xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "argpromotion"
92 
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100 
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function.  At this point, we know that it's
103 /// safe to do so.
104 static Function *
105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
108                 ReplaceCallSite) {
109   // Start by computing a new prototype for the function, which is the same as
110   // the old function, but has modified arguments.
111   FunctionType *FTy = F->getFunctionType();
112   std::vector<Type *> Params;
113 
114   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 
116   // ScalarizedElements - If we are promoting a pointer that has elements
117   // accessed out of it, keep track of which elements are accessed so that we
118   // can add one argument for each.
119   //
120   // Arguments that are directly loaded will have a zero element value here, to
121   // handle cases where there are both a direct load and GEP accesses.
122   std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 
124   // OriginalLoads - Keep track of a representative load instruction from the
125   // original function so that we can tell the alias analysis implementation
126   // what the new GEP/Load instructions we are inserting look like.
127   // We need to keep the original loads for each argument and the elements
128   // of the argument that are accessed.
129   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 
131   // Attribute - Keep track of the parameter attributes for the arguments
132   // that we are *not* promoting. For the ones that we do promote, the parameter
133   // attributes are lost
134   SmallVector<AttributeSet, 8> ArgAttrVec;
135   AttributeList PAL = F->getAttributes();
136 
137   // First, determine the new argument list
138   unsigned ArgNo = 0;
139   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140        ++I, ++ArgNo) {
141     if (ByValArgsToTransform.count(&*I)) {
142       // Simple byval argument? Just add all the struct element types.
143       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144       StructType *STy = cast<StructType>(AgTy);
145       llvm::append_range(Params, STy->elements());
146       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147                         AttributeSet());
148       ++NumByValArgsPromoted;
149     } else if (!ArgsToPromote.count(&*I)) {
150       // Unchanged argument
151       Params.push_back(I->getType());
152       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153     } else if (I->use_empty()) {
154       // Dead argument (which are always marked as promotable)
155       ++NumArgumentsDead;
156     } else {
157       // Okay, this is being promoted. This means that the only uses are loads
158       // or GEPs which are only used by loads
159 
160       // In this table, we will track which indices are loaded from the argument
161       // (where direct loads are tracked as no indices).
162       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
163       for (User *U : make_early_inc_range(I->users())) {
164         Instruction *UI = cast<Instruction>(U);
165         Type *SrcTy;
166         if (LoadInst *L = dyn_cast<LoadInst>(UI))
167           SrcTy = L->getType();
168         else
169           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
170         // Skip dead GEPs and remove them.
171         if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
172           UI->eraseFromParent();
173           continue;
174         }
175 
176         IndicesVector Indices;
177         Indices.reserve(UI->getNumOperands() - 1);
178         // Since loads will only have a single operand, and GEPs only a single
179         // non-index operand, this will record direct loads without any indices,
180         // and gep+loads with the GEP indices.
181         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
182              II != IE; ++II)
183           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
184         // GEPs with a single 0 index can be merged with direct loads
185         if (Indices.size() == 1 && Indices.front() == 0)
186           Indices.clear();
187         ArgIndices.insert(std::make_pair(SrcTy, Indices));
188         LoadInst *OrigLoad;
189         if (LoadInst *L = dyn_cast<LoadInst>(UI))
190           OrigLoad = L;
191         else
192           // Take any load, we will use it only to update Alias Analysis
193           OrigLoad = cast<LoadInst>(UI->user_back());
194         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
195       }
196 
197       // Add a parameter to the function for each element passed in.
198       for (const auto &ArgIndex : ArgIndices) {
199         // not allowed to dereference ->begin() if size() is 0
200         Params.push_back(GetElementPtrInst::getIndexedType(
201             cast<PointerType>(I->getType())->getElementType(),
202             ArgIndex.second));
203         ArgAttrVec.push_back(AttributeSet());
204         assert(Params.back());
205       }
206 
207       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
208         ++NumArgumentsPromoted;
209       else
210         ++NumAggregatesPromoted;
211     }
212   }
213 
214   Type *RetTy = FTy->getReturnType();
215 
216   // Construct the new function type using the new arguments.
217   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
218 
219   // Create the new function body and insert it into the module.
220   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
221                                   F->getName());
222   NF->copyAttributesFrom(F);
223   NF->copyMetadata(F, 0);
224 
225   // The new function will have the !dbg metadata copied from the original
226   // function. The original function may not be deleted, and dbg metadata need
227   // to be unique so we need to drop it.
228   F->setSubprogram(nullptr);
229 
230   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
231                     << "From: " << *F);
232 
233   // Recompute the parameter attributes list based on the new arguments for
234   // the function.
235   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
236                                        PAL.getRetAttributes(), ArgAttrVec));
237   ArgAttrVec.clear();
238 
239   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
240   NF->takeName(F);
241 
242   // Loop over all of the callers of the function, transforming the call sites
243   // to pass in the loaded pointers.
244   //
245   SmallVector<Value *, 16> Args;
246   while (!F->use_empty()) {
247     CallBase &CB = cast<CallBase>(*F->user_back());
248     assert(CB.getCalledFunction() == F);
249     const AttributeList &CallPAL = CB.getAttributes();
250     IRBuilder<NoFolder> IRB(&CB);
251 
252     // Loop over the operands, inserting GEP and loads in the caller as
253     // appropriate.
254     auto AI = CB.arg_begin();
255     ArgNo = 0;
256     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
257          ++I, ++AI, ++ArgNo)
258       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
259         Args.push_back(*AI); // Unmodified argument
260         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
261       } else if (ByValArgsToTransform.count(&*I)) {
262         // Emit a GEP and load for each element of the struct.
263         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
264         StructType *STy = cast<StructType>(AgTy);
265         Value *Idxs[2] = {
266             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
267         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
268           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
269           auto *Idx =
270               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
271           // TODO: Tell AA about the new values?
272           Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
273                                         Idx->getName() + ".val"));
274           ArgAttrVec.push_back(AttributeSet());
275         }
276       } else if (!I->use_empty()) {
277         // Non-dead argument: insert GEPs and loads as appropriate.
278         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
279         // Store the Value* version of the indices in here, but declare it now
280         // for reuse.
281         std::vector<Value *> Ops;
282         for (const auto &ArgIndex : ArgIndices) {
283           Value *V = *AI;
284           LoadInst *OrigLoad =
285               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
286           if (!ArgIndex.second.empty()) {
287             Ops.reserve(ArgIndex.second.size());
288             Type *ElTy = V->getType();
289             for (auto II : ArgIndex.second) {
290               // Use i32 to index structs, and i64 for others (pointers/arrays).
291               // This satisfies GEP constraints.
292               Type *IdxTy =
293                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
294                                       : Type::getInt64Ty(F->getContext()));
295               Ops.push_back(ConstantInt::get(IdxTy, II));
296               // Keep track of the type we're currently indexing.
297               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
298                 ElTy = ElPTy->getElementType();
299               else
300                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
301             }
302             // And create a GEP to extract those indices.
303             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
304             Ops.clear();
305           }
306           // Since we're replacing a load make sure we take the alignment
307           // of the previous load.
308           LoadInst *newLoad =
309               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
310           newLoad->setAlignment(OrigLoad->getAlign());
311           // Transfer the AA info too.
312           AAMDNodes AAInfo;
313           OrigLoad->getAAMetadata(AAInfo);
314           newLoad->setAAMetadata(AAInfo);
315 
316           Args.push_back(newLoad);
317           ArgAttrVec.push_back(AttributeSet());
318         }
319       }
320 
321     // Push any varargs arguments on the list.
322     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
323       Args.push_back(*AI);
324       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
325     }
326 
327     SmallVector<OperandBundleDef, 1> OpBundles;
328     CB.getOperandBundlesAsDefs(OpBundles);
329 
330     CallBase *NewCS = nullptr;
331     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
332       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
333                                  Args, OpBundles, "", &CB);
334     } else {
335       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
336       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
337       NewCS = NewCall;
338     }
339     NewCS->setCallingConv(CB.getCallingConv());
340     NewCS->setAttributes(
341         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
342                            CallPAL.getRetAttributes(), ArgAttrVec));
343     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
344     Args.clear();
345     ArgAttrVec.clear();
346 
347     // Update the callgraph to know that the callsite has been transformed.
348     if (ReplaceCallSite)
349       (*ReplaceCallSite)(CB, *NewCS);
350 
351     if (!CB.use_empty()) {
352       CB.replaceAllUsesWith(NewCS);
353       NewCS->takeName(&CB);
354     }
355 
356     // Finally, remove the old call from the program, reducing the use-count of
357     // F.
358     CB.eraseFromParent();
359   }
360 
361   const DataLayout &DL = F->getParent()->getDataLayout();
362 
363   // Since we have now created the new function, splice the body of the old
364   // function right into the new function, leaving the old rotting hulk of the
365   // function empty.
366   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
367 
368   // Loop over the argument list, transferring uses of the old arguments over to
369   // the new arguments, also transferring over the names as well.
370   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
371                               I2 = NF->arg_begin();
372        I != E; ++I) {
373     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
374       // If this is an unmodified argument, move the name and users over to the
375       // new version.
376       I->replaceAllUsesWith(&*I2);
377       I2->takeName(&*I);
378       ++I2;
379       continue;
380     }
381 
382     if (ByValArgsToTransform.count(&*I)) {
383       // In the callee, we create an alloca, and store each of the new incoming
384       // arguments into the alloca.
385       Instruction *InsertPt = &NF->begin()->front();
386 
387       // Just add all the struct element types.
388       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
389       Value *TheAlloca = new AllocaInst(
390           AgTy, DL.getAllocaAddrSpace(), nullptr,
391           I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "",
392           InsertPt);
393       StructType *STy = cast<StructType>(AgTy);
394       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
395                         nullptr};
396 
397       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
398         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
399         Value *Idx = GetElementPtrInst::Create(
400             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
401             InsertPt);
402         I2->setName(I->getName() + "." + Twine(i));
403         new StoreInst(&*I2++, Idx, InsertPt);
404       }
405 
406       // Anything that used the arg should now use the alloca.
407       I->replaceAllUsesWith(TheAlloca);
408       TheAlloca->takeName(&*I);
409 
410       // If the alloca is used in a call, we must clear the tail flag since
411       // the callee now uses an alloca from the caller.
412       for (User *U : TheAlloca->users()) {
413         CallInst *Call = dyn_cast<CallInst>(U);
414         if (!Call)
415           continue;
416         Call->setTailCall(false);
417       }
418       continue;
419     }
420 
421     // There potentially are metadata uses for things like llvm.dbg.value.
422     // Replace them with undef, after handling the other regular uses.
423     auto RauwUndefMetadata = make_scope_exit(
424         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
425 
426     if (I->use_empty())
427       continue;
428 
429     // Otherwise, if we promoted this argument, then all users are load
430     // instructions (or GEPs with only load users), and all loads should be
431     // using the new argument that we added.
432     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
433 
434     while (!I->use_empty()) {
435       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
436         assert(ArgIndices.begin()->second.empty() &&
437                "Load element should sort to front!");
438         I2->setName(I->getName() + ".val");
439         LI->replaceAllUsesWith(&*I2);
440         LI->eraseFromParent();
441         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
442                           << "' in function '" << F->getName() << "'\n");
443       } else {
444         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
445         assert(!GEP->use_empty() &&
446                "GEPs without uses should be cleaned up already");
447         IndicesVector Operands;
448         Operands.reserve(GEP->getNumIndices());
449         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
450              II != IE; ++II)
451           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
452 
453         // GEPs with a single 0 index can be merged with direct loads
454         if (Operands.size() == 1 && Operands.front() == 0)
455           Operands.clear();
456 
457         Function::arg_iterator TheArg = I2;
458         for (ScalarizeTable::iterator It = ArgIndices.begin();
459              It->second != Operands; ++It, ++TheArg) {
460           assert(It != ArgIndices.end() && "GEP not handled??");
461         }
462 
463         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
464                                 make_range(Operands.begin(), Operands.end())));
465 
466         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
467                           << "' of function '" << NF->getName() << "'\n");
468 
469         // All of the uses must be load instructions.  Replace them all with
470         // the argument specified by ArgNo.
471         while (!GEP->use_empty()) {
472           LoadInst *L = cast<LoadInst>(GEP->user_back());
473           L->replaceAllUsesWith(&*TheArg);
474           L->eraseFromParent();
475         }
476         GEP->eraseFromParent();
477       }
478     }
479     // Increment I2 past all of the arguments added for this promoted pointer.
480     std::advance(I2, ArgIndices.size());
481   }
482 
483   return NF;
484 }
485 
486 /// Return true if we can prove that all callees pass in a valid pointer for the
487 /// specified function argument.
488 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
489   Function *Callee = Arg->getParent();
490   const DataLayout &DL = Callee->getParent()->getDataLayout();
491 
492   unsigned ArgNo = Arg->getArgNo();
493 
494   // Look at all call sites of the function.  At this point we know we only have
495   // direct callees.
496   for (User *U : Callee->users()) {
497     CallBase &CB = cast<CallBase>(*U);
498 
499     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
500       return false;
501   }
502   return true;
503 }
504 
505 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
506 /// that is greater than or equal to the size of prefix, and each of the
507 /// elements in Prefix is the same as the corresponding elements in Longer.
508 ///
509 /// This means it also returns true when Prefix and Longer are equal!
510 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
511   if (Prefix.size() > Longer.size())
512     return false;
513   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
514 }
515 
516 /// Checks if Indices, or a prefix of Indices, is in Set.
517 static bool prefixIn(const IndicesVector &Indices,
518                      std::set<IndicesVector> &Set) {
519   std::set<IndicesVector>::iterator Low;
520   Low = Set.upper_bound(Indices);
521   if (Low != Set.begin())
522     Low--;
523   // Low is now the last element smaller than or equal to Indices. This means
524   // it points to a prefix of Indices (possibly Indices itself), if such
525   // prefix exists.
526   //
527   // This load is safe if any prefix of its operands is safe to load.
528   return Low != Set.end() && isPrefix(*Low, Indices);
529 }
530 
531 /// Mark the given indices (ToMark) as safe in the given set of indices
532 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
533 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
534 /// already. Furthermore, any indices that Indices is itself a prefix of, are
535 /// removed from Safe (since they are implicitely safe because of Indices now).
536 static void markIndicesSafe(const IndicesVector &ToMark,
537                             std::set<IndicesVector> &Safe) {
538   std::set<IndicesVector>::iterator Low;
539   Low = Safe.upper_bound(ToMark);
540   // Guard against the case where Safe is empty
541   if (Low != Safe.begin())
542     Low--;
543   // Low is now the last element smaller than or equal to Indices. This
544   // means it points to a prefix of Indices (possibly Indices itself), if
545   // such prefix exists.
546   if (Low != Safe.end()) {
547     if (isPrefix(*Low, ToMark))
548       // If there is already a prefix of these indices (or exactly these
549       // indices) marked a safe, don't bother adding these indices
550       return;
551 
552     // Increment Low, so we can use it as a "insert before" hint
553     ++Low;
554   }
555   // Insert
556   Low = Safe.insert(Low, ToMark);
557   ++Low;
558   // If there we're a prefix of longer index list(s), remove those
559   std::set<IndicesVector>::iterator End = Safe.end();
560   while (Low != End && isPrefix(ToMark, *Low)) {
561     std::set<IndicesVector>::iterator Remove = Low;
562     ++Low;
563     Safe.erase(Remove);
564   }
565 }
566 
567 /// isSafeToPromoteArgument - As you might guess from the name of this method,
568 /// it checks to see if it is both safe and useful to promote the argument.
569 /// This method limits promotion of aggregates to only promote up to three
570 /// elements of the aggregate in order to avoid exploding the number of
571 /// arguments passed in.
572 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
573                                     unsigned MaxElements) {
574   using GEPIndicesSet = std::set<IndicesVector>;
575 
576   // Quick exit for unused arguments
577   if (Arg->use_empty())
578     return true;
579 
580   // We can only promote this argument if all of the uses are loads, or are GEP
581   // instructions (with constant indices) that are subsequently loaded.
582   //
583   // Promoting the argument causes it to be loaded in the caller
584   // unconditionally. This is only safe if we can prove that either the load
585   // would have happened in the callee anyway (ie, there is a load in the entry
586   // block) or the pointer passed in at every call site is guaranteed to be
587   // valid.
588   // In the former case, invalid loads can happen, but would have happened
589   // anyway, in the latter case, invalid loads won't happen. This prevents us
590   // from introducing an invalid load that wouldn't have happened in the
591   // original code.
592   //
593   // This set will contain all sets of indices that are loaded in the entry
594   // block, and thus are safe to unconditionally load in the caller.
595   GEPIndicesSet SafeToUnconditionallyLoad;
596 
597   // This set contains all the sets of indices that we are planning to promote.
598   // This makes it possible to limit the number of arguments added.
599   GEPIndicesSet ToPromote;
600 
601   // If the pointer is always valid, any load with first index 0 is valid.
602 
603   if (ByValTy)
604     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
605 
606   // Whenever a new underlying type for the operand is found, make sure it's
607   // consistent with the GEPs and loads we've already seen and, if necessary,
608   // use it to see if all incoming pointers are valid (which implies the 0-index
609   // is safe).
610   Type *BaseTy = ByValTy;
611   auto UpdateBaseTy = [&](Type *NewBaseTy) {
612     if (BaseTy)
613       return BaseTy == NewBaseTy;
614 
615     BaseTy = NewBaseTy;
616     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
617       assert(SafeToUnconditionallyLoad.empty());
618       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
619     }
620 
621     return true;
622   };
623 
624   // First, iterate the entry block and mark loads of (geps of) arguments as
625   // safe.
626   BasicBlock &EntryBlock = Arg->getParent()->front();
627   // Declare this here so we can reuse it
628   IndicesVector Indices;
629   for (Instruction &I : EntryBlock)
630     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
631       Value *V = LI->getPointerOperand();
632       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
633         V = GEP->getPointerOperand();
634         if (V == Arg) {
635           // This load actually loads (part of) Arg? Check the indices then.
636           Indices.reserve(GEP->getNumIndices());
637           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
638                II != IE; ++II)
639             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
640               Indices.push_back(CI->getSExtValue());
641             else
642               // We found a non-constant GEP index for this argument? Bail out
643               // right away, can't promote this argument at all.
644               return false;
645 
646           if (!UpdateBaseTy(GEP->getSourceElementType()))
647             return false;
648 
649           // Indices checked out, mark them as safe
650           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
651           Indices.clear();
652         }
653       } else if (V == Arg) {
654         // Direct loads are equivalent to a GEP with a single 0 index.
655         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
656 
657         if (BaseTy && LI->getType() != BaseTy)
658           return false;
659 
660         BaseTy = LI->getType();
661       }
662     }
663 
664   // Now, iterate all uses of the argument to see if there are any uses that are
665   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
666   SmallVector<LoadInst *, 16> Loads;
667   IndicesVector Operands;
668   for (Use &U : Arg->uses()) {
669     User *UR = U.getUser();
670     Operands.clear();
671     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
672       // Don't hack volatile/atomic loads
673       if (!LI->isSimple())
674         return false;
675       Loads.push_back(LI);
676       // Direct loads are equivalent to a GEP with a zero index and then a load.
677       Operands.push_back(0);
678 
679       if (!UpdateBaseTy(LI->getType()))
680         return false;
681     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
682       if (GEP->use_empty()) {
683         // Dead GEP's cause trouble later.  Just remove them if we run into
684         // them.
685         continue;
686       }
687 
688       if (!UpdateBaseTy(GEP->getSourceElementType()))
689         return false;
690 
691       // Ensure that all of the indices are constants.
692       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
693            ++i)
694         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
695           Operands.push_back(C->getSExtValue());
696         else
697           return false; // Not a constant operand GEP!
698 
699       // Ensure that the only users of the GEP are load instructions.
700       for (User *GEPU : GEP->users())
701         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
702           // Don't hack volatile/atomic loads
703           if (!LI->isSimple())
704             return false;
705           Loads.push_back(LI);
706         } else {
707           // Other uses than load?
708           return false;
709         }
710     } else {
711       return false; // Not a load or a GEP.
712     }
713 
714     // Now, see if it is safe to promote this load / loads of this GEP. Loading
715     // is safe if Operands, or a prefix of Operands, is marked as safe.
716     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
717       return false;
718 
719     // See if we are already promoting a load with these indices. If not, check
720     // to make sure that we aren't promoting too many elements.  If so, nothing
721     // to do.
722     if (ToPromote.find(Operands) == ToPromote.end()) {
723       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
724         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
725                           << Arg->getName()
726                           << "' because it would require adding more "
727                           << "than " << MaxElements
728                           << " arguments to the function.\n");
729         // We limit aggregate promotion to only promoting up to a fixed number
730         // of elements of the aggregate.
731         return false;
732       }
733       ToPromote.insert(std::move(Operands));
734     }
735   }
736 
737   if (Loads.empty())
738     return true; // No users, this is a dead argument.
739 
740   // Okay, now we know that the argument is only used by load instructions and
741   // it is safe to unconditionally perform all of them. Use alias analysis to
742   // check to see if the pointer is guaranteed to not be modified from entry of
743   // the function to each of the load instructions.
744 
745   // Because there could be several/many load instructions, remember which
746   // blocks we know to be transparent to the load.
747   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
748 
749   for (LoadInst *Load : Loads) {
750     // Check to see if the load is invalidated from the start of the block to
751     // the load itself.
752     BasicBlock *BB = Load->getParent();
753 
754     MemoryLocation Loc = MemoryLocation::get(Load);
755     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
756       return false; // Pointer is invalidated!
757 
758     // Now check every path from the entry block to the load for transparency.
759     // To do this, we perform a depth first search on the inverse CFG from the
760     // loading block.
761     for (BasicBlock *P : predecessors(BB)) {
762       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
763         if (AAR.canBasicBlockModify(*TranspBB, Loc))
764           return false;
765     }
766   }
767 
768   // If the path from the entry of the function to each load is free of
769   // instructions that potentially invalidate the load, we can make the
770   // transformation!
771   return true;
772 }
773 
774 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
775   // There is no size information, so be conservative.
776   if (!type->isSized())
777     return false;
778 
779   // If the alloc size is not equal to the storage size, then there are padding
780   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
781   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
782     return false;
783 
784   // FIXME: This isn't the right way to check for padding in vectors with
785   // non-byte-size elements.
786   if (VectorType *seqTy = dyn_cast<VectorType>(type))
787     return isDenselyPacked(seqTy->getElementType(), DL);
788 
789   // For array types, check for padding within members.
790   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
791     return isDenselyPacked(seqTy->getElementType(), DL);
792 
793   if (!isa<StructType>(type))
794     return true;
795 
796   // Check for padding within and between elements of a struct.
797   StructType *StructTy = cast<StructType>(type);
798   const StructLayout *Layout = DL.getStructLayout(StructTy);
799   uint64_t StartPos = 0;
800   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
801     Type *ElTy = StructTy->getElementType(i);
802     if (!isDenselyPacked(ElTy, DL))
803       return false;
804     if (StartPos != Layout->getElementOffsetInBits(i))
805       return false;
806     StartPos += DL.getTypeAllocSizeInBits(ElTy);
807   }
808 
809   return true;
810 }
811 
812 /// Checks if the padding bytes of an argument could be accessed.
813 static bool canPaddingBeAccessed(Argument *arg) {
814   assert(arg->hasByValAttr());
815 
816   // Track all the pointers to the argument to make sure they are not captured.
817   SmallPtrSet<Value *, 16> PtrValues;
818   PtrValues.insert(arg);
819 
820   // Track all of the stores.
821   SmallVector<StoreInst *, 16> Stores;
822 
823   // Scan through the uses recursively to make sure the pointer is always used
824   // sanely.
825   SmallVector<Value *, 16> WorkList(arg->users());
826   while (!WorkList.empty()) {
827     Value *V = WorkList.pop_back_val();
828     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
829       if (PtrValues.insert(V).second)
830         llvm::append_range(WorkList, V->users());
831     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
832       Stores.push_back(Store);
833     } else if (!isa<LoadInst>(V)) {
834       return true;
835     }
836   }
837 
838   // Check to make sure the pointers aren't captured
839   for (StoreInst *Store : Stores)
840     if (PtrValues.count(Store->getValueOperand()))
841       return true;
842 
843   return false;
844 }
845 
846 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
847     const Function &F, const TargetTransformInfo &TTI,
848     SmallPtrSetImpl<Argument *> &ArgsToPromote,
849     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
850   for (const Use &U : F.uses()) {
851     CallBase *CB = dyn_cast<CallBase>(U.getUser());
852     if (!CB)
853       return false;
854     const Function *Caller = CB->getCaller();
855     const Function *Callee = CB->getCalledFunction();
856     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
857         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
858       return false;
859   }
860   return true;
861 }
862 
863 /// PromoteArguments - This method checks the specified function to see if there
864 /// are any promotable arguments and if it is safe to promote the function (for
865 /// example, all callers are direct).  If safe to promote some arguments, it
866 /// calls the DoPromotion method.
867 static Function *
868 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
869                  unsigned MaxElements,
870                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
871                      ReplaceCallSite,
872                  const TargetTransformInfo &TTI) {
873   // Don't perform argument promotion for naked functions; otherwise we can end
874   // up removing parameters that are seemingly 'not used' as they are referred
875   // to in the assembly.
876   if(F->hasFnAttribute(Attribute::Naked))
877     return nullptr;
878 
879   // Make sure that it is local to this module.
880   if (!F->hasLocalLinkage())
881     return nullptr;
882 
883   // Don't promote arguments for variadic functions. Adding, removing, or
884   // changing non-pack parameters can change the classification of pack
885   // parameters. Frontends encode that classification at the call site in the
886   // IR, while in the callee the classification is determined dynamically based
887   // on the number of registers consumed so far.
888   if (F->isVarArg())
889     return nullptr;
890 
891   // Don't transform functions that receive inallocas, as the transformation may
892   // not be safe depending on calling convention.
893   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
894     return nullptr;
895 
896   // First check: see if there are any pointer arguments!  If not, quick exit.
897   SmallVector<Argument *, 16> PointerArgs;
898   for (Argument &I : F->args())
899     if (I.getType()->isPointerTy())
900       PointerArgs.push_back(&I);
901   if (PointerArgs.empty())
902     return nullptr;
903 
904   // Second check: make sure that all callers are direct callers.  We can't
905   // transform functions that have indirect callers.  Also see if the function
906   // is self-recursive and check that target features are compatible.
907   bool isSelfRecursive = false;
908   for (Use &U : F->uses()) {
909     CallBase *CB = dyn_cast<CallBase>(U.getUser());
910     // Must be a direct call.
911     if (CB == nullptr || !CB->isCallee(&U))
912       return nullptr;
913 
914     // Can't change signature of musttail callee
915     if (CB->isMustTailCall())
916       return nullptr;
917 
918     if (CB->getParent()->getParent() == F)
919       isSelfRecursive = true;
920   }
921 
922   // Can't change signature of musttail caller
923   // FIXME: Support promoting whole chain of musttail functions
924   for (BasicBlock &BB : *F)
925     if (BB.getTerminatingMustTailCall())
926       return nullptr;
927 
928   const DataLayout &DL = F->getParent()->getDataLayout();
929 
930   AAResults &AAR = AARGetter(*F);
931 
932   // Check to see which arguments are promotable.  If an argument is promotable,
933   // add it to ArgsToPromote.
934   SmallPtrSet<Argument *, 8> ArgsToPromote;
935   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
936   for (Argument *PtrArg : PointerArgs) {
937     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
938 
939     // Replace sret attribute with noalias. This reduces register pressure by
940     // avoiding a register copy.
941     if (PtrArg->hasStructRetAttr()) {
942       unsigned ArgNo = PtrArg->getArgNo();
943       F->removeParamAttr(ArgNo, Attribute::StructRet);
944       F->addParamAttr(ArgNo, Attribute::NoAlias);
945       for (Use &U : F->uses()) {
946         CallBase &CB = cast<CallBase>(*U.getUser());
947         CB.removeParamAttr(ArgNo, Attribute::StructRet);
948         CB.addParamAttr(ArgNo, Attribute::NoAlias);
949       }
950     }
951 
952     // If this is a byval argument, and if the aggregate type is small, just
953     // pass the elements, which is always safe, if the passed value is densely
954     // packed or if we can prove the padding bytes are never accessed.
955     bool isSafeToPromote = PtrArg->hasByValAttr() &&
956                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
957                             !canPaddingBeAccessed(PtrArg));
958     if (isSafeToPromote) {
959       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
960         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
961           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
962                             << PtrArg->getName()
963                             << "' because it would require adding more"
964                             << " than " << MaxElements
965                             << " arguments to the function.\n");
966           continue;
967         }
968 
969         // If all the elements are single-value types, we can promote it.
970         bool AllSimple = true;
971         for (const auto *EltTy : STy->elements()) {
972           if (!EltTy->isSingleValueType()) {
973             AllSimple = false;
974             break;
975           }
976         }
977 
978         // Safe to transform, don't even bother trying to "promote" it.
979         // Passing the elements as a scalar will allow sroa to hack on
980         // the new alloca we introduce.
981         if (AllSimple) {
982           ByValArgsToTransform.insert(PtrArg);
983           continue;
984         }
985       }
986     }
987 
988     // If the argument is a recursive type and we're in a recursive
989     // function, we could end up infinitely peeling the function argument.
990     if (isSelfRecursive) {
991       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
992         bool RecursiveType = false;
993         for (const auto *EltTy : STy->elements()) {
994           if (EltTy == PtrArg->getType()) {
995             RecursiveType = true;
996             break;
997           }
998         }
999         if (RecursiveType)
1000           continue;
1001       }
1002     }
1003 
1004     // Otherwise, see if we can promote the pointer to its value.
1005     Type *ByValTy =
1006         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1007     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1008       ArgsToPromote.insert(PtrArg);
1009   }
1010 
1011   // No promotable pointer arguments.
1012   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1013     return nullptr;
1014 
1015   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1016           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1017     return nullptr;
1018 
1019   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1020 }
1021 
1022 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1023                                              CGSCCAnalysisManager &AM,
1024                                              LazyCallGraph &CG,
1025                                              CGSCCUpdateResult &UR) {
1026   bool Changed = false, LocalChange;
1027 
1028   // Iterate until we stop promoting from this SCC.
1029   do {
1030     LocalChange = false;
1031 
1032     for (LazyCallGraph::Node &N : C) {
1033       Function &OldF = N.getFunction();
1034 
1035       FunctionAnalysisManager &FAM =
1036           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1037       // FIXME: This lambda must only be used with this function. We should
1038       // skip the lambda and just get the AA results directly.
1039       auto AARGetter = [&](Function &F) -> AAResults & {
1040         assert(&F == &OldF && "Called with an unexpected function!");
1041         return FAM.getResult<AAManager>(F);
1042       };
1043 
1044       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1045       Function *NewF =
1046           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1047       if (!NewF)
1048         continue;
1049       LocalChange = true;
1050 
1051       // Directly substitute the functions in the call graph. Note that this
1052       // requires the old function to be completely dead and completely
1053       // replaced by the new function. It does no call graph updates, it merely
1054       // swaps out the particular function mapped to a particular node in the
1055       // graph.
1056       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1057       OldF.eraseFromParent();
1058     }
1059 
1060     Changed |= LocalChange;
1061   } while (LocalChange);
1062 
1063   if (!Changed)
1064     return PreservedAnalyses::all();
1065 
1066   return PreservedAnalyses::none();
1067 }
1068 
1069 namespace {
1070 
1071 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1072 struct ArgPromotion : public CallGraphSCCPass {
1073   // Pass identification, replacement for typeid
1074   static char ID;
1075 
1076   explicit ArgPromotion(unsigned MaxElements = 3)
1077       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1078     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1079   }
1080 
1081   void getAnalysisUsage(AnalysisUsage &AU) const override {
1082     AU.addRequired<AssumptionCacheTracker>();
1083     AU.addRequired<TargetLibraryInfoWrapperPass>();
1084     AU.addRequired<TargetTransformInfoWrapperPass>();
1085     getAAResultsAnalysisUsage(AU);
1086     CallGraphSCCPass::getAnalysisUsage(AU);
1087   }
1088 
1089   bool runOnSCC(CallGraphSCC &SCC) override;
1090 
1091 private:
1092   using llvm::Pass::doInitialization;
1093 
1094   bool doInitialization(CallGraph &CG) override;
1095 
1096   /// The maximum number of elements to expand, or 0 for unlimited.
1097   unsigned MaxElements;
1098 };
1099 
1100 } // end anonymous namespace
1101 
1102 char ArgPromotion::ID = 0;
1103 
1104 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1105                       "Promote 'by reference' arguments to scalars", false,
1106                       false)
1107 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1108 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1109 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1110 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1111 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1112                     "Promote 'by reference' arguments to scalars", false, false)
1113 
1114 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1115   return new ArgPromotion(MaxElements);
1116 }
1117 
1118 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1119   if (skipSCC(SCC))
1120     return false;
1121 
1122   // Get the callgraph information that we need to update to reflect our
1123   // changes.
1124   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1125 
1126   LegacyAARGetter AARGetter(*this);
1127 
1128   bool Changed = false, LocalChange;
1129 
1130   // Iterate until we stop promoting from this SCC.
1131   do {
1132     LocalChange = false;
1133     // Attempt to promote arguments from all functions in this SCC.
1134     for (CallGraphNode *OldNode : SCC) {
1135       Function *OldF = OldNode->getFunction();
1136       if (!OldF)
1137         continue;
1138 
1139       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1140         Function *Caller = OldCS.getParent()->getParent();
1141         CallGraphNode *NewCalleeNode =
1142             CG.getOrInsertFunction(NewCS.getCalledFunction());
1143         CallGraphNode *CallerNode = CG[Caller];
1144         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1145                                     cast<CallBase>(NewCS), NewCalleeNode);
1146       };
1147 
1148       const TargetTransformInfo &TTI =
1149           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1150       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1151                                             {ReplaceCallSite}, TTI)) {
1152         LocalChange = true;
1153 
1154         // Update the call graph for the newly promoted function.
1155         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1156         NewNode->stealCalledFunctionsFrom(OldNode);
1157         if (OldNode->getNumReferences() == 0)
1158           delete CG.removeFunctionFromModule(OldNode);
1159         else
1160           OldF->setLinkage(Function::ExternalLinkage);
1161 
1162         // And updat ethe SCC we're iterating as well.
1163         SCC.ReplaceNode(OldNode, NewNode);
1164       }
1165     }
1166     // Remember that we changed something.
1167     Changed |= LocalChange;
1168   } while (LocalChange);
1169 
1170   return Changed;
1171 }
1172 
1173 bool ArgPromotion::doInitialization(CallGraph &CG) {
1174   return CallGraphSCCPass::doInitialization(CG);
1175 }
1176