xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/CGSCCPassManager.h"
45 #include "llvm/Analysis/CallGraph.h"
46 #include "llvm/Analysis/CallGraphSCCPass.h"
47 #include "llvm/Analysis/LazyCallGraph.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/MemoryLocation.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/IRBuilder.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "argpromotion"
92 
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100 
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function.  At this point, we know that it's
103 /// safe to do so.
104 static Function *
105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
108                 ReplaceCallSite) {
109   // Start by computing a new prototype for the function, which is the same as
110   // the old function, but has modified arguments.
111   FunctionType *FTy = F->getFunctionType();
112   std::vector<Type *> Params;
113 
114   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 
116   // ScalarizedElements - If we are promoting a pointer that has elements
117   // accessed out of it, keep track of which elements are accessed so that we
118   // can add one argument for each.
119   //
120   // Arguments that are directly loaded will have a zero element value here, to
121   // handle cases where there are both a direct load and GEP accesses.
122   std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 
124   // OriginalLoads - Keep track of a representative load instruction from the
125   // original function so that we can tell the alias analysis implementation
126   // what the new GEP/Load instructions we are inserting look like.
127   // We need to keep the original loads for each argument and the elements
128   // of the argument that are accessed.
129   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 
131   // Attribute - Keep track of the parameter attributes for the arguments
132   // that we are *not* promoting. For the ones that we do promote, the parameter
133   // attributes are lost
134   SmallVector<AttributeSet, 8> ArgAttrVec;
135   AttributeList PAL = F->getAttributes();
136 
137   // First, determine the new argument list
138   unsigned ArgNo = 0;
139   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140        ++I, ++ArgNo) {
141     if (ByValArgsToTransform.count(&*I)) {
142       // Simple byval argument? Just add all the struct element types.
143       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144       StructType *STy = cast<StructType>(AgTy);
145       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
146       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147                         AttributeSet());
148       ++NumByValArgsPromoted;
149     } else if (!ArgsToPromote.count(&*I)) {
150       // Unchanged argument
151       Params.push_back(I->getType());
152       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153     } else if (I->use_empty()) {
154       // Dead argument (which are always marked as promotable)
155       ++NumArgumentsDead;
156 
157       // There may be remaining metadata uses of the argument for things like
158       // llvm.dbg.value. Replace them with undef.
159       I->replaceAllUsesWith(UndefValue::get(I->getType()));
160     } else {
161       // Okay, this is being promoted. This means that the only uses are loads
162       // or GEPs which are only used by loads
163 
164       // In this table, we will track which indices are loaded from the argument
165       // (where direct loads are tracked as no indices).
166       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
167       for (User *U : I->users()) {
168         Instruction *UI = cast<Instruction>(U);
169         Type *SrcTy;
170         if (LoadInst *L = dyn_cast<LoadInst>(UI))
171           SrcTy = L->getType();
172         else
173           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
174         IndicesVector Indices;
175         Indices.reserve(UI->getNumOperands() - 1);
176         // Since loads will only have a single operand, and GEPs only a single
177         // non-index operand, this will record direct loads without any indices,
178         // and gep+loads with the GEP indices.
179         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
180              II != IE; ++II)
181           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
182         // GEPs with a single 0 index can be merged with direct loads
183         if (Indices.size() == 1 && Indices.front() == 0)
184           Indices.clear();
185         ArgIndices.insert(std::make_pair(SrcTy, Indices));
186         LoadInst *OrigLoad;
187         if (LoadInst *L = dyn_cast<LoadInst>(UI))
188           OrigLoad = L;
189         else
190           // Take any load, we will use it only to update Alias Analysis
191           OrigLoad = cast<LoadInst>(UI->user_back());
192         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
193       }
194 
195       // Add a parameter to the function for each element passed in.
196       for (const auto &ArgIndex : ArgIndices) {
197         // not allowed to dereference ->begin() if size() is 0
198         Params.push_back(GetElementPtrInst::getIndexedType(
199             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
200             ArgIndex.second));
201         ArgAttrVec.push_back(AttributeSet());
202         assert(Params.back());
203       }
204 
205       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
206         ++NumArgumentsPromoted;
207       else
208         ++NumAggregatesPromoted;
209     }
210   }
211 
212   Type *RetTy = FTy->getReturnType();
213 
214   // Construct the new function type using the new arguments.
215   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
216 
217   // Create the new function body and insert it into the module.
218   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
219                                   F->getName());
220   NF->copyAttributesFrom(F);
221 
222   // Patch the pointer to LLVM function in debug info descriptor.
223   NF->setSubprogram(F->getSubprogram());
224   F->setSubprogram(nullptr);
225 
226   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
227                     << "From: " << *F);
228 
229   // Recompute the parameter attributes list based on the new arguments for
230   // the function.
231   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
232                                        PAL.getRetAttributes(), ArgAttrVec));
233   ArgAttrVec.clear();
234 
235   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
236   NF->takeName(F);
237 
238   // Loop over all of the callers of the function, transforming the call sites
239   // to pass in the loaded pointers.
240   //
241   SmallVector<Value *, 16> Args;
242   while (!F->use_empty()) {
243     CallSite CS(F->user_back());
244     assert(CS.getCalledFunction() == F);
245     Instruction *Call = CS.getInstruction();
246     const AttributeList &CallPAL = CS.getAttributes();
247     IRBuilder<NoFolder> IRB(Call);
248 
249     // Loop over the operands, inserting GEP and loads in the caller as
250     // appropriate.
251     CallSite::arg_iterator AI = CS.arg_begin();
252     ArgNo = 0;
253     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
254          ++I, ++AI, ++ArgNo)
255       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
256         Args.push_back(*AI); // Unmodified argument
257         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
258       } else if (ByValArgsToTransform.count(&*I)) {
259         // Emit a GEP and load for each element of the struct.
260         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
261         StructType *STy = cast<StructType>(AgTy);
262         Value *Idxs[2] = {
263             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
264         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
265           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
266           auto *Idx =
267               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
268           // TODO: Tell AA about the new values?
269           Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
270                                         Idx->getName() + ".val"));
271           ArgAttrVec.push_back(AttributeSet());
272         }
273       } else if (!I->use_empty()) {
274         // Non-dead argument: insert GEPs and loads as appropriate.
275         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
276         // Store the Value* version of the indices in here, but declare it now
277         // for reuse.
278         std::vector<Value *> Ops;
279         for (const auto &ArgIndex : ArgIndices) {
280           Value *V = *AI;
281           LoadInst *OrigLoad =
282               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
283           if (!ArgIndex.second.empty()) {
284             Ops.reserve(ArgIndex.second.size());
285             Type *ElTy = V->getType();
286             for (auto II : ArgIndex.second) {
287               // Use i32 to index structs, and i64 for others (pointers/arrays).
288               // This satisfies GEP constraints.
289               Type *IdxTy =
290                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
291                                       : Type::getInt64Ty(F->getContext()));
292               Ops.push_back(ConstantInt::get(IdxTy, II));
293               // Keep track of the type we're currently indexing.
294               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
295                 ElTy = ElPTy->getElementType();
296               else
297                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
298             }
299             // And create a GEP to extract those indices.
300             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
301             Ops.clear();
302           }
303           // Since we're replacing a load make sure we take the alignment
304           // of the previous load.
305           LoadInst *newLoad =
306               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
307           newLoad->setAlignment(OrigLoad->getAlignment());
308           // Transfer the AA info too.
309           AAMDNodes AAInfo;
310           OrigLoad->getAAMetadata(AAInfo);
311           newLoad->setAAMetadata(AAInfo);
312 
313           Args.push_back(newLoad);
314           ArgAttrVec.push_back(AttributeSet());
315         }
316       }
317 
318     // Push any varargs arguments on the list.
319     for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
320       Args.push_back(*AI);
321       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
322     }
323 
324     SmallVector<OperandBundleDef, 1> OpBundles;
325     CS.getOperandBundlesAsDefs(OpBundles);
326 
327     CallSite NewCS;
328     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
329       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
330                                  Args, OpBundles, "", Call);
331     } else {
332       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
333       NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
334       NewCS = NewCall;
335     }
336     NewCS.setCallingConv(CS.getCallingConv());
337     NewCS.setAttributes(
338         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
339                            CallPAL.getRetAttributes(), ArgAttrVec));
340     NewCS->setDebugLoc(Call->getDebugLoc());
341     uint64_t W;
342     if (Call->extractProfTotalWeight(W))
343       NewCS->setProfWeight(W);
344     Args.clear();
345     ArgAttrVec.clear();
346 
347     // Update the callgraph to know that the callsite has been transformed.
348     if (ReplaceCallSite)
349       (*ReplaceCallSite)(CS, NewCS);
350 
351     if (!Call->use_empty()) {
352       Call->replaceAllUsesWith(NewCS.getInstruction());
353       NewCS->takeName(Call);
354     }
355 
356     // Finally, remove the old call from the program, reducing the use-count of
357     // F.
358     Call->eraseFromParent();
359   }
360 
361   const DataLayout &DL = F->getParent()->getDataLayout();
362 
363   // Since we have now created the new function, splice the body of the old
364   // function right into the new function, leaving the old rotting hulk of the
365   // function empty.
366   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
367 
368   // Loop over the argument list, transferring uses of the old arguments over to
369   // the new arguments, also transferring over the names as well.
370   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
371                               I2 = NF->arg_begin();
372        I != E; ++I) {
373     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
374       // If this is an unmodified argument, move the name and users over to the
375       // new version.
376       I->replaceAllUsesWith(&*I2);
377       I2->takeName(&*I);
378       ++I2;
379       continue;
380     }
381 
382     if (ByValArgsToTransform.count(&*I)) {
383       // In the callee, we create an alloca, and store each of the new incoming
384       // arguments into the alloca.
385       Instruction *InsertPt = &NF->begin()->front();
386 
387       // Just add all the struct element types.
388       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
389       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
390                                         I->getParamAlignment(), "", InsertPt);
391       StructType *STy = cast<StructType>(AgTy);
392       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
393                         nullptr};
394 
395       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
396         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
397         Value *Idx = GetElementPtrInst::Create(
398             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
399             InsertPt);
400         I2->setName(I->getName() + "." + Twine(i));
401         new StoreInst(&*I2++, Idx, InsertPt);
402       }
403 
404       // Anything that used the arg should now use the alloca.
405       I->replaceAllUsesWith(TheAlloca);
406       TheAlloca->takeName(&*I);
407 
408       // If the alloca is used in a call, we must clear the tail flag since
409       // the callee now uses an alloca from the caller.
410       for (User *U : TheAlloca->users()) {
411         CallInst *Call = dyn_cast<CallInst>(U);
412         if (!Call)
413           continue;
414         Call->setTailCall(false);
415       }
416       continue;
417     }
418 
419     if (I->use_empty())
420       continue;
421 
422     // Otherwise, if we promoted this argument, then all users are load
423     // instructions (or GEPs with only load users), and all loads should be
424     // using the new argument that we added.
425     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
426 
427     while (!I->use_empty()) {
428       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
429         assert(ArgIndices.begin()->second.empty() &&
430                "Load element should sort to front!");
431         I2->setName(I->getName() + ".val");
432         LI->replaceAllUsesWith(&*I2);
433         LI->eraseFromParent();
434         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
435                           << "' in function '" << F->getName() << "'\n");
436       } else {
437         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
438         IndicesVector Operands;
439         Operands.reserve(GEP->getNumIndices());
440         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
441              II != IE; ++II)
442           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
443 
444         // GEPs with a single 0 index can be merged with direct loads
445         if (Operands.size() == 1 && Operands.front() == 0)
446           Operands.clear();
447 
448         Function::arg_iterator TheArg = I2;
449         for (ScalarizeTable::iterator It = ArgIndices.begin();
450              It->second != Operands; ++It, ++TheArg) {
451           assert(It != ArgIndices.end() && "GEP not handled??");
452         }
453 
454         std::string NewName = I->getName();
455         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
456           NewName += "." + utostr(Operands[i]);
457         }
458         NewName += ".val";
459         TheArg->setName(NewName);
460 
461         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
462                           << "' of function '" << NF->getName() << "'\n");
463 
464         // All of the uses must be load instructions.  Replace them all with
465         // the argument specified by ArgNo.
466         while (!GEP->use_empty()) {
467           LoadInst *L = cast<LoadInst>(GEP->user_back());
468           L->replaceAllUsesWith(&*TheArg);
469           L->eraseFromParent();
470         }
471         GEP->eraseFromParent();
472       }
473     }
474 
475     // Increment I2 past all of the arguments added for this promoted pointer.
476     std::advance(I2, ArgIndices.size());
477   }
478 
479   return NF;
480 }
481 
482 /// Return true if we can prove that all callees pass in a valid pointer for the
483 /// specified function argument.
484 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
485   Function *Callee = Arg->getParent();
486   const DataLayout &DL = Callee->getParent()->getDataLayout();
487 
488   unsigned ArgNo = Arg->getArgNo();
489 
490   // Look at all call sites of the function.  At this point we know we only have
491   // direct callees.
492   for (User *U : Callee->users()) {
493     CallSite CS(U);
494     assert(CS && "Should only have direct calls!");
495 
496     if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL))
497       return false;
498   }
499   return true;
500 }
501 
502 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
503 /// that is greater than or equal to the size of prefix, and each of the
504 /// elements in Prefix is the same as the corresponding elements in Longer.
505 ///
506 /// This means it also returns true when Prefix and Longer are equal!
507 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
508   if (Prefix.size() > Longer.size())
509     return false;
510   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
511 }
512 
513 /// Checks if Indices, or a prefix of Indices, is in Set.
514 static bool prefixIn(const IndicesVector &Indices,
515                      std::set<IndicesVector> &Set) {
516   std::set<IndicesVector>::iterator Low;
517   Low = Set.upper_bound(Indices);
518   if (Low != Set.begin())
519     Low--;
520   // Low is now the last element smaller than or equal to Indices. This means
521   // it points to a prefix of Indices (possibly Indices itself), if such
522   // prefix exists.
523   //
524   // This load is safe if any prefix of its operands is safe to load.
525   return Low != Set.end() && isPrefix(*Low, Indices);
526 }
527 
528 /// Mark the given indices (ToMark) as safe in the given set of indices
529 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
530 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
531 /// already. Furthermore, any indices that Indices is itself a prefix of, are
532 /// removed from Safe (since they are implicitely safe because of Indices now).
533 static void markIndicesSafe(const IndicesVector &ToMark,
534                             std::set<IndicesVector> &Safe) {
535   std::set<IndicesVector>::iterator Low;
536   Low = Safe.upper_bound(ToMark);
537   // Guard against the case where Safe is empty
538   if (Low != Safe.begin())
539     Low--;
540   // Low is now the last element smaller than or equal to Indices. This
541   // means it points to a prefix of Indices (possibly Indices itself), if
542   // such prefix exists.
543   if (Low != Safe.end()) {
544     if (isPrefix(*Low, ToMark))
545       // If there is already a prefix of these indices (or exactly these
546       // indices) marked a safe, don't bother adding these indices
547       return;
548 
549     // Increment Low, so we can use it as a "insert before" hint
550     ++Low;
551   }
552   // Insert
553   Low = Safe.insert(Low, ToMark);
554   ++Low;
555   // If there we're a prefix of longer index list(s), remove those
556   std::set<IndicesVector>::iterator End = Safe.end();
557   while (Low != End && isPrefix(ToMark, *Low)) {
558     std::set<IndicesVector>::iterator Remove = Low;
559     ++Low;
560     Safe.erase(Remove);
561   }
562 }
563 
564 /// isSafeToPromoteArgument - As you might guess from the name of this method,
565 /// it checks to see if it is both safe and useful to promote the argument.
566 /// This method limits promotion of aggregates to only promote up to three
567 /// elements of the aggregate in order to avoid exploding the number of
568 /// arguments passed in.
569 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
570                                     unsigned MaxElements) {
571   using GEPIndicesSet = std::set<IndicesVector>;
572 
573   // Quick exit for unused arguments
574   if (Arg->use_empty())
575     return true;
576 
577   // We can only promote this argument if all of the uses are loads, or are GEP
578   // instructions (with constant indices) that are subsequently loaded.
579   //
580   // Promoting the argument causes it to be loaded in the caller
581   // unconditionally. This is only safe if we can prove that either the load
582   // would have happened in the callee anyway (ie, there is a load in the entry
583   // block) or the pointer passed in at every call site is guaranteed to be
584   // valid.
585   // In the former case, invalid loads can happen, but would have happened
586   // anyway, in the latter case, invalid loads won't happen. This prevents us
587   // from introducing an invalid load that wouldn't have happened in the
588   // original code.
589   //
590   // This set will contain all sets of indices that are loaded in the entry
591   // block, and thus are safe to unconditionally load in the caller.
592   GEPIndicesSet SafeToUnconditionallyLoad;
593 
594   // This set contains all the sets of indices that we are planning to promote.
595   // This makes it possible to limit the number of arguments added.
596   GEPIndicesSet ToPromote;
597 
598   // If the pointer is always valid, any load with first index 0 is valid.
599 
600   if (ByValTy)
601     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
602 
603   // Whenever a new underlying type for the operand is found, make sure it's
604   // consistent with the GEPs and loads we've already seen and, if necessary,
605   // use it to see if all incoming pointers are valid (which implies the 0-index
606   // is safe).
607   Type *BaseTy = ByValTy;
608   auto UpdateBaseTy = [&](Type *NewBaseTy) {
609     if (BaseTy)
610       return BaseTy == NewBaseTy;
611 
612     BaseTy = NewBaseTy;
613     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
614       assert(SafeToUnconditionallyLoad.empty());
615       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
616     }
617 
618     return true;
619   };
620 
621   // First, iterate the entry block and mark loads of (geps of) arguments as
622   // safe.
623   BasicBlock &EntryBlock = Arg->getParent()->front();
624   // Declare this here so we can reuse it
625   IndicesVector Indices;
626   for (Instruction &I : EntryBlock)
627     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
628       Value *V = LI->getPointerOperand();
629       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
630         V = GEP->getPointerOperand();
631         if (V == Arg) {
632           // This load actually loads (part of) Arg? Check the indices then.
633           Indices.reserve(GEP->getNumIndices());
634           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
635                II != IE; ++II)
636             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
637               Indices.push_back(CI->getSExtValue());
638             else
639               // We found a non-constant GEP index for this argument? Bail out
640               // right away, can't promote this argument at all.
641               return false;
642 
643           if (!UpdateBaseTy(GEP->getSourceElementType()))
644             return false;
645 
646           // Indices checked out, mark them as safe
647           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
648           Indices.clear();
649         }
650       } else if (V == Arg) {
651         // Direct loads are equivalent to a GEP with a single 0 index.
652         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
653 
654         if (BaseTy && LI->getType() != BaseTy)
655           return false;
656 
657         BaseTy = LI->getType();
658       }
659     }
660 
661   // Now, iterate all uses of the argument to see if there are any uses that are
662   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
663   SmallVector<LoadInst *, 16> Loads;
664   IndicesVector Operands;
665   for (Use &U : Arg->uses()) {
666     User *UR = U.getUser();
667     Operands.clear();
668     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
669       // Don't hack volatile/atomic loads
670       if (!LI->isSimple())
671         return false;
672       Loads.push_back(LI);
673       // Direct loads are equivalent to a GEP with a zero index and then a load.
674       Operands.push_back(0);
675 
676       if (!UpdateBaseTy(LI->getType()))
677         return false;
678     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
679       if (GEP->use_empty()) {
680         // Dead GEP's cause trouble later.  Just remove them if we run into
681         // them.
682         GEP->eraseFromParent();
683         // TODO: This runs the above loop over and over again for dead GEPs
684         // Couldn't we just do increment the UI iterator earlier and erase the
685         // use?
686         return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements);
687       }
688 
689       if (!UpdateBaseTy(GEP->getSourceElementType()))
690         return false;
691 
692       // Ensure that all of the indices are constants.
693       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
694            ++i)
695         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
696           Operands.push_back(C->getSExtValue());
697         else
698           return false; // Not a constant operand GEP!
699 
700       // Ensure that the only users of the GEP are load instructions.
701       for (User *GEPU : GEP->users())
702         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
703           // Don't hack volatile/atomic loads
704           if (!LI->isSimple())
705             return false;
706           Loads.push_back(LI);
707         } else {
708           // Other uses than load?
709           return false;
710         }
711     } else {
712       return false; // Not a load or a GEP.
713     }
714 
715     // Now, see if it is safe to promote this load / loads of this GEP. Loading
716     // is safe if Operands, or a prefix of Operands, is marked as safe.
717     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
718       return false;
719 
720     // See if we are already promoting a load with these indices. If not, check
721     // to make sure that we aren't promoting too many elements.  If so, nothing
722     // to do.
723     if (ToPromote.find(Operands) == ToPromote.end()) {
724       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
725         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
726                           << Arg->getName()
727                           << "' because it would require adding more "
728                           << "than " << MaxElements
729                           << " arguments to the function.\n");
730         // We limit aggregate promotion to only promoting up to a fixed number
731         // of elements of the aggregate.
732         return false;
733       }
734       ToPromote.insert(std::move(Operands));
735     }
736   }
737 
738   if (Loads.empty())
739     return true; // No users, this is a dead argument.
740 
741   // Okay, now we know that the argument is only used by load instructions and
742   // it is safe to unconditionally perform all of them. Use alias analysis to
743   // check to see if the pointer is guaranteed to not be modified from entry of
744   // the function to each of the load instructions.
745 
746   // Because there could be several/many load instructions, remember which
747   // blocks we know to be transparent to the load.
748   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
749 
750   for (LoadInst *Load : Loads) {
751     // Check to see if the load is invalidated from the start of the block to
752     // the load itself.
753     BasicBlock *BB = Load->getParent();
754 
755     MemoryLocation Loc = MemoryLocation::get(Load);
756     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
757       return false; // Pointer is invalidated!
758 
759     // Now check every path from the entry block to the load for transparency.
760     // To do this, we perform a depth first search on the inverse CFG from the
761     // loading block.
762     for (BasicBlock *P : predecessors(BB)) {
763       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
764         if (AAR.canBasicBlockModify(*TranspBB, Loc))
765           return false;
766     }
767   }
768 
769   // If the path from the entry of the function to each load is free of
770   // instructions that potentially invalidate the load, we can make the
771   // transformation!
772   return true;
773 }
774 
775 /// Checks if a type could have padding bytes.
776 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
777   // There is no size information, so be conservative.
778   if (!type->isSized())
779     return false;
780 
781   // If the alloc size is not equal to the storage size, then there are padding
782   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
783   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
784     return false;
785 
786   if (!isa<CompositeType>(type))
787     return true;
788 
789   // For homogenous sequential types, check for padding within members.
790   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
791     return isDenselyPacked(seqTy->getElementType(), DL);
792 
793   // Check for padding within and between elements of a struct.
794   StructType *StructTy = cast<StructType>(type);
795   const StructLayout *Layout = DL.getStructLayout(StructTy);
796   uint64_t StartPos = 0;
797   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
798     Type *ElTy = StructTy->getElementType(i);
799     if (!isDenselyPacked(ElTy, DL))
800       return false;
801     if (StartPos != Layout->getElementOffsetInBits(i))
802       return false;
803     StartPos += DL.getTypeAllocSizeInBits(ElTy);
804   }
805 
806   return true;
807 }
808 
809 /// Checks if the padding bytes of an argument could be accessed.
810 static bool canPaddingBeAccessed(Argument *arg) {
811   assert(arg->hasByValAttr());
812 
813   // Track all the pointers to the argument to make sure they are not captured.
814   SmallPtrSet<Value *, 16> PtrValues;
815   PtrValues.insert(arg);
816 
817   // Track all of the stores.
818   SmallVector<StoreInst *, 16> Stores;
819 
820   // Scan through the uses recursively to make sure the pointer is always used
821   // sanely.
822   SmallVector<Value *, 16> WorkList;
823   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
824   while (!WorkList.empty()) {
825     Value *V = WorkList.back();
826     WorkList.pop_back();
827     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
828       if (PtrValues.insert(V).second)
829         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
830     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
831       Stores.push_back(Store);
832     } else if (!isa<LoadInst>(V)) {
833       return true;
834     }
835   }
836 
837   // Check to make sure the pointers aren't captured
838   for (StoreInst *Store : Stores)
839     if (PtrValues.count(Store->getValueOperand()))
840       return true;
841 
842   return false;
843 }
844 
845 static bool areFunctionArgsABICompatible(
846     const Function &F, const TargetTransformInfo &TTI,
847     SmallPtrSetImpl<Argument *> &ArgsToPromote,
848     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
849   for (const Use &U : F.uses()) {
850     CallSite CS(U.getUser());
851     const Function *Caller = CS.getCaller();
852     const Function *Callee = CS.getCalledFunction();
853     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
854         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
855       return false;
856   }
857   return true;
858 }
859 
860 /// PromoteArguments - This method checks the specified function to see if there
861 /// are any promotable arguments and if it is safe to promote the function (for
862 /// example, all callers are direct).  If safe to promote some arguments, it
863 /// calls the DoPromotion method.
864 static Function *
865 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
866                  unsigned MaxElements,
867                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
868                      ReplaceCallSite,
869                  const TargetTransformInfo &TTI) {
870   // Don't perform argument promotion for naked functions; otherwise we can end
871   // up removing parameters that are seemingly 'not used' as they are referred
872   // to in the assembly.
873   if(F->hasFnAttribute(Attribute::Naked))
874     return nullptr;
875 
876   // Make sure that it is local to this module.
877   if (!F->hasLocalLinkage())
878     return nullptr;
879 
880   // Don't promote arguments for variadic functions. Adding, removing, or
881   // changing non-pack parameters can change the classification of pack
882   // parameters. Frontends encode that classification at the call site in the
883   // IR, while in the callee the classification is determined dynamically based
884   // on the number of registers consumed so far.
885   if (F->isVarArg())
886     return nullptr;
887 
888   // Don't transform functions that receive inallocas, as the transformation may
889   // not be safe depending on calling convention.
890   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
891     return nullptr;
892 
893   // First check: see if there are any pointer arguments!  If not, quick exit.
894   SmallVector<Argument *, 16> PointerArgs;
895   for (Argument &I : F->args())
896     if (I.getType()->isPointerTy())
897       PointerArgs.push_back(&I);
898   if (PointerArgs.empty())
899     return nullptr;
900 
901   // Second check: make sure that all callers are direct callers.  We can't
902   // transform functions that have indirect callers.  Also see if the function
903   // is self-recursive and check that target features are compatible.
904   bool isSelfRecursive = false;
905   for (Use &U : F->uses()) {
906     CallSite CS(U.getUser());
907     // Must be a direct call.
908     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
909       return nullptr;
910 
911     // Can't change signature of musttail callee
912     if (CS.isMustTailCall())
913       return nullptr;
914 
915     if (CS.getInstruction()->getParent()->getParent() == F)
916       isSelfRecursive = true;
917   }
918 
919   // Can't change signature of musttail caller
920   // FIXME: Support promoting whole chain of musttail functions
921   for (BasicBlock &BB : *F)
922     if (BB.getTerminatingMustTailCall())
923       return nullptr;
924 
925   const DataLayout &DL = F->getParent()->getDataLayout();
926 
927   AAResults &AAR = AARGetter(*F);
928 
929   // Check to see which arguments are promotable.  If an argument is promotable,
930   // add it to ArgsToPromote.
931   SmallPtrSet<Argument *, 8> ArgsToPromote;
932   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
933   for (Argument *PtrArg : PointerArgs) {
934     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
935 
936     // Replace sret attribute with noalias. This reduces register pressure by
937     // avoiding a register copy.
938     if (PtrArg->hasStructRetAttr()) {
939       unsigned ArgNo = PtrArg->getArgNo();
940       F->removeParamAttr(ArgNo, Attribute::StructRet);
941       F->addParamAttr(ArgNo, Attribute::NoAlias);
942       for (Use &U : F->uses()) {
943         CallSite CS(U.getUser());
944         CS.removeParamAttr(ArgNo, Attribute::StructRet);
945         CS.addParamAttr(ArgNo, Attribute::NoAlias);
946       }
947     }
948 
949     // If this is a byval argument, and if the aggregate type is small, just
950     // pass the elements, which is always safe, if the passed value is densely
951     // packed or if we can prove the padding bytes are never accessed.
952     bool isSafeToPromote =
953         PtrArg->hasByValAttr() &&
954         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
955     if (isSafeToPromote) {
956       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
957         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
958           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
959                             << PtrArg->getName()
960                             << "' because it would require adding more"
961                             << " than " << MaxElements
962                             << " arguments to the function.\n");
963           continue;
964         }
965 
966         // If all the elements are single-value types, we can promote it.
967         bool AllSimple = true;
968         for (const auto *EltTy : STy->elements()) {
969           if (!EltTy->isSingleValueType()) {
970             AllSimple = false;
971             break;
972           }
973         }
974 
975         // Safe to transform, don't even bother trying to "promote" it.
976         // Passing the elements as a scalar will allow sroa to hack on
977         // the new alloca we introduce.
978         if (AllSimple) {
979           ByValArgsToTransform.insert(PtrArg);
980           continue;
981         }
982       }
983     }
984 
985     // If the argument is a recursive type and we're in a recursive
986     // function, we could end up infinitely peeling the function argument.
987     if (isSelfRecursive) {
988       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
989         bool RecursiveType = false;
990         for (const auto *EltTy : STy->elements()) {
991           if (EltTy == PtrArg->getType()) {
992             RecursiveType = true;
993             break;
994           }
995         }
996         if (RecursiveType)
997           continue;
998       }
999     }
1000 
1001     // Otherwise, see if we can promote the pointer to its value.
1002     Type *ByValTy =
1003         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1004     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1005       ArgsToPromote.insert(PtrArg);
1006   }
1007 
1008   // No promotable pointer arguments.
1009   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1010     return nullptr;
1011 
1012   if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
1013                                     ByValArgsToTransform))
1014     return nullptr;
1015 
1016   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1017 }
1018 
1019 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1020                                              CGSCCAnalysisManager &AM,
1021                                              LazyCallGraph &CG,
1022                                              CGSCCUpdateResult &UR) {
1023   bool Changed = false, LocalChange;
1024 
1025   // Iterate until we stop promoting from this SCC.
1026   do {
1027     LocalChange = false;
1028 
1029     for (LazyCallGraph::Node &N : C) {
1030       Function &OldF = N.getFunction();
1031 
1032       FunctionAnalysisManager &FAM =
1033           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1034       // FIXME: This lambda must only be used with this function. We should
1035       // skip the lambda and just get the AA results directly.
1036       auto AARGetter = [&](Function &F) -> AAResults & {
1037         assert(&F == &OldF && "Called with an unexpected function!");
1038         return FAM.getResult<AAManager>(F);
1039       };
1040 
1041       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1042       Function *NewF =
1043           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1044       if (!NewF)
1045         continue;
1046       LocalChange = true;
1047 
1048       // Directly substitute the functions in the call graph. Note that this
1049       // requires the old function to be completely dead and completely
1050       // replaced by the new function. It does no call graph updates, it merely
1051       // swaps out the particular function mapped to a particular node in the
1052       // graph.
1053       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1054       OldF.eraseFromParent();
1055     }
1056 
1057     Changed |= LocalChange;
1058   } while (LocalChange);
1059 
1060   if (!Changed)
1061     return PreservedAnalyses::all();
1062 
1063   return PreservedAnalyses::none();
1064 }
1065 
1066 namespace {
1067 
1068 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1069 struct ArgPromotion : public CallGraphSCCPass {
1070   // Pass identification, replacement for typeid
1071   static char ID;
1072 
1073   explicit ArgPromotion(unsigned MaxElements = 3)
1074       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1075     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1076   }
1077 
1078   void getAnalysisUsage(AnalysisUsage &AU) const override {
1079     AU.addRequired<AssumptionCacheTracker>();
1080     AU.addRequired<TargetLibraryInfoWrapperPass>();
1081     AU.addRequired<TargetTransformInfoWrapperPass>();
1082     getAAResultsAnalysisUsage(AU);
1083     CallGraphSCCPass::getAnalysisUsage(AU);
1084   }
1085 
1086   bool runOnSCC(CallGraphSCC &SCC) override;
1087 
1088 private:
1089   using llvm::Pass::doInitialization;
1090 
1091   bool doInitialization(CallGraph &CG) override;
1092 
1093   /// The maximum number of elements to expand, or 0 for unlimited.
1094   unsigned MaxElements;
1095 };
1096 
1097 } // end anonymous namespace
1098 
1099 char ArgPromotion::ID = 0;
1100 
1101 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1102                       "Promote 'by reference' arguments to scalars", false,
1103                       false)
1104 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1105 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1107 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1108 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1109                     "Promote 'by reference' arguments to scalars", false, false)
1110 
1111 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1112   return new ArgPromotion(MaxElements);
1113 }
1114 
1115 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1116   if (skipSCC(SCC))
1117     return false;
1118 
1119   // Get the callgraph information that we need to update to reflect our
1120   // changes.
1121   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1122 
1123   LegacyAARGetter AARGetter(*this);
1124 
1125   bool Changed = false, LocalChange;
1126 
1127   // Iterate until we stop promoting from this SCC.
1128   do {
1129     LocalChange = false;
1130     // Attempt to promote arguments from all functions in this SCC.
1131     for (CallGraphNode *OldNode : SCC) {
1132       Function *OldF = OldNode->getFunction();
1133       if (!OldF)
1134         continue;
1135 
1136       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1137         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1138         CallGraphNode *NewCalleeNode =
1139             CG.getOrInsertFunction(NewCS.getCalledFunction());
1140         CallGraphNode *CallerNode = CG[Caller];
1141         CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()),
1142                                     *cast<CallBase>(NewCS.getInstruction()),
1143                                     NewCalleeNode);
1144       };
1145 
1146       const TargetTransformInfo &TTI =
1147           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1148       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1149                                             {ReplaceCallSite}, TTI)) {
1150         LocalChange = true;
1151 
1152         // Update the call graph for the newly promoted function.
1153         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1154         NewNode->stealCalledFunctionsFrom(OldNode);
1155         if (OldNode->getNumReferences() == 0)
1156           delete CG.removeFunctionFromModule(OldNode);
1157         else
1158           OldF->setLinkage(Function::ExternalLinkage);
1159 
1160         // And updat ethe SCC we're iterating as well.
1161         SCC.ReplaceNode(OldNode, NewNode);
1162       }
1163     }
1164     // Remember that we changed something.
1165     Changed |= LocalChange;
1166   } while (LocalChange);
1167 
1168   return Changed;
1169 }
1170 
1171 bool ArgPromotion::doInitialization(CallGraph &CG) {
1172   return CallGraphSCCPass::doInitialization(CG);
1173 }
1174