xref: /freebsd/contrib/llvm-project/llvm/lib/TargetParser/RISCVTargetParser.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- RISCVTargetParser.cpp - Parser for target features ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a target parser to recognise hardware features
10 // for RISC-V CPUs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/TargetParser/RISCVTargetParser.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/TargetParser/RISCVISAInfo.h"
18 #include "llvm/TargetParser/Triple.h"
19 
20 namespace llvm {
21 namespace RISCV {
22 
23 enum CPUKind : unsigned {
24 #define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN,                   \
25              FAST_VECTOR_UNALIGN)                                              \
26   CK_##ENUM,
27 #define TUNE_PROC(ENUM, NAME) CK_##ENUM,
28 #include "llvm/TargetParser/RISCVTargetParserDef.inc"
29 };
30 
31 struct CPUInfo {
32   StringLiteral Name;
33   StringLiteral DefaultMarch;
34   bool FastScalarUnalignedAccess;
35   bool FastVectorUnalignedAccess;
36   bool is64Bit() const { return DefaultMarch.starts_with("rv64"); }
37 };
38 
39 constexpr CPUInfo RISCVCPUInfo[] = {
40 #define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN,                   \
41              FAST_VECTOR_UNALIGN)                                              \
42   {NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, FAST_VECTOR_UNALIGN},
43 #include "llvm/TargetParser/RISCVTargetParserDef.inc"
44 };
45 
46 static const CPUInfo *getCPUInfoByName(StringRef CPU) {
47   for (auto &C : RISCVCPUInfo)
48     if (C.Name == CPU)
49       return &C;
50   return nullptr;
51 }
52 
53 bool hasFastScalarUnalignedAccess(StringRef CPU) {
54   const CPUInfo *Info = getCPUInfoByName(CPU);
55   return Info && Info->FastScalarUnalignedAccess;
56 }
57 
58 bool hasFastVectorUnalignedAccess(StringRef CPU) {
59   const CPUInfo *Info = getCPUInfoByName(CPU);
60   return Info && Info->FastVectorUnalignedAccess;
61 }
62 
63 bool parseCPU(StringRef CPU, bool IsRV64) {
64   const CPUInfo *Info = getCPUInfoByName(CPU);
65 
66   if (!Info)
67     return false;
68   return Info->is64Bit() == IsRV64;
69 }
70 
71 bool parseTuneCPU(StringRef TuneCPU, bool IsRV64) {
72   std::optional<CPUKind> Kind =
73       llvm::StringSwitch<std::optional<CPUKind>>(TuneCPU)
74 #define TUNE_PROC(ENUM, NAME) .Case(NAME, CK_##ENUM)
75   #include "llvm/TargetParser/RISCVTargetParserDef.inc"
76       .Default(std::nullopt);
77 
78   if (Kind.has_value())
79     return true;
80 
81   // Fallback to parsing as a CPU.
82   return parseCPU(TuneCPU, IsRV64);
83 }
84 
85 StringRef getMArchFromMcpu(StringRef CPU) {
86   const CPUInfo *Info = getCPUInfoByName(CPU);
87   if (!Info)
88     return "";
89   return Info->DefaultMarch;
90 }
91 
92 void fillValidCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
93   for (const auto &C : RISCVCPUInfo) {
94     if (IsRV64 == C.is64Bit())
95       Values.emplace_back(C.Name);
96   }
97 }
98 
99 void fillValidTuneCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
100   for (const auto &C : RISCVCPUInfo) {
101     if (IsRV64 == C.is64Bit())
102       Values.emplace_back(C.Name);
103   }
104 #define TUNE_PROC(ENUM, NAME) Values.emplace_back(StringRef(NAME));
105 #include "llvm/TargetParser/RISCVTargetParserDef.inc"
106 }
107 
108 // This function is currently used by IREE, so it's not dead code.
109 void getFeaturesForCPU(StringRef CPU,
110                        SmallVectorImpl<std::string> &EnabledFeatures,
111                        bool NeedPlus) {
112   StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(CPU);
113   if (MarchFromCPU == "")
114     return;
115 
116   EnabledFeatures.clear();
117   auto RII = RISCVISAInfo::parseArchString(
118       MarchFromCPU, /* EnableExperimentalExtension */ true);
119 
120   if (llvm::errorToBool(RII.takeError()))
121     return;
122 
123   std::vector<std::string> FeatStrings =
124       (*RII)->toFeatures(/* AddAllExtensions */ false);
125   for (const auto &F : FeatStrings)
126     if (NeedPlus)
127       EnabledFeatures.push_back(F);
128     else
129       EnabledFeatures.push_back(F.substr(1));
130 }
131 
132 namespace RISCVExtensionBitmaskTable {
133 #define GET_RISCVExtensionBitmaskTable_IMPL
134 #include "llvm/TargetParser/RISCVTargetParserDef.inc"
135 
136 } // namespace RISCVExtensionBitmaskTable
137 
138 namespace {
139 struct LessExtName {
140   bool operator()(const RISCVExtensionBitmaskTable::RISCVExtensionBitmask &LHS,
141                   StringRef RHS) {
142     return StringRef(LHS.Name) < RHS;
143   }
144 };
145 } // namespace
146 
147 } // namespace RISCV
148 
149 namespace RISCVVType {
150 // Encode VTYPE into the binary format used by the the VSETVLI instruction which
151 // is used by our MC layer representation.
152 //
153 // Bits | Name       | Description
154 // -----+------------+------------------------------------------------
155 // 7    | vma        | Vector mask agnostic
156 // 6    | vta        | Vector tail agnostic
157 // 5:3  | vsew[2:0]  | Standard element width (SEW) setting
158 // 2:0  | vlmul[2:0] | Vector register group multiplier (LMUL) setting
159 unsigned encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic,
160                      bool MaskAgnostic) {
161   assert(isValidSEW(SEW) && "Invalid SEW");
162   unsigned VLMULBits = static_cast<unsigned>(VLMUL);
163   unsigned VSEWBits = encodeSEW(SEW);
164   unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
165   if (TailAgnostic)
166     VTypeI |= 0x40;
167   if (MaskAgnostic)
168     VTypeI |= 0x80;
169 
170   return VTypeI;
171 }
172 
173 std::pair<unsigned, bool> decodeVLMUL(RISCVII::VLMUL VLMUL) {
174   switch (VLMUL) {
175   default:
176     llvm_unreachable("Unexpected LMUL value!");
177   case RISCVII::VLMUL::LMUL_1:
178   case RISCVII::VLMUL::LMUL_2:
179   case RISCVII::VLMUL::LMUL_4:
180   case RISCVII::VLMUL::LMUL_8:
181     return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
182   case RISCVII::VLMUL::LMUL_F2:
183   case RISCVII::VLMUL::LMUL_F4:
184   case RISCVII::VLMUL::LMUL_F8:
185     return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
186   }
187 }
188 
189 void printVType(unsigned VType, raw_ostream &OS) {
190   unsigned Sew = getSEW(VType);
191   OS << "e" << Sew;
192 
193   unsigned LMul;
194   bool Fractional;
195   std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
196 
197   if (Fractional)
198     OS << ", mf";
199   else
200     OS << ", m";
201   OS << LMul;
202 
203   if (isTailAgnostic(VType))
204     OS << ", ta";
205   else
206     OS << ", tu";
207 
208   if (isMaskAgnostic(VType))
209     OS << ", ma";
210   else
211     OS << ", mu";
212 }
213 
214 unsigned getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
215   unsigned LMul;
216   bool Fractional;
217   std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
218 
219   // Convert LMul to a fixed point value with 3 fractional bits.
220   LMul = Fractional ? (8 / LMul) : (LMul * 8);
221 
222   assert(SEW >= 8 && "Unexpected SEW value");
223   return (SEW * 8) / LMul;
224 }
225 
226 std::optional<RISCVII::VLMUL>
227 getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) {
228   unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL);
229   unsigned EMULFixedPoint = (EEW * 8) / Ratio;
230   bool Fractional = EMULFixedPoint < 8;
231   unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
232   if (!isValidLMUL(EMUL, Fractional))
233     return std::nullopt;
234   return RISCVVType::encodeLMUL(EMUL, Fractional);
235 }
236 
237 } // namespace RISCVVType
238 
239 } // namespace llvm
240