1 //===- AggressiveInstCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the aggressive expression pattern combiner classes. 10 // Currently, it handles expression patterns for: 11 // * Truncate instruction 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 16 #include "AggressiveInstCombineInternal.h" 17 #include "llvm-c/Initialization.h" 18 #include "llvm-c/Transforms/AggressiveInstCombine.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BasicAliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/LegacyPassManager.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 #define DEBUG_TYPE "aggressive-instcombine" 35 36 namespace { 37 /// Contains expression pattern combiner logic. 38 /// This class provides both the logic to combine expression patterns and 39 /// combine them. It differs from InstCombiner class in that each pattern 40 /// combiner runs only once as opposed to InstCombine's multi-iteration, 41 /// which allows pattern combiner to have higher complexity than the O(1) 42 /// required by the instruction combiner. 43 class AggressiveInstCombinerLegacyPass : public FunctionPass { 44 public: 45 static char ID; // Pass identification, replacement for typeid 46 47 AggressiveInstCombinerLegacyPass() : FunctionPass(ID) { 48 initializeAggressiveInstCombinerLegacyPassPass( 49 *PassRegistry::getPassRegistry()); 50 } 51 52 void getAnalysisUsage(AnalysisUsage &AU) const override; 53 54 /// Run all expression pattern optimizations on the given /p F function. 55 /// 56 /// \param F function to optimize. 57 /// \returns true if the IR is changed. 58 bool runOnFunction(Function &F) override; 59 }; 60 } // namespace 61 62 /// Match a pattern for a bitwise rotate operation that partially guards 63 /// against undefined behavior by branching around the rotation when the shift 64 /// amount is 0. 65 static bool foldGuardedRotateToFunnelShift(Instruction &I) { 66 if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2) 67 return false; 68 69 // As with the one-use checks below, this is not strictly necessary, but we 70 // are being cautious to avoid potential perf regressions on targets that 71 // do not actually have a rotate instruction (where the funnel shift would be 72 // expanded back into math/shift/logic ops). 73 if (!isPowerOf2_32(I.getType()->getScalarSizeInBits())) 74 return false; 75 76 // Match V to funnel shift left/right and capture the source operand and 77 // shift amount in X and Y. 78 auto matchRotate = [](Value *V, Value *&X, Value *&Y) { 79 Value *L0, *L1, *R0, *R1; 80 unsigned Width = V->getType()->getScalarSizeInBits(); 81 auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1)); 82 83 // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y)) 84 auto RotL = m_OneUse( 85 m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub))); 86 if (RotL.match(V) && L0 == R0 && L1 == R1) { 87 X = L0; 88 Y = L1; 89 return Intrinsic::fshl; 90 } 91 92 // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y)) 93 auto RotR = m_OneUse( 94 m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub))); 95 if (RotR.match(V) && L0 == R0 && L1 == R1) { 96 X = L0; 97 Y = L1; 98 return Intrinsic::fshr; 99 } 100 101 return Intrinsic::not_intrinsic; 102 }; 103 104 // One phi operand must be a rotate operation, and the other phi operand must 105 // be the source value of that rotate operation: 106 // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ] 107 PHINode &Phi = cast<PHINode>(I); 108 Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1); 109 Value *RotSrc, *RotAmt; 110 Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt); 111 if (IID == Intrinsic::not_intrinsic || RotSrc != P1) { 112 IID = matchRotate(P1, RotSrc, RotAmt); 113 if (IID == Intrinsic::not_intrinsic || RotSrc != P0) 114 return false; 115 assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && 116 "Pattern must match funnel shift left or right"); 117 } 118 119 // The incoming block with our source operand must be the "guard" block. 120 // That must contain a cmp+branch to avoid the rotate when the shift amount 121 // is equal to 0. The other incoming block is the block with the rotate. 122 BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1); 123 BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1); 124 Instruction *TermI = GuardBB->getTerminator(); 125 ICmpInst::Predicate Pred; 126 BasicBlock *PhiBB = Phi.getParent(); 127 if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()), 128 m_SpecificBB(PhiBB), m_SpecificBB(RotBB)))) 129 return false; 130 131 if (Pred != CmpInst::ICMP_EQ) 132 return false; 133 134 // We matched a variation of this IR pattern: 135 // GuardBB: 136 // %cmp = icmp eq i32 %RotAmt, 0 137 // br i1 %cmp, label %PhiBB, label %RotBB 138 // RotBB: 139 // %sub = sub i32 32, %RotAmt 140 // %shr = lshr i32 %X, %sub 141 // %shl = shl i32 %X, %RotAmt 142 // %rot = or i32 %shr, %shl 143 // br label %PhiBB 144 // PhiBB: 145 // %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ] 146 // --> 147 // llvm.fshl.i32(i32 %X, i32 %RotAmt) 148 IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt()); 149 Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType()); 150 Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt})); 151 return true; 152 } 153 154 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and 155 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain 156 /// of 'and' ops, then we also need to capture the fact that we saw an 157 /// "and X, 1", so that's an extra return value for that case. 158 struct MaskOps { 159 Value *Root; 160 APInt Mask; 161 bool MatchAndChain; 162 bool FoundAnd1; 163 164 MaskOps(unsigned BitWidth, bool MatchAnds) 165 : Root(nullptr), Mask(APInt::getNullValue(BitWidth)), 166 MatchAndChain(MatchAnds), FoundAnd1(false) {} 167 }; 168 169 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a 170 /// chain of 'and' or 'or' instructions looking for shift ops of a common source 171 /// value. Examples: 172 /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) 173 /// returns { X, 0x129 } 174 /// and (and (X >> 1), 1), (X >> 4) 175 /// returns { X, 0x12 } 176 static bool matchAndOrChain(Value *V, MaskOps &MOps) { 177 Value *Op0, *Op1; 178 if (MOps.MatchAndChain) { 179 // Recurse through a chain of 'and' operands. This requires an extra check 180 // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere 181 // in the chain to know that all of the high bits are cleared. 182 if (match(V, m_And(m_Value(Op0), m_One()))) { 183 MOps.FoundAnd1 = true; 184 return matchAndOrChain(Op0, MOps); 185 } 186 if (match(V, m_And(m_Value(Op0), m_Value(Op1)))) 187 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 188 } else { 189 // Recurse through a chain of 'or' operands. 190 if (match(V, m_Or(m_Value(Op0), m_Value(Op1)))) 191 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 192 } 193 194 // We need a shift-right or a bare value representing a compare of bit 0 of 195 // the original source operand. 196 Value *Candidate; 197 uint64_t BitIndex = 0; 198 if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex)))) 199 Candidate = V; 200 201 // Initialize result source operand. 202 if (!MOps.Root) 203 MOps.Root = Candidate; 204 205 // The shift constant is out-of-range? This code hasn't been simplified. 206 if (BitIndex >= MOps.Mask.getBitWidth()) 207 return false; 208 209 // Fill in the mask bit derived from the shift constant. 210 MOps.Mask.setBit(BitIndex); 211 return MOps.Root == Candidate; 212 } 213 214 /// Match patterns that correspond to "any-bits-set" and "all-bits-set". 215 /// These will include a chain of 'or' or 'and'-shifted bits from a 216 /// common source value: 217 /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0 218 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask 219 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns 220 /// that differ only with a final 'not' of the result. We expect that final 221 /// 'not' to be folded with the compare that we create here (invert predicate). 222 static bool foldAnyOrAllBitsSet(Instruction &I) { 223 // The 'any-bits-set' ('or' chain) pattern is simpler to match because the 224 // final "and X, 1" instruction must be the final op in the sequence. 225 bool MatchAllBitsSet; 226 if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value()))) 227 MatchAllBitsSet = true; 228 else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One()))) 229 MatchAllBitsSet = false; 230 else 231 return false; 232 233 MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); 234 if (MatchAllBitsSet) { 235 if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1) 236 return false; 237 } else { 238 if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps)) 239 return false; 240 } 241 242 // The pattern was found. Create a masked compare that replaces all of the 243 // shift and logic ops. 244 IRBuilder<> Builder(&I); 245 Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask); 246 Value *And = Builder.CreateAnd(MOps.Root, Mask); 247 Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) 248 : Builder.CreateIsNotNull(And); 249 Value *Zext = Builder.CreateZExt(Cmp, I.getType()); 250 I.replaceAllUsesWith(Zext); 251 return true; 252 } 253 254 // Try to recognize below function as popcount intrinsic. 255 // This is the "best" algorithm from 256 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 257 // Also used in TargetLowering::expandCTPOP(). 258 // 259 // int popcount(unsigned int i) { 260 // i = i - ((i >> 1) & 0x55555555); 261 // i = (i & 0x33333333) + ((i >> 2) & 0x33333333); 262 // i = ((i + (i >> 4)) & 0x0F0F0F0F); 263 // return (i * 0x01010101) >> 24; 264 // } 265 static bool tryToRecognizePopCount(Instruction &I) { 266 if (I.getOpcode() != Instruction::LShr) 267 return false; 268 269 Type *Ty = I.getType(); 270 if (!Ty->isIntOrIntVectorTy()) 271 return false; 272 273 unsigned Len = Ty->getScalarSizeInBits(); 274 // FIXME: fix Len == 8 and other irregular type lengths. 275 if (!(Len <= 128 && Len > 8 && Len % 8 == 0)) 276 return false; 277 278 APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55)); 279 APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33)); 280 APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F)); 281 APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01)); 282 APInt MaskShift = APInt(Len, Len - 8); 283 284 Value *Op0 = I.getOperand(0); 285 Value *Op1 = I.getOperand(1); 286 Value *MulOp0; 287 // Matching "(i * 0x01010101...) >> 24". 288 if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) && 289 match(Op1, m_SpecificInt(MaskShift))) { 290 Value *ShiftOp0; 291 // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)". 292 if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)), 293 m_Deferred(ShiftOp0)), 294 m_SpecificInt(Mask0F)))) { 295 Value *AndOp0; 296 // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)". 297 if (match(ShiftOp0, 298 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)), 299 m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)), 300 m_SpecificInt(Mask33))))) { 301 Value *Root, *SubOp1; 302 // Matching "i - ((i >> 1) & 0x55555555...)". 303 if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) && 304 match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)), 305 m_SpecificInt(Mask55)))) { 306 LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n"); 307 IRBuilder<> Builder(&I); 308 Function *Func = Intrinsic::getDeclaration( 309 I.getModule(), Intrinsic::ctpop, I.getType()); 310 I.replaceAllUsesWith(Builder.CreateCall(Func, {Root})); 311 return true; 312 } 313 } 314 } 315 } 316 317 return false; 318 } 319 320 /// This is the entry point for folds that could be implemented in regular 321 /// InstCombine, but they are separated because they are not expected to 322 /// occur frequently and/or have more than a constant-length pattern match. 323 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) { 324 bool MadeChange = false; 325 for (BasicBlock &BB : F) { 326 // Ignore unreachable basic blocks. 327 if (!DT.isReachableFromEntry(&BB)) 328 continue; 329 // Do not delete instructions under here and invalidate the iterator. 330 // Walk the block backwards for efficiency. We're matching a chain of 331 // use->defs, so we're more likely to succeed by starting from the bottom. 332 // Also, we want to avoid matching partial patterns. 333 // TODO: It would be more efficient if we removed dead instructions 334 // iteratively in this loop rather than waiting until the end. 335 for (Instruction &I : make_range(BB.rbegin(), BB.rend())) { 336 MadeChange |= foldAnyOrAllBitsSet(I); 337 MadeChange |= foldGuardedRotateToFunnelShift(I); 338 MadeChange |= tryToRecognizePopCount(I); 339 } 340 } 341 342 // We're done with transforms, so remove dead instructions. 343 if (MadeChange) 344 for (BasicBlock &BB : F) 345 SimplifyInstructionsInBlock(&BB); 346 347 return MadeChange; 348 } 349 350 /// This is the entry point for all transforms. Pass manager differences are 351 /// handled in the callers of this function. 352 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) { 353 bool MadeChange = false; 354 const DataLayout &DL = F.getParent()->getDataLayout(); 355 TruncInstCombine TIC(TLI, DL, DT); 356 MadeChange |= TIC.run(F); 357 MadeChange |= foldUnusualPatterns(F, DT); 358 return MadeChange; 359 } 360 361 void AggressiveInstCombinerLegacyPass::getAnalysisUsage( 362 AnalysisUsage &AU) const { 363 AU.setPreservesCFG(); 364 AU.addRequired<DominatorTreeWrapperPass>(); 365 AU.addRequired<TargetLibraryInfoWrapperPass>(); 366 AU.addPreserved<AAResultsWrapperPass>(); 367 AU.addPreserved<BasicAAWrapperPass>(); 368 AU.addPreserved<DominatorTreeWrapperPass>(); 369 AU.addPreserved<GlobalsAAWrapperPass>(); 370 } 371 372 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) { 373 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 374 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 375 return runImpl(F, TLI, DT); 376 } 377 378 PreservedAnalyses AggressiveInstCombinePass::run(Function &F, 379 FunctionAnalysisManager &AM) { 380 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 381 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 382 if (!runImpl(F, TLI, DT)) { 383 // No changes, all analyses are preserved. 384 return PreservedAnalyses::all(); 385 } 386 // Mark all the analyses that instcombine updates as preserved. 387 PreservedAnalyses PA; 388 PA.preserveSet<CFGAnalyses>(); 389 PA.preserve<AAManager>(); 390 PA.preserve<GlobalsAA>(); 391 return PA; 392 } 393 394 char AggressiveInstCombinerLegacyPass::ID = 0; 395 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass, 396 "aggressive-instcombine", 397 "Combine pattern based expressions", false, false) 398 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 399 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 400 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", 401 "Combine pattern based expressions", false, false) 402 403 // Initialization Routines 404 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) { 405 initializeAggressiveInstCombinerLegacyPassPass(Registry); 406 } 407 408 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) { 409 initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R)); 410 } 411 412 FunctionPass *llvm::createAggressiveInstCombinerPass() { 413 return new AggressiveInstCombinerLegacyPass(); 414 } 415 416 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) { 417 unwrap(PM)->add(createAggressiveInstCombinerPass()); 418 } 419