1 //===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the pass which inserts x86 AVX vzeroupper instructions 10 // before calls to SSE encoded functions. This avoids transition latency 11 // penalty when transferring control between AVX encoded instructions and old 12 // SSE encoding mode. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "X86.h" 17 #include "X86InstrInfo.h" 18 #include "X86Subtarget.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "x86-vzeroupper" 41 42 static cl::opt<bool> 43 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 44 cl::desc("Minimize AVX to SSE transition penalty"), 45 cl::init(true)); 46 47 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted"); 48 49 namespace { 50 51 class VZeroUpperInserter : public MachineFunctionPass { 52 public: 53 VZeroUpperInserter() : MachineFunctionPass(ID) {} 54 55 bool runOnMachineFunction(MachineFunction &MF) override; 56 57 MachineFunctionProperties getRequiredProperties() const override { 58 return MachineFunctionProperties().set( 59 MachineFunctionProperties::Property::NoVRegs); 60 } 61 62 StringRef getPassName() const override { return "X86 vzeroupper inserter"; } 63 64 private: 65 void processBasicBlock(MachineBasicBlock &MBB); 66 void insertVZeroUpper(MachineBasicBlock::iterator I, 67 MachineBasicBlock &MBB); 68 void addDirtySuccessor(MachineBasicBlock &MBB); 69 70 using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY }; 71 72 static const char* getBlockExitStateName(BlockExitState ST); 73 74 // Core algorithm state: 75 // BlockState - Each block is either: 76 // - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor 77 // vzeroupper instructions in this block. 78 // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this 79 // block that will ensure that YMM/ZMM is clean on exit. 80 // - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no 81 // subsequent vzeroupper in the block clears it. 82 // 83 // AddedToDirtySuccessors - This flag is raised when a block is added to the 84 // DirtySuccessors list to ensure that it's not 85 // added multiple times. 86 // 87 // FirstUnguardedCall - Records the location of the first unguarded call in 88 // each basic block that may need to be guarded by a 89 // vzeroupper. We won't know whether it actually needs 90 // to be guarded until we discover a predecessor that 91 // is DIRTY_OUT. 92 struct BlockState { 93 BlockExitState ExitState = PASS_THROUGH; 94 bool AddedToDirtySuccessors = false; 95 MachineBasicBlock::iterator FirstUnguardedCall; 96 97 BlockState() = default; 98 }; 99 100 using BlockStateMap = SmallVector<BlockState, 8>; 101 using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>; 102 103 BlockStateMap BlockStates; 104 DirtySuccessorsWorkList DirtySuccessors; 105 bool EverMadeChange; 106 bool IsX86INTR; 107 const TargetInstrInfo *TII; 108 109 static char ID; 110 }; 111 112 } // end anonymous namespace 113 114 char VZeroUpperInserter::ID = 0; 115 116 FunctionPass *llvm::createX86IssueVZeroUpperPass() { 117 return new VZeroUpperInserter(); 118 } 119 120 #ifndef NDEBUG 121 const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) { 122 switch (ST) { 123 case PASS_THROUGH: return "Pass-through"; 124 case EXITS_DIRTY: return "Exits-dirty"; 125 case EXITS_CLEAN: return "Exits-clean"; 126 } 127 llvm_unreachable("Invalid block exit state."); 128 } 129 #endif 130 131 /// VZEROUPPER cleans state that is related to Y/ZMM0-15 only. 132 /// Thus, there is no need to check for Y/ZMM16 and above. 133 static bool isYmmOrZmmReg(unsigned Reg) { 134 return (Reg >= X86::YMM0 && Reg <= X86::YMM15) || 135 (Reg >= X86::ZMM0 && Reg <= X86::ZMM15); 136 } 137 138 static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) { 139 for (std::pair<unsigned, unsigned> LI : MRI.liveins()) 140 if (isYmmOrZmmReg(LI.first)) 141 return true; 142 143 return false; 144 } 145 146 static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) { 147 for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) { 148 if (!MO.clobbersPhysReg(reg)) 149 return false; 150 } 151 for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) { 152 if (!MO.clobbersPhysReg(reg)) 153 return false; 154 } 155 return true; 156 } 157 158 static bool hasYmmOrZmmReg(MachineInstr &MI) { 159 for (const MachineOperand &MO : MI.operands()) { 160 if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO)) 161 return true; 162 if (!MO.isReg()) 163 continue; 164 if (MO.isDebug()) 165 continue; 166 if (isYmmOrZmmReg(MO.getReg())) 167 return true; 168 } 169 return false; 170 } 171 172 /// Check if given call instruction has a RegMask operand. 173 static bool callHasRegMask(MachineInstr &MI) { 174 assert(MI.isCall() && "Can only be called on call instructions."); 175 for (const MachineOperand &MO : MI.operands()) { 176 if (MO.isRegMask()) 177 return true; 178 } 179 return false; 180 } 181 182 /// Insert a vzeroupper instruction before I. 183 void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I, 184 MachineBasicBlock &MBB) { 185 BuildMI(MBB, I, I->getDebugLoc(), TII->get(X86::VZEROUPPER)); 186 ++NumVZU; 187 EverMadeChange = true; 188 } 189 190 /// Add MBB to the DirtySuccessors list if it hasn't already been added. 191 void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) { 192 if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) { 193 DirtySuccessors.push_back(&MBB); 194 BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true; 195 } 196 } 197 198 /// Loop over all of the instructions in the basic block, inserting vzeroupper 199 /// instructions before function calls. 200 void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) { 201 // Start by assuming that the block is PASS_THROUGH which implies no unguarded 202 // calls. 203 BlockExitState CurState = PASS_THROUGH; 204 BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end(); 205 206 for (MachineInstr &MI : MBB) { 207 bool IsCall = MI.isCall(); 208 bool IsReturn = MI.isReturn(); 209 bool IsControlFlow = IsCall || IsReturn; 210 211 // No need for vzeroupper before iret in interrupt handler function, 212 // epilogue will restore YMM/ZMM registers if needed. 213 if (IsX86INTR && IsReturn) 214 continue; 215 216 // An existing VZERO* instruction resets the state. 217 if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) { 218 CurState = EXITS_CLEAN; 219 continue; 220 } 221 222 // Shortcut: don't need to check regular instructions in dirty state. 223 if (!IsControlFlow && CurState == EXITS_DIRTY) 224 continue; 225 226 if (hasYmmOrZmmReg(MI)) { 227 // We found a ymm/zmm-using instruction; this could be an AVX/AVX512 228 // instruction, or it could be control flow. 229 CurState = EXITS_DIRTY; 230 continue; 231 } 232 233 // Check for control-flow out of the current function (which might 234 // indirectly execute SSE instructions). 235 if (!IsControlFlow) 236 continue; 237 238 // If the call has no RegMask, skip it as well. It usually happens on 239 // helper function calls (such as '_chkstk', '_ftol2') where standard 240 // calling convention is not used (RegMask is not used to mark register 241 // clobbered and register usage (def/implicit-def/use) is well-defined and 242 // explicitly specified. 243 if (IsCall && !callHasRegMask(MI)) 244 continue; 245 246 // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15 247 // registers. In addition, the processor changes back to Clean state, after 248 // which execution of SSE instructions or AVX instructions has no transition 249 // penalty. Add the VZEROUPPER instruction before any function call/return 250 // that might execute SSE code. 251 // FIXME: In some cases, we may want to move the VZEROUPPER into a 252 // predecessor block. 253 if (CurState == EXITS_DIRTY) { 254 // After the inserted VZEROUPPER the state becomes clean again, but 255 // other YMM/ZMM may appear before other subsequent calls or even before 256 // the end of the BB. 257 insertVZeroUpper(MI, MBB); 258 CurState = EXITS_CLEAN; 259 } else if (CurState == PASS_THROUGH) { 260 // If this block is currently in pass-through state and we encounter a 261 // call then whether we need a vzeroupper or not depends on whether this 262 // block has successors that exit dirty. Record the location of the call, 263 // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet. 264 // It will be inserted later if necessary. 265 BlockStates[MBB.getNumber()].FirstUnguardedCall = MI; 266 CurState = EXITS_CLEAN; 267 } 268 } 269 270 LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: " 271 << getBlockExitStateName(CurState) << '\n'); 272 273 if (CurState == EXITS_DIRTY) 274 for (MachineBasicBlock *Succ : MBB.successors()) 275 addDirtySuccessor(*Succ); 276 277 BlockStates[MBB.getNumber()].ExitState = CurState; 278 } 279 280 /// Loop over all of the basic blocks, inserting vzeroupper instructions before 281 /// function calls. 282 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) { 283 if (!UseVZeroUpper) 284 return false; 285 286 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 287 if (!ST.hasAVX() || !ST.insertVZEROUPPER()) 288 return false; 289 TII = ST.getInstrInfo(); 290 MachineRegisterInfo &MRI = MF.getRegInfo(); 291 EverMadeChange = false; 292 IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR; 293 294 bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI); 295 296 // Fast check: if the function doesn't use any ymm/zmm registers, we don't 297 // need to insert any VZEROUPPER instructions. This is constant-time, so it 298 // is cheap in the common case of no ymm/zmm use. 299 bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm; 300 for (const auto *RC : {&X86::VR256RegClass, &X86::VR512_0_15RegClass}) { 301 if (!YmmOrZmmUsed) { 302 for (MCPhysReg R : *RC) { 303 if (!MRI.reg_nodbg_empty(R)) { 304 YmmOrZmmUsed = true; 305 break; 306 } 307 } 308 } 309 } 310 if (!YmmOrZmmUsed) 311 return false; 312 313 assert(BlockStates.empty() && DirtySuccessors.empty() && 314 "X86VZeroUpper state should be clear"); 315 BlockStates.resize(MF.getNumBlockIDs()); 316 317 // Process all blocks. This will compute block exit states, record the first 318 // unguarded call in each block, and add successors of dirty blocks to the 319 // DirtySuccessors list. 320 for (MachineBasicBlock &MBB : MF) 321 processBasicBlock(MBB); 322 323 // If any YMM/ZMM regs are live-in to this function, add the entry block to 324 // the DirtySuccessors list 325 if (FnHasLiveInYmmOrZmm) 326 addDirtySuccessor(MF.front()); 327 328 // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add 329 // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY 330 // through PASS_THROUGH blocks. 331 while (!DirtySuccessors.empty()) { 332 MachineBasicBlock &MBB = *DirtySuccessors.back(); 333 DirtySuccessors.pop_back(); 334 BlockState &BBState = BlockStates[MBB.getNumber()]; 335 336 // MBB is a successor of a dirty block, so its first call needs to be 337 // guarded. 338 if (BBState.FirstUnguardedCall != MBB.end()) 339 insertVZeroUpper(BBState.FirstUnguardedCall, MBB); 340 341 // If this successor was a pass-through block, then it is now dirty. Its 342 // successors need to be added to the worklist (if they haven't been 343 // already). 344 if (BBState.ExitState == PASS_THROUGH) { 345 LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() 346 << " was Pass-through, is now Dirty-out.\n"); 347 for (MachineBasicBlock *Succ : MBB.successors()) 348 addDirtySuccessor(*Succ); 349 } 350 } 351 352 BlockStates.clear(); 353 return EverMadeChange; 354 } 355