xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/AggressiveInstCombine/TruncInstCombine.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- TruncInstCombine.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // TruncInstCombine - looks for expression graphs post-dominated by TruncInst
10 // and for each eligible graph, it will create a reduced bit-width expression,
11 // replace the old expression with this new one and remove the old expression.
12 // Eligible expression graph is such that:
13 //   1. Contains only supported instructions.
14 //   2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
15 //   3. Can be evaluated into type with reduced legal bit-width.
16 //   4. All instructions in the graph must not have users outside the graph.
17 //      The only exception is for {ZExt, SExt}Inst with operand type equal to
18 //      the new reduced type evaluated in (3).
19 //
20 // The motivation for this optimization is that evaluating and expression using
21 // smaller bit-width is preferable, especially for vectorization where we can
22 // fit more values in one vectorized instruction. In addition, this optimization
23 // may decrease the number of cast instructions, but will not increase it.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "AggressiveInstCombineInternal.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "aggressive-instcombine"
40 
41 STATISTIC(NumExprsReduced, "Number of truncations eliminated by reducing bit "
42                            "width of expression graph");
43 STATISTIC(NumInstrsReduced,
44           "Number of instructions whose bit width was reduced");
45 
46 /// Given an instruction and a container, it fills all the relevant operands of
47 /// that instruction, with respect to the Trunc expression graph optimizaton.
48 static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
49   unsigned Opc = I->getOpcode();
50   switch (Opc) {
51   case Instruction::Trunc:
52   case Instruction::ZExt:
53   case Instruction::SExt:
54     // These CastInst are considered leaves of the evaluated expression, thus,
55     // their operands are not relevent.
56     break;
57   case Instruction::Add:
58   case Instruction::Sub:
59   case Instruction::Mul:
60   case Instruction::And:
61   case Instruction::Or:
62   case Instruction::Xor:
63   case Instruction::Shl:
64   case Instruction::LShr:
65   case Instruction::AShr:
66   case Instruction::UDiv:
67   case Instruction::URem:
68   case Instruction::InsertElement:
69     Ops.push_back(I->getOperand(0));
70     Ops.push_back(I->getOperand(1));
71     break;
72   case Instruction::ExtractElement:
73     Ops.push_back(I->getOperand(0));
74     break;
75   case Instruction::Select:
76     Ops.push_back(I->getOperand(1));
77     Ops.push_back(I->getOperand(2));
78     break;
79   case Instruction::PHI:
80     for (Value *V : cast<PHINode>(I)->incoming_values())
81       Ops.push_back(V);
82     break;
83   default:
84     llvm_unreachable("Unreachable!");
85   }
86 }
87 
88 bool TruncInstCombine::buildTruncExpressionGraph() {
89   SmallVector<Value *, 8> Worklist;
90   SmallVector<Instruction *, 8> Stack;
91   // Clear old instructions info.
92   InstInfoMap.clear();
93 
94   Worklist.push_back(CurrentTruncInst->getOperand(0));
95 
96   while (!Worklist.empty()) {
97     Value *Curr = Worklist.back();
98 
99     if (isa<Constant>(Curr)) {
100       Worklist.pop_back();
101       continue;
102     }
103 
104     auto *I = dyn_cast<Instruction>(Curr);
105     if (!I)
106       return false;
107 
108     if (!Stack.empty() && Stack.back() == I) {
109       // Already handled all instruction operands, can remove it from both the
110       // Worklist and the Stack, and add it to the instruction info map.
111       Worklist.pop_back();
112       Stack.pop_back();
113       // Insert I to the Info map.
114       InstInfoMap.insert(std::make_pair(I, Info()));
115       continue;
116     }
117 
118     if (InstInfoMap.count(I)) {
119       Worklist.pop_back();
120       continue;
121     }
122 
123     // Add the instruction to the stack before start handling its operands.
124     Stack.push_back(I);
125 
126     unsigned Opc = I->getOpcode();
127     switch (Opc) {
128     case Instruction::Trunc:
129     case Instruction::ZExt:
130     case Instruction::SExt:
131       // trunc(trunc(x)) -> trunc(x)
132       // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
133       // trunc(ext(x)) -> trunc(x) if the source type is larger than the new
134       // dest
135       break;
136     case Instruction::Add:
137     case Instruction::Sub:
138     case Instruction::Mul:
139     case Instruction::And:
140     case Instruction::Or:
141     case Instruction::Xor:
142     case Instruction::Shl:
143     case Instruction::LShr:
144     case Instruction::AShr:
145     case Instruction::UDiv:
146     case Instruction::URem:
147     case Instruction::InsertElement:
148     case Instruction::ExtractElement:
149     case Instruction::Select: {
150       SmallVector<Value *, 2> Operands;
151       getRelevantOperands(I, Operands);
152       append_range(Worklist, Operands);
153       break;
154     }
155     case Instruction::PHI: {
156       SmallVector<Value *, 2> Operands;
157       getRelevantOperands(I, Operands);
158       // Add only operands not in Stack to prevent cycle
159       for (auto *Op : Operands)
160         if (!llvm::is_contained(Stack, Op))
161           Worklist.push_back(Op);
162       break;
163     }
164     default:
165       // TODO: Can handle more cases here:
166       // 1. shufflevector
167       // 2. sdiv, srem
168       // ...
169       return false;
170     }
171   }
172   return true;
173 }
174 
175 unsigned TruncInstCombine::getMinBitWidth() {
176   SmallVector<Value *, 8> Worklist;
177   SmallVector<Instruction *, 8> Stack;
178 
179   Value *Src = CurrentTruncInst->getOperand(0);
180   Type *DstTy = CurrentTruncInst->getType();
181   unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
182   unsigned OrigBitWidth =
183       CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
184 
185   if (isa<Constant>(Src))
186     return TruncBitWidth;
187 
188   Worklist.push_back(Src);
189   InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;
190 
191   while (!Worklist.empty()) {
192     Value *Curr = Worklist.back();
193 
194     if (isa<Constant>(Curr)) {
195       Worklist.pop_back();
196       continue;
197     }
198 
199     // Otherwise, it must be an instruction.
200     auto *I = cast<Instruction>(Curr);
201 
202     auto &Info = InstInfoMap[I];
203 
204     SmallVector<Value *, 2> Operands;
205     getRelevantOperands(I, Operands);
206 
207     if (!Stack.empty() && Stack.back() == I) {
208       // Already handled all instruction operands, can remove it from both, the
209       // Worklist and the Stack, and update MinBitWidth.
210       Worklist.pop_back();
211       Stack.pop_back();
212       for (auto *Operand : Operands)
213         if (auto *IOp = dyn_cast<Instruction>(Operand))
214           Info.MinBitWidth =
215               std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
216       continue;
217     }
218 
219     // Add the instruction to the stack before start handling its operands.
220     Stack.push_back(I);
221     unsigned ValidBitWidth = Info.ValidBitWidth;
222 
223     // Update minimum bit-width before handling its operands. This is required
224     // when the instruction is part of a loop.
225     Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);
226 
227     for (auto *Operand : Operands)
228       if (auto *IOp = dyn_cast<Instruction>(Operand)) {
229         // If we already calculated the minimum bit-width for this valid
230         // bit-width, or for a smaller valid bit-width, then just keep the
231         // answer we already calculated.
232         unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
233         if (IOpBitwidth >= ValidBitWidth)
234           continue;
235         InstInfoMap[IOp].ValidBitWidth = ValidBitWidth;
236         Worklist.push_back(IOp);
237       }
238   }
239   unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
240   assert(MinBitWidth >= TruncBitWidth);
241 
242   if (MinBitWidth > TruncBitWidth) {
243     // In this case reducing expression with vector type might generate a new
244     // vector type, which is not preferable as it might result in generating
245     // sub-optimal code.
246     if (DstTy->isVectorTy())
247       return OrigBitWidth;
248     // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
249     Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
250     // Update minimum bit-width with the new destination type bit-width if
251     // succeeded to find such, otherwise, with original bit-width.
252     MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
253   } else { // MinBitWidth == TruncBitWidth
254     // In this case the expression can be evaluated with the trunc instruction
255     // destination type, and trunc instruction can be omitted. However, we
256     // should not perform the evaluation if the original type is a legal scalar
257     // type and the target type is illegal.
258     bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
259     bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
260     if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
261       return OrigBitWidth;
262   }
263   return MinBitWidth;
264 }
265 
266 Type *TruncInstCombine::getBestTruncatedType() {
267   if (!buildTruncExpressionGraph())
268     return nullptr;
269 
270   // We don't want to duplicate instructions, which isn't profitable. Thus, we
271   // can't shrink something that has multiple users, unless all users are
272   // post-dominated by the trunc instruction, i.e., were visited during the
273   // expression evaluation.
274   unsigned DesiredBitWidth = 0;
275   for (auto Itr : InstInfoMap) {
276     Instruction *I = Itr.first;
277     if (I->hasOneUse())
278       continue;
279     bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
280     for (auto *U : I->users())
281       if (auto *UI = dyn_cast<Instruction>(U))
282         if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
283           if (!IsExtInst)
284             return nullptr;
285           // If this is an extension from the dest type, we can eliminate it,
286           // even if it has multiple users. Thus, update the DesiredBitWidth and
287           // validate all extension instructions agrees on same DesiredBitWidth.
288           unsigned ExtInstBitWidth =
289               I->getOperand(0)->getType()->getScalarSizeInBits();
290           if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
291             return nullptr;
292           DesiredBitWidth = ExtInstBitWidth;
293         }
294   }
295 
296   unsigned OrigBitWidth =
297       CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
298 
299   // Initialize MinBitWidth for shift instructions with the minimum number
300   // that is greater than shift amount (i.e. shift amount + 1).
301   // For `lshr` adjust MinBitWidth so that all potentially truncated
302   // bits of the value-to-be-shifted are zeros.
303   // For `ashr` adjust MinBitWidth so that all potentially truncated
304   // bits of the value-to-be-shifted are sign bits (all zeros or ones)
305   // and even one (first) untruncated bit is sign bit.
306   // Exit early if MinBitWidth is not less than original bitwidth.
307   for (auto &Itr : InstInfoMap) {
308     Instruction *I = Itr.first;
309     if (I->isShift()) {
310       KnownBits KnownRHS = computeKnownBits(I->getOperand(1));
311       unsigned MinBitWidth = KnownRHS.getMaxValue()
312                                  .uadd_sat(APInt(OrigBitWidth, 1))
313                                  .getLimitedValue(OrigBitWidth);
314       if (MinBitWidth == OrigBitWidth)
315         return nullptr;
316       if (I->getOpcode() == Instruction::LShr) {
317         KnownBits KnownLHS = computeKnownBits(I->getOperand(0));
318         MinBitWidth =
319             std::max(MinBitWidth, KnownLHS.getMaxValue().getActiveBits());
320       }
321       if (I->getOpcode() == Instruction::AShr) {
322         unsigned NumSignBits = ComputeNumSignBits(I->getOperand(0));
323         MinBitWidth = std::max(MinBitWidth, OrigBitWidth - NumSignBits + 1);
324       }
325       if (MinBitWidth >= OrigBitWidth)
326         return nullptr;
327       Itr.second.MinBitWidth = MinBitWidth;
328     }
329     if (I->getOpcode() == Instruction::UDiv ||
330         I->getOpcode() == Instruction::URem) {
331       unsigned MinBitWidth = 0;
332       for (const auto &Op : I->operands()) {
333         KnownBits Known = computeKnownBits(Op);
334         MinBitWidth =
335             std::max(Known.getMaxValue().getActiveBits(), MinBitWidth);
336         if (MinBitWidth >= OrigBitWidth)
337           return nullptr;
338       }
339       Itr.second.MinBitWidth = MinBitWidth;
340     }
341   }
342 
343   // Calculate minimum allowed bit-width allowed for shrinking the currently
344   // visited truncate's operand.
345   unsigned MinBitWidth = getMinBitWidth();
346 
347   // Check that we can shrink to smaller bit-width than original one and that
348   // it is similar to the DesiredBitWidth is such exists.
349   if (MinBitWidth >= OrigBitWidth ||
350       (DesiredBitWidth && DesiredBitWidth != MinBitWidth))
351     return nullptr;
352 
353   return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
354 }
355 
356 /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
357 /// for \p V, according to its type, if it vector type, return the vector
358 /// version of \p Ty, otherwise return \p Ty.
359 static Type *getReducedType(Value *V, Type *Ty) {
360   assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
361   if (auto *VTy = dyn_cast<VectorType>(V->getType()))
362     return VectorType::get(Ty, VTy->getElementCount());
363   return Ty;
364 }
365 
366 Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
367   Type *Ty = getReducedType(V, SclTy);
368   if (auto *C = dyn_cast<Constant>(V)) {
369     C = ConstantExpr::getIntegerCast(C, Ty, false);
370     // If we got a constantexpr back, try to simplify it with DL info.
371     return ConstantFoldConstant(C, DL, &TLI);
372   }
373 
374   auto *I = cast<Instruction>(V);
375   Info Entry = InstInfoMap.lookup(I);
376   assert(Entry.NewValue);
377   return Entry.NewValue;
378 }
379 
380 void TruncInstCombine::ReduceExpressionGraph(Type *SclTy) {
381   NumInstrsReduced += InstInfoMap.size();
382   // Pairs of old and new phi-nodes
383   SmallVector<std::pair<PHINode *, PHINode *>, 2> OldNewPHINodes;
384   for (auto &Itr : InstInfoMap) { // Forward
385     Instruction *I = Itr.first;
386     TruncInstCombine::Info &NodeInfo = Itr.second;
387 
388     assert(!NodeInfo.NewValue && "Instruction has been evaluated");
389 
390     IRBuilder<> Builder(I);
391     Value *Res = nullptr;
392     unsigned Opc = I->getOpcode();
393     switch (Opc) {
394     case Instruction::Trunc:
395     case Instruction::ZExt:
396     case Instruction::SExt: {
397       Type *Ty = getReducedType(I, SclTy);
398       // If the source type of the cast is the type we're trying for then we can
399       // just return the source.  There's no need to insert it because it is not
400       // new.
401       if (I->getOperand(0)->getType() == Ty) {
402         assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
403         NodeInfo.NewValue = I->getOperand(0);
404         continue;
405       }
406       // Otherwise, must be the same type of cast, so just reinsert a new one.
407       // This also handles the case of zext(trunc(x)) -> zext(x).
408       Res = Builder.CreateIntCast(I->getOperand(0), Ty,
409                                   Opc == Instruction::SExt);
410 
411       // Update Worklist entries with new value if needed.
412       // There are three possible changes to the Worklist:
413       // 1. Update Old-TruncInst -> New-TruncInst.
414       // 2. Remove Old-TruncInst (if New node is not TruncInst).
415       // 3. Add New-TruncInst (if Old node was not TruncInst).
416       auto *Entry = find(Worklist, I);
417       if (Entry != Worklist.end()) {
418         if (auto *NewCI = dyn_cast<TruncInst>(Res))
419           *Entry = NewCI;
420         else
421           Worklist.erase(Entry);
422       } else if (auto *NewCI = dyn_cast<TruncInst>(Res))
423           Worklist.push_back(NewCI);
424       break;
425     }
426     case Instruction::Add:
427     case Instruction::Sub:
428     case Instruction::Mul:
429     case Instruction::And:
430     case Instruction::Or:
431     case Instruction::Xor:
432     case Instruction::Shl:
433     case Instruction::LShr:
434     case Instruction::AShr:
435     case Instruction::UDiv:
436     case Instruction::URem: {
437       Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
438       Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
439       Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
440       // Preserve `exact` flag since truncation doesn't change exactness
441       if (auto *PEO = dyn_cast<PossiblyExactOperator>(I))
442         if (auto *ResI = dyn_cast<Instruction>(Res))
443           ResI->setIsExact(PEO->isExact());
444       break;
445     }
446     case Instruction::ExtractElement: {
447       Value *Vec = getReducedOperand(I->getOperand(0), SclTy);
448       Value *Idx = I->getOperand(1);
449       Res = Builder.CreateExtractElement(Vec, Idx);
450       break;
451     }
452     case Instruction::InsertElement: {
453       Value *Vec = getReducedOperand(I->getOperand(0), SclTy);
454       Value *NewElt = getReducedOperand(I->getOperand(1), SclTy);
455       Value *Idx = I->getOperand(2);
456       Res = Builder.CreateInsertElement(Vec, NewElt, Idx);
457       break;
458     }
459     case Instruction::Select: {
460       Value *Op0 = I->getOperand(0);
461       Value *LHS = getReducedOperand(I->getOperand(1), SclTy);
462       Value *RHS = getReducedOperand(I->getOperand(2), SclTy);
463       Res = Builder.CreateSelect(Op0, LHS, RHS);
464       break;
465     }
466     case Instruction::PHI: {
467       Res = Builder.CreatePHI(getReducedType(I, SclTy), I->getNumOperands());
468       OldNewPHINodes.push_back(
469           std::make_pair(cast<PHINode>(I), cast<PHINode>(Res)));
470       break;
471     }
472     default:
473       llvm_unreachable("Unhandled instruction");
474     }
475 
476     NodeInfo.NewValue = Res;
477     if (auto *ResI = dyn_cast<Instruction>(Res))
478       ResI->takeName(I);
479   }
480 
481   for (auto &Node : OldNewPHINodes) {
482     PHINode *OldPN = Node.first;
483     PHINode *NewPN = Node.second;
484     for (auto Incoming : zip(OldPN->incoming_values(), OldPN->blocks()))
485       NewPN->addIncoming(getReducedOperand(std::get<0>(Incoming), SclTy),
486                          std::get<1>(Incoming));
487   }
488 
489   Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
490   Type *DstTy = CurrentTruncInst->getType();
491   if (Res->getType() != DstTy) {
492     IRBuilder<> Builder(CurrentTruncInst);
493     Res = Builder.CreateIntCast(Res, DstTy, false);
494     if (auto *ResI = dyn_cast<Instruction>(Res))
495       ResI->takeName(CurrentTruncInst);
496   }
497   CurrentTruncInst->replaceAllUsesWith(Res);
498 
499   // Erase old expression graph, which was replaced by the reduced expression
500   // graph.
501   CurrentTruncInst->eraseFromParent();
502   // First, erase old phi-nodes and its uses
503   for (auto &Node : OldNewPHINodes) {
504     PHINode *OldPN = Node.first;
505     OldPN->replaceAllUsesWith(PoisonValue::get(OldPN->getType()));
506     InstInfoMap.erase(OldPN);
507     OldPN->eraseFromParent();
508   }
509   // Now we have expression graph turned into dag.
510   // We iterate backward, which means we visit the instruction before we
511   // visit any of its operands, this way, when we get to the operand, we already
512   // removed the instructions (from the expression dag) that uses it.
513   for (auto &I : llvm::reverse(InstInfoMap)) {
514     // We still need to check that the instruction has no users before we erase
515     // it, because {SExt, ZExt}Inst Instruction might have other users that was
516     // not reduced, in such case, we need to keep that instruction.
517     if (I.first->use_empty())
518       I.first->eraseFromParent();
519     else
520       assert((isa<SExtInst>(I.first) || isa<ZExtInst>(I.first)) &&
521              "Only {SExt, ZExt}Inst might have unreduced users");
522   }
523 }
524 
525 bool TruncInstCombine::run(Function &F) {
526   bool MadeIRChange = false;
527 
528   // Collect all TruncInst in the function into the Worklist for evaluating.
529   for (auto &BB : F) {
530     // Ignore unreachable basic block.
531     if (!DT.isReachableFromEntry(&BB))
532       continue;
533     for (auto &I : BB)
534       if (auto *CI = dyn_cast<TruncInst>(&I))
535         Worklist.push_back(CI);
536   }
537 
538   // Process all TruncInst in the Worklist, for each instruction:
539   //   1. Check if it dominates an eligible expression graph to be reduced.
540   //   2. Create a reduced expression graph and replace the old one with it.
541   while (!Worklist.empty()) {
542     CurrentTruncInst = Worklist.pop_back_val();
543 
544     if (Type *NewDstSclTy = getBestTruncatedType()) {
545       LLVM_DEBUG(
546           dbgs() << "ICE: TruncInstCombine reducing type of expression graph "
547                     "dominated by: "
548                  << CurrentTruncInst << '\n');
549       ReduceExpressionGraph(NewDstSclTy);
550       ++NumExprsReduced;
551       MadeIRChange = true;
552     }
553   }
554 
555   return MadeIRChange;
556 }
557