xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp (revision 093cf790569775b80662926efea6d9d3464bde94)
1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "argpromotion"
91 
92 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
93 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
94 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
95 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
96 
97 /// A vector used to hold the indices of a single GEP instruction
98 using IndicesVector = std::vector<uint64_t>;
99 
100 /// DoPromotion - This method actually performs the promotion of the specified
101 /// arguments, and returns the new function.  At this point, we know that it's
102 /// safe to do so.
103 static Function *
104 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
105             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
106             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
107                 ReplaceCallSite) {
108   // Start by computing a new prototype for the function, which is the same as
109   // the old function, but has modified arguments.
110   FunctionType *FTy = F->getFunctionType();
111   std::vector<Type *> Params;
112 
113   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
114 
115   // ScalarizedElements - If we are promoting a pointer that has elements
116   // accessed out of it, keep track of which elements are accessed so that we
117   // can add one argument for each.
118   //
119   // Arguments that are directly loaded will have a zero element value here, to
120   // handle cases where there are both a direct load and GEP accesses.
121   std::map<Argument *, ScalarizeTable> ScalarizedElements;
122 
123   // OriginalLoads - Keep track of a representative load instruction from the
124   // original function so that we can tell the alias analysis implementation
125   // what the new GEP/Load instructions we are inserting look like.
126   // We need to keep the original loads for each argument and the elements
127   // of the argument that are accessed.
128   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
129 
130   // Attribute - Keep track of the parameter attributes for the arguments
131   // that we are *not* promoting. For the ones that we do promote, the parameter
132   // attributes are lost
133   SmallVector<AttributeSet, 8> ArgAttrVec;
134   AttributeList PAL = F->getAttributes();
135 
136   // First, determine the new argument list
137   unsigned ArgNo = 0;
138   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
139        ++I, ++ArgNo) {
140     if (ByValArgsToTransform.count(&*I)) {
141       // Simple byval argument? Just add all the struct element types.
142       Type *AgTy = I->getParamByValType();
143       StructType *STy = cast<StructType>(AgTy);
144       llvm::append_range(Params, STy->elements());
145       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
146                         AttributeSet());
147       ++NumByValArgsPromoted;
148     } else if (!ArgsToPromote.count(&*I)) {
149       // Unchanged argument
150       Params.push_back(I->getType());
151       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
152     } else if (I->use_empty()) {
153       // Dead argument (which are always marked as promotable)
154       ++NumArgumentsDead;
155     } else {
156       // Okay, this is being promoted. This means that the only uses are loads
157       // or GEPs which are only used by loads
158 
159       // In this table, we will track which indices are loaded from the argument
160       // (where direct loads are tracked as no indices).
161       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
162       for (User *U : make_early_inc_range(I->users())) {
163         Instruction *UI = cast<Instruction>(U);
164         Type *SrcTy;
165         if (LoadInst *L = dyn_cast<LoadInst>(UI))
166           SrcTy = L->getType();
167         else
168           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
169         // Skip dead GEPs and remove them.
170         if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
171           UI->eraseFromParent();
172           continue;
173         }
174 
175         IndicesVector Indices;
176         Indices.reserve(UI->getNumOperands() - 1);
177         // Since loads will only have a single operand, and GEPs only a single
178         // non-index operand, this will record direct loads without any indices,
179         // and gep+loads with the GEP indices.
180         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
181              II != IE; ++II)
182           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
183         // GEPs with a single 0 index can be merged with direct loads
184         if (Indices.size() == 1 && Indices.front() == 0)
185           Indices.clear();
186         ArgIndices.insert(std::make_pair(SrcTy, Indices));
187         LoadInst *OrigLoad;
188         if (LoadInst *L = dyn_cast<LoadInst>(UI))
189           OrigLoad = L;
190         else
191           // Take any load, we will use it only to update Alias Analysis
192           OrigLoad = cast<LoadInst>(UI->user_back());
193         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
194       }
195 
196       // Add a parameter to the function for each element passed in.
197       for (const auto &ArgIndex : ArgIndices) {
198         // not allowed to dereference ->begin() if size() is 0
199         Params.push_back(GetElementPtrInst::getIndexedType(
200             cast<PointerType>(I->getType())->getElementType(),
201             ArgIndex.second));
202         ArgAttrVec.push_back(AttributeSet());
203         assert(Params.back());
204       }
205 
206       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
207         ++NumArgumentsPromoted;
208       else
209         ++NumAggregatesPromoted;
210     }
211   }
212 
213   Type *RetTy = FTy->getReturnType();
214 
215   // Construct the new function type using the new arguments.
216   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
217 
218   // Create the new function body and insert it into the module.
219   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
220                                   F->getName());
221   NF->copyAttributesFrom(F);
222   NF->copyMetadata(F, 0);
223 
224   // The new function will have the !dbg metadata copied from the original
225   // function. The original function may not be deleted, and dbg metadata need
226   // to be unique so we need to drop it.
227   F->setSubprogram(nullptr);
228 
229   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
230                     << "From: " << *F);
231 
232   // Recompute the parameter attributes list based on the new arguments for
233   // the function.
234   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
235                                        PAL.getRetAttributes(), ArgAttrVec));
236   ArgAttrVec.clear();
237 
238   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
239   NF->takeName(F);
240 
241   // Loop over all of the callers of the function, transforming the call sites
242   // to pass in the loaded pointers.
243   //
244   SmallVector<Value *, 16> Args;
245   const DataLayout &DL = F->getParent()->getDataLayout();
246   while (!F->use_empty()) {
247     CallBase &CB = cast<CallBase>(*F->user_back());
248     assert(CB.getCalledFunction() == F);
249     const AttributeList &CallPAL = CB.getAttributes();
250     IRBuilder<NoFolder> IRB(&CB);
251 
252     // Loop over the operands, inserting GEP and loads in the caller as
253     // appropriate.
254     auto AI = CB.arg_begin();
255     ArgNo = 0;
256     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
257          ++I, ++AI, ++ArgNo)
258       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
259         Args.push_back(*AI); // Unmodified argument
260         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
261       } else if (ByValArgsToTransform.count(&*I)) {
262         // Emit a GEP and load for each element of the struct.
263         Type *AgTy = I->getParamByValType();
264         StructType *STy = cast<StructType>(AgTy);
265         Value *Idxs[2] = {
266             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
267         const StructLayout *SL = DL.getStructLayout(STy);
268         Align StructAlign = *I->getParamAlign();
269         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
270           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
271           auto *Idx =
272               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
273           // TODO: Tell AA about the new values?
274           Align Alignment =
275               commonAlignment(StructAlign, SL->getElementOffset(i));
276           Args.push_back(IRB.CreateAlignedLoad(
277               STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
278           ArgAttrVec.push_back(AttributeSet());
279         }
280       } else if (!I->use_empty()) {
281         // Non-dead argument: insert GEPs and loads as appropriate.
282         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
283         // Store the Value* version of the indices in here, but declare it now
284         // for reuse.
285         std::vector<Value *> Ops;
286         for (const auto &ArgIndex : ArgIndices) {
287           Value *V = *AI;
288           LoadInst *OrigLoad =
289               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
290           if (!ArgIndex.second.empty()) {
291             Ops.reserve(ArgIndex.second.size());
292             Type *ElTy = V->getType();
293             for (auto II : ArgIndex.second) {
294               // Use i32 to index structs, and i64 for others (pointers/arrays).
295               // This satisfies GEP constraints.
296               Type *IdxTy =
297                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
298                                       : Type::getInt64Ty(F->getContext()));
299               Ops.push_back(ConstantInt::get(IdxTy, II));
300               // Keep track of the type we're currently indexing.
301               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
302                 ElTy = ElPTy->getElementType();
303               else
304                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
305             }
306             // And create a GEP to extract those indices.
307             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
308             Ops.clear();
309           }
310           // Since we're replacing a load make sure we take the alignment
311           // of the previous load.
312           LoadInst *newLoad =
313               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
314           newLoad->setAlignment(OrigLoad->getAlign());
315           // Transfer the AA info too.
316           AAMDNodes AAInfo;
317           OrigLoad->getAAMetadata(AAInfo);
318           newLoad->setAAMetadata(AAInfo);
319 
320           Args.push_back(newLoad);
321           ArgAttrVec.push_back(AttributeSet());
322         }
323       }
324 
325     // Push any varargs arguments on the list.
326     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
327       Args.push_back(*AI);
328       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
329     }
330 
331     SmallVector<OperandBundleDef, 1> OpBundles;
332     CB.getOperandBundlesAsDefs(OpBundles);
333 
334     CallBase *NewCS = nullptr;
335     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
336       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
337                                  Args, OpBundles, "", &CB);
338     } else {
339       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
340       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
341       NewCS = NewCall;
342     }
343     NewCS->setCallingConv(CB.getCallingConv());
344     NewCS->setAttributes(
345         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
346                            CallPAL.getRetAttributes(), ArgAttrVec));
347     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
348     Args.clear();
349     ArgAttrVec.clear();
350 
351     // Update the callgraph to know that the callsite has been transformed.
352     if (ReplaceCallSite)
353       (*ReplaceCallSite)(CB, *NewCS);
354 
355     if (!CB.use_empty()) {
356       CB.replaceAllUsesWith(NewCS);
357       NewCS->takeName(&CB);
358     }
359 
360     // Finally, remove the old call from the program, reducing the use-count of
361     // F.
362     CB.eraseFromParent();
363   }
364 
365   // Since we have now created the new function, splice the body of the old
366   // function right into the new function, leaving the old rotting hulk of the
367   // function empty.
368   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
369 
370   // Loop over the argument list, transferring uses of the old arguments over to
371   // the new arguments, also transferring over the names as well.
372   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
373                               I2 = NF->arg_begin();
374        I != E; ++I) {
375     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
376       // If this is an unmodified argument, move the name and users over to the
377       // new version.
378       I->replaceAllUsesWith(&*I2);
379       I2->takeName(&*I);
380       ++I2;
381       continue;
382     }
383 
384     if (ByValArgsToTransform.count(&*I)) {
385       // In the callee, we create an alloca, and store each of the new incoming
386       // arguments into the alloca.
387       Instruction *InsertPt = &NF->begin()->front();
388 
389       // Just add all the struct element types.
390       Type *AgTy = I->getParamByValType();
391       Align StructAlign = *I->getParamAlign();
392       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
393                                         StructAlign, "", InsertPt);
394       StructType *STy = cast<StructType>(AgTy);
395       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
396                         nullptr};
397       const StructLayout *SL = DL.getStructLayout(STy);
398 
399       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
400         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
401         Value *Idx = GetElementPtrInst::Create(
402             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
403             InsertPt);
404         I2->setName(I->getName() + "." + Twine(i));
405         Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
406         new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
407       }
408 
409       // Anything that used the arg should now use the alloca.
410       I->replaceAllUsesWith(TheAlloca);
411       TheAlloca->takeName(&*I);
412       continue;
413     }
414 
415     // There potentially are metadata uses for things like llvm.dbg.value.
416     // Replace them with undef, after handling the other regular uses.
417     auto RauwUndefMetadata = make_scope_exit(
418         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
419 
420     if (I->use_empty())
421       continue;
422 
423     // Otherwise, if we promoted this argument, then all users are load
424     // instructions (or GEPs with only load users), and all loads should be
425     // using the new argument that we added.
426     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
427 
428     while (!I->use_empty()) {
429       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
430         assert(ArgIndices.begin()->second.empty() &&
431                "Load element should sort to front!");
432         I2->setName(I->getName() + ".val");
433         LI->replaceAllUsesWith(&*I2);
434         LI->eraseFromParent();
435         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
436                           << "' in function '" << F->getName() << "'\n");
437       } else {
438         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
439         assert(!GEP->use_empty() &&
440                "GEPs without uses should be cleaned up already");
441         IndicesVector Operands;
442         Operands.reserve(GEP->getNumIndices());
443         for (const Use &Idx : GEP->indices())
444           Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
445 
446         // GEPs with a single 0 index can be merged with direct loads
447         if (Operands.size() == 1 && Operands.front() == 0)
448           Operands.clear();
449 
450         Function::arg_iterator TheArg = I2;
451         for (ScalarizeTable::iterator It = ArgIndices.begin();
452              It->second != Operands; ++It, ++TheArg) {
453           assert(It != ArgIndices.end() && "GEP not handled??");
454         }
455 
456         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
457                                 make_range(Operands.begin(), Operands.end())));
458 
459         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
460                           << "' of function '" << NF->getName() << "'\n");
461 
462         // All of the uses must be load instructions.  Replace them all with
463         // the argument specified by ArgNo.
464         while (!GEP->use_empty()) {
465           LoadInst *L = cast<LoadInst>(GEP->user_back());
466           L->replaceAllUsesWith(&*TheArg);
467           L->eraseFromParent();
468         }
469         GEP->eraseFromParent();
470       }
471     }
472     // Increment I2 past all of the arguments added for this promoted pointer.
473     std::advance(I2, ArgIndices.size());
474   }
475 
476   return NF;
477 }
478 
479 /// Return true if we can prove that all callees pass in a valid pointer for the
480 /// specified function argument.
481 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
482   Function *Callee = Arg->getParent();
483   const DataLayout &DL = Callee->getParent()->getDataLayout();
484 
485   unsigned ArgNo = Arg->getArgNo();
486 
487   // Look at all call sites of the function.  At this point we know we only have
488   // direct callees.
489   for (User *U : Callee->users()) {
490     CallBase &CB = cast<CallBase>(*U);
491 
492     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
493       return false;
494   }
495   return true;
496 }
497 
498 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
499 /// that is greater than or equal to the size of prefix, and each of the
500 /// elements in Prefix is the same as the corresponding elements in Longer.
501 ///
502 /// This means it also returns true when Prefix and Longer are equal!
503 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
504   if (Prefix.size() > Longer.size())
505     return false;
506   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
507 }
508 
509 /// Checks if Indices, or a prefix of Indices, is in Set.
510 static bool prefixIn(const IndicesVector &Indices,
511                      std::set<IndicesVector> &Set) {
512   std::set<IndicesVector>::iterator Low;
513   Low = Set.upper_bound(Indices);
514   if (Low != Set.begin())
515     Low--;
516   // Low is now the last element smaller than or equal to Indices. This means
517   // it points to a prefix of Indices (possibly Indices itself), if such
518   // prefix exists.
519   //
520   // This load is safe if any prefix of its operands is safe to load.
521   return Low != Set.end() && isPrefix(*Low, Indices);
522 }
523 
524 /// Mark the given indices (ToMark) as safe in the given set of indices
525 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
526 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
527 /// already. Furthermore, any indices that Indices is itself a prefix of, are
528 /// removed from Safe (since they are implicitely safe because of Indices now).
529 static void markIndicesSafe(const IndicesVector &ToMark,
530                             std::set<IndicesVector> &Safe) {
531   std::set<IndicesVector>::iterator Low;
532   Low = Safe.upper_bound(ToMark);
533   // Guard against the case where Safe is empty
534   if (Low != Safe.begin())
535     Low--;
536   // Low is now the last element smaller than or equal to Indices. This
537   // means it points to a prefix of Indices (possibly Indices itself), if
538   // such prefix exists.
539   if (Low != Safe.end()) {
540     if (isPrefix(*Low, ToMark))
541       // If there is already a prefix of these indices (or exactly these
542       // indices) marked a safe, don't bother adding these indices
543       return;
544 
545     // Increment Low, so we can use it as a "insert before" hint
546     ++Low;
547   }
548   // Insert
549   Low = Safe.insert(Low, ToMark);
550   ++Low;
551   // If there we're a prefix of longer index list(s), remove those
552   std::set<IndicesVector>::iterator End = Safe.end();
553   while (Low != End && isPrefix(ToMark, *Low)) {
554     std::set<IndicesVector>::iterator Remove = Low;
555     ++Low;
556     Safe.erase(Remove);
557   }
558 }
559 
560 /// isSafeToPromoteArgument - As you might guess from the name of this method,
561 /// it checks to see if it is both safe and useful to promote the argument.
562 /// This method limits promotion of aggregates to only promote up to three
563 /// elements of the aggregate in order to avoid exploding the number of
564 /// arguments passed in.
565 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
566                                     unsigned MaxElements) {
567   using GEPIndicesSet = std::set<IndicesVector>;
568 
569   // Quick exit for unused arguments
570   if (Arg->use_empty())
571     return true;
572 
573   // We can only promote this argument if all of the uses are loads, or are GEP
574   // instructions (with constant indices) that are subsequently loaded.
575   //
576   // Promoting the argument causes it to be loaded in the caller
577   // unconditionally. This is only safe if we can prove that either the load
578   // would have happened in the callee anyway (ie, there is a load in the entry
579   // block) or the pointer passed in at every call site is guaranteed to be
580   // valid.
581   // In the former case, invalid loads can happen, but would have happened
582   // anyway, in the latter case, invalid loads won't happen. This prevents us
583   // from introducing an invalid load that wouldn't have happened in the
584   // original code.
585   //
586   // This set will contain all sets of indices that are loaded in the entry
587   // block, and thus are safe to unconditionally load in the caller.
588   GEPIndicesSet SafeToUnconditionallyLoad;
589 
590   // This set contains all the sets of indices that we are planning to promote.
591   // This makes it possible to limit the number of arguments added.
592   GEPIndicesSet ToPromote;
593 
594   // If the pointer is always valid, any load with first index 0 is valid.
595 
596   if (ByValTy)
597     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
598 
599   // Whenever a new underlying type for the operand is found, make sure it's
600   // consistent with the GEPs and loads we've already seen and, if necessary,
601   // use it to see if all incoming pointers are valid (which implies the 0-index
602   // is safe).
603   Type *BaseTy = ByValTy;
604   auto UpdateBaseTy = [&](Type *NewBaseTy) {
605     if (BaseTy)
606       return BaseTy == NewBaseTy;
607 
608     BaseTy = NewBaseTy;
609     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
610       assert(SafeToUnconditionallyLoad.empty());
611       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
612     }
613 
614     return true;
615   };
616 
617   // First, iterate the entry block and mark loads of (geps of) arguments as
618   // safe.
619   BasicBlock &EntryBlock = Arg->getParent()->front();
620   // Declare this here so we can reuse it
621   IndicesVector Indices;
622   for (Instruction &I : EntryBlock)
623     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
624       Value *V = LI->getPointerOperand();
625       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
626         V = GEP->getPointerOperand();
627         if (V == Arg) {
628           // This load actually loads (part of) Arg? Check the indices then.
629           Indices.reserve(GEP->getNumIndices());
630           for (Use &Idx : GEP->indices())
631             if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
632               Indices.push_back(CI->getSExtValue());
633             else
634               // We found a non-constant GEP index for this argument? Bail out
635               // right away, can't promote this argument at all.
636               return false;
637 
638           if (!UpdateBaseTy(GEP->getSourceElementType()))
639             return false;
640 
641           // Indices checked out, mark them as safe
642           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
643           Indices.clear();
644         }
645       } else if (V == Arg) {
646         // Direct loads are equivalent to a GEP with a single 0 index.
647         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
648 
649         if (BaseTy && LI->getType() != BaseTy)
650           return false;
651 
652         BaseTy = LI->getType();
653       }
654     }
655 
656   // Now, iterate all uses of the argument to see if there are any uses that are
657   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
658   SmallVector<LoadInst *, 16> Loads;
659   IndicesVector Operands;
660   for (Use &U : Arg->uses()) {
661     User *UR = U.getUser();
662     Operands.clear();
663     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
664       // Don't hack volatile/atomic loads
665       if (!LI->isSimple())
666         return false;
667       Loads.push_back(LI);
668       // Direct loads are equivalent to a GEP with a zero index and then a load.
669       Operands.push_back(0);
670 
671       if (!UpdateBaseTy(LI->getType()))
672         return false;
673     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
674       if (GEP->use_empty()) {
675         // Dead GEP's cause trouble later.  Just remove them if we run into
676         // them.
677         continue;
678       }
679 
680       if (!UpdateBaseTy(GEP->getSourceElementType()))
681         return false;
682 
683       // Ensure that all of the indices are constants.
684       for (Use &Idx : GEP->indices())
685         if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
686           Operands.push_back(C->getSExtValue());
687         else
688           return false; // Not a constant operand GEP!
689 
690       // Ensure that the only users of the GEP are load instructions.
691       for (User *GEPU : GEP->users())
692         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
693           // Don't hack volatile/atomic loads
694           if (!LI->isSimple())
695             return false;
696           Loads.push_back(LI);
697         } else {
698           // Other uses than load?
699           return false;
700         }
701     } else {
702       return false; // Not a load or a GEP.
703     }
704 
705     // Now, see if it is safe to promote this load / loads of this GEP. Loading
706     // is safe if Operands, or a prefix of Operands, is marked as safe.
707     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
708       return false;
709 
710     // See if we are already promoting a load with these indices. If not, check
711     // to make sure that we aren't promoting too many elements.  If so, nothing
712     // to do.
713     if (ToPromote.find(Operands) == ToPromote.end()) {
714       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
715         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
716                           << Arg->getName()
717                           << "' because it would require adding more "
718                           << "than " << MaxElements
719                           << " arguments to the function.\n");
720         // We limit aggregate promotion to only promoting up to a fixed number
721         // of elements of the aggregate.
722         return false;
723       }
724       ToPromote.insert(std::move(Operands));
725     }
726   }
727 
728   if (Loads.empty())
729     return true; // No users, this is a dead argument.
730 
731   // Okay, now we know that the argument is only used by load instructions and
732   // it is safe to unconditionally perform all of them. Use alias analysis to
733   // check to see if the pointer is guaranteed to not be modified from entry of
734   // the function to each of the load instructions.
735 
736   // Because there could be several/many load instructions, remember which
737   // blocks we know to be transparent to the load.
738   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
739 
740   for (LoadInst *Load : Loads) {
741     // Check to see if the load is invalidated from the start of the block to
742     // the load itself.
743     BasicBlock *BB = Load->getParent();
744 
745     MemoryLocation Loc = MemoryLocation::get(Load);
746     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
747       return false; // Pointer is invalidated!
748 
749     // Now check every path from the entry block to the load for transparency.
750     // To do this, we perform a depth first search on the inverse CFG from the
751     // loading block.
752     for (BasicBlock *P : predecessors(BB)) {
753       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
754         if (AAR.canBasicBlockModify(*TranspBB, Loc))
755           return false;
756     }
757   }
758 
759   // If the path from the entry of the function to each load is free of
760   // instructions that potentially invalidate the load, we can make the
761   // transformation!
762   return true;
763 }
764 
765 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
766   // There is no size information, so be conservative.
767   if (!type->isSized())
768     return false;
769 
770   // If the alloc size is not equal to the storage size, then there are padding
771   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
772   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
773     return false;
774 
775   // FIXME: This isn't the right way to check for padding in vectors with
776   // non-byte-size elements.
777   if (VectorType *seqTy = dyn_cast<VectorType>(type))
778     return isDenselyPacked(seqTy->getElementType(), DL);
779 
780   // For array types, check for padding within members.
781   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
782     return isDenselyPacked(seqTy->getElementType(), DL);
783 
784   if (!isa<StructType>(type))
785     return true;
786 
787   // Check for padding within and between elements of a struct.
788   StructType *StructTy = cast<StructType>(type);
789   const StructLayout *Layout = DL.getStructLayout(StructTy);
790   uint64_t StartPos = 0;
791   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
792     Type *ElTy = StructTy->getElementType(i);
793     if (!isDenselyPacked(ElTy, DL))
794       return false;
795     if (StartPos != Layout->getElementOffsetInBits(i))
796       return false;
797     StartPos += DL.getTypeAllocSizeInBits(ElTy);
798   }
799 
800   return true;
801 }
802 
803 /// Checks if the padding bytes of an argument could be accessed.
804 static bool canPaddingBeAccessed(Argument *arg) {
805   assert(arg->hasByValAttr());
806 
807   // Track all the pointers to the argument to make sure they are not captured.
808   SmallPtrSet<Value *, 16> PtrValues;
809   PtrValues.insert(arg);
810 
811   // Track all of the stores.
812   SmallVector<StoreInst *, 16> Stores;
813 
814   // Scan through the uses recursively to make sure the pointer is always used
815   // sanely.
816   SmallVector<Value *, 16> WorkList(arg->users());
817   while (!WorkList.empty()) {
818     Value *V = WorkList.pop_back_val();
819     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
820       if (PtrValues.insert(V).second)
821         llvm::append_range(WorkList, V->users());
822     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
823       Stores.push_back(Store);
824     } else if (!isa<LoadInst>(V)) {
825       return true;
826     }
827   }
828 
829   // Check to make sure the pointers aren't captured
830   for (StoreInst *Store : Stores)
831     if (PtrValues.count(Store->getValueOperand()))
832       return true;
833 
834   return false;
835 }
836 
837 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
838     const Function &F, const TargetTransformInfo &TTI,
839     SmallPtrSetImpl<Argument *> &ArgsToPromote,
840     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
841   for (const Use &U : F.uses()) {
842     CallBase *CB = dyn_cast<CallBase>(U.getUser());
843     if (!CB)
844       return false;
845     const Function *Caller = CB->getCaller();
846     const Function *Callee = CB->getCalledFunction();
847     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
848         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
849       return false;
850   }
851   return true;
852 }
853 
854 /// PromoteArguments - This method checks the specified function to see if there
855 /// are any promotable arguments and if it is safe to promote the function (for
856 /// example, all callers are direct).  If safe to promote some arguments, it
857 /// calls the DoPromotion method.
858 static Function *
859 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
860                  unsigned MaxElements,
861                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
862                      ReplaceCallSite,
863                  const TargetTransformInfo &TTI) {
864   // Don't perform argument promotion for naked functions; otherwise we can end
865   // up removing parameters that are seemingly 'not used' as they are referred
866   // to in the assembly.
867   if(F->hasFnAttribute(Attribute::Naked))
868     return nullptr;
869 
870   // Make sure that it is local to this module.
871   if (!F->hasLocalLinkage())
872     return nullptr;
873 
874   // Don't promote arguments for variadic functions. Adding, removing, or
875   // changing non-pack parameters can change the classification of pack
876   // parameters. Frontends encode that classification at the call site in the
877   // IR, while in the callee the classification is determined dynamically based
878   // on the number of registers consumed so far.
879   if (F->isVarArg())
880     return nullptr;
881 
882   // Don't transform functions that receive inallocas, as the transformation may
883   // not be safe depending on calling convention.
884   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
885     return nullptr;
886 
887   // First check: see if there are any pointer arguments!  If not, quick exit.
888   SmallVector<Argument *, 16> PointerArgs;
889   for (Argument &I : F->args())
890     if (I.getType()->isPointerTy())
891       PointerArgs.push_back(&I);
892   if (PointerArgs.empty())
893     return nullptr;
894 
895   // Second check: make sure that all callers are direct callers.  We can't
896   // transform functions that have indirect callers.  Also see if the function
897   // is self-recursive and check that target features are compatible.
898   bool isSelfRecursive = false;
899   for (Use &U : F->uses()) {
900     CallBase *CB = dyn_cast<CallBase>(U.getUser());
901     // Must be a direct call.
902     if (CB == nullptr || !CB->isCallee(&U))
903       return nullptr;
904 
905     // Can't change signature of musttail callee
906     if (CB->isMustTailCall())
907       return nullptr;
908 
909     if (CB->getParent()->getParent() == F)
910       isSelfRecursive = true;
911   }
912 
913   // Can't change signature of musttail caller
914   // FIXME: Support promoting whole chain of musttail functions
915   for (BasicBlock &BB : *F)
916     if (BB.getTerminatingMustTailCall())
917       return nullptr;
918 
919   const DataLayout &DL = F->getParent()->getDataLayout();
920 
921   AAResults &AAR = AARGetter(*F);
922 
923   // Check to see which arguments are promotable.  If an argument is promotable,
924   // add it to ArgsToPromote.
925   SmallPtrSet<Argument *, 8> ArgsToPromote;
926   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
927   for (Argument *PtrArg : PointerArgs) {
928     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
929 
930     // Replace sret attribute with noalias. This reduces register pressure by
931     // avoiding a register copy.
932     if (PtrArg->hasStructRetAttr()) {
933       unsigned ArgNo = PtrArg->getArgNo();
934       F->removeParamAttr(ArgNo, Attribute::StructRet);
935       F->addParamAttr(ArgNo, Attribute::NoAlias);
936       for (Use &U : F->uses()) {
937         CallBase &CB = cast<CallBase>(*U.getUser());
938         CB.removeParamAttr(ArgNo, Attribute::StructRet);
939         CB.addParamAttr(ArgNo, Attribute::NoAlias);
940       }
941     }
942 
943     // If this is a byval argument, and if the aggregate type is small, just
944     // pass the elements, which is always safe, if the passed value is densely
945     // packed or if we can prove the padding bytes are never accessed.
946     //
947     // Only handle arguments with specified alignment; if it's unspecified, the
948     // actual alignment of the argument is target-specific.
949     bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
950                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
951                             !canPaddingBeAccessed(PtrArg));
952     if (isSafeToPromote) {
953       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
954         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
955           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
956                             << PtrArg->getName()
957                             << "' because it would require adding more"
958                             << " than " << MaxElements
959                             << " arguments to the function.\n");
960           continue;
961         }
962 
963         // If all the elements are single-value types, we can promote it.
964         bool AllSimple = true;
965         for (const auto *EltTy : STy->elements()) {
966           if (!EltTy->isSingleValueType()) {
967             AllSimple = false;
968             break;
969           }
970         }
971 
972         // Safe to transform, don't even bother trying to "promote" it.
973         // Passing the elements as a scalar will allow sroa to hack on
974         // the new alloca we introduce.
975         if (AllSimple) {
976           ByValArgsToTransform.insert(PtrArg);
977           continue;
978         }
979       }
980     }
981 
982     // If the argument is a recursive type and we're in a recursive
983     // function, we could end up infinitely peeling the function argument.
984     if (isSelfRecursive) {
985       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
986         bool RecursiveType =
987             llvm::is_contained(STy->elements(), PtrArg->getType());
988         if (RecursiveType)
989           continue;
990       }
991     }
992 
993     // Otherwise, see if we can promote the pointer to its value.
994     Type *ByValTy =
995         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
996     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
997       ArgsToPromote.insert(PtrArg);
998   }
999 
1000   // No promotable pointer arguments.
1001   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1002     return nullptr;
1003 
1004   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1005           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1006     return nullptr;
1007 
1008   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1009 }
1010 
1011 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1012                                              CGSCCAnalysisManager &AM,
1013                                              LazyCallGraph &CG,
1014                                              CGSCCUpdateResult &UR) {
1015   bool Changed = false, LocalChange;
1016 
1017   // Iterate until we stop promoting from this SCC.
1018   do {
1019     LocalChange = false;
1020 
1021     for (LazyCallGraph::Node &N : C) {
1022       Function &OldF = N.getFunction();
1023 
1024       FunctionAnalysisManager &FAM =
1025           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1026       // FIXME: This lambda must only be used with this function. We should
1027       // skip the lambda and just get the AA results directly.
1028       auto AARGetter = [&](Function &F) -> AAResults & {
1029         assert(&F == &OldF && "Called with an unexpected function!");
1030         return FAM.getResult<AAManager>(F);
1031       };
1032 
1033       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1034       Function *NewF =
1035           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1036       if (!NewF)
1037         continue;
1038       LocalChange = true;
1039 
1040       // Directly substitute the functions in the call graph. Note that this
1041       // requires the old function to be completely dead and completely
1042       // replaced by the new function. It does no call graph updates, it merely
1043       // swaps out the particular function mapped to a particular node in the
1044       // graph.
1045       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1046       FAM.clear(OldF, OldF.getName());
1047       OldF.eraseFromParent();
1048     }
1049 
1050     Changed |= LocalChange;
1051   } while (LocalChange);
1052 
1053   if (!Changed)
1054     return PreservedAnalyses::all();
1055 
1056   return PreservedAnalyses::none();
1057 }
1058 
1059 namespace {
1060 
1061 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1062 struct ArgPromotion : public CallGraphSCCPass {
1063   // Pass identification, replacement for typeid
1064   static char ID;
1065 
1066   explicit ArgPromotion(unsigned MaxElements = 3)
1067       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1068     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1069   }
1070 
1071   void getAnalysisUsage(AnalysisUsage &AU) const override {
1072     AU.addRequired<AssumptionCacheTracker>();
1073     AU.addRequired<TargetLibraryInfoWrapperPass>();
1074     AU.addRequired<TargetTransformInfoWrapperPass>();
1075     getAAResultsAnalysisUsage(AU);
1076     CallGraphSCCPass::getAnalysisUsage(AU);
1077   }
1078 
1079   bool runOnSCC(CallGraphSCC &SCC) override;
1080 
1081 private:
1082   using llvm::Pass::doInitialization;
1083 
1084   bool doInitialization(CallGraph &CG) override;
1085 
1086   /// The maximum number of elements to expand, or 0 for unlimited.
1087   unsigned MaxElements;
1088 };
1089 
1090 } // end anonymous namespace
1091 
1092 char ArgPromotion::ID = 0;
1093 
1094 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1095                       "Promote 'by reference' arguments to scalars", false,
1096                       false)
1097 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1098 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1099 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1100 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1101 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1102                     "Promote 'by reference' arguments to scalars", false, false)
1103 
1104 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1105   return new ArgPromotion(MaxElements);
1106 }
1107 
1108 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1109   if (skipSCC(SCC))
1110     return false;
1111 
1112   // Get the callgraph information that we need to update to reflect our
1113   // changes.
1114   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1115 
1116   LegacyAARGetter AARGetter(*this);
1117 
1118   bool Changed = false, LocalChange;
1119 
1120   // Iterate until we stop promoting from this SCC.
1121   do {
1122     LocalChange = false;
1123     // Attempt to promote arguments from all functions in this SCC.
1124     for (CallGraphNode *OldNode : SCC) {
1125       Function *OldF = OldNode->getFunction();
1126       if (!OldF)
1127         continue;
1128 
1129       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1130         Function *Caller = OldCS.getParent()->getParent();
1131         CallGraphNode *NewCalleeNode =
1132             CG.getOrInsertFunction(NewCS.getCalledFunction());
1133         CallGraphNode *CallerNode = CG[Caller];
1134         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1135                                     cast<CallBase>(NewCS), NewCalleeNode);
1136       };
1137 
1138       const TargetTransformInfo &TTI =
1139           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1140       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1141                                             {ReplaceCallSite}, TTI)) {
1142         LocalChange = true;
1143 
1144         // Update the call graph for the newly promoted function.
1145         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1146         NewNode->stealCalledFunctionsFrom(OldNode);
1147         if (OldNode->getNumReferences() == 0)
1148           delete CG.removeFunctionFromModule(OldNode);
1149         else
1150           OldF->setLinkage(Function::ExternalLinkage);
1151 
1152         // And updat ethe SCC we're iterating as well.
1153         SCC.ReplaceNode(OldNode, NewNode);
1154       }
1155     }
1156     // Remember that we changed something.
1157     Changed |= LocalChange;
1158   } while (LocalChange);
1159 
1160   return Changed;
1161 }
1162 
1163 bool ArgPromotion::doInitialization(CallGraph &CG) {
1164   return CallGraphSCCPass::doInitialization(CG);
1165 }
1166