xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/Twine.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "argpromotion"
92 
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100 
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function.  At this point, we know that it's
103 /// safe to do so.
104 static Function *
105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
108                 ReplaceCallSite) {
109   // Start by computing a new prototype for the function, which is the same as
110   // the old function, but has modified arguments.
111   FunctionType *FTy = F->getFunctionType();
112   std::vector<Type *> Params;
113 
114   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 
116   // ScalarizedElements - If we are promoting a pointer that has elements
117   // accessed out of it, keep track of which elements are accessed so that we
118   // can add one argument for each.
119   //
120   // Arguments that are directly loaded will have a zero element value here, to
121   // handle cases where there are both a direct load and GEP accesses.
122   std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 
124   // OriginalLoads - Keep track of a representative load instruction from the
125   // original function so that we can tell the alias analysis implementation
126   // what the new GEP/Load instructions we are inserting look like.
127   // We need to keep the original loads for each argument and the elements
128   // of the argument that are accessed.
129   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 
131   // Attribute - Keep track of the parameter attributes for the arguments
132   // that we are *not* promoting. For the ones that we do promote, the parameter
133   // attributes are lost
134   SmallVector<AttributeSet, 8> ArgAttrVec;
135   AttributeList PAL = F->getAttributes();
136 
137   // First, determine the new argument list
138   unsigned ArgNo = 0;
139   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140        ++I, ++ArgNo) {
141     if (ByValArgsToTransform.count(&*I)) {
142       // Simple byval argument? Just add all the struct element types.
143       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144       StructType *STy = cast<StructType>(AgTy);
145       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
146       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147                         AttributeSet());
148       ++NumByValArgsPromoted;
149     } else if (!ArgsToPromote.count(&*I)) {
150       // Unchanged argument
151       Params.push_back(I->getType());
152       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153     } else if (I->use_empty()) {
154       // Dead argument (which are always marked as promotable)
155       ++NumArgumentsDead;
156 
157       // There may be remaining metadata uses of the argument for things like
158       // llvm.dbg.value. Replace them with undef.
159       I->replaceAllUsesWith(UndefValue::get(I->getType()));
160     } else {
161       // Okay, this is being promoted. This means that the only uses are loads
162       // or GEPs which are only used by loads
163 
164       // In this table, we will track which indices are loaded from the argument
165       // (where direct loads are tracked as no indices).
166       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
167       for (User *U : I->users()) {
168         Instruction *UI = cast<Instruction>(U);
169         Type *SrcTy;
170         if (LoadInst *L = dyn_cast<LoadInst>(UI))
171           SrcTy = L->getType();
172         else
173           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
174         IndicesVector Indices;
175         Indices.reserve(UI->getNumOperands() - 1);
176         // Since loads will only have a single operand, and GEPs only a single
177         // non-index operand, this will record direct loads without any indices,
178         // and gep+loads with the GEP indices.
179         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
180              II != IE; ++II)
181           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
182         // GEPs with a single 0 index can be merged with direct loads
183         if (Indices.size() == 1 && Indices.front() == 0)
184           Indices.clear();
185         ArgIndices.insert(std::make_pair(SrcTy, Indices));
186         LoadInst *OrigLoad;
187         if (LoadInst *L = dyn_cast<LoadInst>(UI))
188           OrigLoad = L;
189         else
190           // Take any load, we will use it only to update Alias Analysis
191           OrigLoad = cast<LoadInst>(UI->user_back());
192         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
193       }
194 
195       // Add a parameter to the function for each element passed in.
196       for (const auto &ArgIndex : ArgIndices) {
197         // not allowed to dereference ->begin() if size() is 0
198         Params.push_back(GetElementPtrInst::getIndexedType(
199             cast<PointerType>(I->getType())->getElementType(),
200             ArgIndex.second));
201         ArgAttrVec.push_back(AttributeSet());
202         assert(Params.back());
203       }
204 
205       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
206         ++NumArgumentsPromoted;
207       else
208         ++NumAggregatesPromoted;
209     }
210   }
211 
212   Type *RetTy = FTy->getReturnType();
213 
214   // Construct the new function type using the new arguments.
215   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
216 
217   // Create the new function body and insert it into the module.
218   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
219                                   F->getName());
220   NF->copyAttributesFrom(F);
221 
222   // Patch the pointer to LLVM function in debug info descriptor.
223   NF->setSubprogram(F->getSubprogram());
224   F->setSubprogram(nullptr);
225 
226   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
227                     << "From: " << *F);
228 
229   // Recompute the parameter attributes list based on the new arguments for
230   // the function.
231   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
232                                        PAL.getRetAttributes(), ArgAttrVec));
233   ArgAttrVec.clear();
234 
235   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
236   NF->takeName(F);
237 
238   // Loop over all of the callers of the function, transforming the call sites
239   // to pass in the loaded pointers.
240   //
241   SmallVector<Value *, 16> Args;
242   while (!F->use_empty()) {
243     CallBase &CB = cast<CallBase>(*F->user_back());
244     assert(CB.getCalledFunction() == F);
245     const AttributeList &CallPAL = CB.getAttributes();
246     IRBuilder<NoFolder> IRB(&CB);
247 
248     // Loop over the operands, inserting GEP and loads in the caller as
249     // appropriate.
250     auto AI = CB.arg_begin();
251     ArgNo = 0;
252     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
253          ++I, ++AI, ++ArgNo)
254       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
255         Args.push_back(*AI); // Unmodified argument
256         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
257       } else if (ByValArgsToTransform.count(&*I)) {
258         // Emit a GEP and load for each element of the struct.
259         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
260         StructType *STy = cast<StructType>(AgTy);
261         Value *Idxs[2] = {
262             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
263         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
264           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
265           auto *Idx =
266               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
267           // TODO: Tell AA about the new values?
268           Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
269                                         Idx->getName() + ".val"));
270           ArgAttrVec.push_back(AttributeSet());
271         }
272       } else if (!I->use_empty()) {
273         // Non-dead argument: insert GEPs and loads as appropriate.
274         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
275         // Store the Value* version of the indices in here, but declare it now
276         // for reuse.
277         std::vector<Value *> Ops;
278         for (const auto &ArgIndex : ArgIndices) {
279           Value *V = *AI;
280           LoadInst *OrigLoad =
281               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
282           if (!ArgIndex.second.empty()) {
283             Ops.reserve(ArgIndex.second.size());
284             Type *ElTy = V->getType();
285             for (auto II : ArgIndex.second) {
286               // Use i32 to index structs, and i64 for others (pointers/arrays).
287               // This satisfies GEP constraints.
288               Type *IdxTy =
289                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
290                                       : Type::getInt64Ty(F->getContext()));
291               Ops.push_back(ConstantInt::get(IdxTy, II));
292               // Keep track of the type we're currently indexing.
293               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
294                 ElTy = ElPTy->getElementType();
295               else
296                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
297             }
298             // And create a GEP to extract those indices.
299             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
300             Ops.clear();
301           }
302           // Since we're replacing a load make sure we take the alignment
303           // of the previous load.
304           LoadInst *newLoad =
305               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
306           newLoad->setAlignment(OrigLoad->getAlign());
307           // Transfer the AA info too.
308           AAMDNodes AAInfo;
309           OrigLoad->getAAMetadata(AAInfo);
310           newLoad->setAAMetadata(AAInfo);
311 
312           Args.push_back(newLoad);
313           ArgAttrVec.push_back(AttributeSet());
314         }
315       }
316 
317     // Push any varargs arguments on the list.
318     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
319       Args.push_back(*AI);
320       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
321     }
322 
323     SmallVector<OperandBundleDef, 1> OpBundles;
324     CB.getOperandBundlesAsDefs(OpBundles);
325 
326     CallBase *NewCS = nullptr;
327     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
328       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
329                                  Args, OpBundles, "", &CB);
330     } else {
331       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
332       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
333       NewCS = NewCall;
334     }
335     NewCS->setCallingConv(CB.getCallingConv());
336     NewCS->setAttributes(
337         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
338                            CallPAL.getRetAttributes(), ArgAttrVec));
339     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
340     Args.clear();
341     ArgAttrVec.clear();
342 
343     // Update the callgraph to know that the callsite has been transformed.
344     if (ReplaceCallSite)
345       (*ReplaceCallSite)(CB, *NewCS);
346 
347     if (!CB.use_empty()) {
348       CB.replaceAllUsesWith(NewCS);
349       NewCS->takeName(&CB);
350     }
351 
352     // Finally, remove the old call from the program, reducing the use-count of
353     // F.
354     CB.eraseFromParent();
355   }
356 
357   const DataLayout &DL = F->getParent()->getDataLayout();
358 
359   // Since we have now created the new function, splice the body of the old
360   // function right into the new function, leaving the old rotting hulk of the
361   // function empty.
362   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
363 
364   // Loop over the argument list, transferring uses of the old arguments over to
365   // the new arguments, also transferring over the names as well.
366   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
367                               I2 = NF->arg_begin();
368        I != E; ++I) {
369     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
370       // If this is an unmodified argument, move the name and users over to the
371       // new version.
372       I->replaceAllUsesWith(&*I2);
373       I2->takeName(&*I);
374       ++I2;
375       continue;
376     }
377 
378     if (ByValArgsToTransform.count(&*I)) {
379       // In the callee, we create an alloca, and store each of the new incoming
380       // arguments into the alloca.
381       Instruction *InsertPt = &NF->begin()->front();
382 
383       // Just add all the struct element types.
384       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
385       Value *TheAlloca = new AllocaInst(
386           AgTy, DL.getAllocaAddrSpace(), nullptr,
387           I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "",
388           InsertPt);
389       StructType *STy = cast<StructType>(AgTy);
390       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
391                         nullptr};
392 
393       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
394         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
395         Value *Idx = GetElementPtrInst::Create(
396             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
397             InsertPt);
398         I2->setName(I->getName() + "." + Twine(i));
399         new StoreInst(&*I2++, Idx, InsertPt);
400       }
401 
402       // Anything that used the arg should now use the alloca.
403       I->replaceAllUsesWith(TheAlloca);
404       TheAlloca->takeName(&*I);
405 
406       // If the alloca is used in a call, we must clear the tail flag since
407       // the callee now uses an alloca from the caller.
408       for (User *U : TheAlloca->users()) {
409         CallInst *Call = dyn_cast<CallInst>(U);
410         if (!Call)
411           continue;
412         Call->setTailCall(false);
413       }
414       continue;
415     }
416 
417     if (I->use_empty())
418       continue;
419 
420     // Otherwise, if we promoted this argument, then all users are load
421     // instructions (or GEPs with only load users), and all loads should be
422     // using the new argument that we added.
423     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
424 
425     while (!I->use_empty()) {
426       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
427         assert(ArgIndices.begin()->second.empty() &&
428                "Load element should sort to front!");
429         I2->setName(I->getName() + ".val");
430         LI->replaceAllUsesWith(&*I2);
431         LI->eraseFromParent();
432         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
433                           << "' in function '" << F->getName() << "'\n");
434       } else {
435         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
436         IndicesVector Operands;
437         Operands.reserve(GEP->getNumIndices());
438         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
439              II != IE; ++II)
440           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
441 
442         // GEPs with a single 0 index can be merged with direct loads
443         if (Operands.size() == 1 && Operands.front() == 0)
444           Operands.clear();
445 
446         Function::arg_iterator TheArg = I2;
447         for (ScalarizeTable::iterator It = ArgIndices.begin();
448              It->second != Operands; ++It, ++TheArg) {
449           assert(It != ArgIndices.end() && "GEP not handled??");
450         }
451 
452         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
453                                 make_range(Operands.begin(), Operands.end())));
454 
455         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
456                           << "' of function '" << NF->getName() << "'\n");
457 
458         // All of the uses must be load instructions.  Replace them all with
459         // the argument specified by ArgNo.
460         while (!GEP->use_empty()) {
461           LoadInst *L = cast<LoadInst>(GEP->user_back());
462           L->replaceAllUsesWith(&*TheArg);
463           L->eraseFromParent();
464         }
465         GEP->eraseFromParent();
466       }
467     }
468 
469     // Increment I2 past all of the arguments added for this promoted pointer.
470     std::advance(I2, ArgIndices.size());
471   }
472 
473   return NF;
474 }
475 
476 /// Return true if we can prove that all callees pass in a valid pointer for the
477 /// specified function argument.
478 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
479   Function *Callee = Arg->getParent();
480   const DataLayout &DL = Callee->getParent()->getDataLayout();
481 
482   unsigned ArgNo = Arg->getArgNo();
483 
484   // Look at all call sites of the function.  At this point we know we only have
485   // direct callees.
486   for (User *U : Callee->users()) {
487     CallBase &CB = cast<CallBase>(*U);
488 
489     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
490       return false;
491   }
492   return true;
493 }
494 
495 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
496 /// that is greater than or equal to the size of prefix, and each of the
497 /// elements in Prefix is the same as the corresponding elements in Longer.
498 ///
499 /// This means it also returns true when Prefix and Longer are equal!
500 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
501   if (Prefix.size() > Longer.size())
502     return false;
503   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
504 }
505 
506 /// Checks if Indices, or a prefix of Indices, is in Set.
507 static bool prefixIn(const IndicesVector &Indices,
508                      std::set<IndicesVector> &Set) {
509   std::set<IndicesVector>::iterator Low;
510   Low = Set.upper_bound(Indices);
511   if (Low != Set.begin())
512     Low--;
513   // Low is now the last element smaller than or equal to Indices. This means
514   // it points to a prefix of Indices (possibly Indices itself), if such
515   // prefix exists.
516   //
517   // This load is safe if any prefix of its operands is safe to load.
518   return Low != Set.end() && isPrefix(*Low, Indices);
519 }
520 
521 /// Mark the given indices (ToMark) as safe in the given set of indices
522 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
523 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
524 /// already. Furthermore, any indices that Indices is itself a prefix of, are
525 /// removed from Safe (since they are implicitely safe because of Indices now).
526 static void markIndicesSafe(const IndicesVector &ToMark,
527                             std::set<IndicesVector> &Safe) {
528   std::set<IndicesVector>::iterator Low;
529   Low = Safe.upper_bound(ToMark);
530   // Guard against the case where Safe is empty
531   if (Low != Safe.begin())
532     Low--;
533   // Low is now the last element smaller than or equal to Indices. This
534   // means it points to a prefix of Indices (possibly Indices itself), if
535   // such prefix exists.
536   if (Low != Safe.end()) {
537     if (isPrefix(*Low, ToMark))
538       // If there is already a prefix of these indices (or exactly these
539       // indices) marked a safe, don't bother adding these indices
540       return;
541 
542     // Increment Low, so we can use it as a "insert before" hint
543     ++Low;
544   }
545   // Insert
546   Low = Safe.insert(Low, ToMark);
547   ++Low;
548   // If there we're a prefix of longer index list(s), remove those
549   std::set<IndicesVector>::iterator End = Safe.end();
550   while (Low != End && isPrefix(ToMark, *Low)) {
551     std::set<IndicesVector>::iterator Remove = Low;
552     ++Low;
553     Safe.erase(Remove);
554   }
555 }
556 
557 /// isSafeToPromoteArgument - As you might guess from the name of this method,
558 /// it checks to see if it is both safe and useful to promote the argument.
559 /// This method limits promotion of aggregates to only promote up to three
560 /// elements of the aggregate in order to avoid exploding the number of
561 /// arguments passed in.
562 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
563                                     unsigned MaxElements) {
564   using GEPIndicesSet = std::set<IndicesVector>;
565 
566   // Quick exit for unused arguments
567   if (Arg->use_empty())
568     return true;
569 
570   // We can only promote this argument if all of the uses are loads, or are GEP
571   // instructions (with constant indices) that are subsequently loaded.
572   //
573   // Promoting the argument causes it to be loaded in the caller
574   // unconditionally. This is only safe if we can prove that either the load
575   // would have happened in the callee anyway (ie, there is a load in the entry
576   // block) or the pointer passed in at every call site is guaranteed to be
577   // valid.
578   // In the former case, invalid loads can happen, but would have happened
579   // anyway, in the latter case, invalid loads won't happen. This prevents us
580   // from introducing an invalid load that wouldn't have happened in the
581   // original code.
582   //
583   // This set will contain all sets of indices that are loaded in the entry
584   // block, and thus are safe to unconditionally load in the caller.
585   GEPIndicesSet SafeToUnconditionallyLoad;
586 
587   // This set contains all the sets of indices that we are planning to promote.
588   // This makes it possible to limit the number of arguments added.
589   GEPIndicesSet ToPromote;
590 
591   // If the pointer is always valid, any load with first index 0 is valid.
592 
593   if (ByValTy)
594     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
595 
596   // Whenever a new underlying type for the operand is found, make sure it's
597   // consistent with the GEPs and loads we've already seen and, if necessary,
598   // use it to see if all incoming pointers are valid (which implies the 0-index
599   // is safe).
600   Type *BaseTy = ByValTy;
601   auto UpdateBaseTy = [&](Type *NewBaseTy) {
602     if (BaseTy)
603       return BaseTy == NewBaseTy;
604 
605     BaseTy = NewBaseTy;
606     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
607       assert(SafeToUnconditionallyLoad.empty());
608       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
609     }
610 
611     return true;
612   };
613 
614   // First, iterate the entry block and mark loads of (geps of) arguments as
615   // safe.
616   BasicBlock &EntryBlock = Arg->getParent()->front();
617   // Declare this here so we can reuse it
618   IndicesVector Indices;
619   for (Instruction &I : EntryBlock)
620     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
621       Value *V = LI->getPointerOperand();
622       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
623         V = GEP->getPointerOperand();
624         if (V == Arg) {
625           // This load actually loads (part of) Arg? Check the indices then.
626           Indices.reserve(GEP->getNumIndices());
627           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
628                II != IE; ++II)
629             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
630               Indices.push_back(CI->getSExtValue());
631             else
632               // We found a non-constant GEP index for this argument? Bail out
633               // right away, can't promote this argument at all.
634               return false;
635 
636           if (!UpdateBaseTy(GEP->getSourceElementType()))
637             return false;
638 
639           // Indices checked out, mark them as safe
640           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
641           Indices.clear();
642         }
643       } else if (V == Arg) {
644         // Direct loads are equivalent to a GEP with a single 0 index.
645         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
646 
647         if (BaseTy && LI->getType() != BaseTy)
648           return false;
649 
650         BaseTy = LI->getType();
651       }
652     }
653 
654   // Now, iterate all uses of the argument to see if there are any uses that are
655   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
656   SmallVector<LoadInst *, 16> Loads;
657   IndicesVector Operands;
658   for (Use &U : Arg->uses()) {
659     User *UR = U.getUser();
660     Operands.clear();
661     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
662       // Don't hack volatile/atomic loads
663       if (!LI->isSimple())
664         return false;
665       Loads.push_back(LI);
666       // Direct loads are equivalent to a GEP with a zero index and then a load.
667       Operands.push_back(0);
668 
669       if (!UpdateBaseTy(LI->getType()))
670         return false;
671     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
672       if (GEP->use_empty()) {
673         // Dead GEP's cause trouble later.  Just remove them if we run into
674         // them.
675         GEP->eraseFromParent();
676         // TODO: This runs the above loop over and over again for dead GEPs
677         // Couldn't we just do increment the UI iterator earlier and erase the
678         // use?
679         return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements);
680       }
681 
682       if (!UpdateBaseTy(GEP->getSourceElementType()))
683         return false;
684 
685       // Ensure that all of the indices are constants.
686       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
687            ++i)
688         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
689           Operands.push_back(C->getSExtValue());
690         else
691           return false; // Not a constant operand GEP!
692 
693       // Ensure that the only users of the GEP are load instructions.
694       for (User *GEPU : GEP->users())
695         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
696           // Don't hack volatile/atomic loads
697           if (!LI->isSimple())
698             return false;
699           Loads.push_back(LI);
700         } else {
701           // Other uses than load?
702           return false;
703         }
704     } else {
705       return false; // Not a load or a GEP.
706     }
707 
708     // Now, see if it is safe to promote this load / loads of this GEP. Loading
709     // is safe if Operands, or a prefix of Operands, is marked as safe.
710     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
711       return false;
712 
713     // See if we are already promoting a load with these indices. If not, check
714     // to make sure that we aren't promoting too many elements.  If so, nothing
715     // to do.
716     if (ToPromote.find(Operands) == ToPromote.end()) {
717       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
718         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
719                           << Arg->getName()
720                           << "' because it would require adding more "
721                           << "than " << MaxElements
722                           << " arguments to the function.\n");
723         // We limit aggregate promotion to only promoting up to a fixed number
724         // of elements of the aggregate.
725         return false;
726       }
727       ToPromote.insert(std::move(Operands));
728     }
729   }
730 
731   if (Loads.empty())
732     return true; // No users, this is a dead argument.
733 
734   // Okay, now we know that the argument is only used by load instructions and
735   // it is safe to unconditionally perform all of them. Use alias analysis to
736   // check to see if the pointer is guaranteed to not be modified from entry of
737   // the function to each of the load instructions.
738 
739   // Because there could be several/many load instructions, remember which
740   // blocks we know to be transparent to the load.
741   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
742 
743   for (LoadInst *Load : Loads) {
744     // Check to see if the load is invalidated from the start of the block to
745     // the load itself.
746     BasicBlock *BB = Load->getParent();
747 
748     MemoryLocation Loc = MemoryLocation::get(Load);
749     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
750       return false; // Pointer is invalidated!
751 
752     // Now check every path from the entry block to the load for transparency.
753     // To do this, we perform a depth first search on the inverse CFG from the
754     // loading block.
755     for (BasicBlock *P : predecessors(BB)) {
756       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
757         if (AAR.canBasicBlockModify(*TranspBB, Loc))
758           return false;
759     }
760   }
761 
762   // If the path from the entry of the function to each load is free of
763   // instructions that potentially invalidate the load, we can make the
764   // transformation!
765   return true;
766 }
767 
768 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
769   // There is no size information, so be conservative.
770   if (!type->isSized())
771     return false;
772 
773   // If the alloc size is not equal to the storage size, then there are padding
774   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
775   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
776     return false;
777 
778   // FIXME: This isn't the right way to check for padding in vectors with
779   // non-byte-size elements.
780   if (VectorType *seqTy = dyn_cast<VectorType>(type))
781     return isDenselyPacked(seqTy->getElementType(), DL);
782 
783   // For array types, check for padding within members.
784   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
785     return isDenselyPacked(seqTy->getElementType(), DL);
786 
787   if (!isa<StructType>(type))
788     return true;
789 
790   // Check for padding within and between elements of a struct.
791   StructType *StructTy = cast<StructType>(type);
792   const StructLayout *Layout = DL.getStructLayout(StructTy);
793   uint64_t StartPos = 0;
794   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
795     Type *ElTy = StructTy->getElementType(i);
796     if (!isDenselyPacked(ElTy, DL))
797       return false;
798     if (StartPos != Layout->getElementOffsetInBits(i))
799       return false;
800     StartPos += DL.getTypeAllocSizeInBits(ElTy);
801   }
802 
803   return true;
804 }
805 
806 /// Checks if the padding bytes of an argument could be accessed.
807 static bool canPaddingBeAccessed(Argument *arg) {
808   assert(arg->hasByValAttr());
809 
810   // Track all the pointers to the argument to make sure they are not captured.
811   SmallPtrSet<Value *, 16> PtrValues;
812   PtrValues.insert(arg);
813 
814   // Track all of the stores.
815   SmallVector<StoreInst *, 16> Stores;
816 
817   // Scan through the uses recursively to make sure the pointer is always used
818   // sanely.
819   SmallVector<Value *, 16> WorkList;
820   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
821   while (!WorkList.empty()) {
822     Value *V = WorkList.back();
823     WorkList.pop_back();
824     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
825       if (PtrValues.insert(V).second)
826         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
827     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
828       Stores.push_back(Store);
829     } else if (!isa<LoadInst>(V)) {
830       return true;
831     }
832   }
833 
834   // Check to make sure the pointers aren't captured
835   for (StoreInst *Store : Stores)
836     if (PtrValues.count(Store->getValueOperand()))
837       return true;
838 
839   return false;
840 }
841 
842 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
843     const Function &F, const TargetTransformInfo &TTI,
844     SmallPtrSetImpl<Argument *> &ArgsToPromote,
845     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
846   for (const Use &U : F.uses()) {
847     CallBase *CB = dyn_cast<CallBase>(U.getUser());
848     if (!CB)
849       return false;
850     const Function *Caller = CB->getCaller();
851     const Function *Callee = CB->getCalledFunction();
852     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
853         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
854       return false;
855   }
856   return true;
857 }
858 
859 /// PromoteArguments - This method checks the specified function to see if there
860 /// are any promotable arguments and if it is safe to promote the function (for
861 /// example, all callers are direct).  If safe to promote some arguments, it
862 /// calls the DoPromotion method.
863 static Function *
864 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
865                  unsigned MaxElements,
866                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
867                      ReplaceCallSite,
868                  const TargetTransformInfo &TTI) {
869   // Don't perform argument promotion for naked functions; otherwise we can end
870   // up removing parameters that are seemingly 'not used' as they are referred
871   // to in the assembly.
872   if(F->hasFnAttribute(Attribute::Naked))
873     return nullptr;
874 
875   // Make sure that it is local to this module.
876   if (!F->hasLocalLinkage())
877     return nullptr;
878 
879   // Don't promote arguments for variadic functions. Adding, removing, or
880   // changing non-pack parameters can change the classification of pack
881   // parameters. Frontends encode that classification at the call site in the
882   // IR, while in the callee the classification is determined dynamically based
883   // on the number of registers consumed so far.
884   if (F->isVarArg())
885     return nullptr;
886 
887   // Don't transform functions that receive inallocas, as the transformation may
888   // not be safe depending on calling convention.
889   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
890     return nullptr;
891 
892   // First check: see if there are any pointer arguments!  If not, quick exit.
893   SmallVector<Argument *, 16> PointerArgs;
894   for (Argument &I : F->args())
895     if (I.getType()->isPointerTy())
896       PointerArgs.push_back(&I);
897   if (PointerArgs.empty())
898     return nullptr;
899 
900   // Second check: make sure that all callers are direct callers.  We can't
901   // transform functions that have indirect callers.  Also see if the function
902   // is self-recursive and check that target features are compatible.
903   bool isSelfRecursive = false;
904   for (Use &U : F->uses()) {
905     CallBase *CB = dyn_cast<CallBase>(U.getUser());
906     // Must be a direct call.
907     if (CB == nullptr || !CB->isCallee(&U))
908       return nullptr;
909 
910     // Can't change signature of musttail callee
911     if (CB->isMustTailCall())
912       return nullptr;
913 
914     if (CB->getParent()->getParent() == F)
915       isSelfRecursive = true;
916   }
917 
918   // Can't change signature of musttail caller
919   // FIXME: Support promoting whole chain of musttail functions
920   for (BasicBlock &BB : *F)
921     if (BB.getTerminatingMustTailCall())
922       return nullptr;
923 
924   const DataLayout &DL = F->getParent()->getDataLayout();
925 
926   AAResults &AAR = AARGetter(*F);
927 
928   // Check to see which arguments are promotable.  If an argument is promotable,
929   // add it to ArgsToPromote.
930   SmallPtrSet<Argument *, 8> ArgsToPromote;
931   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
932   for (Argument *PtrArg : PointerArgs) {
933     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
934 
935     // Replace sret attribute with noalias. This reduces register pressure by
936     // avoiding a register copy.
937     if (PtrArg->hasStructRetAttr()) {
938       unsigned ArgNo = PtrArg->getArgNo();
939       F->removeParamAttr(ArgNo, Attribute::StructRet);
940       F->addParamAttr(ArgNo, Attribute::NoAlias);
941       for (Use &U : F->uses()) {
942         CallBase &CB = cast<CallBase>(*U.getUser());
943         CB.removeParamAttr(ArgNo, Attribute::StructRet);
944         CB.addParamAttr(ArgNo, Attribute::NoAlias);
945       }
946     }
947 
948     // If this is a byval argument, and if the aggregate type is small, just
949     // pass the elements, which is always safe, if the passed value is densely
950     // packed or if we can prove the padding bytes are never accessed.
951     bool isSafeToPromote = PtrArg->hasByValAttr() &&
952                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
953                             !canPaddingBeAccessed(PtrArg));
954     if (isSafeToPromote) {
955       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
956         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
957           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
958                             << PtrArg->getName()
959                             << "' because it would require adding more"
960                             << " than " << MaxElements
961                             << " arguments to the function.\n");
962           continue;
963         }
964 
965         // If all the elements are single-value types, we can promote it.
966         bool AllSimple = true;
967         for (const auto *EltTy : STy->elements()) {
968           if (!EltTy->isSingleValueType()) {
969             AllSimple = false;
970             break;
971           }
972         }
973 
974         // Safe to transform, don't even bother trying to "promote" it.
975         // Passing the elements as a scalar will allow sroa to hack on
976         // the new alloca we introduce.
977         if (AllSimple) {
978           ByValArgsToTransform.insert(PtrArg);
979           continue;
980         }
981       }
982     }
983 
984     // If the argument is a recursive type and we're in a recursive
985     // function, we could end up infinitely peeling the function argument.
986     if (isSelfRecursive) {
987       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
988         bool RecursiveType = false;
989         for (const auto *EltTy : STy->elements()) {
990           if (EltTy == PtrArg->getType()) {
991             RecursiveType = true;
992             break;
993           }
994         }
995         if (RecursiveType)
996           continue;
997       }
998     }
999 
1000     // Otherwise, see if we can promote the pointer to its value.
1001     Type *ByValTy =
1002         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1003     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1004       ArgsToPromote.insert(PtrArg);
1005   }
1006 
1007   // No promotable pointer arguments.
1008   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1009     return nullptr;
1010 
1011   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1012           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1013     return nullptr;
1014 
1015   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1016 }
1017 
1018 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1019                                              CGSCCAnalysisManager &AM,
1020                                              LazyCallGraph &CG,
1021                                              CGSCCUpdateResult &UR) {
1022   bool Changed = false, LocalChange;
1023 
1024   // Iterate until we stop promoting from this SCC.
1025   do {
1026     LocalChange = false;
1027 
1028     for (LazyCallGraph::Node &N : C) {
1029       Function &OldF = N.getFunction();
1030 
1031       FunctionAnalysisManager &FAM =
1032           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1033       // FIXME: This lambda must only be used with this function. We should
1034       // skip the lambda and just get the AA results directly.
1035       auto AARGetter = [&](Function &F) -> AAResults & {
1036         assert(&F == &OldF && "Called with an unexpected function!");
1037         return FAM.getResult<AAManager>(F);
1038       };
1039 
1040       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1041       Function *NewF =
1042           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1043       if (!NewF)
1044         continue;
1045       LocalChange = true;
1046 
1047       // Directly substitute the functions in the call graph. Note that this
1048       // requires the old function to be completely dead and completely
1049       // replaced by the new function. It does no call graph updates, it merely
1050       // swaps out the particular function mapped to a particular node in the
1051       // graph.
1052       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1053       OldF.eraseFromParent();
1054     }
1055 
1056     Changed |= LocalChange;
1057   } while (LocalChange);
1058 
1059   if (!Changed)
1060     return PreservedAnalyses::all();
1061 
1062   return PreservedAnalyses::none();
1063 }
1064 
1065 namespace {
1066 
1067 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1068 struct ArgPromotion : public CallGraphSCCPass {
1069   // Pass identification, replacement for typeid
1070   static char ID;
1071 
1072   explicit ArgPromotion(unsigned MaxElements = 3)
1073       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1074     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1075   }
1076 
1077   void getAnalysisUsage(AnalysisUsage &AU) const override {
1078     AU.addRequired<AssumptionCacheTracker>();
1079     AU.addRequired<TargetLibraryInfoWrapperPass>();
1080     AU.addRequired<TargetTransformInfoWrapperPass>();
1081     getAAResultsAnalysisUsage(AU);
1082     CallGraphSCCPass::getAnalysisUsage(AU);
1083   }
1084 
1085   bool runOnSCC(CallGraphSCC &SCC) override;
1086 
1087 private:
1088   using llvm::Pass::doInitialization;
1089 
1090   bool doInitialization(CallGraph &CG) override;
1091 
1092   /// The maximum number of elements to expand, or 0 for unlimited.
1093   unsigned MaxElements;
1094 };
1095 
1096 } // end anonymous namespace
1097 
1098 char ArgPromotion::ID = 0;
1099 
1100 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1101                       "Promote 'by reference' arguments to scalars", false,
1102                       false)
1103 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1104 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1105 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1106 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1107 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1108                     "Promote 'by reference' arguments to scalars", false, false)
1109 
1110 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1111   return new ArgPromotion(MaxElements);
1112 }
1113 
1114 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1115   if (skipSCC(SCC))
1116     return false;
1117 
1118   // Get the callgraph information that we need to update to reflect our
1119   // changes.
1120   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1121 
1122   LegacyAARGetter AARGetter(*this);
1123 
1124   bool Changed = false, LocalChange;
1125 
1126   // Iterate until we stop promoting from this SCC.
1127   do {
1128     LocalChange = false;
1129     // Attempt to promote arguments from all functions in this SCC.
1130     for (CallGraphNode *OldNode : SCC) {
1131       Function *OldF = OldNode->getFunction();
1132       if (!OldF)
1133         continue;
1134 
1135       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1136         Function *Caller = OldCS.getParent()->getParent();
1137         CallGraphNode *NewCalleeNode =
1138             CG.getOrInsertFunction(NewCS.getCalledFunction());
1139         CallGraphNode *CallerNode = CG[Caller];
1140         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1141                                     cast<CallBase>(NewCS), NewCalleeNode);
1142       };
1143 
1144       const TargetTransformInfo &TTI =
1145           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1146       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1147                                             {ReplaceCallSite}, TTI)) {
1148         LocalChange = true;
1149 
1150         // Update the call graph for the newly promoted function.
1151         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1152         NewNode->stealCalledFunctionsFrom(OldNode);
1153         if (OldNode->getNumReferences() == 0)
1154           delete CG.removeFunctionFromModule(OldNode);
1155         else
1156           OldF->setLinkage(Function::ExternalLinkage);
1157 
1158         // And updat ethe SCC we're iterating as well.
1159         SCC.ReplaceNode(OldNode, NewNode);
1160       }
1161     }
1162     // Remember that we changed something.
1163     Changed |= LocalChange;
1164   } while (LocalChange);
1165 
1166   return Changed;
1167 }
1168 
1169 bool ArgPromotion::doInitialization(CallGraph &CG) {
1170   return CallGraphSCCPass::doInitialization(CG);
1171 }
1172