1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass promotes "by reference" arguments to be "by value" arguments. In 10 // practice, this means looking for internal functions that have pointer 11 // arguments. If it can prove, through the use of alias analysis, that an 12 // argument is *only* loaded, then it can pass the value into the function 13 // instead of the address of the value. This can cause recursive simplification 14 // of code and lead to the elimination of allocas (especially in C++ template 15 // code like the STL). 16 // 17 // This pass also handles aggregate arguments that are passed into a function, 18 // scalarizing them if the elements of the aggregate are only loaded. Note that 19 // by default it refuses to scalarize aggregates which would require passing in 20 // more than three operands to the function, because passing thousands of 21 // operands for a large array or structure is unprofitable! This limit can be 22 // configured or disabled, however. 23 // 24 // Note that this transformation could also be done for arguments that are only 25 // stored to (returning the value instead), but does not currently. This case 26 // would be best handled when and if LLVM begins supporting multiple return 27 // values from functions. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 32 #include "llvm/ADT/DepthFirstIterator.h" 33 #include "llvm/ADT/None.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/ScopeExit.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AssumptionCache.h" 42 #include "llvm/Analysis/BasicAliasAnalysis.h" 43 #include "llvm/Analysis/CGSCCPassManager.h" 44 #include "llvm/Analysis/CallGraph.h" 45 #include "llvm/Analysis/CallGraphSCCPass.h" 46 #include "llvm/Analysis/LazyCallGraph.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/Analysis/MemoryLocation.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/Attributes.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/PassManager.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/IPO.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <functional> 82 #include <iterator> 83 #include <map> 84 #include <set> 85 #include <string> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "argpromotion" 92 93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 97 98 /// A vector used to hold the indices of a single GEP instruction 99 using IndicesVector = std::vector<uint64_t>; 100 101 /// DoPromotion - This method actually performs the promotion of the specified 102 /// arguments, and returns the new function. At this point, we know that it's 103 /// safe to do so. 104 static Function * 105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 106 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 107 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 108 ReplaceCallSite) { 109 // Start by computing a new prototype for the function, which is the same as 110 // the old function, but has modified arguments. 111 FunctionType *FTy = F->getFunctionType(); 112 std::vector<Type *> Params; 113 114 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; 115 116 // ScalarizedElements - If we are promoting a pointer that has elements 117 // accessed out of it, keep track of which elements are accessed so that we 118 // can add one argument for each. 119 // 120 // Arguments that are directly loaded will have a zero element value here, to 121 // handle cases where there are both a direct load and GEP accesses. 122 std::map<Argument *, ScalarizeTable> ScalarizedElements; 123 124 // OriginalLoads - Keep track of a representative load instruction from the 125 // original function so that we can tell the alias analysis implementation 126 // what the new GEP/Load instructions we are inserting look like. 127 // We need to keep the original loads for each argument and the elements 128 // of the argument that are accessed. 129 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 130 131 // Attribute - Keep track of the parameter attributes for the arguments 132 // that we are *not* promoting. For the ones that we do promote, the parameter 133 // attributes are lost 134 SmallVector<AttributeSet, 8> ArgAttrVec; 135 AttributeList PAL = F->getAttributes(); 136 137 // First, determine the new argument list 138 unsigned ArgNo = 0; 139 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 140 ++I, ++ArgNo) { 141 if (ByValArgsToTransform.count(&*I)) { 142 // Simple byval argument? Just add all the struct element types. 143 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 144 StructType *STy = cast<StructType>(AgTy); 145 llvm::append_range(Params, STy->elements()); 146 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 147 AttributeSet()); 148 ++NumByValArgsPromoted; 149 } else if (!ArgsToPromote.count(&*I)) { 150 // Unchanged argument 151 Params.push_back(I->getType()); 152 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); 153 } else if (I->use_empty()) { 154 // Dead argument (which are always marked as promotable) 155 ++NumArgumentsDead; 156 } else { 157 // Okay, this is being promoted. This means that the only uses are loads 158 // or GEPs which are only used by loads 159 160 // In this table, we will track which indices are loaded from the argument 161 // (where direct loads are tracked as no indices). 162 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 163 for (User *U : make_early_inc_range(I->users())) { 164 Instruction *UI = cast<Instruction>(U); 165 Type *SrcTy; 166 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 167 SrcTy = L->getType(); 168 else 169 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 170 // Skip dead GEPs and remove them. 171 if (isa<GetElementPtrInst>(UI) && UI->use_empty()) { 172 UI->eraseFromParent(); 173 continue; 174 } 175 176 IndicesVector Indices; 177 Indices.reserve(UI->getNumOperands() - 1); 178 // Since loads will only have a single operand, and GEPs only a single 179 // non-index operand, this will record direct loads without any indices, 180 // and gep+loads with the GEP indices. 181 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 182 II != IE; ++II) 183 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 184 // GEPs with a single 0 index can be merged with direct loads 185 if (Indices.size() == 1 && Indices.front() == 0) 186 Indices.clear(); 187 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 188 LoadInst *OrigLoad; 189 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 190 OrigLoad = L; 191 else 192 // Take any load, we will use it only to update Alias Analysis 193 OrigLoad = cast<LoadInst>(UI->user_back()); 194 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 195 } 196 197 // Add a parameter to the function for each element passed in. 198 for (const auto &ArgIndex : ArgIndices) { 199 // not allowed to dereference ->begin() if size() is 0 200 Params.push_back(GetElementPtrInst::getIndexedType( 201 cast<PointerType>(I->getType())->getElementType(), 202 ArgIndex.second)); 203 ArgAttrVec.push_back(AttributeSet()); 204 assert(Params.back()); 205 } 206 207 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 208 ++NumArgumentsPromoted; 209 else 210 ++NumAggregatesPromoted; 211 } 212 } 213 214 Type *RetTy = FTy->getReturnType(); 215 216 // Construct the new function type using the new arguments. 217 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 218 219 // Create the new function body and insert it into the module. 220 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), 221 F->getName()); 222 NF->copyAttributesFrom(F); 223 NF->copyMetadata(F, 0); 224 225 // The new function will have the !dbg metadata copied from the original 226 // function. The original function may not be deleted, and dbg metadata need 227 // to be unique so we need to drop it. 228 F->setSubprogram(nullptr); 229 230 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 231 << "From: " << *F); 232 233 // Recompute the parameter attributes list based on the new arguments for 234 // the function. 235 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), 236 PAL.getRetAttributes(), ArgAttrVec)); 237 ArgAttrVec.clear(); 238 239 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 240 NF->takeName(F); 241 242 // Loop over all of the callers of the function, transforming the call sites 243 // to pass in the loaded pointers. 244 // 245 SmallVector<Value *, 16> Args; 246 while (!F->use_empty()) { 247 CallBase &CB = cast<CallBase>(*F->user_back()); 248 assert(CB.getCalledFunction() == F); 249 const AttributeList &CallPAL = CB.getAttributes(); 250 IRBuilder<NoFolder> IRB(&CB); 251 252 // Loop over the operands, inserting GEP and loads in the caller as 253 // appropriate. 254 auto AI = CB.arg_begin(); 255 ArgNo = 0; 256 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 257 ++I, ++AI, ++ArgNo) 258 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 259 Args.push_back(*AI); // Unmodified argument 260 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 261 } else if (ByValArgsToTransform.count(&*I)) { 262 // Emit a GEP and load for each element of the struct. 263 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 264 StructType *STy = cast<StructType>(AgTy); 265 Value *Idxs[2] = { 266 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 267 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 268 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 269 auto *Idx = 270 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i)); 271 // TODO: Tell AA about the new values? 272 Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx, 273 Idx->getName() + ".val")); 274 ArgAttrVec.push_back(AttributeSet()); 275 } 276 } else if (!I->use_empty()) { 277 // Non-dead argument: insert GEPs and loads as appropriate. 278 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 279 // Store the Value* version of the indices in here, but declare it now 280 // for reuse. 281 std::vector<Value *> Ops; 282 for (const auto &ArgIndex : ArgIndices) { 283 Value *V = *AI; 284 LoadInst *OrigLoad = 285 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 286 if (!ArgIndex.second.empty()) { 287 Ops.reserve(ArgIndex.second.size()); 288 Type *ElTy = V->getType(); 289 for (auto II : ArgIndex.second) { 290 // Use i32 to index structs, and i64 for others (pointers/arrays). 291 // This satisfies GEP constraints. 292 Type *IdxTy = 293 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 294 : Type::getInt64Ty(F->getContext())); 295 Ops.push_back(ConstantInt::get(IdxTy, II)); 296 // Keep track of the type we're currently indexing. 297 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 298 ElTy = ElPTy->getElementType(); 299 else 300 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II); 301 } 302 // And create a GEP to extract those indices. 303 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx"); 304 Ops.clear(); 305 } 306 // Since we're replacing a load make sure we take the alignment 307 // of the previous load. 308 LoadInst *newLoad = 309 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val"); 310 newLoad->setAlignment(OrigLoad->getAlign()); 311 // Transfer the AA info too. 312 AAMDNodes AAInfo; 313 OrigLoad->getAAMetadata(AAInfo); 314 newLoad->setAAMetadata(AAInfo); 315 316 Args.push_back(newLoad); 317 ArgAttrVec.push_back(AttributeSet()); 318 } 319 } 320 321 // Push any varargs arguments on the list. 322 for (; AI != CB.arg_end(); ++AI, ++ArgNo) { 323 Args.push_back(*AI); 324 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 325 } 326 327 SmallVector<OperandBundleDef, 1> OpBundles; 328 CB.getOperandBundlesAsDefs(OpBundles); 329 330 CallBase *NewCS = nullptr; 331 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 332 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 333 Args, OpBundles, "", &CB); 334 } else { 335 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB); 336 NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind()); 337 NewCS = NewCall; 338 } 339 NewCS->setCallingConv(CB.getCallingConv()); 340 NewCS->setAttributes( 341 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), 342 CallPAL.getRetAttributes(), ArgAttrVec)); 343 NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 344 Args.clear(); 345 ArgAttrVec.clear(); 346 347 // Update the callgraph to know that the callsite has been transformed. 348 if (ReplaceCallSite) 349 (*ReplaceCallSite)(CB, *NewCS); 350 351 if (!CB.use_empty()) { 352 CB.replaceAllUsesWith(NewCS); 353 NewCS->takeName(&CB); 354 } 355 356 // Finally, remove the old call from the program, reducing the use-count of 357 // F. 358 CB.eraseFromParent(); 359 } 360 361 const DataLayout &DL = F->getParent()->getDataLayout(); 362 363 // Since we have now created the new function, splice the body of the old 364 // function right into the new function, leaving the old rotting hulk of the 365 // function empty. 366 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 367 368 // Loop over the argument list, transferring uses of the old arguments over to 369 // the new arguments, also transferring over the names as well. 370 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 371 I2 = NF->arg_begin(); 372 I != E; ++I) { 373 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 374 // If this is an unmodified argument, move the name and users over to the 375 // new version. 376 I->replaceAllUsesWith(&*I2); 377 I2->takeName(&*I); 378 ++I2; 379 continue; 380 } 381 382 if (ByValArgsToTransform.count(&*I)) { 383 // In the callee, we create an alloca, and store each of the new incoming 384 // arguments into the alloca. 385 Instruction *InsertPt = &NF->begin()->front(); 386 387 // Just add all the struct element types. 388 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 389 Value *TheAlloca = new AllocaInst( 390 AgTy, DL.getAllocaAddrSpace(), nullptr, 391 I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "", 392 InsertPt); 393 StructType *STy = cast<StructType>(AgTy); 394 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 395 nullptr}; 396 397 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 398 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 399 Value *Idx = GetElementPtrInst::Create( 400 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 401 InsertPt); 402 I2->setName(I->getName() + "." + Twine(i)); 403 new StoreInst(&*I2++, Idx, InsertPt); 404 } 405 406 // Anything that used the arg should now use the alloca. 407 I->replaceAllUsesWith(TheAlloca); 408 TheAlloca->takeName(&*I); 409 410 // If the alloca is used in a call, we must clear the tail flag since 411 // the callee now uses an alloca from the caller. 412 for (User *U : TheAlloca->users()) { 413 CallInst *Call = dyn_cast<CallInst>(U); 414 if (!Call) 415 continue; 416 Call->setTailCall(false); 417 } 418 continue; 419 } 420 421 // There potentially are metadata uses for things like llvm.dbg.value. 422 // Replace them with undef, after handling the other regular uses. 423 auto RauwUndefMetadata = make_scope_exit( 424 [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); }); 425 426 if (I->use_empty()) 427 continue; 428 429 // Otherwise, if we promoted this argument, then all users are load 430 // instructions (or GEPs with only load users), and all loads should be 431 // using the new argument that we added. 432 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 433 434 while (!I->use_empty()) { 435 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 436 assert(ArgIndices.begin()->second.empty() && 437 "Load element should sort to front!"); 438 I2->setName(I->getName() + ".val"); 439 LI->replaceAllUsesWith(&*I2); 440 LI->eraseFromParent(); 441 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 442 << "' in function '" << F->getName() << "'\n"); 443 } else { 444 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 445 assert(!GEP->use_empty() && 446 "GEPs without uses should be cleaned up already"); 447 IndicesVector Operands; 448 Operands.reserve(GEP->getNumIndices()); 449 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 450 II != IE; ++II) 451 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 452 453 // GEPs with a single 0 index can be merged with direct loads 454 if (Operands.size() == 1 && Operands.front() == 0) 455 Operands.clear(); 456 457 Function::arg_iterator TheArg = I2; 458 for (ScalarizeTable::iterator It = ArgIndices.begin(); 459 It->second != Operands; ++It, ++TheArg) { 460 assert(It != ArgIndices.end() && "GEP not handled??"); 461 } 462 463 TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(), 464 make_range(Operands.begin(), Operands.end()))); 465 466 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 467 << "' of function '" << NF->getName() << "'\n"); 468 469 // All of the uses must be load instructions. Replace them all with 470 // the argument specified by ArgNo. 471 while (!GEP->use_empty()) { 472 LoadInst *L = cast<LoadInst>(GEP->user_back()); 473 L->replaceAllUsesWith(&*TheArg); 474 L->eraseFromParent(); 475 } 476 GEP->eraseFromParent(); 477 } 478 } 479 // Increment I2 past all of the arguments added for this promoted pointer. 480 std::advance(I2, ArgIndices.size()); 481 } 482 483 return NF; 484 } 485 486 /// Return true if we can prove that all callees pass in a valid pointer for the 487 /// specified function argument. 488 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) { 489 Function *Callee = Arg->getParent(); 490 const DataLayout &DL = Callee->getParent()->getDataLayout(); 491 492 unsigned ArgNo = Arg->getArgNo(); 493 494 // Look at all call sites of the function. At this point we know we only have 495 // direct callees. 496 for (User *U : Callee->users()) { 497 CallBase &CB = cast<CallBase>(*U); 498 499 if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL)) 500 return false; 501 } 502 return true; 503 } 504 505 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 506 /// that is greater than or equal to the size of prefix, and each of the 507 /// elements in Prefix is the same as the corresponding elements in Longer. 508 /// 509 /// This means it also returns true when Prefix and Longer are equal! 510 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 511 if (Prefix.size() > Longer.size()) 512 return false; 513 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 514 } 515 516 /// Checks if Indices, or a prefix of Indices, is in Set. 517 static bool prefixIn(const IndicesVector &Indices, 518 std::set<IndicesVector> &Set) { 519 std::set<IndicesVector>::iterator Low; 520 Low = Set.upper_bound(Indices); 521 if (Low != Set.begin()) 522 Low--; 523 // Low is now the last element smaller than or equal to Indices. This means 524 // it points to a prefix of Indices (possibly Indices itself), if such 525 // prefix exists. 526 // 527 // This load is safe if any prefix of its operands is safe to load. 528 return Low != Set.end() && isPrefix(*Low, Indices); 529 } 530 531 /// Mark the given indices (ToMark) as safe in the given set of indices 532 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 533 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 534 /// already. Furthermore, any indices that Indices is itself a prefix of, are 535 /// removed from Safe (since they are implicitely safe because of Indices now). 536 static void markIndicesSafe(const IndicesVector &ToMark, 537 std::set<IndicesVector> &Safe) { 538 std::set<IndicesVector>::iterator Low; 539 Low = Safe.upper_bound(ToMark); 540 // Guard against the case where Safe is empty 541 if (Low != Safe.begin()) 542 Low--; 543 // Low is now the last element smaller than or equal to Indices. This 544 // means it points to a prefix of Indices (possibly Indices itself), if 545 // such prefix exists. 546 if (Low != Safe.end()) { 547 if (isPrefix(*Low, ToMark)) 548 // If there is already a prefix of these indices (or exactly these 549 // indices) marked a safe, don't bother adding these indices 550 return; 551 552 // Increment Low, so we can use it as a "insert before" hint 553 ++Low; 554 } 555 // Insert 556 Low = Safe.insert(Low, ToMark); 557 ++Low; 558 // If there we're a prefix of longer index list(s), remove those 559 std::set<IndicesVector>::iterator End = Safe.end(); 560 while (Low != End && isPrefix(ToMark, *Low)) { 561 std::set<IndicesVector>::iterator Remove = Low; 562 ++Low; 563 Safe.erase(Remove); 564 } 565 } 566 567 /// isSafeToPromoteArgument - As you might guess from the name of this method, 568 /// it checks to see if it is both safe and useful to promote the argument. 569 /// This method limits promotion of aggregates to only promote up to three 570 /// elements of the aggregate in order to avoid exploding the number of 571 /// arguments passed in. 572 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR, 573 unsigned MaxElements) { 574 using GEPIndicesSet = std::set<IndicesVector>; 575 576 // Quick exit for unused arguments 577 if (Arg->use_empty()) 578 return true; 579 580 // We can only promote this argument if all of the uses are loads, or are GEP 581 // instructions (with constant indices) that are subsequently loaded. 582 // 583 // Promoting the argument causes it to be loaded in the caller 584 // unconditionally. This is only safe if we can prove that either the load 585 // would have happened in the callee anyway (ie, there is a load in the entry 586 // block) or the pointer passed in at every call site is guaranteed to be 587 // valid. 588 // In the former case, invalid loads can happen, but would have happened 589 // anyway, in the latter case, invalid loads won't happen. This prevents us 590 // from introducing an invalid load that wouldn't have happened in the 591 // original code. 592 // 593 // This set will contain all sets of indices that are loaded in the entry 594 // block, and thus are safe to unconditionally load in the caller. 595 GEPIndicesSet SafeToUnconditionallyLoad; 596 597 // This set contains all the sets of indices that we are planning to promote. 598 // This makes it possible to limit the number of arguments added. 599 GEPIndicesSet ToPromote; 600 601 // If the pointer is always valid, any load with first index 0 is valid. 602 603 if (ByValTy) 604 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 605 606 // Whenever a new underlying type for the operand is found, make sure it's 607 // consistent with the GEPs and loads we've already seen and, if necessary, 608 // use it to see if all incoming pointers are valid (which implies the 0-index 609 // is safe). 610 Type *BaseTy = ByValTy; 611 auto UpdateBaseTy = [&](Type *NewBaseTy) { 612 if (BaseTy) 613 return BaseTy == NewBaseTy; 614 615 BaseTy = NewBaseTy; 616 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) { 617 assert(SafeToUnconditionallyLoad.empty()); 618 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 619 } 620 621 return true; 622 }; 623 624 // First, iterate the entry block and mark loads of (geps of) arguments as 625 // safe. 626 BasicBlock &EntryBlock = Arg->getParent()->front(); 627 // Declare this here so we can reuse it 628 IndicesVector Indices; 629 for (Instruction &I : EntryBlock) 630 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 631 Value *V = LI->getPointerOperand(); 632 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 633 V = GEP->getPointerOperand(); 634 if (V == Arg) { 635 // This load actually loads (part of) Arg? Check the indices then. 636 Indices.reserve(GEP->getNumIndices()); 637 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 638 II != IE; ++II) 639 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 640 Indices.push_back(CI->getSExtValue()); 641 else 642 // We found a non-constant GEP index for this argument? Bail out 643 // right away, can't promote this argument at all. 644 return false; 645 646 if (!UpdateBaseTy(GEP->getSourceElementType())) 647 return false; 648 649 // Indices checked out, mark them as safe 650 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 651 Indices.clear(); 652 } 653 } else if (V == Arg) { 654 // Direct loads are equivalent to a GEP with a single 0 index. 655 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 656 657 if (BaseTy && LI->getType() != BaseTy) 658 return false; 659 660 BaseTy = LI->getType(); 661 } 662 } 663 664 // Now, iterate all uses of the argument to see if there are any uses that are 665 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 666 SmallVector<LoadInst *, 16> Loads; 667 IndicesVector Operands; 668 for (Use &U : Arg->uses()) { 669 User *UR = U.getUser(); 670 Operands.clear(); 671 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 672 // Don't hack volatile/atomic loads 673 if (!LI->isSimple()) 674 return false; 675 Loads.push_back(LI); 676 // Direct loads are equivalent to a GEP with a zero index and then a load. 677 Operands.push_back(0); 678 679 if (!UpdateBaseTy(LI->getType())) 680 return false; 681 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 682 if (GEP->use_empty()) { 683 // Dead GEP's cause trouble later. Just remove them if we run into 684 // them. 685 continue; 686 } 687 688 if (!UpdateBaseTy(GEP->getSourceElementType())) 689 return false; 690 691 // Ensure that all of the indices are constants. 692 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; 693 ++i) 694 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 695 Operands.push_back(C->getSExtValue()); 696 else 697 return false; // Not a constant operand GEP! 698 699 // Ensure that the only users of the GEP are load instructions. 700 for (User *GEPU : GEP->users()) 701 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 702 // Don't hack volatile/atomic loads 703 if (!LI->isSimple()) 704 return false; 705 Loads.push_back(LI); 706 } else { 707 // Other uses than load? 708 return false; 709 } 710 } else { 711 return false; // Not a load or a GEP. 712 } 713 714 // Now, see if it is safe to promote this load / loads of this GEP. Loading 715 // is safe if Operands, or a prefix of Operands, is marked as safe. 716 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 717 return false; 718 719 // See if we are already promoting a load with these indices. If not, check 720 // to make sure that we aren't promoting too many elements. If so, nothing 721 // to do. 722 if (ToPromote.find(Operands) == ToPromote.end()) { 723 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 724 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" 725 << Arg->getName() 726 << "' because it would require adding more " 727 << "than " << MaxElements 728 << " arguments to the function.\n"); 729 // We limit aggregate promotion to only promoting up to a fixed number 730 // of elements of the aggregate. 731 return false; 732 } 733 ToPromote.insert(std::move(Operands)); 734 } 735 } 736 737 if (Loads.empty()) 738 return true; // No users, this is a dead argument. 739 740 // Okay, now we know that the argument is only used by load instructions and 741 // it is safe to unconditionally perform all of them. Use alias analysis to 742 // check to see if the pointer is guaranteed to not be modified from entry of 743 // the function to each of the load instructions. 744 745 // Because there could be several/many load instructions, remember which 746 // blocks we know to be transparent to the load. 747 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 748 749 for (LoadInst *Load : Loads) { 750 // Check to see if the load is invalidated from the start of the block to 751 // the load itself. 752 BasicBlock *BB = Load->getParent(); 753 754 MemoryLocation Loc = MemoryLocation::get(Load); 755 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) 756 return false; // Pointer is invalidated! 757 758 // Now check every path from the entry block to the load for transparency. 759 // To do this, we perform a depth first search on the inverse CFG from the 760 // loading block. 761 for (BasicBlock *P : predecessors(BB)) { 762 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 763 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 764 return false; 765 } 766 } 767 768 // If the path from the entry of the function to each load is free of 769 // instructions that potentially invalidate the load, we can make the 770 // transformation! 771 return true; 772 } 773 774 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) { 775 // There is no size information, so be conservative. 776 if (!type->isSized()) 777 return false; 778 779 // If the alloc size is not equal to the storage size, then there are padding 780 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 781 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 782 return false; 783 784 // FIXME: This isn't the right way to check for padding in vectors with 785 // non-byte-size elements. 786 if (VectorType *seqTy = dyn_cast<VectorType>(type)) 787 return isDenselyPacked(seqTy->getElementType(), DL); 788 789 // For array types, check for padding within members. 790 if (ArrayType *seqTy = dyn_cast<ArrayType>(type)) 791 return isDenselyPacked(seqTy->getElementType(), DL); 792 793 if (!isa<StructType>(type)) 794 return true; 795 796 // Check for padding within and between elements of a struct. 797 StructType *StructTy = cast<StructType>(type); 798 const StructLayout *Layout = DL.getStructLayout(StructTy); 799 uint64_t StartPos = 0; 800 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 801 Type *ElTy = StructTy->getElementType(i); 802 if (!isDenselyPacked(ElTy, DL)) 803 return false; 804 if (StartPos != Layout->getElementOffsetInBits(i)) 805 return false; 806 StartPos += DL.getTypeAllocSizeInBits(ElTy); 807 } 808 809 return true; 810 } 811 812 /// Checks if the padding bytes of an argument could be accessed. 813 static bool canPaddingBeAccessed(Argument *arg) { 814 assert(arg->hasByValAttr()); 815 816 // Track all the pointers to the argument to make sure they are not captured. 817 SmallPtrSet<Value *, 16> PtrValues; 818 PtrValues.insert(arg); 819 820 // Track all of the stores. 821 SmallVector<StoreInst *, 16> Stores; 822 823 // Scan through the uses recursively to make sure the pointer is always used 824 // sanely. 825 SmallVector<Value *, 16> WorkList(arg->users()); 826 while (!WorkList.empty()) { 827 Value *V = WorkList.pop_back_val(); 828 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 829 if (PtrValues.insert(V).second) 830 llvm::append_range(WorkList, V->users()); 831 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 832 Stores.push_back(Store); 833 } else if (!isa<LoadInst>(V)) { 834 return true; 835 } 836 } 837 838 // Check to make sure the pointers aren't captured 839 for (StoreInst *Store : Stores) 840 if (PtrValues.count(Store->getValueOperand())) 841 return true; 842 843 return false; 844 } 845 846 bool ArgumentPromotionPass::areFunctionArgsABICompatible( 847 const Function &F, const TargetTransformInfo &TTI, 848 SmallPtrSetImpl<Argument *> &ArgsToPromote, 849 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) { 850 for (const Use &U : F.uses()) { 851 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 852 if (!CB) 853 return false; 854 const Function *Caller = CB->getCaller(); 855 const Function *Callee = CB->getCalledFunction(); 856 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || 857 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) 858 return false; 859 } 860 return true; 861 } 862 863 /// PromoteArguments - This method checks the specified function to see if there 864 /// are any promotable arguments and if it is safe to promote the function (for 865 /// example, all callers are direct). If safe to promote some arguments, it 866 /// calls the DoPromotion method. 867 static Function * 868 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 869 unsigned MaxElements, 870 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 871 ReplaceCallSite, 872 const TargetTransformInfo &TTI) { 873 // Don't perform argument promotion for naked functions; otherwise we can end 874 // up removing parameters that are seemingly 'not used' as they are referred 875 // to in the assembly. 876 if(F->hasFnAttribute(Attribute::Naked)) 877 return nullptr; 878 879 // Make sure that it is local to this module. 880 if (!F->hasLocalLinkage()) 881 return nullptr; 882 883 // Don't promote arguments for variadic functions. Adding, removing, or 884 // changing non-pack parameters can change the classification of pack 885 // parameters. Frontends encode that classification at the call site in the 886 // IR, while in the callee the classification is determined dynamically based 887 // on the number of registers consumed so far. 888 if (F->isVarArg()) 889 return nullptr; 890 891 // Don't transform functions that receive inallocas, as the transformation may 892 // not be safe depending on calling convention. 893 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) 894 return nullptr; 895 896 // First check: see if there are any pointer arguments! If not, quick exit. 897 SmallVector<Argument *, 16> PointerArgs; 898 for (Argument &I : F->args()) 899 if (I.getType()->isPointerTy()) 900 PointerArgs.push_back(&I); 901 if (PointerArgs.empty()) 902 return nullptr; 903 904 // Second check: make sure that all callers are direct callers. We can't 905 // transform functions that have indirect callers. Also see if the function 906 // is self-recursive and check that target features are compatible. 907 bool isSelfRecursive = false; 908 for (Use &U : F->uses()) { 909 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 910 // Must be a direct call. 911 if (CB == nullptr || !CB->isCallee(&U)) 912 return nullptr; 913 914 // Can't change signature of musttail callee 915 if (CB->isMustTailCall()) 916 return nullptr; 917 918 if (CB->getParent()->getParent() == F) 919 isSelfRecursive = true; 920 } 921 922 // Can't change signature of musttail caller 923 // FIXME: Support promoting whole chain of musttail functions 924 for (BasicBlock &BB : *F) 925 if (BB.getTerminatingMustTailCall()) 926 return nullptr; 927 928 const DataLayout &DL = F->getParent()->getDataLayout(); 929 930 AAResults &AAR = AARGetter(*F); 931 932 // Check to see which arguments are promotable. If an argument is promotable, 933 // add it to ArgsToPromote. 934 SmallPtrSet<Argument *, 8> ArgsToPromote; 935 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 936 for (Argument *PtrArg : PointerArgs) { 937 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 938 939 // Replace sret attribute with noalias. This reduces register pressure by 940 // avoiding a register copy. 941 if (PtrArg->hasStructRetAttr()) { 942 unsigned ArgNo = PtrArg->getArgNo(); 943 F->removeParamAttr(ArgNo, Attribute::StructRet); 944 F->addParamAttr(ArgNo, Attribute::NoAlias); 945 for (Use &U : F->uses()) { 946 CallBase &CB = cast<CallBase>(*U.getUser()); 947 CB.removeParamAttr(ArgNo, Attribute::StructRet); 948 CB.addParamAttr(ArgNo, Attribute::NoAlias); 949 } 950 } 951 952 // If this is a byval argument, and if the aggregate type is small, just 953 // pass the elements, which is always safe, if the passed value is densely 954 // packed or if we can prove the padding bytes are never accessed. 955 bool isSafeToPromote = PtrArg->hasByValAttr() && 956 (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) || 957 !canPaddingBeAccessed(PtrArg)); 958 if (isSafeToPromote) { 959 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 960 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 961 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" 962 << PtrArg->getName() 963 << "' because it would require adding more" 964 << " than " << MaxElements 965 << " arguments to the function.\n"); 966 continue; 967 } 968 969 // If all the elements are single-value types, we can promote it. 970 bool AllSimple = true; 971 for (const auto *EltTy : STy->elements()) { 972 if (!EltTy->isSingleValueType()) { 973 AllSimple = false; 974 break; 975 } 976 } 977 978 // Safe to transform, don't even bother trying to "promote" it. 979 // Passing the elements as a scalar will allow sroa to hack on 980 // the new alloca we introduce. 981 if (AllSimple) { 982 ByValArgsToTransform.insert(PtrArg); 983 continue; 984 } 985 } 986 } 987 988 // If the argument is a recursive type and we're in a recursive 989 // function, we could end up infinitely peeling the function argument. 990 if (isSelfRecursive) { 991 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 992 bool RecursiveType = false; 993 for (const auto *EltTy : STy->elements()) { 994 if (EltTy == PtrArg->getType()) { 995 RecursiveType = true; 996 break; 997 } 998 } 999 if (RecursiveType) 1000 continue; 1001 } 1002 } 1003 1004 // Otherwise, see if we can promote the pointer to its value. 1005 Type *ByValTy = 1006 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr; 1007 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements)) 1008 ArgsToPromote.insert(PtrArg); 1009 } 1010 1011 // No promotable pointer arguments. 1012 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 1013 return nullptr; 1014 1015 if (!ArgumentPromotionPass::areFunctionArgsABICompatible( 1016 *F, TTI, ArgsToPromote, ByValArgsToTransform)) 1017 return nullptr; 1018 1019 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 1020 } 1021 1022 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 1023 CGSCCAnalysisManager &AM, 1024 LazyCallGraph &CG, 1025 CGSCCUpdateResult &UR) { 1026 bool Changed = false, LocalChange; 1027 1028 // Iterate until we stop promoting from this SCC. 1029 do { 1030 LocalChange = false; 1031 1032 for (LazyCallGraph::Node &N : C) { 1033 Function &OldF = N.getFunction(); 1034 1035 FunctionAnalysisManager &FAM = 1036 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1037 // FIXME: This lambda must only be used with this function. We should 1038 // skip the lambda and just get the AA results directly. 1039 auto AARGetter = [&](Function &F) -> AAResults & { 1040 assert(&F == &OldF && "Called with an unexpected function!"); 1041 return FAM.getResult<AAManager>(F); 1042 }; 1043 1044 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF); 1045 Function *NewF = 1046 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); 1047 if (!NewF) 1048 continue; 1049 LocalChange = true; 1050 1051 // Directly substitute the functions in the call graph. Note that this 1052 // requires the old function to be completely dead and completely 1053 // replaced by the new function. It does no call graph updates, it merely 1054 // swaps out the particular function mapped to a particular node in the 1055 // graph. 1056 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 1057 OldF.eraseFromParent(); 1058 } 1059 1060 Changed |= LocalChange; 1061 } while (LocalChange); 1062 1063 if (!Changed) 1064 return PreservedAnalyses::all(); 1065 1066 return PreservedAnalyses::none(); 1067 } 1068 1069 namespace { 1070 1071 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 1072 struct ArgPromotion : public CallGraphSCCPass { 1073 // Pass identification, replacement for typeid 1074 static char ID; 1075 1076 explicit ArgPromotion(unsigned MaxElements = 3) 1077 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 1078 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 1079 } 1080 1081 void getAnalysisUsage(AnalysisUsage &AU) const override { 1082 AU.addRequired<AssumptionCacheTracker>(); 1083 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1084 AU.addRequired<TargetTransformInfoWrapperPass>(); 1085 getAAResultsAnalysisUsage(AU); 1086 CallGraphSCCPass::getAnalysisUsage(AU); 1087 } 1088 1089 bool runOnSCC(CallGraphSCC &SCC) override; 1090 1091 private: 1092 using llvm::Pass::doInitialization; 1093 1094 bool doInitialization(CallGraph &CG) override; 1095 1096 /// The maximum number of elements to expand, or 0 for unlimited. 1097 unsigned MaxElements; 1098 }; 1099 1100 } // end anonymous namespace 1101 1102 char ArgPromotion::ID = 0; 1103 1104 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 1105 "Promote 'by reference' arguments to scalars", false, 1106 false) 1107 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1108 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1109 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1110 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1111 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 1112 "Promote 'by reference' arguments to scalars", false, false) 1113 1114 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 1115 return new ArgPromotion(MaxElements); 1116 } 1117 1118 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1119 if (skipSCC(SCC)) 1120 return false; 1121 1122 // Get the callgraph information that we need to update to reflect our 1123 // changes. 1124 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1125 1126 LegacyAARGetter AARGetter(*this); 1127 1128 bool Changed = false, LocalChange; 1129 1130 // Iterate until we stop promoting from this SCC. 1131 do { 1132 LocalChange = false; 1133 // Attempt to promote arguments from all functions in this SCC. 1134 for (CallGraphNode *OldNode : SCC) { 1135 Function *OldF = OldNode->getFunction(); 1136 if (!OldF) 1137 continue; 1138 1139 auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) { 1140 Function *Caller = OldCS.getParent()->getParent(); 1141 CallGraphNode *NewCalleeNode = 1142 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1143 CallGraphNode *CallerNode = CG[Caller]; 1144 CallerNode->replaceCallEdge(cast<CallBase>(OldCS), 1145 cast<CallBase>(NewCS), NewCalleeNode); 1146 }; 1147 1148 const TargetTransformInfo &TTI = 1149 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF); 1150 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1151 {ReplaceCallSite}, TTI)) { 1152 LocalChange = true; 1153 1154 // Update the call graph for the newly promoted function. 1155 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1156 NewNode->stealCalledFunctionsFrom(OldNode); 1157 if (OldNode->getNumReferences() == 0) 1158 delete CG.removeFunctionFromModule(OldNode); 1159 else 1160 OldF->setLinkage(Function::ExternalLinkage); 1161 1162 // And updat ethe SCC we're iterating as well. 1163 SCC.ReplaceNode(OldNode, NewNode); 1164 } 1165 } 1166 // Remember that we changed something. 1167 Changed |= LocalChange; 1168 } while (LocalChange); 1169 1170 return Changed; 1171 } 1172 1173 bool ArgPromotion::doInitialization(CallGraph &CG) { 1174 return CallGraphSCCPass::doInitialization(CG); 1175 } 1176