1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass promotes "by reference" arguments to be "by value" arguments. In 10 // practice, this means looking for internal functions that have pointer 11 // arguments. If it can prove, through the use of alias analysis, that an 12 // argument is *only* loaded, then it can pass the value into the function 13 // instead of the address of the value. This can cause recursive simplification 14 // of code and lead to the elimination of allocas (especially in C++ template 15 // code like the STL). 16 // 17 // This pass also handles aggregate arguments that are passed into a function, 18 // scalarizing them if the elements of the aggregate are only loaded. Note that 19 // by default it refuses to scalarize aggregates which would require passing in 20 // more than three operands to the function, because passing thousands of 21 // operands for a large array or structure is unprofitable! This limit can be 22 // configured or disabled, however. 23 // 24 // Note that this transformation could also be done for arguments that are only 25 // stored to (returning the value instead), but does not currently. This case 26 // would be best handled when and if LLVM begins supporting multiple return 27 // values from functions. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 32 #include "llvm/ADT/DepthFirstIterator.h" 33 #include "llvm/ADT/None.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/StringExtras.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/BasicAliasAnalysis.h" 44 #include "llvm/Analysis/CGSCCPassManager.h" 45 #include "llvm/Analysis/CallGraph.h" 46 #include "llvm/Analysis/CallGraphSCCPass.h" 47 #include "llvm/Analysis/LazyCallGraph.h" 48 #include "llvm/Analysis/Loads.h" 49 #include "llvm/Analysis/MemoryLocation.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/TargetTransformInfo.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/Attributes.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/CFG.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DerivedTypes.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/IRBuilder.h" 62 #include "llvm/IR/InstrTypes.h" 63 #include "llvm/IR/Instruction.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/IPO.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstdint> 82 #include <functional> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <string> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 #define DEBUG_TYPE "argpromotion" 93 94 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 95 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 96 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 97 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 98 99 /// A vector used to hold the indices of a single GEP instruction 100 using IndicesVector = std::vector<uint64_t>; 101 102 /// DoPromotion - This method actually performs the promotion of the specified 103 /// arguments, and returns the new function. At this point, we know that it's 104 /// safe to do so. 105 static Function * 106 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 107 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 108 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 109 ReplaceCallSite) { 110 // Start by computing a new prototype for the function, which is the same as 111 // the old function, but has modified arguments. 112 FunctionType *FTy = F->getFunctionType(); 113 std::vector<Type *> Params; 114 115 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; 116 117 // ScalarizedElements - If we are promoting a pointer that has elements 118 // accessed out of it, keep track of which elements are accessed so that we 119 // can add one argument for each. 120 // 121 // Arguments that are directly loaded will have a zero element value here, to 122 // handle cases where there are both a direct load and GEP accesses. 123 std::map<Argument *, ScalarizeTable> ScalarizedElements; 124 125 // OriginalLoads - Keep track of a representative load instruction from the 126 // original function so that we can tell the alias analysis implementation 127 // what the new GEP/Load instructions we are inserting look like. 128 // We need to keep the original loads for each argument and the elements 129 // of the argument that are accessed. 130 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 131 132 // Attribute - Keep track of the parameter attributes for the arguments 133 // that we are *not* promoting. For the ones that we do promote, the parameter 134 // attributes are lost 135 SmallVector<AttributeSet, 8> ArgAttrVec; 136 AttributeList PAL = F->getAttributes(); 137 138 // First, determine the new argument list 139 unsigned ArgNo = 0; 140 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 141 ++I, ++ArgNo) { 142 if (ByValArgsToTransform.count(&*I)) { 143 // Simple byval argument? Just add all the struct element types. 144 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 145 StructType *STy = cast<StructType>(AgTy); 146 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 147 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 148 AttributeSet()); 149 ++NumByValArgsPromoted; 150 } else if (!ArgsToPromote.count(&*I)) { 151 // Unchanged argument 152 Params.push_back(I->getType()); 153 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); 154 } else if (I->use_empty()) { 155 // Dead argument (which are always marked as promotable) 156 ++NumArgumentsDead; 157 158 // There may be remaining metadata uses of the argument for things like 159 // llvm.dbg.value. Replace them with undef. 160 I->replaceAllUsesWith(UndefValue::get(I->getType())); 161 } else { 162 // Okay, this is being promoted. This means that the only uses are loads 163 // or GEPs which are only used by loads 164 165 // In this table, we will track which indices are loaded from the argument 166 // (where direct loads are tracked as no indices). 167 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 168 for (User *U : I->users()) { 169 Instruction *UI = cast<Instruction>(U); 170 Type *SrcTy; 171 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 172 SrcTy = L->getType(); 173 else 174 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 175 IndicesVector Indices; 176 Indices.reserve(UI->getNumOperands() - 1); 177 // Since loads will only have a single operand, and GEPs only a single 178 // non-index operand, this will record direct loads without any indices, 179 // and gep+loads with the GEP indices. 180 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 181 II != IE; ++II) 182 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 183 // GEPs with a single 0 index can be merged with direct loads 184 if (Indices.size() == 1 && Indices.front() == 0) 185 Indices.clear(); 186 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 187 LoadInst *OrigLoad; 188 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 189 OrigLoad = L; 190 else 191 // Take any load, we will use it only to update Alias Analysis 192 OrigLoad = cast<LoadInst>(UI->user_back()); 193 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 194 } 195 196 // Add a parameter to the function for each element passed in. 197 for (const auto &ArgIndex : ArgIndices) { 198 // not allowed to dereference ->begin() if size() is 0 199 Params.push_back(GetElementPtrInst::getIndexedType( 200 cast<PointerType>(I->getType()->getScalarType())->getElementType(), 201 ArgIndex.second)); 202 ArgAttrVec.push_back(AttributeSet()); 203 assert(Params.back()); 204 } 205 206 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 207 ++NumArgumentsPromoted; 208 else 209 ++NumAggregatesPromoted; 210 } 211 } 212 213 Type *RetTy = FTy->getReturnType(); 214 215 // Construct the new function type using the new arguments. 216 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 217 218 // Create the new function body and insert it into the module. 219 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), 220 F->getName()); 221 NF->copyAttributesFrom(F); 222 223 // Patch the pointer to LLVM function in debug info descriptor. 224 NF->setSubprogram(F->getSubprogram()); 225 F->setSubprogram(nullptr); 226 227 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 228 << "From: " << *F); 229 230 // Recompute the parameter attributes list based on the new arguments for 231 // the function. 232 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), 233 PAL.getRetAttributes(), ArgAttrVec)); 234 ArgAttrVec.clear(); 235 236 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 237 NF->takeName(F); 238 239 // Loop over all of the callers of the function, transforming the call sites 240 // to pass in the loaded pointers. 241 // 242 SmallVector<Value *, 16> Args; 243 while (!F->use_empty()) { 244 CallSite CS(F->user_back()); 245 assert(CS.getCalledFunction() == F); 246 Instruction *Call = CS.getInstruction(); 247 const AttributeList &CallPAL = CS.getAttributes(); 248 IRBuilder<NoFolder> IRB(Call); 249 250 // Loop over the operands, inserting GEP and loads in the caller as 251 // appropriate. 252 CallSite::arg_iterator AI = CS.arg_begin(); 253 ArgNo = 0; 254 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 255 ++I, ++AI, ++ArgNo) 256 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 257 Args.push_back(*AI); // Unmodified argument 258 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 259 } else if (ByValArgsToTransform.count(&*I)) { 260 // Emit a GEP and load for each element of the struct. 261 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 262 StructType *STy = cast<StructType>(AgTy); 263 Value *Idxs[2] = { 264 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 265 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 266 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 267 auto *Idx = 268 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i)); 269 // TODO: Tell AA about the new values? 270 Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx, 271 Idx->getName() + ".val")); 272 ArgAttrVec.push_back(AttributeSet()); 273 } 274 } else if (!I->use_empty()) { 275 // Non-dead argument: insert GEPs and loads as appropriate. 276 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 277 // Store the Value* version of the indices in here, but declare it now 278 // for reuse. 279 std::vector<Value *> Ops; 280 for (const auto &ArgIndex : ArgIndices) { 281 Value *V = *AI; 282 LoadInst *OrigLoad = 283 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 284 if (!ArgIndex.second.empty()) { 285 Ops.reserve(ArgIndex.second.size()); 286 Type *ElTy = V->getType(); 287 for (auto II : ArgIndex.second) { 288 // Use i32 to index structs, and i64 for others (pointers/arrays). 289 // This satisfies GEP constraints. 290 Type *IdxTy = 291 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 292 : Type::getInt64Ty(F->getContext())); 293 Ops.push_back(ConstantInt::get(IdxTy, II)); 294 // Keep track of the type we're currently indexing. 295 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 296 ElTy = ElPTy->getElementType(); 297 else 298 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II); 299 } 300 // And create a GEP to extract those indices. 301 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx"); 302 Ops.clear(); 303 } 304 // Since we're replacing a load make sure we take the alignment 305 // of the previous load. 306 LoadInst *newLoad = 307 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val"); 308 newLoad->setAlignment(MaybeAlign(OrigLoad->getAlignment())); 309 // Transfer the AA info too. 310 AAMDNodes AAInfo; 311 OrigLoad->getAAMetadata(AAInfo); 312 newLoad->setAAMetadata(AAInfo); 313 314 Args.push_back(newLoad); 315 ArgAttrVec.push_back(AttributeSet()); 316 } 317 } 318 319 // Push any varargs arguments on the list. 320 for (; AI != CS.arg_end(); ++AI, ++ArgNo) { 321 Args.push_back(*AI); 322 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 323 } 324 325 SmallVector<OperandBundleDef, 1> OpBundles; 326 CS.getOperandBundlesAsDefs(OpBundles); 327 328 CallSite NewCS; 329 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 330 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 331 Args, OpBundles, "", Call); 332 } else { 333 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call); 334 NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); 335 NewCS = NewCall; 336 } 337 NewCS.setCallingConv(CS.getCallingConv()); 338 NewCS.setAttributes( 339 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), 340 CallPAL.getRetAttributes(), ArgAttrVec)); 341 NewCS->setDebugLoc(Call->getDebugLoc()); 342 uint64_t W; 343 if (Call->extractProfTotalWeight(W)) 344 NewCS->setProfWeight(W); 345 Args.clear(); 346 ArgAttrVec.clear(); 347 348 // Update the callgraph to know that the callsite has been transformed. 349 if (ReplaceCallSite) 350 (*ReplaceCallSite)(CS, NewCS); 351 352 if (!Call->use_empty()) { 353 Call->replaceAllUsesWith(NewCS.getInstruction()); 354 NewCS->takeName(Call); 355 } 356 357 // Finally, remove the old call from the program, reducing the use-count of 358 // F. 359 Call->eraseFromParent(); 360 } 361 362 const DataLayout &DL = F->getParent()->getDataLayout(); 363 364 // Since we have now created the new function, splice the body of the old 365 // function right into the new function, leaving the old rotting hulk of the 366 // function empty. 367 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 368 369 // Loop over the argument list, transferring uses of the old arguments over to 370 // the new arguments, also transferring over the names as well. 371 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 372 I2 = NF->arg_begin(); 373 I != E; ++I) { 374 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 375 // If this is an unmodified argument, move the name and users over to the 376 // new version. 377 I->replaceAllUsesWith(&*I2); 378 I2->takeName(&*I); 379 ++I2; 380 continue; 381 } 382 383 if (ByValArgsToTransform.count(&*I)) { 384 // In the callee, we create an alloca, and store each of the new incoming 385 // arguments into the alloca. 386 Instruction *InsertPt = &NF->begin()->front(); 387 388 // Just add all the struct element types. 389 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 390 Value *TheAlloca = 391 new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr, 392 MaybeAlign(I->getParamAlignment()), "", InsertPt); 393 StructType *STy = cast<StructType>(AgTy); 394 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 395 nullptr}; 396 397 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 398 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 399 Value *Idx = GetElementPtrInst::Create( 400 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 401 InsertPt); 402 I2->setName(I->getName() + "." + Twine(i)); 403 new StoreInst(&*I2++, Idx, InsertPt); 404 } 405 406 // Anything that used the arg should now use the alloca. 407 I->replaceAllUsesWith(TheAlloca); 408 TheAlloca->takeName(&*I); 409 410 // If the alloca is used in a call, we must clear the tail flag since 411 // the callee now uses an alloca from the caller. 412 for (User *U : TheAlloca->users()) { 413 CallInst *Call = dyn_cast<CallInst>(U); 414 if (!Call) 415 continue; 416 Call->setTailCall(false); 417 } 418 continue; 419 } 420 421 if (I->use_empty()) 422 continue; 423 424 // Otherwise, if we promoted this argument, then all users are load 425 // instructions (or GEPs with only load users), and all loads should be 426 // using the new argument that we added. 427 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 428 429 while (!I->use_empty()) { 430 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 431 assert(ArgIndices.begin()->second.empty() && 432 "Load element should sort to front!"); 433 I2->setName(I->getName() + ".val"); 434 LI->replaceAllUsesWith(&*I2); 435 LI->eraseFromParent(); 436 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 437 << "' in function '" << F->getName() << "'\n"); 438 } else { 439 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 440 IndicesVector Operands; 441 Operands.reserve(GEP->getNumIndices()); 442 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 443 II != IE; ++II) 444 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 445 446 // GEPs with a single 0 index can be merged with direct loads 447 if (Operands.size() == 1 && Operands.front() == 0) 448 Operands.clear(); 449 450 Function::arg_iterator TheArg = I2; 451 for (ScalarizeTable::iterator It = ArgIndices.begin(); 452 It->second != Operands; ++It, ++TheArg) { 453 assert(It != ArgIndices.end() && "GEP not handled??"); 454 } 455 456 std::string NewName = I->getName(); 457 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 458 NewName += "." + utostr(Operands[i]); 459 } 460 NewName += ".val"; 461 TheArg->setName(NewName); 462 463 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 464 << "' of function '" << NF->getName() << "'\n"); 465 466 // All of the uses must be load instructions. Replace them all with 467 // the argument specified by ArgNo. 468 while (!GEP->use_empty()) { 469 LoadInst *L = cast<LoadInst>(GEP->user_back()); 470 L->replaceAllUsesWith(&*TheArg); 471 L->eraseFromParent(); 472 } 473 GEP->eraseFromParent(); 474 } 475 } 476 477 // Increment I2 past all of the arguments added for this promoted pointer. 478 std::advance(I2, ArgIndices.size()); 479 } 480 481 return NF; 482 } 483 484 /// Return true if we can prove that all callees pass in a valid pointer for the 485 /// specified function argument. 486 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) { 487 Function *Callee = Arg->getParent(); 488 const DataLayout &DL = Callee->getParent()->getDataLayout(); 489 490 unsigned ArgNo = Arg->getArgNo(); 491 492 // Look at all call sites of the function. At this point we know we only have 493 // direct callees. 494 for (User *U : Callee->users()) { 495 CallSite CS(U); 496 assert(CS && "Should only have direct calls!"); 497 498 if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL)) 499 return false; 500 } 501 return true; 502 } 503 504 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 505 /// that is greater than or equal to the size of prefix, and each of the 506 /// elements in Prefix is the same as the corresponding elements in Longer. 507 /// 508 /// This means it also returns true when Prefix and Longer are equal! 509 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 510 if (Prefix.size() > Longer.size()) 511 return false; 512 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 513 } 514 515 /// Checks if Indices, or a prefix of Indices, is in Set. 516 static bool prefixIn(const IndicesVector &Indices, 517 std::set<IndicesVector> &Set) { 518 std::set<IndicesVector>::iterator Low; 519 Low = Set.upper_bound(Indices); 520 if (Low != Set.begin()) 521 Low--; 522 // Low is now the last element smaller than or equal to Indices. This means 523 // it points to a prefix of Indices (possibly Indices itself), if such 524 // prefix exists. 525 // 526 // This load is safe if any prefix of its operands is safe to load. 527 return Low != Set.end() && isPrefix(*Low, Indices); 528 } 529 530 /// Mark the given indices (ToMark) as safe in the given set of indices 531 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 532 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 533 /// already. Furthermore, any indices that Indices is itself a prefix of, are 534 /// removed from Safe (since they are implicitely safe because of Indices now). 535 static void markIndicesSafe(const IndicesVector &ToMark, 536 std::set<IndicesVector> &Safe) { 537 std::set<IndicesVector>::iterator Low; 538 Low = Safe.upper_bound(ToMark); 539 // Guard against the case where Safe is empty 540 if (Low != Safe.begin()) 541 Low--; 542 // Low is now the last element smaller than or equal to Indices. This 543 // means it points to a prefix of Indices (possibly Indices itself), if 544 // such prefix exists. 545 if (Low != Safe.end()) { 546 if (isPrefix(*Low, ToMark)) 547 // If there is already a prefix of these indices (or exactly these 548 // indices) marked a safe, don't bother adding these indices 549 return; 550 551 // Increment Low, so we can use it as a "insert before" hint 552 ++Low; 553 } 554 // Insert 555 Low = Safe.insert(Low, ToMark); 556 ++Low; 557 // If there we're a prefix of longer index list(s), remove those 558 std::set<IndicesVector>::iterator End = Safe.end(); 559 while (Low != End && isPrefix(ToMark, *Low)) { 560 std::set<IndicesVector>::iterator Remove = Low; 561 ++Low; 562 Safe.erase(Remove); 563 } 564 } 565 566 /// isSafeToPromoteArgument - As you might guess from the name of this method, 567 /// it checks to see if it is both safe and useful to promote the argument. 568 /// This method limits promotion of aggregates to only promote up to three 569 /// elements of the aggregate in order to avoid exploding the number of 570 /// arguments passed in. 571 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR, 572 unsigned MaxElements) { 573 using GEPIndicesSet = std::set<IndicesVector>; 574 575 // Quick exit for unused arguments 576 if (Arg->use_empty()) 577 return true; 578 579 // We can only promote this argument if all of the uses are loads, or are GEP 580 // instructions (with constant indices) that are subsequently loaded. 581 // 582 // Promoting the argument causes it to be loaded in the caller 583 // unconditionally. This is only safe if we can prove that either the load 584 // would have happened in the callee anyway (ie, there is a load in the entry 585 // block) or the pointer passed in at every call site is guaranteed to be 586 // valid. 587 // In the former case, invalid loads can happen, but would have happened 588 // anyway, in the latter case, invalid loads won't happen. This prevents us 589 // from introducing an invalid load that wouldn't have happened in the 590 // original code. 591 // 592 // This set will contain all sets of indices that are loaded in the entry 593 // block, and thus are safe to unconditionally load in the caller. 594 GEPIndicesSet SafeToUnconditionallyLoad; 595 596 // This set contains all the sets of indices that we are planning to promote. 597 // This makes it possible to limit the number of arguments added. 598 GEPIndicesSet ToPromote; 599 600 // If the pointer is always valid, any load with first index 0 is valid. 601 602 if (ByValTy) 603 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 604 605 // Whenever a new underlying type for the operand is found, make sure it's 606 // consistent with the GEPs and loads we've already seen and, if necessary, 607 // use it to see if all incoming pointers are valid (which implies the 0-index 608 // is safe). 609 Type *BaseTy = ByValTy; 610 auto UpdateBaseTy = [&](Type *NewBaseTy) { 611 if (BaseTy) 612 return BaseTy == NewBaseTy; 613 614 BaseTy = NewBaseTy; 615 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) { 616 assert(SafeToUnconditionallyLoad.empty()); 617 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 618 } 619 620 return true; 621 }; 622 623 // First, iterate the entry block and mark loads of (geps of) arguments as 624 // safe. 625 BasicBlock &EntryBlock = Arg->getParent()->front(); 626 // Declare this here so we can reuse it 627 IndicesVector Indices; 628 for (Instruction &I : EntryBlock) 629 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 630 Value *V = LI->getPointerOperand(); 631 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 632 V = GEP->getPointerOperand(); 633 if (V == Arg) { 634 // This load actually loads (part of) Arg? Check the indices then. 635 Indices.reserve(GEP->getNumIndices()); 636 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 637 II != IE; ++II) 638 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 639 Indices.push_back(CI->getSExtValue()); 640 else 641 // We found a non-constant GEP index for this argument? Bail out 642 // right away, can't promote this argument at all. 643 return false; 644 645 if (!UpdateBaseTy(GEP->getSourceElementType())) 646 return false; 647 648 // Indices checked out, mark them as safe 649 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 650 Indices.clear(); 651 } 652 } else if (V == Arg) { 653 // Direct loads are equivalent to a GEP with a single 0 index. 654 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 655 656 if (BaseTy && LI->getType() != BaseTy) 657 return false; 658 659 BaseTy = LI->getType(); 660 } 661 } 662 663 // Now, iterate all uses of the argument to see if there are any uses that are 664 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 665 SmallVector<LoadInst *, 16> Loads; 666 IndicesVector Operands; 667 for (Use &U : Arg->uses()) { 668 User *UR = U.getUser(); 669 Operands.clear(); 670 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 671 // Don't hack volatile/atomic loads 672 if (!LI->isSimple()) 673 return false; 674 Loads.push_back(LI); 675 // Direct loads are equivalent to a GEP with a zero index and then a load. 676 Operands.push_back(0); 677 678 if (!UpdateBaseTy(LI->getType())) 679 return false; 680 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 681 if (GEP->use_empty()) { 682 // Dead GEP's cause trouble later. Just remove them if we run into 683 // them. 684 GEP->eraseFromParent(); 685 // TODO: This runs the above loop over and over again for dead GEPs 686 // Couldn't we just do increment the UI iterator earlier and erase the 687 // use? 688 return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements); 689 } 690 691 if (!UpdateBaseTy(GEP->getSourceElementType())) 692 return false; 693 694 // Ensure that all of the indices are constants. 695 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; 696 ++i) 697 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 698 Operands.push_back(C->getSExtValue()); 699 else 700 return false; // Not a constant operand GEP! 701 702 // Ensure that the only users of the GEP are load instructions. 703 for (User *GEPU : GEP->users()) 704 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 705 // Don't hack volatile/atomic loads 706 if (!LI->isSimple()) 707 return false; 708 Loads.push_back(LI); 709 } else { 710 // Other uses than load? 711 return false; 712 } 713 } else { 714 return false; // Not a load or a GEP. 715 } 716 717 // Now, see if it is safe to promote this load / loads of this GEP. Loading 718 // is safe if Operands, or a prefix of Operands, is marked as safe. 719 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 720 return false; 721 722 // See if we are already promoting a load with these indices. If not, check 723 // to make sure that we aren't promoting too many elements. If so, nothing 724 // to do. 725 if (ToPromote.find(Operands) == ToPromote.end()) { 726 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 727 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" 728 << Arg->getName() 729 << "' because it would require adding more " 730 << "than " << MaxElements 731 << " arguments to the function.\n"); 732 // We limit aggregate promotion to only promoting up to a fixed number 733 // of elements of the aggregate. 734 return false; 735 } 736 ToPromote.insert(std::move(Operands)); 737 } 738 } 739 740 if (Loads.empty()) 741 return true; // No users, this is a dead argument. 742 743 // Okay, now we know that the argument is only used by load instructions and 744 // it is safe to unconditionally perform all of them. Use alias analysis to 745 // check to see if the pointer is guaranteed to not be modified from entry of 746 // the function to each of the load instructions. 747 748 // Because there could be several/many load instructions, remember which 749 // blocks we know to be transparent to the load. 750 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 751 752 for (LoadInst *Load : Loads) { 753 // Check to see if the load is invalidated from the start of the block to 754 // the load itself. 755 BasicBlock *BB = Load->getParent(); 756 757 MemoryLocation Loc = MemoryLocation::get(Load); 758 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) 759 return false; // Pointer is invalidated! 760 761 // Now check every path from the entry block to the load for transparency. 762 // To do this, we perform a depth first search on the inverse CFG from the 763 // loading block. 764 for (BasicBlock *P : predecessors(BB)) { 765 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 766 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 767 return false; 768 } 769 } 770 771 // If the path from the entry of the function to each load is free of 772 // instructions that potentially invalidate the load, we can make the 773 // transformation! 774 return true; 775 } 776 777 /// Checks if a type could have padding bytes. 778 static bool isDenselyPacked(Type *type, const DataLayout &DL) { 779 // There is no size information, so be conservative. 780 if (!type->isSized()) 781 return false; 782 783 // If the alloc size is not equal to the storage size, then there are padding 784 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 785 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 786 return false; 787 788 if (!isa<CompositeType>(type)) 789 return true; 790 791 // For homogenous sequential types, check for padding within members. 792 if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) 793 return isDenselyPacked(seqTy->getElementType(), DL); 794 795 // Check for padding within and between elements of a struct. 796 StructType *StructTy = cast<StructType>(type); 797 const StructLayout *Layout = DL.getStructLayout(StructTy); 798 uint64_t StartPos = 0; 799 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 800 Type *ElTy = StructTy->getElementType(i); 801 if (!isDenselyPacked(ElTy, DL)) 802 return false; 803 if (StartPos != Layout->getElementOffsetInBits(i)) 804 return false; 805 StartPos += DL.getTypeAllocSizeInBits(ElTy); 806 } 807 808 return true; 809 } 810 811 /// Checks if the padding bytes of an argument could be accessed. 812 static bool canPaddingBeAccessed(Argument *arg) { 813 assert(arg->hasByValAttr()); 814 815 // Track all the pointers to the argument to make sure they are not captured. 816 SmallPtrSet<Value *, 16> PtrValues; 817 PtrValues.insert(arg); 818 819 // Track all of the stores. 820 SmallVector<StoreInst *, 16> Stores; 821 822 // Scan through the uses recursively to make sure the pointer is always used 823 // sanely. 824 SmallVector<Value *, 16> WorkList; 825 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 826 while (!WorkList.empty()) { 827 Value *V = WorkList.back(); 828 WorkList.pop_back(); 829 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 830 if (PtrValues.insert(V).second) 831 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 832 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 833 Stores.push_back(Store); 834 } else if (!isa<LoadInst>(V)) { 835 return true; 836 } 837 } 838 839 // Check to make sure the pointers aren't captured 840 for (StoreInst *Store : Stores) 841 if (PtrValues.count(Store->getValueOperand())) 842 return true; 843 844 return false; 845 } 846 847 static bool areFunctionArgsABICompatible( 848 const Function &F, const TargetTransformInfo &TTI, 849 SmallPtrSetImpl<Argument *> &ArgsToPromote, 850 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) { 851 for (const Use &U : F.uses()) { 852 CallSite CS(U.getUser()); 853 const Function *Caller = CS.getCaller(); 854 const Function *Callee = CS.getCalledFunction(); 855 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || 856 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) 857 return false; 858 } 859 return true; 860 } 861 862 /// PromoteArguments - This method checks the specified function to see if there 863 /// are any promotable arguments and if it is safe to promote the function (for 864 /// example, all callers are direct). If safe to promote some arguments, it 865 /// calls the DoPromotion method. 866 static Function * 867 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 868 unsigned MaxElements, 869 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 870 ReplaceCallSite, 871 const TargetTransformInfo &TTI) { 872 // Don't perform argument promotion for naked functions; otherwise we can end 873 // up removing parameters that are seemingly 'not used' as they are referred 874 // to in the assembly. 875 if(F->hasFnAttribute(Attribute::Naked)) 876 return nullptr; 877 878 // Make sure that it is local to this module. 879 if (!F->hasLocalLinkage()) 880 return nullptr; 881 882 // Don't promote arguments for variadic functions. Adding, removing, or 883 // changing non-pack parameters can change the classification of pack 884 // parameters. Frontends encode that classification at the call site in the 885 // IR, while in the callee the classification is determined dynamically based 886 // on the number of registers consumed so far. 887 if (F->isVarArg()) 888 return nullptr; 889 890 // Don't transform functions that receive inallocas, as the transformation may 891 // not be safe depending on calling convention. 892 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) 893 return nullptr; 894 895 // First check: see if there are any pointer arguments! If not, quick exit. 896 SmallVector<Argument *, 16> PointerArgs; 897 for (Argument &I : F->args()) 898 if (I.getType()->isPointerTy()) 899 PointerArgs.push_back(&I); 900 if (PointerArgs.empty()) 901 return nullptr; 902 903 // Second check: make sure that all callers are direct callers. We can't 904 // transform functions that have indirect callers. Also see if the function 905 // is self-recursive and check that target features are compatible. 906 bool isSelfRecursive = false; 907 for (Use &U : F->uses()) { 908 CallSite CS(U.getUser()); 909 // Must be a direct call. 910 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) 911 return nullptr; 912 913 // Can't change signature of musttail callee 914 if (CS.isMustTailCall()) 915 return nullptr; 916 917 if (CS.getInstruction()->getParent()->getParent() == F) 918 isSelfRecursive = true; 919 } 920 921 // Can't change signature of musttail caller 922 // FIXME: Support promoting whole chain of musttail functions 923 for (BasicBlock &BB : *F) 924 if (BB.getTerminatingMustTailCall()) 925 return nullptr; 926 927 const DataLayout &DL = F->getParent()->getDataLayout(); 928 929 AAResults &AAR = AARGetter(*F); 930 931 // Check to see which arguments are promotable. If an argument is promotable, 932 // add it to ArgsToPromote. 933 SmallPtrSet<Argument *, 8> ArgsToPromote; 934 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 935 for (Argument *PtrArg : PointerArgs) { 936 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 937 938 // Replace sret attribute with noalias. This reduces register pressure by 939 // avoiding a register copy. 940 if (PtrArg->hasStructRetAttr()) { 941 unsigned ArgNo = PtrArg->getArgNo(); 942 F->removeParamAttr(ArgNo, Attribute::StructRet); 943 F->addParamAttr(ArgNo, Attribute::NoAlias); 944 for (Use &U : F->uses()) { 945 CallSite CS(U.getUser()); 946 CS.removeParamAttr(ArgNo, Attribute::StructRet); 947 CS.addParamAttr(ArgNo, Attribute::NoAlias); 948 } 949 } 950 951 // If this is a byval argument, and if the aggregate type is small, just 952 // pass the elements, which is always safe, if the passed value is densely 953 // packed or if we can prove the padding bytes are never accessed. 954 bool isSafeToPromote = 955 PtrArg->hasByValAttr() && 956 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); 957 if (isSafeToPromote) { 958 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 959 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 960 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" 961 << PtrArg->getName() 962 << "' because it would require adding more" 963 << " than " << MaxElements 964 << " arguments to the function.\n"); 965 continue; 966 } 967 968 // If all the elements are single-value types, we can promote it. 969 bool AllSimple = true; 970 for (const auto *EltTy : STy->elements()) { 971 if (!EltTy->isSingleValueType()) { 972 AllSimple = false; 973 break; 974 } 975 } 976 977 // Safe to transform, don't even bother trying to "promote" it. 978 // Passing the elements as a scalar will allow sroa to hack on 979 // the new alloca we introduce. 980 if (AllSimple) { 981 ByValArgsToTransform.insert(PtrArg); 982 continue; 983 } 984 } 985 } 986 987 // If the argument is a recursive type and we're in a recursive 988 // function, we could end up infinitely peeling the function argument. 989 if (isSelfRecursive) { 990 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 991 bool RecursiveType = false; 992 for (const auto *EltTy : STy->elements()) { 993 if (EltTy == PtrArg->getType()) { 994 RecursiveType = true; 995 break; 996 } 997 } 998 if (RecursiveType) 999 continue; 1000 } 1001 } 1002 1003 // Otherwise, see if we can promote the pointer to its value. 1004 Type *ByValTy = 1005 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr; 1006 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements)) 1007 ArgsToPromote.insert(PtrArg); 1008 } 1009 1010 // No promotable pointer arguments. 1011 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 1012 return nullptr; 1013 1014 if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote, 1015 ByValArgsToTransform)) 1016 return nullptr; 1017 1018 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 1019 } 1020 1021 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 1022 CGSCCAnalysisManager &AM, 1023 LazyCallGraph &CG, 1024 CGSCCUpdateResult &UR) { 1025 bool Changed = false, LocalChange; 1026 1027 // Iterate until we stop promoting from this SCC. 1028 do { 1029 LocalChange = false; 1030 1031 for (LazyCallGraph::Node &N : C) { 1032 Function &OldF = N.getFunction(); 1033 1034 FunctionAnalysisManager &FAM = 1035 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1036 // FIXME: This lambda must only be used with this function. We should 1037 // skip the lambda and just get the AA results directly. 1038 auto AARGetter = [&](Function &F) -> AAResults & { 1039 assert(&F == &OldF && "Called with an unexpected function!"); 1040 return FAM.getResult<AAManager>(F); 1041 }; 1042 1043 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF); 1044 Function *NewF = 1045 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); 1046 if (!NewF) 1047 continue; 1048 LocalChange = true; 1049 1050 // Directly substitute the functions in the call graph. Note that this 1051 // requires the old function to be completely dead and completely 1052 // replaced by the new function. It does no call graph updates, it merely 1053 // swaps out the particular function mapped to a particular node in the 1054 // graph. 1055 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 1056 OldF.eraseFromParent(); 1057 } 1058 1059 Changed |= LocalChange; 1060 } while (LocalChange); 1061 1062 if (!Changed) 1063 return PreservedAnalyses::all(); 1064 1065 return PreservedAnalyses::none(); 1066 } 1067 1068 namespace { 1069 1070 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 1071 struct ArgPromotion : public CallGraphSCCPass { 1072 // Pass identification, replacement for typeid 1073 static char ID; 1074 1075 explicit ArgPromotion(unsigned MaxElements = 3) 1076 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 1077 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 1078 } 1079 1080 void getAnalysisUsage(AnalysisUsage &AU) const override { 1081 AU.addRequired<AssumptionCacheTracker>(); 1082 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1083 AU.addRequired<TargetTransformInfoWrapperPass>(); 1084 getAAResultsAnalysisUsage(AU); 1085 CallGraphSCCPass::getAnalysisUsage(AU); 1086 } 1087 1088 bool runOnSCC(CallGraphSCC &SCC) override; 1089 1090 private: 1091 using llvm::Pass::doInitialization; 1092 1093 bool doInitialization(CallGraph &CG) override; 1094 1095 /// The maximum number of elements to expand, or 0 for unlimited. 1096 unsigned MaxElements; 1097 }; 1098 1099 } // end anonymous namespace 1100 1101 char ArgPromotion::ID = 0; 1102 1103 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 1104 "Promote 'by reference' arguments to scalars", false, 1105 false) 1106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1107 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1110 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 1111 "Promote 'by reference' arguments to scalars", false, false) 1112 1113 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 1114 return new ArgPromotion(MaxElements); 1115 } 1116 1117 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1118 if (skipSCC(SCC)) 1119 return false; 1120 1121 // Get the callgraph information that we need to update to reflect our 1122 // changes. 1123 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1124 1125 LegacyAARGetter AARGetter(*this); 1126 1127 bool Changed = false, LocalChange; 1128 1129 // Iterate until we stop promoting from this SCC. 1130 do { 1131 LocalChange = false; 1132 // Attempt to promote arguments from all functions in this SCC. 1133 for (CallGraphNode *OldNode : SCC) { 1134 Function *OldF = OldNode->getFunction(); 1135 if (!OldF) 1136 continue; 1137 1138 auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) { 1139 Function *Caller = OldCS.getInstruction()->getParent()->getParent(); 1140 CallGraphNode *NewCalleeNode = 1141 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1142 CallGraphNode *CallerNode = CG[Caller]; 1143 CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()), 1144 *cast<CallBase>(NewCS.getInstruction()), 1145 NewCalleeNode); 1146 }; 1147 1148 const TargetTransformInfo &TTI = 1149 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF); 1150 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1151 {ReplaceCallSite}, TTI)) { 1152 LocalChange = true; 1153 1154 // Update the call graph for the newly promoted function. 1155 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1156 NewNode->stealCalledFunctionsFrom(OldNode); 1157 if (OldNode->getNumReferences() == 0) 1158 delete CG.removeFunctionFromModule(OldNode); 1159 else 1160 OldF->setLinkage(Function::ExternalLinkage); 1161 1162 // And updat ethe SCC we're iterating as well. 1163 SCC.ReplaceNode(OldNode, NewNode); 1164 } 1165 } 1166 // Remember that we changed something. 1167 Changed |= LocalChange; 1168 } while (LocalChange); 1169 1170 return Changed; 1171 } 1172 1173 bool ArgPromotion::doInitialization(CallGraph &CG) { 1174 return CallGraphSCCPass::doInitialization(CG); 1175 } 1176