xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/AggressiveInstCombine/AggressiveInstCombine.cpp (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 //  * Truncate instruction
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm-c/Initialization.h"
18 #include "llvm-c/Transforms/AggressiveInstCombine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/LegacyPassManager.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 
35 using namespace llvm;
36 using namespace PatternMatch;
37 
38 #define DEBUG_TYPE "aggressive-instcombine"
39 
40 STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded");
41 STATISTIC(NumGuardedRotates,
42           "Number of guarded rotates transformed into funnel shifts");
43 STATISTIC(NumGuardedFunnelShifts,
44           "Number of guarded funnel shifts transformed into funnel shifts");
45 STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized");
46 
47 namespace {
48 /// Contains expression pattern combiner logic.
49 /// This class provides both the logic to combine expression patterns and
50 /// combine them. It differs from InstCombiner class in that each pattern
51 /// combiner runs only once as opposed to InstCombine's multi-iteration,
52 /// which allows pattern combiner to have higher complexity than the O(1)
53 /// required by the instruction combiner.
54 class AggressiveInstCombinerLegacyPass : public FunctionPass {
55 public:
56   static char ID; // Pass identification, replacement for typeid
57 
58   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
59     initializeAggressiveInstCombinerLegacyPassPass(
60         *PassRegistry::getPassRegistry());
61   }
62 
63   void getAnalysisUsage(AnalysisUsage &AU) const override;
64 
65   /// Run all expression pattern optimizations on the given /p F function.
66   ///
67   /// \param F function to optimize.
68   /// \returns true if the IR is changed.
69   bool runOnFunction(Function &F) override;
70 };
71 } // namespace
72 
73 /// Match a pattern for a bitwise funnel/rotate operation that partially guards
74 /// against undefined behavior by branching around the funnel-shift/rotation
75 /// when the shift amount is 0.
76 static bool foldGuardedFunnelShift(Instruction &I, const DominatorTree &DT) {
77   if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
78     return false;
79 
80   // As with the one-use checks below, this is not strictly necessary, but we
81   // are being cautious to avoid potential perf regressions on targets that
82   // do not actually have a funnel/rotate instruction (where the funnel shift
83   // would be expanded back into math/shift/logic ops).
84   if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
85     return false;
86 
87   // Match V to funnel shift left/right and capture the source operands and
88   // shift amount.
89   auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1,
90                              Value *&ShAmt) {
91     Value *SubAmt;
92     unsigned Width = V->getType()->getScalarSizeInBits();
93 
94     // fshl(ShVal0, ShVal1, ShAmt)
95     //  == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt))
96     if (match(V, m_OneUse(m_c_Or(
97                      m_Shl(m_Value(ShVal0), m_Value(ShAmt)),
98                      m_LShr(m_Value(ShVal1),
99                             m_Sub(m_SpecificInt(Width), m_Value(SubAmt))))))) {
100       if (ShAmt == SubAmt) // TODO: Use m_Specific
101         return Intrinsic::fshl;
102     }
103 
104     // fshr(ShVal0, ShVal1, ShAmt)
105     //  == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt))
106     if (match(V,
107               m_OneUse(m_c_Or(m_Shl(m_Value(ShVal0), m_Sub(m_SpecificInt(Width),
108                                                            m_Value(SubAmt))),
109                               m_LShr(m_Value(ShVal1), m_Value(ShAmt)))))) {
110       if (ShAmt == SubAmt) // TODO: Use m_Specific
111         return Intrinsic::fshr;
112     }
113 
114     return Intrinsic::not_intrinsic;
115   };
116 
117   // One phi operand must be a funnel/rotate operation, and the other phi
118   // operand must be the source value of that funnel/rotate operation:
119   // phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ]
120   // phi [ fshl(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal0, GuardBB ]
121   // phi [ fshr(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal1, GuardBB ]
122   PHINode &Phi = cast<PHINode>(I);
123   unsigned FunnelOp = 0, GuardOp = 1;
124   Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
125   Value *ShVal0, *ShVal1, *ShAmt;
126   Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt);
127   if (IID == Intrinsic::not_intrinsic ||
128       (IID == Intrinsic::fshl && ShVal0 != P1) ||
129       (IID == Intrinsic::fshr && ShVal1 != P1)) {
130     IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt);
131     if (IID == Intrinsic::not_intrinsic ||
132         (IID == Intrinsic::fshl && ShVal0 != P0) ||
133         (IID == Intrinsic::fshr && ShVal1 != P0))
134       return false;
135     assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
136            "Pattern must match funnel shift left or right");
137     std::swap(FunnelOp, GuardOp);
138   }
139 
140   // The incoming block with our source operand must be the "guard" block.
141   // That must contain a cmp+branch to avoid the funnel/rotate when the shift
142   // amount is equal to 0. The other incoming block is the block with the
143   // funnel/rotate.
144   BasicBlock *GuardBB = Phi.getIncomingBlock(GuardOp);
145   BasicBlock *FunnelBB = Phi.getIncomingBlock(FunnelOp);
146   Instruction *TermI = GuardBB->getTerminator();
147 
148   // Ensure that the shift values dominate each block.
149   if (!DT.dominates(ShVal0, TermI) || !DT.dominates(ShVal1, TermI))
150     return false;
151 
152   ICmpInst::Predicate Pred;
153   BasicBlock *PhiBB = Phi.getParent();
154   if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()),
155                          m_SpecificBB(PhiBB), m_SpecificBB(FunnelBB))))
156     return false;
157 
158   if (Pred != CmpInst::ICMP_EQ)
159     return false;
160 
161   IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
162 
163   if (ShVal0 == ShVal1)
164     ++NumGuardedRotates;
165   else
166     ++NumGuardedFunnelShifts;
167 
168   // If this is not a rotate then the select was blocking poison from the
169   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
170   bool IsFshl = IID == Intrinsic::fshl;
171   if (ShVal0 != ShVal1) {
172     if (IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal1))
173       ShVal1 = Builder.CreateFreeze(ShVal1);
174     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal0))
175       ShVal0 = Builder.CreateFreeze(ShVal0);
176   }
177 
178   // We matched a variation of this IR pattern:
179   // GuardBB:
180   //   %cmp = icmp eq i32 %ShAmt, 0
181   //   br i1 %cmp, label %PhiBB, label %FunnelBB
182   // FunnelBB:
183   //   %sub = sub i32 32, %ShAmt
184   //   %shr = lshr i32 %ShVal1, %sub
185   //   %shl = shl i32 %ShVal0, %ShAmt
186   //   %fsh = or i32 %shr, %shl
187   //   br label %PhiBB
188   // PhiBB:
189   //   %cond = phi i32 [ %fsh, %FunnelBB ], [ %ShVal0, %GuardBB ]
190   // -->
191   // llvm.fshl.i32(i32 %ShVal0, i32 %ShVal1, i32 %ShAmt)
192   Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
193   Phi.replaceAllUsesWith(Builder.CreateCall(F, {ShVal0, ShVal1, ShAmt}));
194   return true;
195 }
196 
197 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
198 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
199 /// of 'and' ops, then we also need to capture the fact that we saw an
200 /// "and X, 1", so that's an extra return value for that case.
201 struct MaskOps {
202   Value *Root;
203   APInt Mask;
204   bool MatchAndChain;
205   bool FoundAnd1;
206 
207   MaskOps(unsigned BitWidth, bool MatchAnds)
208       : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
209         MatchAndChain(MatchAnds), FoundAnd1(false) {}
210 };
211 
212 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
213 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
214 /// value. Examples:
215 ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
216 /// returns { X, 0x129 }
217 ///   and (and (X >> 1), 1), (X >> 4)
218 /// returns { X, 0x12 }
219 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
220   Value *Op0, *Op1;
221   if (MOps.MatchAndChain) {
222     // Recurse through a chain of 'and' operands. This requires an extra check
223     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
224     // in the chain to know that all of the high bits are cleared.
225     if (match(V, m_And(m_Value(Op0), m_One()))) {
226       MOps.FoundAnd1 = true;
227       return matchAndOrChain(Op0, MOps);
228     }
229     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
230       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
231   } else {
232     // Recurse through a chain of 'or' operands.
233     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
234       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
235   }
236 
237   // We need a shift-right or a bare value representing a compare of bit 0 of
238   // the original source operand.
239   Value *Candidate;
240   const APInt *BitIndex = nullptr;
241   if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex))))
242     Candidate = V;
243 
244   // Initialize result source operand.
245   if (!MOps.Root)
246     MOps.Root = Candidate;
247 
248   // The shift constant is out-of-range? This code hasn't been simplified.
249   if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth()))
250     return false;
251 
252   // Fill in the mask bit derived from the shift constant.
253   MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0);
254   return MOps.Root == Candidate;
255 }
256 
257 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
258 /// These will include a chain of 'or' or 'and'-shifted bits from a
259 /// common source value:
260 /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
261 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
262 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
263 /// that differ only with a final 'not' of the result. We expect that final
264 /// 'not' to be folded with the compare that we create here (invert predicate).
265 static bool foldAnyOrAllBitsSet(Instruction &I) {
266   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
267   // final "and X, 1" instruction must be the final op in the sequence.
268   bool MatchAllBitsSet;
269   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
270     MatchAllBitsSet = true;
271   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
272     MatchAllBitsSet = false;
273   else
274     return false;
275 
276   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
277   if (MatchAllBitsSet) {
278     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
279       return false;
280   } else {
281     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
282       return false;
283   }
284 
285   // The pattern was found. Create a masked compare that replaces all of the
286   // shift and logic ops.
287   IRBuilder<> Builder(&I);
288   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
289   Value *And = Builder.CreateAnd(MOps.Root, Mask);
290   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
291                                : Builder.CreateIsNotNull(And);
292   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
293   I.replaceAllUsesWith(Zext);
294   ++NumAnyOrAllBitsSet;
295   return true;
296 }
297 
298 // Try to recognize below function as popcount intrinsic.
299 // This is the "best" algorithm from
300 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
301 // Also used in TargetLowering::expandCTPOP().
302 //
303 // int popcount(unsigned int i) {
304 //   i = i - ((i >> 1) & 0x55555555);
305 //   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
306 //   i = ((i + (i >> 4)) & 0x0F0F0F0F);
307 //   return (i * 0x01010101) >> 24;
308 // }
309 static bool tryToRecognizePopCount(Instruction &I) {
310   if (I.getOpcode() != Instruction::LShr)
311     return false;
312 
313   Type *Ty = I.getType();
314   if (!Ty->isIntOrIntVectorTy())
315     return false;
316 
317   unsigned Len = Ty->getScalarSizeInBits();
318   // FIXME: fix Len == 8 and other irregular type lengths.
319   if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
320     return false;
321 
322   APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
323   APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
324   APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
325   APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
326   APInt MaskShift = APInt(Len, Len - 8);
327 
328   Value *Op0 = I.getOperand(0);
329   Value *Op1 = I.getOperand(1);
330   Value *MulOp0;
331   // Matching "(i * 0x01010101...) >> 24".
332   if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
333        match(Op1, m_SpecificInt(MaskShift))) {
334     Value *ShiftOp0;
335     // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
336     if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
337                                     m_Deferred(ShiftOp0)),
338                             m_SpecificInt(Mask0F)))) {
339       Value *AndOp0;
340       // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
341       if (match(ShiftOp0,
342                 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
343                         m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
344                               m_SpecificInt(Mask33))))) {
345         Value *Root, *SubOp1;
346         // Matching "i - ((i >> 1) & 0x55555555...)".
347         if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
348             match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
349                                 m_SpecificInt(Mask55)))) {
350           LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
351           IRBuilder<> Builder(&I);
352           Function *Func = Intrinsic::getDeclaration(
353               I.getModule(), Intrinsic::ctpop, I.getType());
354           I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
355           ++NumPopCountRecognized;
356           return true;
357         }
358       }
359     }
360   }
361 
362   return false;
363 }
364 
365 /// This is the entry point for folds that could be implemented in regular
366 /// InstCombine, but they are separated because they are not expected to
367 /// occur frequently and/or have more than a constant-length pattern match.
368 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
369   bool MadeChange = false;
370   for (BasicBlock &BB : F) {
371     // Ignore unreachable basic blocks.
372     if (!DT.isReachableFromEntry(&BB))
373       continue;
374     // Do not delete instructions under here and invalidate the iterator.
375     // Walk the block backwards for efficiency. We're matching a chain of
376     // use->defs, so we're more likely to succeed by starting from the bottom.
377     // Also, we want to avoid matching partial patterns.
378     // TODO: It would be more efficient if we removed dead instructions
379     // iteratively in this loop rather than waiting until the end.
380     for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
381       MadeChange |= foldAnyOrAllBitsSet(I);
382       MadeChange |= foldGuardedFunnelShift(I, DT);
383       MadeChange |= tryToRecognizePopCount(I);
384     }
385   }
386 
387   // We're done with transforms, so remove dead instructions.
388   if (MadeChange)
389     for (BasicBlock &BB : F)
390       SimplifyInstructionsInBlock(&BB);
391 
392   return MadeChange;
393 }
394 
395 /// This is the entry point for all transforms. Pass manager differences are
396 /// handled in the callers of this function.
397 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
398   bool MadeChange = false;
399   const DataLayout &DL = F.getParent()->getDataLayout();
400   TruncInstCombine TIC(TLI, DL, DT);
401   MadeChange |= TIC.run(F);
402   MadeChange |= foldUnusualPatterns(F, DT);
403   return MadeChange;
404 }
405 
406 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
407     AnalysisUsage &AU) const {
408   AU.setPreservesCFG();
409   AU.addRequired<DominatorTreeWrapperPass>();
410   AU.addRequired<TargetLibraryInfoWrapperPass>();
411   AU.addPreserved<AAResultsWrapperPass>();
412   AU.addPreserved<BasicAAWrapperPass>();
413   AU.addPreserved<DominatorTreeWrapperPass>();
414   AU.addPreserved<GlobalsAAWrapperPass>();
415 }
416 
417 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
418   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
419   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
420   return runImpl(F, TLI, DT);
421 }
422 
423 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
424                                                  FunctionAnalysisManager &AM) {
425   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
426   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
427   if (!runImpl(F, TLI, DT)) {
428     // No changes, all analyses are preserved.
429     return PreservedAnalyses::all();
430   }
431   // Mark all the analyses that instcombine updates as preserved.
432   PreservedAnalyses PA;
433   PA.preserveSet<CFGAnalyses>();
434   return PA;
435 }
436 
437 char AggressiveInstCombinerLegacyPass::ID = 0;
438 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
439                       "aggressive-instcombine",
440                       "Combine pattern based expressions", false, false)
441 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
442 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
443 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
444                     "Combine pattern based expressions", false, false)
445 
446 // Initialization Routines
447 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
448   initializeAggressiveInstCombinerLegacyPassPass(Registry);
449 }
450 
451 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
452   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
453 }
454 
455 FunctionPass *llvm::createAggressiveInstCombinerPass() {
456   return new AggressiveInstCombinerLegacyPass();
457 }
458 
459 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
460   unwrap(PM)->add(createAggressiveInstCombinerPass());
461 }
462