xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/AggressiveInstCombine/TruncInstCombine.cpp (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 //===- TruncInstCombine.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // TruncInstCombine - looks for expression dags post-dominated by TruncInst and
10 // for each eligible dag, it will create a reduced bit-width expression, replace
11 // the old expression with this new one and remove the old expression.
12 // Eligible expression dag is such that:
13 //   1. Contains only supported instructions.
14 //   2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
15 //   3. Can be evaluated into type with reduced legal bit-width.
16 //   4. All instructions in the dag must not have users outside the dag.
17 //      The only exception is for {ZExt, SExt}Inst with operand type equal to
18 //      the new reduced type evaluated in (3).
19 //
20 // The motivation for this optimization is that evaluating and expression using
21 // smaller bit-width is preferable, especially for vectorization where we can
22 // fit more values in one vectorized instruction. In addition, this optimization
23 // may decrease the number of cast instructions, but will not increase it.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "AggressiveInstCombineInternal.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "aggressive-instcombine"
40 
41 STATISTIC(
42     NumDAGsReduced,
43     "Number of truncations eliminated by reducing bit width of expression DAG");
44 STATISTIC(NumInstrsReduced,
45           "Number of instructions whose bit width was reduced");
46 
47 /// Given an instruction and a container, it fills all the relevant operands of
48 /// that instruction, with respect to the Trunc expression dag optimizaton.
49 static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
50   unsigned Opc = I->getOpcode();
51   switch (Opc) {
52   case Instruction::Trunc:
53   case Instruction::ZExt:
54   case Instruction::SExt:
55     // These CastInst are considered leaves of the evaluated expression, thus,
56     // their operands are not relevent.
57     break;
58   case Instruction::Add:
59   case Instruction::Sub:
60   case Instruction::Mul:
61   case Instruction::And:
62   case Instruction::Or:
63   case Instruction::Xor:
64     Ops.push_back(I->getOperand(0));
65     Ops.push_back(I->getOperand(1));
66     break;
67   case Instruction::Select:
68     Ops.push_back(I->getOperand(1));
69     Ops.push_back(I->getOperand(2));
70     break;
71   default:
72     llvm_unreachable("Unreachable!");
73   }
74 }
75 
76 bool TruncInstCombine::buildTruncExpressionDag() {
77   SmallVector<Value *, 8> Worklist;
78   SmallVector<Instruction *, 8> Stack;
79   // Clear old expression dag.
80   InstInfoMap.clear();
81 
82   Worklist.push_back(CurrentTruncInst->getOperand(0));
83 
84   while (!Worklist.empty()) {
85     Value *Curr = Worklist.back();
86 
87     if (isa<Constant>(Curr)) {
88       Worklist.pop_back();
89       continue;
90     }
91 
92     auto *I = dyn_cast<Instruction>(Curr);
93     if (!I)
94       return false;
95 
96     if (!Stack.empty() && Stack.back() == I) {
97       // Already handled all instruction operands, can remove it from both the
98       // Worklist and the Stack, and add it to the instruction info map.
99       Worklist.pop_back();
100       Stack.pop_back();
101       // Insert I to the Info map.
102       InstInfoMap.insert(std::make_pair(I, Info()));
103       continue;
104     }
105 
106     if (InstInfoMap.count(I)) {
107       Worklist.pop_back();
108       continue;
109     }
110 
111     // Add the instruction to the stack before start handling its operands.
112     Stack.push_back(I);
113 
114     unsigned Opc = I->getOpcode();
115     switch (Opc) {
116     case Instruction::Trunc:
117     case Instruction::ZExt:
118     case Instruction::SExt:
119       // trunc(trunc(x)) -> trunc(x)
120       // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
121       // trunc(ext(x)) -> trunc(x) if the source type is larger than the new
122       // dest
123       break;
124     case Instruction::Add:
125     case Instruction::Sub:
126     case Instruction::Mul:
127     case Instruction::And:
128     case Instruction::Or:
129     case Instruction::Xor:
130     case Instruction::Select: {
131       SmallVector<Value *, 2> Operands;
132       getRelevantOperands(I, Operands);
133       append_range(Worklist, Operands);
134       break;
135     }
136     default:
137       // TODO: Can handle more cases here:
138       // 1. shufflevector, extractelement, insertelement
139       // 2. udiv, urem
140       // 3. shl, lshr, ashr
141       // 4. phi node(and loop handling)
142       // ...
143       return false;
144     }
145   }
146   return true;
147 }
148 
149 unsigned TruncInstCombine::getMinBitWidth() {
150   SmallVector<Value *, 8> Worklist;
151   SmallVector<Instruction *, 8> Stack;
152 
153   Value *Src = CurrentTruncInst->getOperand(0);
154   Type *DstTy = CurrentTruncInst->getType();
155   unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
156   unsigned OrigBitWidth =
157       CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
158 
159   if (isa<Constant>(Src))
160     return TruncBitWidth;
161 
162   Worklist.push_back(Src);
163   InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;
164 
165   while (!Worklist.empty()) {
166     Value *Curr = Worklist.back();
167 
168     if (isa<Constant>(Curr)) {
169       Worklist.pop_back();
170       continue;
171     }
172 
173     // Otherwise, it must be an instruction.
174     auto *I = cast<Instruction>(Curr);
175 
176     auto &Info = InstInfoMap[I];
177 
178     SmallVector<Value *, 2> Operands;
179     getRelevantOperands(I, Operands);
180 
181     if (!Stack.empty() && Stack.back() == I) {
182       // Already handled all instruction operands, can remove it from both, the
183       // Worklist and the Stack, and update MinBitWidth.
184       Worklist.pop_back();
185       Stack.pop_back();
186       for (auto *Operand : Operands)
187         if (auto *IOp = dyn_cast<Instruction>(Operand))
188           Info.MinBitWidth =
189               std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
190       continue;
191     }
192 
193     // Add the instruction to the stack before start handling its operands.
194     Stack.push_back(I);
195     unsigned ValidBitWidth = Info.ValidBitWidth;
196 
197     // Update minimum bit-width before handling its operands. This is required
198     // when the instruction is part of a loop.
199     Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);
200 
201     for (auto *Operand : Operands)
202       if (auto *IOp = dyn_cast<Instruction>(Operand)) {
203         // If we already calculated the minimum bit-width for this valid
204         // bit-width, or for a smaller valid bit-width, then just keep the
205         // answer we already calculated.
206         unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
207         if (IOpBitwidth >= ValidBitWidth)
208           continue;
209         InstInfoMap[IOp].ValidBitWidth = ValidBitWidth;
210         Worklist.push_back(IOp);
211       }
212   }
213   unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
214   assert(MinBitWidth >= TruncBitWidth);
215 
216   if (MinBitWidth > TruncBitWidth) {
217     // In this case reducing expression with vector type might generate a new
218     // vector type, which is not preferable as it might result in generating
219     // sub-optimal code.
220     if (DstTy->isVectorTy())
221       return OrigBitWidth;
222     // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
223     Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
224     // Update minimum bit-width with the new destination type bit-width if
225     // succeeded to find such, otherwise, with original bit-width.
226     MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
227   } else { // MinBitWidth == TruncBitWidth
228     // In this case the expression can be evaluated with the trunc instruction
229     // destination type, and trunc instruction can be omitted. However, we
230     // should not perform the evaluation if the original type is a legal scalar
231     // type and the target type is illegal.
232     bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
233     bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
234     if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
235       return OrigBitWidth;
236   }
237   return MinBitWidth;
238 }
239 
240 Type *TruncInstCombine::getBestTruncatedType() {
241   if (!buildTruncExpressionDag())
242     return nullptr;
243 
244   // We don't want to duplicate instructions, which isn't profitable. Thus, we
245   // can't shrink something that has multiple users, unless all users are
246   // post-dominated by the trunc instruction, i.e., were visited during the
247   // expression evaluation.
248   unsigned DesiredBitWidth = 0;
249   for (auto Itr : InstInfoMap) {
250     Instruction *I = Itr.first;
251     if (I->hasOneUse())
252       continue;
253     bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
254     for (auto *U : I->users())
255       if (auto *UI = dyn_cast<Instruction>(U))
256         if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
257           if (!IsExtInst)
258             return nullptr;
259           // If this is an extension from the dest type, we can eliminate it,
260           // even if it has multiple users. Thus, update the DesiredBitWidth and
261           // validate all extension instructions agrees on same DesiredBitWidth.
262           unsigned ExtInstBitWidth =
263               I->getOperand(0)->getType()->getScalarSizeInBits();
264           if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
265             return nullptr;
266           DesiredBitWidth = ExtInstBitWidth;
267         }
268   }
269 
270   unsigned OrigBitWidth =
271       CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
272 
273   // Calculate minimum allowed bit-width allowed for shrinking the currently
274   // visited truncate's operand.
275   unsigned MinBitWidth = getMinBitWidth();
276 
277   // Check that we can shrink to smaller bit-width than original one and that
278   // it is similar to the DesiredBitWidth is such exists.
279   if (MinBitWidth >= OrigBitWidth ||
280       (DesiredBitWidth && DesiredBitWidth != MinBitWidth))
281     return nullptr;
282 
283   return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
284 }
285 
286 /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
287 /// for \p V, according to its type, if it vector type, return the vector
288 /// version of \p Ty, otherwise return \p Ty.
289 static Type *getReducedType(Value *V, Type *Ty) {
290   assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
291   if (auto *VTy = dyn_cast<VectorType>(V->getType()))
292     return VectorType::get(Ty, VTy->getElementCount());
293   return Ty;
294 }
295 
296 Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
297   Type *Ty = getReducedType(V, SclTy);
298   if (auto *C = dyn_cast<Constant>(V)) {
299     C = ConstantExpr::getIntegerCast(C, Ty, false);
300     // If we got a constantexpr back, try to simplify it with DL info.
301     return ConstantFoldConstant(C, DL, &TLI);
302   }
303 
304   auto *I = cast<Instruction>(V);
305   Info Entry = InstInfoMap.lookup(I);
306   assert(Entry.NewValue);
307   return Entry.NewValue;
308 }
309 
310 void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
311   NumInstrsReduced += InstInfoMap.size();
312   for (auto &Itr : InstInfoMap) { // Forward
313     Instruction *I = Itr.first;
314     TruncInstCombine::Info &NodeInfo = Itr.second;
315 
316     assert(!NodeInfo.NewValue && "Instruction has been evaluated");
317 
318     IRBuilder<> Builder(I);
319     Value *Res = nullptr;
320     unsigned Opc = I->getOpcode();
321     switch (Opc) {
322     case Instruction::Trunc:
323     case Instruction::ZExt:
324     case Instruction::SExt: {
325       Type *Ty = getReducedType(I, SclTy);
326       // If the source type of the cast is the type we're trying for then we can
327       // just return the source.  There's no need to insert it because it is not
328       // new.
329       if (I->getOperand(0)->getType() == Ty) {
330         assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
331         NodeInfo.NewValue = I->getOperand(0);
332         continue;
333       }
334       // Otherwise, must be the same type of cast, so just reinsert a new one.
335       // This also handles the case of zext(trunc(x)) -> zext(x).
336       Res = Builder.CreateIntCast(I->getOperand(0), Ty,
337                                   Opc == Instruction::SExt);
338 
339       // Update Worklist entries with new value if needed.
340       // There are three possible changes to the Worklist:
341       // 1. Update Old-TruncInst -> New-TruncInst.
342       // 2. Remove Old-TruncInst (if New node is not TruncInst).
343       // 3. Add New-TruncInst (if Old node was not TruncInst).
344       auto *Entry = find(Worklist, I);
345       if (Entry != Worklist.end()) {
346         if (auto *NewCI = dyn_cast<TruncInst>(Res))
347           *Entry = NewCI;
348         else
349           Worklist.erase(Entry);
350       } else if (auto *NewCI = dyn_cast<TruncInst>(Res))
351           Worklist.push_back(NewCI);
352       break;
353     }
354     case Instruction::Add:
355     case Instruction::Sub:
356     case Instruction::Mul:
357     case Instruction::And:
358     case Instruction::Or:
359     case Instruction::Xor: {
360       Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
361       Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
362       Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
363       break;
364     }
365     case Instruction::Select: {
366       Value *Op0 = I->getOperand(0);
367       Value *LHS = getReducedOperand(I->getOperand(1), SclTy);
368       Value *RHS = getReducedOperand(I->getOperand(2), SclTy);
369       Res = Builder.CreateSelect(Op0, LHS, RHS);
370       break;
371     }
372     default:
373       llvm_unreachable("Unhandled instruction");
374     }
375 
376     NodeInfo.NewValue = Res;
377     if (auto *ResI = dyn_cast<Instruction>(Res))
378       ResI->takeName(I);
379   }
380 
381   Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
382   Type *DstTy = CurrentTruncInst->getType();
383   if (Res->getType() != DstTy) {
384     IRBuilder<> Builder(CurrentTruncInst);
385     Res = Builder.CreateIntCast(Res, DstTy, false);
386     if (auto *ResI = dyn_cast<Instruction>(Res))
387       ResI->takeName(CurrentTruncInst);
388   }
389   CurrentTruncInst->replaceAllUsesWith(Res);
390 
391   // Erase old expression dag, which was replaced by the reduced expression dag.
392   // We iterate backward, which means we visit the instruction before we visit
393   // any of its operands, this way, when we get to the operand, we already
394   // removed the instructions (from the expression dag) that uses it.
395   CurrentTruncInst->eraseFromParent();
396   for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
397     // We still need to check that the instruction has no users before we erase
398     // it, because {SExt, ZExt}Inst Instruction might have other users that was
399     // not reduced, in such case, we need to keep that instruction.
400     if (I->first->use_empty())
401       I->first->eraseFromParent();
402   }
403 }
404 
405 bool TruncInstCombine::run(Function &F) {
406   bool MadeIRChange = false;
407 
408   // Collect all TruncInst in the function into the Worklist for evaluating.
409   for (auto &BB : F) {
410     // Ignore unreachable basic block.
411     if (!DT.isReachableFromEntry(&BB))
412       continue;
413     for (auto &I : BB)
414       if (auto *CI = dyn_cast<TruncInst>(&I))
415         Worklist.push_back(CI);
416   }
417 
418   // Process all TruncInst in the Worklist, for each instruction:
419   //   1. Check if it dominates an eligible expression dag to be reduced.
420   //   2. Create a reduced expression dag and replace the old one with it.
421   while (!Worklist.empty()) {
422     CurrentTruncInst = Worklist.pop_back_val();
423 
424     if (Type *NewDstSclTy = getBestTruncatedType()) {
425       LLVM_DEBUG(
426           dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
427                     "dominated by: "
428                  << CurrentTruncInst << '\n');
429       ReduceExpressionDag(NewDstSclTy);
430       ++NumDAGsReduced;
431       MadeIRChange = true;
432     }
433   }
434 
435   return MadeIRChange;
436 }
437