1 //===- TruncInstCombine.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // TruncInstCombine - looks for expression dags post-dominated by TruncInst and 10 // for each eligible dag, it will create a reduced bit-width expression, replace 11 // the old expression with this new one and remove the old expression. 12 // Eligible expression dag is such that: 13 // 1. Contains only supported instructions. 14 // 2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value. 15 // 3. Can be evaluated into type with reduced legal bit-width. 16 // 4. All instructions in the dag must not have users outside the dag. 17 // The only exception is for {ZExt, SExt}Inst with operand type equal to 18 // the new reduced type evaluated in (3). 19 // 20 // The motivation for this optimization is that evaluating and expression using 21 // smaller bit-width is preferable, especially for vectorization where we can 22 // fit more values in one vectorized instruction. In addition, this optimization 23 // may decrease the number of cast instructions, but will not increase it. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "AggressiveInstCombineInternal.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/ConstantFolding.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IRBuilder.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "aggressive-instcombine" 40 41 STATISTIC( 42 NumDAGsReduced, 43 "Number of truncations eliminated by reducing bit width of expression DAG"); 44 STATISTIC(NumInstrsReduced, 45 "Number of instructions whose bit width was reduced"); 46 47 /// Given an instruction and a container, it fills all the relevant operands of 48 /// that instruction, with respect to the Trunc expression dag optimizaton. 49 static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) { 50 unsigned Opc = I->getOpcode(); 51 switch (Opc) { 52 case Instruction::Trunc: 53 case Instruction::ZExt: 54 case Instruction::SExt: 55 // These CastInst are considered leaves of the evaluated expression, thus, 56 // their operands are not relevent. 57 break; 58 case Instruction::Add: 59 case Instruction::Sub: 60 case Instruction::Mul: 61 case Instruction::And: 62 case Instruction::Or: 63 case Instruction::Xor: 64 Ops.push_back(I->getOperand(0)); 65 Ops.push_back(I->getOperand(1)); 66 break; 67 case Instruction::Select: 68 Ops.push_back(I->getOperand(1)); 69 Ops.push_back(I->getOperand(2)); 70 break; 71 default: 72 llvm_unreachable("Unreachable!"); 73 } 74 } 75 76 bool TruncInstCombine::buildTruncExpressionDag() { 77 SmallVector<Value *, 8> Worklist; 78 SmallVector<Instruction *, 8> Stack; 79 // Clear old expression dag. 80 InstInfoMap.clear(); 81 82 Worklist.push_back(CurrentTruncInst->getOperand(0)); 83 84 while (!Worklist.empty()) { 85 Value *Curr = Worklist.back(); 86 87 if (isa<Constant>(Curr)) { 88 Worklist.pop_back(); 89 continue; 90 } 91 92 auto *I = dyn_cast<Instruction>(Curr); 93 if (!I) 94 return false; 95 96 if (!Stack.empty() && Stack.back() == I) { 97 // Already handled all instruction operands, can remove it from both the 98 // Worklist and the Stack, and add it to the instruction info map. 99 Worklist.pop_back(); 100 Stack.pop_back(); 101 // Insert I to the Info map. 102 InstInfoMap.insert(std::make_pair(I, Info())); 103 continue; 104 } 105 106 if (InstInfoMap.count(I)) { 107 Worklist.pop_back(); 108 continue; 109 } 110 111 // Add the instruction to the stack before start handling its operands. 112 Stack.push_back(I); 113 114 unsigned Opc = I->getOpcode(); 115 switch (Opc) { 116 case Instruction::Trunc: 117 case Instruction::ZExt: 118 case Instruction::SExt: 119 // trunc(trunc(x)) -> trunc(x) 120 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 121 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new 122 // dest 123 break; 124 case Instruction::Add: 125 case Instruction::Sub: 126 case Instruction::Mul: 127 case Instruction::And: 128 case Instruction::Or: 129 case Instruction::Xor: 130 case Instruction::Select: { 131 SmallVector<Value *, 2> Operands; 132 getRelevantOperands(I, Operands); 133 for (Value *Operand : Operands) 134 Worklist.push_back(Operand); 135 break; 136 } 137 default: 138 // TODO: Can handle more cases here: 139 // 1. shufflevector, extractelement, insertelement 140 // 2. udiv, urem 141 // 3. shl, lshr, ashr 142 // 4. phi node(and loop handling) 143 // ... 144 return false; 145 } 146 } 147 return true; 148 } 149 150 unsigned TruncInstCombine::getMinBitWidth() { 151 SmallVector<Value *, 8> Worklist; 152 SmallVector<Instruction *, 8> Stack; 153 154 Value *Src = CurrentTruncInst->getOperand(0); 155 Type *DstTy = CurrentTruncInst->getType(); 156 unsigned TruncBitWidth = DstTy->getScalarSizeInBits(); 157 unsigned OrigBitWidth = 158 CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits(); 159 160 if (isa<Constant>(Src)) 161 return TruncBitWidth; 162 163 Worklist.push_back(Src); 164 InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth; 165 166 while (!Worklist.empty()) { 167 Value *Curr = Worklist.back(); 168 169 if (isa<Constant>(Curr)) { 170 Worklist.pop_back(); 171 continue; 172 } 173 174 // Otherwise, it must be an instruction. 175 auto *I = cast<Instruction>(Curr); 176 177 auto &Info = InstInfoMap[I]; 178 179 SmallVector<Value *, 2> Operands; 180 getRelevantOperands(I, Operands); 181 182 if (!Stack.empty() && Stack.back() == I) { 183 // Already handled all instruction operands, can remove it from both, the 184 // Worklist and the Stack, and update MinBitWidth. 185 Worklist.pop_back(); 186 Stack.pop_back(); 187 for (auto *Operand : Operands) 188 if (auto *IOp = dyn_cast<Instruction>(Operand)) 189 Info.MinBitWidth = 190 std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth); 191 continue; 192 } 193 194 // Add the instruction to the stack before start handling its operands. 195 Stack.push_back(I); 196 unsigned ValidBitWidth = Info.ValidBitWidth; 197 198 // Update minimum bit-width before handling its operands. This is required 199 // when the instruction is part of a loop. 200 Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth); 201 202 for (auto *Operand : Operands) 203 if (auto *IOp = dyn_cast<Instruction>(Operand)) { 204 // If we already calculated the minimum bit-width for this valid 205 // bit-width, or for a smaller valid bit-width, then just keep the 206 // answer we already calculated. 207 unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth; 208 if (IOpBitwidth >= ValidBitWidth) 209 continue; 210 InstInfoMap[IOp].ValidBitWidth = ValidBitWidth; 211 Worklist.push_back(IOp); 212 } 213 } 214 unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth; 215 assert(MinBitWidth >= TruncBitWidth); 216 217 if (MinBitWidth > TruncBitWidth) { 218 // In this case reducing expression with vector type might generate a new 219 // vector type, which is not preferable as it might result in generating 220 // sub-optimal code. 221 if (DstTy->isVectorTy()) 222 return OrigBitWidth; 223 // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth). 224 Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth); 225 // Update minimum bit-width with the new destination type bit-width if 226 // succeeded to find such, otherwise, with original bit-width. 227 MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth; 228 } else { // MinBitWidth == TruncBitWidth 229 // In this case the expression can be evaluated with the trunc instruction 230 // destination type, and trunc instruction can be omitted. However, we 231 // should not perform the evaluation if the original type is a legal scalar 232 // type and the target type is illegal. 233 bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth); 234 bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth); 235 if (!DstTy->isVectorTy() && FromLegal && !ToLegal) 236 return OrigBitWidth; 237 } 238 return MinBitWidth; 239 } 240 241 Type *TruncInstCombine::getBestTruncatedType() { 242 if (!buildTruncExpressionDag()) 243 return nullptr; 244 245 // We don't want to duplicate instructions, which isn't profitable. Thus, we 246 // can't shrink something that has multiple users, unless all users are 247 // post-dominated by the trunc instruction, i.e., were visited during the 248 // expression evaluation. 249 unsigned DesiredBitWidth = 0; 250 for (auto Itr : InstInfoMap) { 251 Instruction *I = Itr.first; 252 if (I->hasOneUse()) 253 continue; 254 bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I)); 255 for (auto *U : I->users()) 256 if (auto *UI = dyn_cast<Instruction>(U)) 257 if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) { 258 if (!IsExtInst) 259 return nullptr; 260 // If this is an extension from the dest type, we can eliminate it, 261 // even if it has multiple users. Thus, update the DesiredBitWidth and 262 // validate all extension instructions agrees on same DesiredBitWidth. 263 unsigned ExtInstBitWidth = 264 I->getOperand(0)->getType()->getScalarSizeInBits(); 265 if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth) 266 return nullptr; 267 DesiredBitWidth = ExtInstBitWidth; 268 } 269 } 270 271 unsigned OrigBitWidth = 272 CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits(); 273 274 // Calculate minimum allowed bit-width allowed for shrinking the currently 275 // visited truncate's operand. 276 unsigned MinBitWidth = getMinBitWidth(); 277 278 // Check that we can shrink to smaller bit-width than original one and that 279 // it is similar to the DesiredBitWidth is such exists. 280 if (MinBitWidth >= OrigBitWidth || 281 (DesiredBitWidth && DesiredBitWidth != MinBitWidth)) 282 return nullptr; 283 284 return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth); 285 } 286 287 /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type 288 /// for \p V, according to its type, if it vector type, return the vector 289 /// version of \p Ty, otherwise return \p Ty. 290 static Type *getReducedType(Value *V, Type *Ty) { 291 assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type"); 292 if (auto *VTy = dyn_cast<VectorType>(V->getType())) { 293 // FIXME: should this handle scalable vectors? 294 return FixedVectorType::get(Ty, VTy->getNumElements()); 295 } 296 return Ty; 297 } 298 299 Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) { 300 Type *Ty = getReducedType(V, SclTy); 301 if (auto *C = dyn_cast<Constant>(V)) { 302 C = ConstantExpr::getIntegerCast(C, Ty, false); 303 // If we got a constantexpr back, try to simplify it with DL info. 304 return ConstantFoldConstant(C, DL, &TLI); 305 } 306 307 auto *I = cast<Instruction>(V); 308 Info Entry = InstInfoMap.lookup(I); 309 assert(Entry.NewValue); 310 return Entry.NewValue; 311 } 312 313 void TruncInstCombine::ReduceExpressionDag(Type *SclTy) { 314 NumInstrsReduced += InstInfoMap.size(); 315 for (auto &Itr : InstInfoMap) { // Forward 316 Instruction *I = Itr.first; 317 TruncInstCombine::Info &NodeInfo = Itr.second; 318 319 assert(!NodeInfo.NewValue && "Instruction has been evaluated"); 320 321 IRBuilder<> Builder(I); 322 Value *Res = nullptr; 323 unsigned Opc = I->getOpcode(); 324 switch (Opc) { 325 case Instruction::Trunc: 326 case Instruction::ZExt: 327 case Instruction::SExt: { 328 Type *Ty = getReducedType(I, SclTy); 329 // If the source type of the cast is the type we're trying for then we can 330 // just return the source. There's no need to insert it because it is not 331 // new. 332 if (I->getOperand(0)->getType() == Ty) { 333 assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst"); 334 NodeInfo.NewValue = I->getOperand(0); 335 continue; 336 } 337 // Otherwise, must be the same type of cast, so just reinsert a new one. 338 // This also handles the case of zext(trunc(x)) -> zext(x). 339 Res = Builder.CreateIntCast(I->getOperand(0), Ty, 340 Opc == Instruction::SExt); 341 342 // Update Worklist entries with new value if needed. 343 // There are three possible changes to the Worklist: 344 // 1. Update Old-TruncInst -> New-TruncInst. 345 // 2. Remove Old-TruncInst (if New node is not TruncInst). 346 // 3. Add New-TruncInst (if Old node was not TruncInst). 347 auto Entry = find(Worklist, I); 348 if (Entry != Worklist.end()) { 349 if (auto *NewCI = dyn_cast<TruncInst>(Res)) 350 *Entry = NewCI; 351 else 352 Worklist.erase(Entry); 353 } else if (auto *NewCI = dyn_cast<TruncInst>(Res)) 354 Worklist.push_back(NewCI); 355 break; 356 } 357 case Instruction::Add: 358 case Instruction::Sub: 359 case Instruction::Mul: 360 case Instruction::And: 361 case Instruction::Or: 362 case Instruction::Xor: { 363 Value *LHS = getReducedOperand(I->getOperand(0), SclTy); 364 Value *RHS = getReducedOperand(I->getOperand(1), SclTy); 365 Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS); 366 break; 367 } 368 case Instruction::Select: { 369 Value *Op0 = I->getOperand(0); 370 Value *LHS = getReducedOperand(I->getOperand(1), SclTy); 371 Value *RHS = getReducedOperand(I->getOperand(2), SclTy); 372 Res = Builder.CreateSelect(Op0, LHS, RHS); 373 break; 374 } 375 default: 376 llvm_unreachable("Unhandled instruction"); 377 } 378 379 NodeInfo.NewValue = Res; 380 if (auto *ResI = dyn_cast<Instruction>(Res)) 381 ResI->takeName(I); 382 } 383 384 Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy); 385 Type *DstTy = CurrentTruncInst->getType(); 386 if (Res->getType() != DstTy) { 387 IRBuilder<> Builder(CurrentTruncInst); 388 Res = Builder.CreateIntCast(Res, DstTy, false); 389 if (auto *ResI = dyn_cast<Instruction>(Res)) 390 ResI->takeName(CurrentTruncInst); 391 } 392 CurrentTruncInst->replaceAllUsesWith(Res); 393 394 // Erase old expression dag, which was replaced by the reduced expression dag. 395 // We iterate backward, which means we visit the instruction before we visit 396 // any of its operands, this way, when we get to the operand, we already 397 // removed the instructions (from the expression dag) that uses it. 398 CurrentTruncInst->eraseFromParent(); 399 for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) { 400 // We still need to check that the instruction has no users before we erase 401 // it, because {SExt, ZExt}Inst Instruction might have other users that was 402 // not reduced, in such case, we need to keep that instruction. 403 if (I->first->use_empty()) 404 I->first->eraseFromParent(); 405 } 406 } 407 408 bool TruncInstCombine::run(Function &F) { 409 bool MadeIRChange = false; 410 411 // Collect all TruncInst in the function into the Worklist for evaluating. 412 for (auto &BB : F) { 413 // Ignore unreachable basic block. 414 if (!DT.isReachableFromEntry(&BB)) 415 continue; 416 for (auto &I : BB) 417 if (auto *CI = dyn_cast<TruncInst>(&I)) 418 Worklist.push_back(CI); 419 } 420 421 // Process all TruncInst in the Worklist, for each instruction: 422 // 1. Check if it dominates an eligible expression dag to be reduced. 423 // 2. Create a reduced expression dag and replace the old one with it. 424 while (!Worklist.empty()) { 425 CurrentTruncInst = Worklist.pop_back_val(); 426 427 if (Type *NewDstSclTy = getBestTruncatedType()) { 428 LLVM_DEBUG( 429 dbgs() << "ICE: TruncInstCombine reducing type of expression dag " 430 "dominated by: " 431 << CurrentTruncInst << '\n'); 432 ReduceExpressionDag(NewDstSclTy); 433 ++NumDAGsReduced; 434 MadeIRChange = true; 435 } 436 } 437 438 return MadeIRChange; 439 } 440