyAllLoads)
3110         getAssumedSimplified(IRPosition::value(I), nullptr,
3111                              UsedAssumedInformation, AA::Intraprocedural);
3112     } else {
3113       auto &SI = cast<StoreInst>(I);
3114       getOrCreateAAFor<AAIsDead>(IRPosition::inst(I));
3115       getAssumedSimplified(IRPosition::value(*SI.getValueOperand()), nullptr,
3116                            UsedAssumedInformation, AA::Intraprocedural);
3117       getOrCreateAAFor<AAAlign>(IRPosition::value(*SI.getPointerOperand()));
3118     }
3119     return true;
3120   };
3121   Success = checkForAllInstructionsImpl(
3122       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
3123       {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
3124       UsedAssumedInformation);
3125   (void)Success;
3126   assert(Success && "Expected the check call to be successful!");
3127 }
3128 
3129 /// Helpers to ease debugging through output streams and print calls.
3130 ///
3131 ///{
3132 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
3133   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
3134 }
3135 
3136 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
3137   switch (AP) {
3138   case IRPosition::IRP_INVALID:
3139     return OS << "inv";
3140   case IRPosition::IRP_FLOAT:
3141     return OS << "flt";
3142   case IRPosition::IRP_RETURNED:
3143     return OS << "fn_ret";
3144   case IRPosition::IRP_CALL_SITE_RETURNED:
3145     return OS << "cs_ret";
3146   case IRPosition::IRP_FUNCTION:
3147     return OS << "fn";
3148   case IRPosition::IRP_CALL_SITE:
3149     return OS << "cs";
3150   case IRPosition::IRP_ARGUMENT:
3151     return OS << "arg";
3152   case IRPosition::IRP_CALL_SITE_ARGUMENT:
3153     return OS << "cs_arg";
3154   }
3155   llvm_unreachable("Unknown attribute position!");
3156 }
3157 
3158 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
3159   const Value &AV = Pos.getAssociatedValue();
3160   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
3161      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
3162 
3163   if (Pos.hasCallBaseContext())
3164     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
3165   return OS << "}";
3166 }
3167 
3168 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
3169   OS << "range-state(" << S.getBitWidth() << ")<";
3170   S.getKnown().print(OS);
3171   OS << " / ";
3172   S.getAssumed().print(OS);
3173   OS << ">";
3174 
3175   return OS << static_cast<const AbstractState &>(S);
3176 }
3177 
3178 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
3179   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
3180 }
3181 
3182 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
3183   AA.print(OS);
3184   return OS;
3185 }
3186 
3187 raw_ostream &llvm::operator<<(raw_ostream &OS,
3188                               const PotentialConstantIntValuesState &S) {
3189   OS << "set-state(< {";
3190   if (!S.isValidState())
3191     OS << "full-set";
3192   else {
3193     for (auto &It : S.getAssumedSet())
3194       OS << It << ", ";
3195     if (S.undefIsContained())
3196       OS << "undef ";
3197   }
3198   OS << "} >)";
3199 
3200   return OS;
3201 }
3202 
3203 raw_ostream &llvm::operator<<(raw_ostream &OS,
3204                               const PotentialLLVMValuesState &S) {
3205   OS << "set-state(< {";
3206   if (!S.isValidState())
3207     OS << "full-set";
3208   else {
3209     for (auto &It : S.getAssumedSet()) {
3210       if (auto *F = dyn_cast<Function>(It.first.getValue()))
3211         OS << "@" << F->getName() << "[" << int(It.second) << "], ";
3212       else
3213         OS << *It.first.getValue() << "[" << int(It.second) << "], ";
3214     }
3215     if (S.undefIsContained())
3216       OS << "undef ";
3217   }
3218   OS << "} >)";
3219 
3220   return OS;
3221 }
3222 
3223 void AbstractAttribute::print(raw_ostream &OS) const {
3224   OS << "[";
3225   OS << getName();
3226   OS << "] for CtxI ";
3227 
3228   if (auto *I = getCtxI()) {
3229     OS << "'";
3230     I->print(OS);
3231     OS << "'";
3232   } else
3233     OS << "<<null inst>>";
3234 
3235   OS << " at position " << getIRPosition() << " with state " << getAsStr()
3236      << '\n';
3237 }
3238 
3239 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
3240   print(OS);
3241 
3242   for (const auto &DepAA : Deps) {
3243     auto *AA = DepAA.getPointer();
3244     OS << "  updates ";
3245     AA->print(OS);
3246   }
3247 
3248   OS << '\n';
3249 }
3250 
3251 raw_ostream &llvm::operator<<(raw_ostream &OS,
3252                               const AAPointerInfo::Access &Acc) {
3253   OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
3254   if (Acc.getLocalInst() != Acc.getRemoteInst())
3255     OS << " via " << *Acc.getLocalInst();
3256   if (Acc.getContent()) {
3257     if (*Acc.getContent())
3258       OS << " [" << **Acc.getContent() << "]";
3259     else
3260       OS << " [ <unknown> ]";
3261   }
3262   return OS;
3263 }
3264 ///}
3265 
3266 /// ----------------------------------------------------------------------------
3267 ///                       Pass (Manager) Boilerplate
3268 /// ----------------------------------------------------------------------------
3269 
3270 static bool runAttributorOnFunctions(InformationCache &InfoCache,
3271                                      SetVector<Function *> &Functions,
3272                                      AnalysisGetter &AG,
3273                                      CallGraphUpdater &CGUpdater,
3274                                      bool DeleteFns, bool IsModulePass) {
3275   if (Functions.empty())
3276     return false;
3277 
3278   LLVM_DEBUG({
3279     dbgs() << "[Attributor] Run on module with " << Functions.size()
3280            << " functions:\n";
3281     for (Function *Fn : Functions)
3282       dbgs() << "  - " << Fn->getName() << "\n";
3283   });
3284 
3285   // Create an Attributor and initially empty information cache that is filled
3286   // while we identify default attribute opportunities.
3287   AttributorConfig AC(CGUpdater);
3288   AC.IsModulePass = IsModulePass;
3289   AC.DeleteFns = DeleteFns;
3290   Attributor A(Functions, InfoCache, AC);
3291 
3292   // Create shallow wrappers for all functions that are not IPO amendable
3293   if (AllowShallowWrappers)
3294     for (Function *F : Functions)
3295       if (!A.isFunctionIPOAmendable(*F))
3296         Attributor::createShallowWrapper(*F);
3297 
3298   // Internalize non-exact functions
3299   // TODO: for now we eagerly internalize functions without calculating the
3300   //       cost, we need a cost interface to determine whether internalizing
3301   //       a function is "benefitial"
3302   if (AllowDeepWrapper) {
3303     unsigned FunSize = Functions.size();
3304     for (unsigned u = 0; u < FunSize; u++) {
3305       Function *F = Functions[u];
3306       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
3307           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
3308         Function *NewF = Attributor::internalizeFunction(*F);
3309         assert(NewF && "Could not internalize function.");
3310         Functions.insert(NewF);
3311 
3312         // Update call graph
3313         CGUpdater.replaceFunctionWith(*F, *NewF);
3314         for (const Use &U : NewF->uses())
3315           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
3316             auto *CallerF = CB->getCaller();
3317             CGUpdater.reanalyzeFunction(*CallerF);
3318           }
3319       }
3320     }
3321   }
3322 
3323   for (Function *F : Functions) {
3324     if (F->hasExactDefinition())
3325       NumFnWithExactDefinition++;
3326     else
3327       NumFnWithoutExactDefinition++;
3328 
3329     // We look at internal functions only on-demand but if any use is not a
3330     // direct call or outside the current set of analyzed functions, we have
3331     // to do it eagerly.
3332     if (F->hasLocalLinkage()) {
3333       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
3334             const auto *CB = dyn_cast<CallBase>(U.getUser());
3335             return CB && CB->isCallee(&U) &&
3336                    Functions.count(const_cast<Function *>(CB->getCaller()));
3337           }))
3338         continue;
3339     }
3340 
3341     // Populate the Attributor with abstract attribute opportunities in the
3342     // function and the information cache with IR information.
3343     A.identifyDefaultAbstractAttributes(*F);
3344   }
3345 
3346   ChangeStatus Changed = A.run();
3347 
3348   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
3349                     << " functions, result: " << Changed << ".\n");
3350   return Changed == ChangeStatus::CHANGED;
3351 }
3352 
3353 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
3354 
3355 void AADepGraph::dumpGraph() {
3356   static std::atomic<int> CallTimes;
3357   std::string Prefix;
3358 
3359   if (!DepGraphDotFileNamePrefix.empty())
3360     Prefix = DepGraphDotFileNamePrefix;
3361   else
3362     Prefix = "dep_graph";
3363   std::string Filename =
3364       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
3365 
3366   outs() << "Dependency graph dump to " << Filename << ".\n";
3367 
3368   std::error_code EC;
3369 
3370   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
3371   if (!EC)
3372     llvm::WriteGraph(File, this);
3373 
3374   CallTimes++;
3375 }
3376 
3377 void AADepGraph::print() {
3378   for (auto DepAA : SyntheticRoot.Deps)
3379     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
3380 }
3381 
3382 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
3383   FunctionAnalysisManager &FAM =
3384       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3385   AnalysisGetter AG(FAM);
3386 
3387   SetVector<Function *> Functions;
3388   for (Function &F : M)
3389     Functions.insert(&F);
3390 
3391   CallGraphUpdater CGUpdater;
3392   BumpPtrAllocator Allocator;
3393   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3394   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3395                                /* DeleteFns */ true, /* IsModulePass */ true)) {
3396     // FIXME: Think about passes we will preserve and add them here.
3397     return PreservedAnalyses::none();
3398   }
3399   return PreservedAnalyses::all();
3400 }
3401 
3402 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
3403                                            CGSCCAnalysisManager &AM,
3404                                            LazyCallGraph &CG,
3405                                            CGSCCUpdateResult &UR) {
3406   FunctionAnalysisManager &FAM =
3407       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
3408   AnalysisGetter AG(FAM);
3409 
3410   SetVector<Function *> Functions;
3411   for (LazyCallGraph::Node &N : C)
3412     Functions.insert(&N.getFunction());
3413 
3414   if (Functions.empty())
3415     return PreservedAnalyses::all();
3416 
3417   Module &M = *Functions.back()->getParent();
3418   CallGraphUpdater CGUpdater;
3419   CGUpdater.initialize(CG, C, AM, UR);
3420   BumpPtrAllocator Allocator;
3421   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3422   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3423                                /* DeleteFns */ false,
3424                                /* IsModulePass */ false)) {
3425     // FIXME: Think about passes we will preserve and add them here.
3426     PreservedAnalyses PA;
3427     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
3428     return PA;
3429   }
3430   return PreservedAnalyses::all();
3431 }
3432 
3433 namespace llvm {
3434 
3435 template <> struct GraphTraits<AADepGraphNode *> {
3436   using NodeRef = AADepGraphNode *;
3437   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
3438   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
3439 
3440   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
3441   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
3442 
3443   using ChildIteratorType =
3444       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
3445   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
3446 
3447   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
3448 
3449   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
3450 };
3451 
3452 template <>
3453 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
3454   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
3455 
3456   using nodes_iterator =
3457       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
3458 
3459   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
3460 
3461   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
3462 };
3463 
3464 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
3465   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3466 
3467   static std::string getNodeLabel(const AADepGraphNode *Node,
3468                                   const AADepGraph *DG) {
3469     std::string AAString;
3470     raw_string_ostream O(AAString);
3471     Node->print(O);
3472     return AAString;
3473   }
3474 };
3475 
3476 } // end namespace llvm
3477 
3478 namespace {
3479 
3480 struct AttributorLegacyPass : public ModulePass {
3481   static char ID;
3482 
3483   AttributorLegacyPass() : ModulePass(ID) {
3484     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
3485   }
3486 
3487   bool runOnModule(Module &M) override {
3488     if (skipModule(M))
3489       return false;
3490 
3491     AnalysisGetter AG;
3492     SetVector<Function *> Functions;
3493     for (Function &F : M)
3494       Functions.insert(&F);
3495 
3496     CallGraphUpdater CGUpdater;
3497     BumpPtrAllocator Allocator;
3498     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3499     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3500                                     /* DeleteFns*/ true,
3501                                     /* IsModulePass */ true);
3502   }
3503 
3504   void getAnalysisUsage(AnalysisUsage &AU) const override {
3505     // FIXME: Think about passes we will preserve and add them here.
3506     AU.addRequired<TargetLibraryInfoWrapperPass>();
3507   }
3508 };
3509 
3510 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
3511   static char ID;
3512 
3513   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
3514     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
3515   }
3516 
3517   bool runOnSCC(CallGraphSCC &SCC) override {
3518     if (skipSCC(SCC))
3519       return false;
3520 
3521     SetVector<Function *> Functions;
3522     for (CallGraphNode *CGN : SCC)
3523       if (Function *Fn = CGN->getFunction())
3524         if (!Fn->isDeclaration())
3525           Functions.insert(Fn);
3526 
3527     if (Functions.empty())
3528       return false;
3529 
3530     AnalysisGetter AG;
3531     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
3532     CallGraphUpdater CGUpdater;
3533     CGUpdater.initialize(CG, SCC);
3534     Module &M = *Functions.back()->getParent();
3535     BumpPtrAllocator Allocator;
3536     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3537     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3538                                     /* DeleteFns */ false,
3539                                     /* IsModulePass */ false);
3540   }
3541 
3542   void getAnalysisUsage(AnalysisUsage &AU) const override {
3543     // FIXME: Think about passes we will preserve and add them here.
3544     AU.addRequired<TargetLibraryInfoWrapperPass>();
3545     CallGraphSCCPass::getAnalysisUsage(AU);
3546   }
3547 };
3548 
3549 } // end anonymous namespace
3550 
3551 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
3552 Pass *llvm::createAttributorCGSCCLegacyPass() {
3553   return new AttributorCGSCCLegacyPass();
3554 }
3555 
3556 char AttributorLegacyPass::ID = 0;
3557 char AttributorCGSCCLegacyPass::ID = 0;
3558 
3559 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
3560                       "Deduce and propagate attributes", false, false)
3561 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3562 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
3563                     "Deduce and propagate attributes", false, false)
3564 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
3565                       "Deduce and propagate attributes (CGSCC pass)", false,
3566                       false)
3567 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3568 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
3569 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
3570                     "Deduce and propagate attributes (CGSCC pass)", false,
3571                     false)
3572