xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/AggressiveInstCombine/AggressiveInstCombine.cpp (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 //  * Truncate instruction
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm-c/Initialization.h"
18 #include "llvm-c/Transforms/AggressiveInstCombine.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace llvm;
32 using namespace PatternMatch;
33 
34 #define DEBUG_TYPE "aggressive-instcombine"
35 
36 namespace {
37 /// Contains expression pattern combiner logic.
38 /// This class provides both the logic to combine expression patterns and
39 /// combine them. It differs from InstCombiner class in that each pattern
40 /// combiner runs only once as opposed to InstCombine's multi-iteration,
41 /// which allows pattern combiner to have higher complexity than the O(1)
42 /// required by the instruction combiner.
43 class AggressiveInstCombinerLegacyPass : public FunctionPass {
44 public:
45   static char ID; // Pass identification, replacement for typeid
46 
47   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
48     initializeAggressiveInstCombinerLegacyPassPass(
49         *PassRegistry::getPassRegistry());
50   }
51 
52   void getAnalysisUsage(AnalysisUsage &AU) const override;
53 
54   /// Run all expression pattern optimizations on the given /p F function.
55   ///
56   /// \param F function to optimize.
57   /// \returns true if the IR is changed.
58   bool runOnFunction(Function &F) override;
59 };
60 } // namespace
61 
62 /// Match a pattern for a bitwise rotate operation that partially guards
63 /// against undefined behavior by branching around the rotation when the shift
64 /// amount is 0.
65 static bool foldGuardedRotateToFunnelShift(Instruction &I) {
66   if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
67     return false;
68 
69   // As with the one-use checks below, this is not strictly necessary, but we
70   // are being cautious to avoid potential perf regressions on targets that
71   // do not actually have a rotate instruction (where the funnel shift would be
72   // expanded back into math/shift/logic ops).
73   if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
74     return false;
75 
76   // Match V to funnel shift left/right and capture the source operand and
77   // shift amount in X and Y.
78   auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
79     Value *L0, *L1, *R0, *R1;
80     unsigned Width = V->getType()->getScalarSizeInBits();
81     auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));
82 
83     // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
84     auto RotL = m_OneUse(
85         m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
86     if (RotL.match(V) && L0 == R0 && L1 == R1) {
87       X = L0;
88       Y = L1;
89       return Intrinsic::fshl;
90     }
91 
92     // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
93     auto RotR = m_OneUse(
94         m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
95     if (RotR.match(V) && L0 == R0 && L1 == R1) {
96       X = L0;
97       Y = L1;
98       return Intrinsic::fshr;
99     }
100 
101     return Intrinsic::not_intrinsic;
102   };
103 
104   // One phi operand must be a rotate operation, and the other phi operand must
105   // be the source value of that rotate operation:
106   // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
107   PHINode &Phi = cast<PHINode>(I);
108   Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
109   Value *RotSrc, *RotAmt;
110   Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
111   if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
112     IID = matchRotate(P1, RotSrc, RotAmt);
113     if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
114       return false;
115     assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
116            "Pattern must match funnel shift left or right");
117   }
118 
119   // The incoming block with our source operand must be the "guard" block.
120   // That must contain a cmp+branch to avoid the rotate when the shift amount
121   // is equal to 0. The other incoming block is the block with the rotate.
122   BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
123   BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
124   Instruction *TermI = GuardBB->getTerminator();
125   ICmpInst::Predicate Pred;
126   BasicBlock *PhiBB = Phi.getParent();
127   if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()),
128                          m_SpecificBB(PhiBB), m_SpecificBB(RotBB))))
129     return false;
130 
131   if (Pred != CmpInst::ICMP_EQ)
132     return false;
133 
134   // We matched a variation of this IR pattern:
135   // GuardBB:
136   //   %cmp = icmp eq i32 %RotAmt, 0
137   //   br i1 %cmp, label %PhiBB, label %RotBB
138   // RotBB:
139   //   %sub = sub i32 32, %RotAmt
140   //   %shr = lshr i32 %X, %sub
141   //   %shl = shl i32 %X, %RotAmt
142   //   %rot = or i32 %shr, %shl
143   //   br label %PhiBB
144   // PhiBB:
145   //   %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
146   // -->
147   // llvm.fshl.i32(i32 %X, i32 %RotAmt)
148   IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
149   Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
150   Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
151   return true;
152 }
153 
154 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
155 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
156 /// of 'and' ops, then we also need to capture the fact that we saw an
157 /// "and X, 1", so that's an extra return value for that case.
158 struct MaskOps {
159   Value *Root;
160   APInt Mask;
161   bool MatchAndChain;
162   bool FoundAnd1;
163 
164   MaskOps(unsigned BitWidth, bool MatchAnds)
165       : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
166         MatchAndChain(MatchAnds), FoundAnd1(false) {}
167 };
168 
169 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
170 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
171 /// value. Examples:
172 ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
173 /// returns { X, 0x129 }
174 ///   and (and (X >> 1), 1), (X >> 4)
175 /// returns { X, 0x12 }
176 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
177   Value *Op0, *Op1;
178   if (MOps.MatchAndChain) {
179     // Recurse through a chain of 'and' operands. This requires an extra check
180     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
181     // in the chain to know that all of the high bits are cleared.
182     if (match(V, m_And(m_Value(Op0), m_One()))) {
183       MOps.FoundAnd1 = true;
184       return matchAndOrChain(Op0, MOps);
185     }
186     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
187       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
188   } else {
189     // Recurse through a chain of 'or' operands.
190     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
191       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
192   }
193 
194   // We need a shift-right or a bare value representing a compare of bit 0 of
195   // the original source operand.
196   Value *Candidate;
197   uint64_t BitIndex = 0;
198   if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
199     Candidate = V;
200 
201   // Initialize result source operand.
202   if (!MOps.Root)
203     MOps.Root = Candidate;
204 
205   // The shift constant is out-of-range? This code hasn't been simplified.
206   if (BitIndex >= MOps.Mask.getBitWidth())
207     return false;
208 
209   // Fill in the mask bit derived from the shift constant.
210   MOps.Mask.setBit(BitIndex);
211   return MOps.Root == Candidate;
212 }
213 
214 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
215 /// These will include a chain of 'or' or 'and'-shifted bits from a
216 /// common source value:
217 /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
218 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
219 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
220 /// that differ only with a final 'not' of the result. We expect that final
221 /// 'not' to be folded with the compare that we create here (invert predicate).
222 static bool foldAnyOrAllBitsSet(Instruction &I) {
223   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
224   // final "and X, 1" instruction must be the final op in the sequence.
225   bool MatchAllBitsSet;
226   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
227     MatchAllBitsSet = true;
228   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
229     MatchAllBitsSet = false;
230   else
231     return false;
232 
233   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
234   if (MatchAllBitsSet) {
235     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
236       return false;
237   } else {
238     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
239       return false;
240   }
241 
242   // The pattern was found. Create a masked compare that replaces all of the
243   // shift and logic ops.
244   IRBuilder<> Builder(&I);
245   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
246   Value *And = Builder.CreateAnd(MOps.Root, Mask);
247   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
248                                : Builder.CreateIsNotNull(And);
249   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
250   I.replaceAllUsesWith(Zext);
251   return true;
252 }
253 
254 // Try to recognize below function as popcount intrinsic.
255 // This is the "best" algorithm from
256 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
257 // Also used in TargetLowering::expandCTPOP().
258 //
259 // int popcount(unsigned int i) {
260 //   i = i - ((i >> 1) & 0x55555555);
261 //   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
262 //   i = ((i + (i >> 4)) & 0x0F0F0F0F);
263 //   return (i * 0x01010101) >> 24;
264 // }
265 static bool tryToRecognizePopCount(Instruction &I) {
266   if (I.getOpcode() != Instruction::LShr)
267     return false;
268 
269   Type *Ty = I.getType();
270   if (!Ty->isIntOrIntVectorTy())
271     return false;
272 
273   unsigned Len = Ty->getScalarSizeInBits();
274   // FIXME: fix Len == 8 and other irregular type lengths.
275   if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
276     return false;
277 
278   APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
279   APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
280   APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
281   APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
282   APInt MaskShift = APInt(Len, Len - 8);
283 
284   Value *Op0 = I.getOperand(0);
285   Value *Op1 = I.getOperand(1);
286   Value *MulOp0;
287   // Matching "(i * 0x01010101...) >> 24".
288   if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
289        match(Op1, m_SpecificInt(MaskShift))) {
290     Value *ShiftOp0;
291     // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
292     if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
293                                     m_Deferred(ShiftOp0)),
294                             m_SpecificInt(Mask0F)))) {
295       Value *AndOp0;
296       // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
297       if (match(ShiftOp0,
298                 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
299                         m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
300                               m_SpecificInt(Mask33))))) {
301         Value *Root, *SubOp1;
302         // Matching "i - ((i >> 1) & 0x55555555...)".
303         if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
304             match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
305                                 m_SpecificInt(Mask55)))) {
306           LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
307           IRBuilder<> Builder(&I);
308           Function *Func = Intrinsic::getDeclaration(
309               I.getModule(), Intrinsic::ctpop, I.getType());
310           I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
311           return true;
312         }
313       }
314     }
315   }
316 
317   return false;
318 }
319 
320 /// This is the entry point for folds that could be implemented in regular
321 /// InstCombine, but they are separated because they are not expected to
322 /// occur frequently and/or have more than a constant-length pattern match.
323 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
324   bool MadeChange = false;
325   for (BasicBlock &BB : F) {
326     // Ignore unreachable basic blocks.
327     if (!DT.isReachableFromEntry(&BB))
328       continue;
329     // Do not delete instructions under here and invalidate the iterator.
330     // Walk the block backwards for efficiency. We're matching a chain of
331     // use->defs, so we're more likely to succeed by starting from the bottom.
332     // Also, we want to avoid matching partial patterns.
333     // TODO: It would be more efficient if we removed dead instructions
334     // iteratively in this loop rather than waiting until the end.
335     for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
336       MadeChange |= foldAnyOrAllBitsSet(I);
337       MadeChange |= foldGuardedRotateToFunnelShift(I);
338       MadeChange |= tryToRecognizePopCount(I);
339     }
340   }
341 
342   // We're done with transforms, so remove dead instructions.
343   if (MadeChange)
344     for (BasicBlock &BB : F)
345       SimplifyInstructionsInBlock(&BB);
346 
347   return MadeChange;
348 }
349 
350 /// This is the entry point for all transforms. Pass manager differences are
351 /// handled in the callers of this function.
352 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
353   bool MadeChange = false;
354   const DataLayout &DL = F.getParent()->getDataLayout();
355   TruncInstCombine TIC(TLI, DL, DT);
356   MadeChange |= TIC.run(F);
357   MadeChange |= foldUnusualPatterns(F, DT);
358   return MadeChange;
359 }
360 
361 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
362     AnalysisUsage &AU) const {
363   AU.setPreservesCFG();
364   AU.addRequired<DominatorTreeWrapperPass>();
365   AU.addRequired<TargetLibraryInfoWrapperPass>();
366   AU.addPreserved<AAResultsWrapperPass>();
367   AU.addPreserved<BasicAAWrapperPass>();
368   AU.addPreserved<DominatorTreeWrapperPass>();
369   AU.addPreserved<GlobalsAAWrapperPass>();
370 }
371 
372 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
373   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
374   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
375   return runImpl(F, TLI, DT);
376 }
377 
378 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
379                                                  FunctionAnalysisManager &AM) {
380   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
381   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
382   if (!runImpl(F, TLI, DT)) {
383     // No changes, all analyses are preserved.
384     return PreservedAnalyses::all();
385   }
386   // Mark all the analyses that instcombine updates as preserved.
387   PreservedAnalyses PA;
388   PA.preserveSet<CFGAnalyses>();
389   PA.preserve<AAManager>();
390   PA.preserve<GlobalsAA>();
391   return PA;
392 }
393 
394 char AggressiveInstCombinerLegacyPass::ID = 0;
395 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
396                       "aggressive-instcombine",
397                       "Combine pattern based expressions", false, false)
398 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
399 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
400 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
401                     "Combine pattern based expressions", false, false)
402 
403 // Initialization Routines
404 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
405   initializeAggressiveInstCombinerLegacyPassPass(Registry);
406 }
407 
408 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
409   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
410 }
411 
412 FunctionPass *llvm::createAggressiveInstCombinerPass() {
413   return new AggressiveInstCombinerLegacyPass();
414 }
415 
416 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
417   unwrap(PM)->add(createAggressiveInstCombinerPass());
418 }
419