xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/AggressiveInstCombine/AggressiveInstCombine.cpp (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 //  * Truncate instruction
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm-c/Initialization.h"
18 #include "llvm-c/Transforms/AggressiveInstCombine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/LegacyPassManager.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 
33 using namespace llvm;
34 using namespace PatternMatch;
35 
36 #define DEBUG_TYPE "aggressive-instcombine"
37 
38 STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded");
39 STATISTIC(NumGuardedRotates,
40           "Number of guarded rotates transformed into funnel shifts");
41 STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized");
42 
43 namespace {
44 /// Contains expression pattern combiner logic.
45 /// This class provides both the logic to combine expression patterns and
46 /// combine them. It differs from InstCombiner class in that each pattern
47 /// combiner runs only once as opposed to InstCombine's multi-iteration,
48 /// which allows pattern combiner to have higher complexity than the O(1)
49 /// required by the instruction combiner.
50 class AggressiveInstCombinerLegacyPass : public FunctionPass {
51 public:
52   static char ID; // Pass identification, replacement for typeid
53 
54   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
55     initializeAggressiveInstCombinerLegacyPassPass(
56         *PassRegistry::getPassRegistry());
57   }
58 
59   void getAnalysisUsage(AnalysisUsage &AU) const override;
60 
61   /// Run all expression pattern optimizations on the given /p F function.
62   ///
63   /// \param F function to optimize.
64   /// \returns true if the IR is changed.
65   bool runOnFunction(Function &F) override;
66 };
67 } // namespace
68 
69 /// Match a pattern for a bitwise rotate operation that partially guards
70 /// against undefined behavior by branching around the rotation when the shift
71 /// amount is 0.
72 static bool foldGuardedRotateToFunnelShift(Instruction &I) {
73   if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
74     return false;
75 
76   // As with the one-use checks below, this is not strictly necessary, but we
77   // are being cautious to avoid potential perf regressions on targets that
78   // do not actually have a rotate instruction (where the funnel shift would be
79   // expanded back into math/shift/logic ops).
80   if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
81     return false;
82 
83   // Match V to funnel shift left/right and capture the source operand and
84   // shift amount in X and Y.
85   auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
86     Value *L0, *L1, *R0, *R1;
87     unsigned Width = V->getType()->getScalarSizeInBits();
88     auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));
89 
90     // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
91     auto RotL = m_OneUse(
92         m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
93     if (RotL.match(V) && L0 == R0 && L1 == R1) {
94       X = L0;
95       Y = L1;
96       return Intrinsic::fshl;
97     }
98 
99     // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
100     auto RotR = m_OneUse(
101         m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
102     if (RotR.match(V) && L0 == R0 && L1 == R1) {
103       X = L0;
104       Y = L1;
105       return Intrinsic::fshr;
106     }
107 
108     return Intrinsic::not_intrinsic;
109   };
110 
111   // One phi operand must be a rotate operation, and the other phi operand must
112   // be the source value of that rotate operation:
113   // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
114   PHINode &Phi = cast<PHINode>(I);
115   Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
116   Value *RotSrc, *RotAmt;
117   Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
118   if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
119     IID = matchRotate(P1, RotSrc, RotAmt);
120     if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
121       return false;
122     assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
123            "Pattern must match funnel shift left or right");
124   }
125 
126   // The incoming block with our source operand must be the "guard" block.
127   // That must contain a cmp+branch to avoid the rotate when the shift amount
128   // is equal to 0. The other incoming block is the block with the rotate.
129   BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
130   BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
131   Instruction *TermI = GuardBB->getTerminator();
132   ICmpInst::Predicate Pred;
133   BasicBlock *PhiBB = Phi.getParent();
134   if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()),
135                          m_SpecificBB(PhiBB), m_SpecificBB(RotBB))))
136     return false;
137 
138   if (Pred != CmpInst::ICMP_EQ)
139     return false;
140 
141   // We matched a variation of this IR pattern:
142   // GuardBB:
143   //   %cmp = icmp eq i32 %RotAmt, 0
144   //   br i1 %cmp, label %PhiBB, label %RotBB
145   // RotBB:
146   //   %sub = sub i32 32, %RotAmt
147   //   %shr = lshr i32 %X, %sub
148   //   %shl = shl i32 %X, %RotAmt
149   //   %rot = or i32 %shr, %shl
150   //   br label %PhiBB
151   // PhiBB:
152   //   %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
153   // -->
154   // llvm.fshl.i32(i32 %X, i32 %RotAmt)
155   IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
156   Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
157   Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
158   ++NumGuardedRotates;
159   return true;
160 }
161 
162 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
163 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
164 /// of 'and' ops, then we also need to capture the fact that we saw an
165 /// "and X, 1", so that's an extra return value for that case.
166 struct MaskOps {
167   Value *Root;
168   APInt Mask;
169   bool MatchAndChain;
170   bool FoundAnd1;
171 
172   MaskOps(unsigned BitWidth, bool MatchAnds)
173       : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
174         MatchAndChain(MatchAnds), FoundAnd1(false) {}
175 };
176 
177 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
178 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
179 /// value. Examples:
180 ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
181 /// returns { X, 0x129 }
182 ///   and (and (X >> 1), 1), (X >> 4)
183 /// returns { X, 0x12 }
184 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
185   Value *Op0, *Op1;
186   if (MOps.MatchAndChain) {
187     // Recurse through a chain of 'and' operands. This requires an extra check
188     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
189     // in the chain to know that all of the high bits are cleared.
190     if (match(V, m_And(m_Value(Op0), m_One()))) {
191       MOps.FoundAnd1 = true;
192       return matchAndOrChain(Op0, MOps);
193     }
194     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
195       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
196   } else {
197     // Recurse through a chain of 'or' operands.
198     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
199       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
200   }
201 
202   // We need a shift-right or a bare value representing a compare of bit 0 of
203   // the original source operand.
204   Value *Candidate;
205   uint64_t BitIndex = 0;
206   if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
207     Candidate = V;
208 
209   // Initialize result source operand.
210   if (!MOps.Root)
211     MOps.Root = Candidate;
212 
213   // The shift constant is out-of-range? This code hasn't been simplified.
214   if (BitIndex >= MOps.Mask.getBitWidth())
215     return false;
216 
217   // Fill in the mask bit derived from the shift constant.
218   MOps.Mask.setBit(BitIndex);
219   return MOps.Root == Candidate;
220 }
221 
222 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
223 /// These will include a chain of 'or' or 'and'-shifted bits from a
224 /// common source value:
225 /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
226 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
227 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
228 /// that differ only with a final 'not' of the result. We expect that final
229 /// 'not' to be folded with the compare that we create here (invert predicate).
230 static bool foldAnyOrAllBitsSet(Instruction &I) {
231   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
232   // final "and X, 1" instruction must be the final op in the sequence.
233   bool MatchAllBitsSet;
234   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
235     MatchAllBitsSet = true;
236   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
237     MatchAllBitsSet = false;
238   else
239     return false;
240 
241   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
242   if (MatchAllBitsSet) {
243     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
244       return false;
245   } else {
246     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
247       return false;
248   }
249 
250   // The pattern was found. Create a masked compare that replaces all of the
251   // shift and logic ops.
252   IRBuilder<> Builder(&I);
253   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
254   Value *And = Builder.CreateAnd(MOps.Root, Mask);
255   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
256                                : Builder.CreateIsNotNull(And);
257   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
258   I.replaceAllUsesWith(Zext);
259   ++NumAnyOrAllBitsSet;
260   return true;
261 }
262 
263 // Try to recognize below function as popcount intrinsic.
264 // This is the "best" algorithm from
265 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
266 // Also used in TargetLowering::expandCTPOP().
267 //
268 // int popcount(unsigned int i) {
269 //   i = i - ((i >> 1) & 0x55555555);
270 //   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
271 //   i = ((i + (i >> 4)) & 0x0F0F0F0F);
272 //   return (i * 0x01010101) >> 24;
273 // }
274 static bool tryToRecognizePopCount(Instruction &I) {
275   if (I.getOpcode() != Instruction::LShr)
276     return false;
277 
278   Type *Ty = I.getType();
279   if (!Ty->isIntOrIntVectorTy())
280     return false;
281 
282   unsigned Len = Ty->getScalarSizeInBits();
283   // FIXME: fix Len == 8 and other irregular type lengths.
284   if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
285     return false;
286 
287   APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
288   APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
289   APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
290   APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
291   APInt MaskShift = APInt(Len, Len - 8);
292 
293   Value *Op0 = I.getOperand(0);
294   Value *Op1 = I.getOperand(1);
295   Value *MulOp0;
296   // Matching "(i * 0x01010101...) >> 24".
297   if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
298        match(Op1, m_SpecificInt(MaskShift))) {
299     Value *ShiftOp0;
300     // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
301     if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
302                                     m_Deferred(ShiftOp0)),
303                             m_SpecificInt(Mask0F)))) {
304       Value *AndOp0;
305       // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
306       if (match(ShiftOp0,
307                 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
308                         m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
309                               m_SpecificInt(Mask33))))) {
310         Value *Root, *SubOp1;
311         // Matching "i - ((i >> 1) & 0x55555555...)".
312         if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
313             match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
314                                 m_SpecificInt(Mask55)))) {
315           LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
316           IRBuilder<> Builder(&I);
317           Function *Func = Intrinsic::getDeclaration(
318               I.getModule(), Intrinsic::ctpop, I.getType());
319           I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
320           ++NumPopCountRecognized;
321           return true;
322         }
323       }
324     }
325   }
326 
327   return false;
328 }
329 
330 /// This is the entry point for folds that could be implemented in regular
331 /// InstCombine, but they are separated because they are not expected to
332 /// occur frequently and/or have more than a constant-length pattern match.
333 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
334   bool MadeChange = false;
335   for (BasicBlock &BB : F) {
336     // Ignore unreachable basic blocks.
337     if (!DT.isReachableFromEntry(&BB))
338       continue;
339     // Do not delete instructions under here and invalidate the iterator.
340     // Walk the block backwards for efficiency. We're matching a chain of
341     // use->defs, so we're more likely to succeed by starting from the bottom.
342     // Also, we want to avoid matching partial patterns.
343     // TODO: It would be more efficient if we removed dead instructions
344     // iteratively in this loop rather than waiting until the end.
345     for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
346       MadeChange |= foldAnyOrAllBitsSet(I);
347       MadeChange |= foldGuardedRotateToFunnelShift(I);
348       MadeChange |= tryToRecognizePopCount(I);
349     }
350   }
351 
352   // We're done with transforms, so remove dead instructions.
353   if (MadeChange)
354     for (BasicBlock &BB : F)
355       SimplifyInstructionsInBlock(&BB);
356 
357   return MadeChange;
358 }
359 
360 /// This is the entry point for all transforms. Pass manager differences are
361 /// handled in the callers of this function.
362 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
363   bool MadeChange = false;
364   const DataLayout &DL = F.getParent()->getDataLayout();
365   TruncInstCombine TIC(TLI, DL, DT);
366   MadeChange |= TIC.run(F);
367   MadeChange |= foldUnusualPatterns(F, DT);
368   return MadeChange;
369 }
370 
371 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
372     AnalysisUsage &AU) const {
373   AU.setPreservesCFG();
374   AU.addRequired<DominatorTreeWrapperPass>();
375   AU.addRequired<TargetLibraryInfoWrapperPass>();
376   AU.addPreserved<AAResultsWrapperPass>();
377   AU.addPreserved<BasicAAWrapperPass>();
378   AU.addPreserved<DominatorTreeWrapperPass>();
379   AU.addPreserved<GlobalsAAWrapperPass>();
380 }
381 
382 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
383   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
384   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
385   return runImpl(F, TLI, DT);
386 }
387 
388 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
389                                                  FunctionAnalysisManager &AM) {
390   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
391   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
392   if (!runImpl(F, TLI, DT)) {
393     // No changes, all analyses are preserved.
394     return PreservedAnalyses::all();
395   }
396   // Mark all the analyses that instcombine updates as preserved.
397   PreservedAnalyses PA;
398   PA.preserveSet<CFGAnalyses>();
399   PA.preserve<AAManager>();
400   PA.preserve<GlobalsAA>();
401   return PA;
402 }
403 
404 char AggressiveInstCombinerLegacyPass::ID = 0;
405 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
406                       "aggressive-instcombine",
407                       "Combine pattern based expressions", false, false)
408 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
409 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
410 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
411                     "Combine pattern based expressions", false, false)
412 
413 // Initialization Routines
414 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
415   initializeAggressiveInstCombinerLegacyPassPass(Registry);
416 }
417 
418 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
419   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
420 }
421 
422 FunctionPass *llvm::createAggressiveInstCombinerPass() {
423   return new AggressiveInstCombinerLegacyPass();
424 }
425 
426 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
427   unwrap(PM)->add(createAggressiveInstCombinerPass());
428 }
429