xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86TargetTransformInfo.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/Support/Debug.h"
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86tti"
53 
54 //===----------------------------------------------------------------------===//
55 //
56 // X86 cost model.
57 //
58 //===----------------------------------------------------------------------===//
59 
60 TargetTransformInfo::PopcntSupportKind
61 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
62   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63   // TODO: Currently the __builtin_popcount() implementation using SSE3
64   //   instructions is inefficient. Once the problem is fixed, we should
65   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
66   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
67 }
68 
69 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
70   TargetTransformInfo::CacheLevel Level) const {
71   switch (Level) {
72   case TargetTransformInfo::CacheLevel::L1D:
73     //   - Penryn
74     //   - Nehalem
75     //   - Westmere
76     //   - Sandy Bridge
77     //   - Ivy Bridge
78     //   - Haswell
79     //   - Broadwell
80     //   - Skylake
81     //   - Kabylake
82     return 32 * 1024;  //  32 KByte
83   case TargetTransformInfo::CacheLevel::L2D:
84     //   - Penryn
85     //   - Nehalem
86     //   - Westmere
87     //   - Sandy Bridge
88     //   - Ivy Bridge
89     //   - Haswell
90     //   - Broadwell
91     //   - Skylake
92     //   - Kabylake
93     return 256 * 1024; // 256 KByte
94   }
95 
96   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
97 }
98 
99 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
100   TargetTransformInfo::CacheLevel Level) const {
101   //   - Penryn
102   //   - Nehalem
103   //   - Westmere
104   //   - Sandy Bridge
105   //   - Ivy Bridge
106   //   - Haswell
107   //   - Broadwell
108   //   - Skylake
109   //   - Kabylake
110   switch (Level) {
111   case TargetTransformInfo::CacheLevel::L1D:
112     LLVM_FALLTHROUGH;
113   case TargetTransformInfo::CacheLevel::L2D:
114     return 8;
115   }
116 
117   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
118 }
119 
120 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
121   bool Vector = (ClassID == 1);
122   if (Vector && !ST->hasSSE1())
123     return 0;
124 
125   if (ST->is64Bit()) {
126     if (Vector && ST->hasAVX512())
127       return 32;
128     return 16;
129   }
130   return 8;
131 }
132 
133 TypeSize
134 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
135   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
136   switch (K) {
137   case TargetTransformInfo::RGK_Scalar:
138     return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
139   case TargetTransformInfo::RGK_FixedWidthVector:
140     if (ST->hasAVX512() && PreferVectorWidth >= 512)
141       return TypeSize::getFixed(512);
142     if (ST->hasAVX() && PreferVectorWidth >= 256)
143       return TypeSize::getFixed(256);
144     if (ST->hasSSE1() && PreferVectorWidth >= 128)
145       return TypeSize::getFixed(128);
146     return TypeSize::getFixed(0);
147   case TargetTransformInfo::RGK_ScalableVector:
148     return TypeSize::getScalable(0);
149   }
150 
151   llvm_unreachable("Unsupported register kind");
152 }
153 
154 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
155   return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
156       .getFixedSize();
157 }
158 
159 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
160   // If the loop will not be vectorized, don't interleave the loop.
161   // Let regular unroll to unroll the loop, which saves the overflow
162   // check and memory check cost.
163   if (VF == 1)
164     return 1;
165 
166   if (ST->isAtom())
167     return 1;
168 
169   // Sandybridge and Haswell have multiple execution ports and pipelined
170   // vector units.
171   if (ST->hasAVX())
172     return 4;
173 
174   return 2;
175 }
176 
177 InstructionCost X86TTIImpl::getArithmeticInstrCost(
178     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
179     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
180     TTI::OperandValueProperties Opd1PropInfo,
181     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
182     const Instruction *CxtI) {
183   // TODO: Handle more cost kinds.
184   if (CostKind != TTI::TCK_RecipThroughput)
185     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
186                                          Op2Info, Opd1PropInfo,
187                                          Opd2PropInfo, Args, CxtI);
188 
189   // vXi8 multiplications are always promoted to vXi16.
190   if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
191       Ty->getScalarSizeInBits() == 8) {
192     Type *WideVecTy =
193         VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
194     return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
195                             TargetTransformInfo::CastContextHint::None,
196                             CostKind) +
197            getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
198                             TargetTransformInfo::CastContextHint::None,
199                             CostKind) +
200            getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info,
201                                   Opd1PropInfo, Opd2PropInfo);
202   }
203 
204   // Legalize the type.
205   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
206 
207   int ISD = TLI->InstructionOpcodeToISD(Opcode);
208   assert(ISD && "Invalid opcode");
209 
210   if (ISD == ISD::MUL && Args.size() == 2 && LT.second.isVector() &&
211       LT.second.getScalarType() == MVT::i32) {
212     // Check if the operands can be represented as a smaller datatype.
213     bool Op1Signed = false, Op2Signed = false;
214     unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
215     unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
216     unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
217 
218     // If both are representable as i15 and at least one is constant,
219     // zero-extended, or sign-extended from vXi16 (or less pre-SSE41) then we
220     // can treat this as PMADDWD which has the same costs as a vXi16 multiply.
221     if (OpMinSize <= 15 && !ST->isPMADDWDSlow()) {
222       bool Op1Constant =
223           isa<ConstantDataVector>(Args[0]) || isa<ConstantVector>(Args[0]);
224       bool Op2Constant =
225           isa<ConstantDataVector>(Args[1]) || isa<ConstantVector>(Args[1]);
226       bool Op1Sext = isa<SExtInst>(Args[0]) &&
227                      (Op1MinSize == 15 || (Op1MinSize < 15 && !ST->hasSSE41()));
228       bool Op2Sext = isa<SExtInst>(Args[1]) &&
229                      (Op2MinSize == 15 || (Op2MinSize < 15 && !ST->hasSSE41()));
230 
231       bool IsZeroExtended = !Op1Signed || !Op2Signed;
232       bool IsConstant = Op1Constant || Op2Constant;
233       bool IsSext = Op1Sext || Op2Sext;
234       if (IsConstant || IsZeroExtended || IsSext)
235         LT.second =
236             MVT::getVectorVT(MVT::i16, 2 * LT.second.getVectorNumElements());
237     }
238   }
239 
240   // Vector multiply by pow2 will be simplified to shifts.
241   if (ISD == ISD::MUL &&
242       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
243        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
244       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2)
245     return getArithmeticInstrCost(Instruction::Shl, Ty, CostKind, Op1Info,
246                                   Op2Info, TargetTransformInfo::OP_None,
247                                   TargetTransformInfo::OP_None);
248 
249   // On X86, vector signed division by constants power-of-two are
250   // normally expanded to the sequence SRA + SRL + ADD + SRA.
251   // The OperandValue properties may not be the same as that of the previous
252   // operation; conservatively assume OP_None.
253   if ((ISD == ISD::SDIV || ISD == ISD::SREM) &&
254       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
255        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
256       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
257     InstructionCost Cost =
258         2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
259                                    Op2Info, TargetTransformInfo::OP_None,
260                                    TargetTransformInfo::OP_None);
261     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
262                                    Op2Info, TargetTransformInfo::OP_None,
263                                    TargetTransformInfo::OP_None);
264     Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
265                                    Op2Info, TargetTransformInfo::OP_None,
266                                    TargetTransformInfo::OP_None);
267 
268     if (ISD == ISD::SREM) {
269       // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
270       Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
271                                      Op2Info);
272       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
273                                      Op2Info);
274     }
275 
276     return Cost;
277   }
278 
279   // Vector unsigned division/remainder will be simplified to shifts/masks.
280   if ((ISD == ISD::UDIV || ISD == ISD::UREM) &&
281       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
282        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
283       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
284     if (ISD == ISD::UDIV)
285       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
286                                     Op2Info, TargetTransformInfo::OP_None,
287                                     TargetTransformInfo::OP_None);
288     // UREM
289     return getArithmeticInstrCost(Instruction::And, Ty, CostKind, Op1Info,
290                                   Op2Info, TargetTransformInfo::OP_None,
291                                   TargetTransformInfo::OP_None);
292   }
293 
294   static const CostTblEntry GLMCostTable[] = {
295     { ISD::FDIV,  MVT::f32,   18 }, // divss
296     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
297     { ISD::FDIV,  MVT::f64,   33 }, // divsd
298     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
299   };
300 
301   if (ST->useGLMDivSqrtCosts())
302     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
303                                             LT.second))
304       return LT.first * Entry->Cost;
305 
306   static const CostTblEntry SLMCostTable[] = {
307     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
308     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
309     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
310     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
311     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
312     { ISD::FDIV,  MVT::f32,   17 }, // divss
313     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
314     { ISD::FDIV,  MVT::f64,   32 }, // divsd
315     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
316     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
317     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
318     // v2i64/v4i64 mul is custom lowered as a series of long:
319     // multiplies(3), shifts(3) and adds(2)
320     // slm muldq version throughput is 2 and addq throughput 4
321     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
322     //       3X4 (addq throughput) = 17
323     { ISD::MUL,   MVT::v2i64, 17 },
324     // slm addq\subq throughput is 4
325     { ISD::ADD,   MVT::v2i64, 4  },
326     { ISD::SUB,   MVT::v2i64, 4  },
327   };
328 
329   if (ST->useSLMArithCosts()) {
330     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
331       // Check if the operands can be shrinked into a smaller datatype.
332       // TODO: Merge this into generiic vXi32 MUL patterns above.
333       bool Op1Signed = false;
334       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
335       bool Op2Signed = false;
336       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
337 
338       bool SignedMode = Op1Signed || Op2Signed;
339       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
340 
341       if (OpMinSize <= 7)
342         return LT.first * 3; // pmullw/sext
343       if (!SignedMode && OpMinSize <= 8)
344         return LT.first * 3; // pmullw/zext
345       if (OpMinSize <= 15)
346         return LT.first * 5; // pmullw/pmulhw/pshuf
347       if (!SignedMode && OpMinSize <= 16)
348         return LT.first * 5; // pmullw/pmulhw/pshuf
349     }
350 
351     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
352                                             LT.second)) {
353       return LT.first * Entry->Cost;
354     }
355   }
356 
357   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
358     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
359     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
360     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
361   };
362 
363   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
364       ST->hasBWI()) {
365     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
366                                             LT.second))
367       return LT.first * Entry->Cost;
368   }
369 
370   static const CostTblEntry AVX512UniformConstCostTable[] = {
371     { ISD::SRA,  MVT::v2i64,   1 },
372     { ISD::SRA,  MVT::v4i64,   1 },
373     { ISD::SRA,  MVT::v8i64,   1 },
374 
375     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
376     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
377     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
378 
379     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
380     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
381     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
382     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
383   };
384 
385   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
386       ST->hasAVX512()) {
387     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
388                                             LT.second))
389       return LT.first * Entry->Cost;
390   }
391 
392   static const CostTblEntry AVX2UniformConstCostTable[] = {
393     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
394     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
395     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
396 
397     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
398 
399     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
400     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
401     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
402     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
403   };
404 
405   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
406       ST->hasAVX2()) {
407     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
408                                             LT.second))
409       return LT.first * Entry->Cost;
410   }
411 
412   static const CostTblEntry SSE2UniformConstCostTable[] = {
413     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
414     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
415     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
416 
417     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
418     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
419     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
420 
421     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
422     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
423     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
424     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
425     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
426     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
427     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
428     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
429   };
430 
431   // XOP has faster vXi8 shifts.
432   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
433       ST->hasSSE2() && !ST->hasXOP()) {
434     if (const auto *Entry =
435             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
436       return LT.first * Entry->Cost;
437   }
438 
439   static const CostTblEntry AVX512BWConstCostTable[] = {
440     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
441     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
442     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
443     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
444     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
445     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
446     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
447     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
448   };
449 
450   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
451        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
452       ST->hasBWI()) {
453     if (const auto *Entry =
454             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
455       return LT.first * Entry->Cost;
456   }
457 
458   static const CostTblEntry AVX512ConstCostTable[] = {
459     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
460     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
461     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
462     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
463     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
464     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
465     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
466     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
467     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
468     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
469     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
470     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
471   };
472 
473   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
474        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
475       ST->hasAVX512()) {
476     if (const auto *Entry =
477             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
478       return LT.first * Entry->Cost;
479   }
480 
481   static const CostTblEntry AVX2ConstCostTable[] = {
482     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
483     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
484     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
485     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
486     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
487     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
488     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
489     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
490     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
491     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
492     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
493     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
494   };
495 
496   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
497        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
498       ST->hasAVX2()) {
499     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
500       return LT.first * Entry->Cost;
501   }
502 
503   static const CostTblEntry SSE2ConstCostTable[] = {
504     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
505     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
506     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
507     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
508     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
509     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
510     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
511     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
512     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
513     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
514     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
515     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
516     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
517     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
518     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
519     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
520     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
521     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
522     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
523     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
524     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
525     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
526     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
527     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
528   };
529 
530   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
531        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
532       ST->hasSSE2()) {
533     // pmuldq sequence.
534     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
535       return LT.first * 32;
536     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
537       return LT.first * 38;
538     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
539       return LT.first * 15;
540     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
541       return LT.first * 20;
542 
543     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
544       return LT.first * Entry->Cost;
545   }
546 
547   static const CostTblEntry AVX512BWShiftCostTable[] = {
548     { ISD::SHL,   MVT::v16i8,      4 }, // extend/vpsllvw/pack sequence.
549     { ISD::SRL,   MVT::v16i8,      4 }, // extend/vpsrlvw/pack sequence.
550     { ISD::SRA,   MVT::v16i8,      4 }, // extend/vpsravw/pack sequence.
551     { ISD::SHL,   MVT::v32i8,      4 }, // extend/vpsllvw/pack sequence.
552     { ISD::SRL,   MVT::v32i8,      4 }, // extend/vpsrlvw/pack sequence.
553     { ISD::SRA,   MVT::v32i8,      6 }, // extend/vpsravw/pack sequence.
554     { ISD::SHL,   MVT::v64i8,      6 }, // extend/vpsllvw/pack sequence.
555     { ISD::SRL,   MVT::v64i8,      7 }, // extend/vpsrlvw/pack sequence.
556     { ISD::SRA,   MVT::v64i8,     15 }, // extend/vpsravw/pack sequence.
557 
558     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
559     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
560     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
561     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
562     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
563     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
564     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
565     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
566     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
567   };
568 
569   if (ST->hasBWI())
570     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
571       return LT.first * Entry->Cost;
572 
573   static const CostTblEntry AVX2UniformCostTable[] = {
574     // Uniform splats are cheaper for the following instructions.
575     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
576     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
577     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
578     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
579     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
580     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
581 
582     { ISD::SHL,  MVT::v8i32,  1 }, // pslld
583     { ISD::SRL,  MVT::v8i32,  1 }, // psrld
584     { ISD::SRA,  MVT::v8i32,  1 }, // psrad
585     { ISD::SHL,  MVT::v4i64,  1 }, // psllq
586     { ISD::SRL,  MVT::v4i64,  1 }, // psrlq
587   };
588 
589   if (ST->hasAVX2() &&
590       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
591        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
592     if (const auto *Entry =
593             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
594       return LT.first * Entry->Cost;
595   }
596 
597   static const CostTblEntry SSE2UniformCostTable[] = {
598     // Uniform splats are cheaper for the following instructions.
599     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
600     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
601     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
602 
603     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
604     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
605     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
606 
607     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
608     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
609   };
610 
611   if (ST->hasSSE2() &&
612       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
613        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
614     if (const auto *Entry =
615             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
616       return LT.first * Entry->Cost;
617   }
618 
619   static const CostTblEntry AVX512DQCostTable[] = {
620     { ISD::MUL,  MVT::v2i64, 2 }, // pmullq
621     { ISD::MUL,  MVT::v4i64, 2 }, // pmullq
622     { ISD::MUL,  MVT::v8i64, 2 }  // pmullq
623   };
624 
625   // Look for AVX512DQ lowering tricks for custom cases.
626   if (ST->hasDQI())
627     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
628       return LT.first * Entry->Cost;
629 
630   static const CostTblEntry AVX512BWCostTable[] = {
631     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
632     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
633     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
634   };
635 
636   // Look for AVX512BW lowering tricks for custom cases.
637   if (ST->hasBWI())
638     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
639       return LT.first * Entry->Cost;
640 
641   static const CostTblEntry AVX512CostTable[] = {
642     { ISD::SHL,     MVT::v4i32,      1 },
643     { ISD::SRL,     MVT::v4i32,      1 },
644     { ISD::SRA,     MVT::v4i32,      1 },
645     { ISD::SHL,     MVT::v8i32,      1 },
646     { ISD::SRL,     MVT::v8i32,      1 },
647     { ISD::SRA,     MVT::v8i32,      1 },
648     { ISD::SHL,     MVT::v16i32,     1 },
649     { ISD::SRL,     MVT::v16i32,     1 },
650     { ISD::SRA,     MVT::v16i32,     1 },
651 
652     { ISD::SHL,     MVT::v2i64,      1 },
653     { ISD::SRL,     MVT::v2i64,      1 },
654     { ISD::SHL,     MVT::v4i64,      1 },
655     { ISD::SRL,     MVT::v4i64,      1 },
656     { ISD::SHL,     MVT::v8i64,      1 },
657     { ISD::SRL,     MVT::v8i64,      1 },
658 
659     { ISD::SRA,     MVT::v2i64,      1 },
660     { ISD::SRA,     MVT::v4i64,      1 },
661     { ISD::SRA,     MVT::v8i64,      1 },
662 
663     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
664     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
665     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
666     { ISD::MUL,     MVT::v8i64,      6 }, // 3*pmuludq/3*shift/2*add
667     { ISD::MUL,     MVT::i64,        1 }, // Skylake from http://www.agner.org/
668 
669     { ISD::FNEG,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
670     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
671     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
672     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
673     { ISD::FDIV,    MVT::f64,        4 }, // Skylake from http://www.agner.org/
674     { ISD::FDIV,    MVT::v2f64,      4 }, // Skylake from http://www.agner.org/
675     { ISD::FDIV,    MVT::v4f64,      8 }, // Skylake from http://www.agner.org/
676     { ISD::FDIV,    MVT::v8f64,     16 }, // Skylake from http://www.agner.org/
677 
678     { ISD::FNEG,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
679     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
680     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
681     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
682     { ISD::FDIV,    MVT::f32,        3 }, // Skylake from http://www.agner.org/
683     { ISD::FDIV,    MVT::v4f32,      3 }, // Skylake from http://www.agner.org/
684     { ISD::FDIV,    MVT::v8f32,      5 }, // Skylake from http://www.agner.org/
685     { ISD::FDIV,    MVT::v16f32,    10 }, // Skylake from http://www.agner.org/
686   };
687 
688   if (ST->hasAVX512())
689     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
690       return LT.first * Entry->Cost;
691 
692   static const CostTblEntry AVX2ShiftCostTable[] = {
693     // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
694     // customize them to detect the cases where shift amount is a scalar one.
695     { ISD::SHL,     MVT::v4i32,    2 }, // vpsllvd (Haswell from agner.org)
696     { ISD::SRL,     MVT::v4i32,    2 }, // vpsrlvd (Haswell from agner.org)
697     { ISD::SRA,     MVT::v4i32,    2 }, // vpsravd (Haswell from agner.org)
698     { ISD::SHL,     MVT::v8i32,    2 }, // vpsllvd (Haswell from agner.org)
699     { ISD::SRL,     MVT::v8i32,    2 }, // vpsrlvd (Haswell from agner.org)
700     { ISD::SRA,     MVT::v8i32,    2 }, // vpsravd (Haswell from agner.org)
701     { ISD::SHL,     MVT::v2i64,    1 }, // vpsllvq (Haswell from agner.org)
702     { ISD::SRL,     MVT::v2i64,    1 }, // vpsrlvq (Haswell from agner.org)
703     { ISD::SHL,     MVT::v4i64,    1 }, // vpsllvq (Haswell from agner.org)
704     { ISD::SRL,     MVT::v4i64,    1 }, // vpsrlvq (Haswell from agner.org)
705   };
706 
707   if (ST->hasAVX512()) {
708     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
709         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
710          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
711       // On AVX512, a packed v32i16 shift left by a constant build_vector
712       // is lowered into a vector multiply (vpmullw).
713       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
714                                     Op1Info, Op2Info,
715                                     TargetTransformInfo::OP_None,
716                                     TargetTransformInfo::OP_None);
717   }
718 
719   // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
720   if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
721     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
722         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
723          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
724       // On AVX2, a packed v16i16 shift left by a constant build_vector
725       // is lowered into a vector multiply (vpmullw).
726       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
727                                     Op1Info, Op2Info,
728                                     TargetTransformInfo::OP_None,
729                                     TargetTransformInfo::OP_None);
730 
731     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
732       return LT.first * Entry->Cost;
733   }
734 
735   static const CostTblEntry XOPShiftCostTable[] = {
736     // 128bit shifts take 1cy, but right shifts require negation beforehand.
737     { ISD::SHL,     MVT::v16i8,    1 },
738     { ISD::SRL,     MVT::v16i8,    2 },
739     { ISD::SRA,     MVT::v16i8,    2 },
740     { ISD::SHL,     MVT::v8i16,    1 },
741     { ISD::SRL,     MVT::v8i16,    2 },
742     { ISD::SRA,     MVT::v8i16,    2 },
743     { ISD::SHL,     MVT::v4i32,    1 },
744     { ISD::SRL,     MVT::v4i32,    2 },
745     { ISD::SRA,     MVT::v4i32,    2 },
746     { ISD::SHL,     MVT::v2i64,    1 },
747     { ISD::SRL,     MVT::v2i64,    2 },
748     { ISD::SRA,     MVT::v2i64,    2 },
749     // 256bit shifts require splitting if AVX2 didn't catch them above.
750     { ISD::SHL,     MVT::v32i8,  2+2 },
751     { ISD::SRL,     MVT::v32i8,  4+2 },
752     { ISD::SRA,     MVT::v32i8,  4+2 },
753     { ISD::SHL,     MVT::v16i16, 2+2 },
754     { ISD::SRL,     MVT::v16i16, 4+2 },
755     { ISD::SRA,     MVT::v16i16, 4+2 },
756     { ISD::SHL,     MVT::v8i32,  2+2 },
757     { ISD::SRL,     MVT::v8i32,  4+2 },
758     { ISD::SRA,     MVT::v8i32,  4+2 },
759     { ISD::SHL,     MVT::v4i64,  2+2 },
760     { ISD::SRL,     MVT::v4i64,  4+2 },
761     { ISD::SRA,     MVT::v4i64,  4+2 },
762   };
763 
764   // Look for XOP lowering tricks.
765   if (ST->hasXOP()) {
766     // If the right shift is constant then we'll fold the negation so
767     // it's as cheap as a left shift.
768     int ShiftISD = ISD;
769     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
770         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
771          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
772       ShiftISD = ISD::SHL;
773     if (const auto *Entry =
774             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
775       return LT.first * Entry->Cost;
776   }
777 
778   static const CostTblEntry SSE2UniformShiftCostTable[] = {
779     // Uniform splats are cheaper for the following instructions.
780     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
781     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
782     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
783 
784     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
785     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
786     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
787 
788     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
789     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
790     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
791     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
792   };
793 
794   if (ST->hasSSE2() &&
795       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
796        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
797 
798     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
799     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
800       return LT.first * 4; // 2*psrad + shuffle.
801 
802     if (const auto *Entry =
803             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
804       return LT.first * Entry->Cost;
805   }
806 
807   if (ISD == ISD::SHL &&
808       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
809     MVT VT = LT.second;
810     // Vector shift left by non uniform constant can be lowered
811     // into vector multiply.
812     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
813         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
814       ISD = ISD::MUL;
815   }
816 
817   static const CostTblEntry AVX2CostTable[] = {
818     { ISD::SHL,  MVT::v16i8,      6 }, // vpblendvb sequence.
819     { ISD::SHL,  MVT::v32i8,      6 }, // vpblendvb sequence.
820     { ISD::SHL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
821     { ISD::SHL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
822     { ISD::SHL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
823     { ISD::SHL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
824 
825     { ISD::SRL,  MVT::v16i8,      6 }, // vpblendvb sequence.
826     { ISD::SRL,  MVT::v32i8,      6 }, // vpblendvb sequence.
827     { ISD::SRL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
828     { ISD::SRL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
829     { ISD::SRL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
830     { ISD::SRL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
831 
832     { ISD::SRA,  MVT::v16i8,     17 }, // vpblendvb sequence.
833     { ISD::SRA,  MVT::v32i8,     17 }, // vpblendvb sequence.
834     { ISD::SRA,  MVT::v64i8,     34 }, // 2*vpblendvb sequence.
835     { ISD::SRA,  MVT::v8i16,      5 }, // extend/vpsravd/pack sequence.
836     { ISD::SRA,  MVT::v16i16,     7 }, // extend/vpsravd/pack sequence.
837     { ISD::SRA,  MVT::v32i16,    14 }, // 2*extend/vpsravd/pack sequence.
838     { ISD::SRA,  MVT::v2i64,      2 }, // srl/xor/sub sequence.
839     { ISD::SRA,  MVT::v4i64,      2 }, // srl/xor/sub sequence.
840 
841     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
842     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
843     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
844     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
845     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
846     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
847     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
848     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
849 
850     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
851     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
852     { ISD::MUL,  MVT::v4i64,      6 }, // 3*pmuludq/3*shift/2*add
853 
854     { ISD::FNEG, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
855     { ISD::FNEG, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
856     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
857     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
858     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
859     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
860     { ISD::FMUL, MVT::f64,        1 }, // Haswell from http://www.agner.org/
861     { ISD::FMUL, MVT::v2f64,      1 }, // Haswell from http://www.agner.org/
862     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
863     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
864 
865     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
866     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
867     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
868     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
869     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
870     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
871   };
872 
873   // Look for AVX2 lowering tricks for custom cases.
874   if (ST->hasAVX2())
875     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
876       return LT.first * Entry->Cost;
877 
878   static const CostTblEntry AVX1CostTable[] = {
879     // We don't have to scalarize unsupported ops. We can issue two half-sized
880     // operations and we only need to extract the upper YMM half.
881     // Two ops + 1 extract + 1 insert = 4.
882     { ISD::MUL,     MVT::v16i16,     4 },
883     { ISD::MUL,     MVT::v8i32,      5 }, // BTVER2 from http://www.agner.org/
884     { ISD::MUL,     MVT::v4i64,     12 },
885 
886     { ISD::SUB,     MVT::v32i8,      4 },
887     { ISD::ADD,     MVT::v32i8,      4 },
888     { ISD::SUB,     MVT::v16i16,     4 },
889     { ISD::ADD,     MVT::v16i16,     4 },
890     { ISD::SUB,     MVT::v8i32,      4 },
891     { ISD::ADD,     MVT::v8i32,      4 },
892     { ISD::SUB,     MVT::v4i64,      4 },
893     { ISD::ADD,     MVT::v4i64,      4 },
894 
895     { ISD::SHL,     MVT::v32i8,     22 }, // pblendvb sequence + split.
896     { ISD::SHL,     MVT::v8i16,      6 }, // pblendvb sequence.
897     { ISD::SHL,     MVT::v16i16,    13 }, // pblendvb sequence + split.
898     { ISD::SHL,     MVT::v4i32,      3 }, // pslld/paddd/cvttps2dq/pmulld
899     { ISD::SHL,     MVT::v8i32,      9 }, // pslld/paddd/cvttps2dq/pmulld + split
900     { ISD::SHL,     MVT::v2i64,      2 }, // Shift each lane + blend.
901     { ISD::SHL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
902 
903     { ISD::SRL,     MVT::v32i8,     23 }, // pblendvb sequence + split.
904     { ISD::SRL,     MVT::v16i16,    28 }, // pblendvb sequence + split.
905     { ISD::SRL,     MVT::v4i32,      6 }, // Shift each lane + blend.
906     { ISD::SRL,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
907     { ISD::SRL,     MVT::v2i64,      2 }, // Shift each lane + blend.
908     { ISD::SRL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
909 
910     { ISD::SRA,     MVT::v32i8,     44 }, // pblendvb sequence + split.
911     { ISD::SRA,     MVT::v16i16,    28 }, // pblendvb sequence + split.
912     { ISD::SRA,     MVT::v4i32,      6 }, // Shift each lane + blend.
913     { ISD::SRA,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
914     { ISD::SRA,     MVT::v2i64,      5 }, // Shift each lane + blend.
915     { ISD::SRA,     MVT::v4i64,     12 }, // Shift each lane + blend + split.
916 
917     { ISD::FNEG,    MVT::v4f64,      2 }, // BTVER2 from http://www.agner.org/
918     { ISD::FNEG,    MVT::v8f32,      2 }, // BTVER2 from http://www.agner.org/
919 
920     { ISD::FMUL,    MVT::f64,        2 }, // BTVER2 from http://www.agner.org/
921     { ISD::FMUL,    MVT::v2f64,      2 }, // BTVER2 from http://www.agner.org/
922     { ISD::FMUL,    MVT::v4f64,      4 }, // BTVER2 from http://www.agner.org/
923 
924     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
925     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
926     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
927     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
928     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
929     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
930   };
931 
932   if (ST->hasAVX())
933     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
934       return LT.first * Entry->Cost;
935 
936   static const CostTblEntry SSE42CostTable[] = {
937     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
938     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
939     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
940     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
941 
942     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
943     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
944     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
945     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
946 
947     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
948     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
949     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
950     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
951 
952     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
953     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
954     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
955     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
956 
957     { ISD::MUL,   MVT::v2i64,  6 }  // 3*pmuludq/3*shift/2*add
958   };
959 
960   if (ST->hasSSE42())
961     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
962       return LT.first * Entry->Cost;
963 
964   static const CostTblEntry SSE41CostTable[] = {
965     { ISD::SHL,  MVT::v16i8,      10 }, // pblendvb sequence.
966     { ISD::SHL,  MVT::v8i16,      11 }, // pblendvb sequence.
967     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
968 
969     { ISD::SRL,  MVT::v16i8,      11 }, // pblendvb sequence.
970     { ISD::SRL,  MVT::v8i16,      13 }, // pblendvb sequence.
971     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
972 
973     { ISD::SRA,  MVT::v16i8,      21 }, // pblendvb sequence.
974     { ISD::SRA,  MVT::v8i16,      13 }, // pblendvb sequence.
975 
976     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
977   };
978 
979   if (ST->hasSSE41())
980     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
981       return LT.first * Entry->Cost;
982 
983   static const CostTblEntry SSE2CostTable[] = {
984     // We don't correctly identify costs of casts because they are marked as
985     // custom.
986     { ISD::SHL,  MVT::v16i8,      13 }, // cmpgtb sequence.
987     { ISD::SHL,  MVT::v8i16,      25 }, // cmpgtw sequence.
988     { ISD::SHL,  MVT::v4i32,      16 }, // pslld/paddd/cvttps2dq/pmuludq.
989     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
990 
991     { ISD::SRL,  MVT::v16i8,      14 }, // cmpgtb sequence.
992     { ISD::SRL,  MVT::v8i16,      16 }, // cmpgtw sequence.
993     { ISD::SRL,  MVT::v4i32,      12 }, // Shift each lane + blend.
994     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
995 
996     { ISD::SRA,  MVT::v16i8,      27 }, // unpacked cmpgtb sequence.
997     { ISD::SRA,  MVT::v8i16,      16 }, // cmpgtw sequence.
998     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
999     { ISD::SRA,  MVT::v2i64,       8 }, // srl/xor/sub splat+shuffle sequence.
1000 
1001     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
1002     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
1003     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
1004 
1005     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
1006     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
1007     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
1008     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
1009 
1010     { ISD::FNEG, MVT::f32,         1 }, // Pentium IV from http://www.agner.org/
1011     { ISD::FNEG, MVT::f64,         1 }, // Pentium IV from http://www.agner.org/
1012     { ISD::FNEG, MVT::v4f32,       1 }, // Pentium IV from http://www.agner.org/
1013     { ISD::FNEG, MVT::v2f64,       1 }, // Pentium IV from http://www.agner.org/
1014 
1015     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
1016     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
1017 
1018     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
1019     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
1020   };
1021 
1022   if (ST->hasSSE2())
1023     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
1024       return LT.first * Entry->Cost;
1025 
1026   static const CostTblEntry SSE1CostTable[] = {
1027     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
1028     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
1029 
1030     { ISD::FNEG, MVT::f32,    2 }, // Pentium III from http://www.agner.org/
1031     { ISD::FNEG, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1032 
1033     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1034     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1035 
1036     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1037     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1038   };
1039 
1040   if (ST->hasSSE1())
1041     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1042       return LT.first * Entry->Cost;
1043 
1044   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1045     { ISD::ADD,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1046     { ISD::SUB,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1047     { ISD::MUL,  MVT::i64,    2 }, // Nehalem from http://www.agner.org/
1048   };
1049 
1050   if (ST->is64Bit())
1051     if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1052       return LT.first * Entry->Cost;
1053 
1054   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1055     { ISD::ADD,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1056     { ISD::ADD,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1057     { ISD::ADD,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1058 
1059     { ISD::SUB,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1060     { ISD::SUB,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1061     { ISD::SUB,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1062   };
1063 
1064   if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1065     return LT.first * Entry->Cost;
1066 
1067   // It is not a good idea to vectorize division. We have to scalarize it and
1068   // in the process we will often end up having to spilling regular
1069   // registers. The overhead of division is going to dominate most kernels
1070   // anyways so try hard to prevent vectorization of division - it is
1071   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1072   // to hide "20 cycles" for each lane.
1073   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
1074                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
1075     InstructionCost ScalarCost = getArithmeticInstrCost(
1076         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
1077         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1078     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1079   }
1080 
1081   // Fallback to the default implementation.
1082   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
1083 }
1084 
1085 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1086                                            VectorType *BaseTp,
1087                                            ArrayRef<int> Mask, int Index,
1088                                            VectorType *SubTp,
1089                                            ArrayRef<const Value *> Args) {
1090   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1091   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1092   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
1093 
1094   Kind = improveShuffleKindFromMask(Kind, Mask);
1095   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1096   if (Kind == TTI::SK_Transpose)
1097     Kind = TTI::SK_PermuteTwoSrc;
1098 
1099   // For Broadcasts we are splatting the first element from the first input
1100   // register, so only need to reference that input and all the output
1101   // registers are the same.
1102   if (Kind == TTI::SK_Broadcast)
1103     LT.first = 1;
1104 
1105   // Subvector extractions are free if they start at the beginning of a
1106   // vector and cheap if the subvectors are aligned.
1107   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1108     int NumElts = LT.second.getVectorNumElements();
1109     if ((Index % NumElts) == 0)
1110       return 0;
1111     std::pair<InstructionCost, MVT> SubLT =
1112         TLI->getTypeLegalizationCost(DL, SubTp);
1113     if (SubLT.second.isVector()) {
1114       int NumSubElts = SubLT.second.getVectorNumElements();
1115       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1116         return SubLT.first;
1117       // Handle some cases for widening legalization. For now we only handle
1118       // cases where the original subvector was naturally aligned and evenly
1119       // fit in its legalized subvector type.
1120       // FIXME: Remove some of the alignment restrictions.
1121       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1122       // vectors.
1123       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1124       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1125           (NumSubElts % OrigSubElts) == 0 &&
1126           LT.second.getVectorElementType() ==
1127               SubLT.second.getVectorElementType() &&
1128           LT.second.getVectorElementType().getSizeInBits() ==
1129               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1130         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1131                "Unexpected number of elements!");
1132         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1133                                            LT.second.getVectorNumElements());
1134         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1135                                            SubLT.second.getVectorNumElements());
1136         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1137         InstructionCost ExtractCost = getShuffleCost(
1138             TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy);
1139 
1140         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1141         // if we have SSSE3 we can use pshufb.
1142         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1143           return ExtractCost + 1; // pshufd or pshufb
1144 
1145         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1146                "Unexpected vector size");
1147 
1148         return ExtractCost + 2; // worst case pshufhw + pshufd
1149       }
1150     }
1151   }
1152 
1153   // Subvector insertions are cheap if the subvectors are aligned.
1154   // Note that in general, the insertion starting at the beginning of a vector
1155   // isn't free, because we need to preserve the rest of the wide vector.
1156   if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1157     int NumElts = LT.second.getVectorNumElements();
1158     std::pair<InstructionCost, MVT> SubLT =
1159         TLI->getTypeLegalizationCost(DL, SubTp);
1160     if (SubLT.second.isVector()) {
1161       int NumSubElts = SubLT.second.getVectorNumElements();
1162       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1163         return SubLT.first;
1164     }
1165 
1166     // If the insertion isn't aligned, treat it like a 2-op shuffle.
1167     Kind = TTI::SK_PermuteTwoSrc;
1168   }
1169 
1170   // Handle some common (illegal) sub-vector types as they are often very cheap
1171   // to shuffle even on targets without PSHUFB.
1172   EVT VT = TLI->getValueType(DL, BaseTp);
1173   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1174       !ST->hasSSSE3()) {
1175      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1176       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1177       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1178       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1179       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1180       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1181 
1182       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1183       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1184       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1185       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1186 
1187       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1188       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1189       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1190       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1191       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1192 
1193       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1194       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1195       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1196       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1197       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1198     };
1199 
1200     if (ST->hasSSE2())
1201       if (const auto *Entry =
1202               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1203         return Entry->Cost;
1204   }
1205 
1206   // We are going to permute multiple sources and the result will be in multiple
1207   // destinations. Providing an accurate cost only for splits where the element
1208   // type remains the same.
1209   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1210     MVT LegalVT = LT.second;
1211     if (LegalVT.isVector() &&
1212         LegalVT.getVectorElementType().getSizeInBits() ==
1213             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1214         LegalVT.getVectorNumElements() <
1215             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1216 
1217       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1218       unsigned LegalVTSize = LegalVT.getStoreSize();
1219       // Number of source vectors after legalization:
1220       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1221       // Number of destination vectors after legalization:
1222       InstructionCost NumOfDests = LT.first;
1223 
1224       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1225                                               LegalVT.getVectorNumElements());
1226 
1227       if (!Mask.empty() && NumOfDests.isValid()) {
1228         // Try to perform better estimation of the permutation.
1229         // 1. Split the source/destination vectors into real registers.
1230         // 2. Do the mask analysis to identify which real registers are
1231         // permuted. If more than 1 source registers are used for the
1232         // destination register building, the cost for this destination register
1233         // is (Number_of_source_register - 1) * Cost_PermuteTwoSrc. If only one
1234         // source register is used, build mask and calculate the cost as a cost
1235         // of PermuteSingleSrc.
1236         // Also, for the single register permute we try to identify if the
1237         // destination register is just a copy of the source register or the
1238         // copy of the previous destination register (the cost is
1239         // TTI::TCC_Basic). If the source register is just reused, the cost for
1240         // this operation is 0.
1241         unsigned E = *NumOfDests.getValue();
1242         unsigned NormalizedVF =
1243             LegalVT.getVectorNumElements() * std::max(NumOfSrcs, E);
1244         unsigned NumOfSrcRegs = NormalizedVF / LegalVT.getVectorNumElements();
1245         unsigned NumOfDestRegs = NormalizedVF / LegalVT.getVectorNumElements();
1246         SmallVector<int> NormalizedMask(NormalizedVF, UndefMaskElem);
1247         copy(Mask, NormalizedMask.begin());
1248         unsigned PrevSrcReg = 0;
1249         ArrayRef<int> PrevRegMask;
1250         InstructionCost Cost = 0;
1251         processShuffleMasks(
1252             NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs, []() {},
1253             [this, SingleOpTy, &PrevSrcReg, &PrevRegMask,
1254              &Cost](ArrayRef<int> RegMask, unsigned SrcReg, unsigned DestReg) {
1255               if (!ShuffleVectorInst::isIdentityMask(RegMask)) {
1256                 // Check if the previous register can be just copied to the next
1257                 // one.
1258                 if (PrevRegMask.empty() || PrevSrcReg != SrcReg ||
1259                     PrevRegMask != RegMask)
1260                   Cost += getShuffleCost(TTI::SK_PermuteSingleSrc, SingleOpTy,
1261                                          RegMask, 0, nullptr);
1262                 else
1263                   // Just a copy of previous destination register.
1264                   Cost += TTI::TCC_Basic;
1265                 return;
1266               }
1267               if (SrcReg != DestReg &&
1268                   any_of(RegMask, [](int I) { return I != UndefMaskElem; })) {
1269                 // Just a copy of the source register.
1270                 Cost += TTI::TCC_Basic;
1271               }
1272               PrevSrcReg = SrcReg;
1273               PrevRegMask = RegMask;
1274             },
1275             [this, SingleOpTy, &Cost](ArrayRef<int> RegMask,
1276                                       unsigned /*Unused*/,
1277                                       unsigned /*Unused*/) {
1278               Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, RegMask,
1279                                      0, nullptr);
1280             });
1281         return Cost;
1282       }
1283 
1284       InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1285       return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1286                                             None, 0, nullptr);
1287     }
1288 
1289     return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1290   }
1291 
1292   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1293   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1294     // We assume that source and destination have the same vector type.
1295     InstructionCost NumOfDests = LT.first;
1296     InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
1297     LT.first = NumOfDests * NumOfShufflesPerDest;
1298   }
1299 
1300   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1301       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1302       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1303 
1304       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1305       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1306 
1307       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1308       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1309       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1310   };
1311 
1312   if (ST->hasVBMI())
1313     if (const auto *Entry =
1314             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1315       return LT.first * Entry->Cost;
1316 
1317   static const CostTblEntry AVX512BWShuffleTbl[] = {
1318       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1319       {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
1320       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1321 
1322       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1323       {TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw
1324       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1325       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1326 
1327       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1328       {TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw
1329       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1330       {TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw
1331       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1332 
1333       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1334       {TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w
1335       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1336       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1337       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1338 
1339       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1340       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1341   };
1342 
1343   if (ST->hasBWI())
1344     if (const auto *Entry =
1345             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1346       return LT.first * Entry->Cost;
1347 
1348   static const CostTblEntry AVX512ShuffleTbl[] = {
1349       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1350       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1351       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1352       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1353       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1354       {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
1355       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1356 
1357       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1358       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1359       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1360       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1361       {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca
1362       {TTI::SK_Reverse, MVT::v32f16, 7}, // per mca
1363       {TTI::SK_Reverse, MVT::v64i8,  7}, // per mca
1364 
1365       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1366       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1367       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1368       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1369       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1370       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1371       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1372       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1373       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1374       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1375       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1376       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1377       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1378 
1379       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1380       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1381       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1382       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1383       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1384       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1385       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1386       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1387       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1388       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1389       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1390       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1391 
1392       // FIXME: This just applies the type legalization cost rules above
1393       // assuming these completely split.
1394       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1395       {TTI::SK_PermuteSingleSrc, MVT::v32f16, 14},
1396       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1397       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1398       {TTI::SK_PermuteTwoSrc,    MVT::v32f16, 42},
1399       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1400 
1401       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1402       {TTI::SK_Select, MVT::v32f16, 1}, // vpternlogq
1403       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1404       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1405       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1406       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1407       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1408   };
1409 
1410   if (ST->hasAVX512())
1411     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1412       return LT.first * Entry->Cost;
1413 
1414   static const CostTblEntry AVX2ShuffleTbl[] = {
1415       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1416       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1417       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1418       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1419       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1420       {TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw
1421       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1422 
1423       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1424       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1425       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1426       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1427       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1428       {TTI::SK_Reverse, MVT::v16f16, 2}, // vperm2i128 + pshufb
1429       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1430 
1431       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1432       {TTI::SK_Select, MVT::v16f16, 1}, // vpblendvb
1433       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1434 
1435       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1436       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1437       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1438       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1439       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1440                                                   // + vpblendvb
1441       {TTI::SK_PermuteSingleSrc, MVT::v16f16, 4}, // vperm2i128 + 2*vpshufb
1442                                                   // + vpblendvb
1443       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1444                                                   // + vpblendvb
1445 
1446       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1447       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1448       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1449       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1450       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1451                                                // + vpblendvb
1452       {TTI::SK_PermuteTwoSrc, MVT::v16f16, 7}, // 2*vperm2i128 + 4*vpshufb
1453                                                // + vpblendvb
1454       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1455                                                // + vpblendvb
1456   };
1457 
1458   if (ST->hasAVX2())
1459     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1460       return LT.first * Entry->Cost;
1461 
1462   static const CostTblEntry XOPShuffleTbl[] = {
1463       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1464       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1465       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1466       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1467       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1468                                                   // + vinsertf128
1469       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1470                                                   // + vinsertf128
1471 
1472       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1473                                                // + vinsertf128
1474       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1475       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1476                                                // + vinsertf128
1477       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1478   };
1479 
1480   if (ST->hasXOP())
1481     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1482       return LT.first * Entry->Cost;
1483 
1484   static const CostTblEntry AVX1ShuffleTbl[] = {
1485       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1486       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1487       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1488       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1489       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1490       {TTI::SK_Broadcast, MVT::v16f16, 3}, // vpshuflw + vpshufd + vinsertf128
1491       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1492 
1493       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1494       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1495       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1496       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1497       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1498                                          // + vinsertf128
1499       {TTI::SK_Reverse, MVT::v16f16, 4}, // vextractf128 + 2*pshufb
1500                                          // + vinsertf128
1501       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1502                                          // + vinsertf128
1503 
1504       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1505       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1506       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1507       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1508       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1509       {TTI::SK_Select, MVT::v16f16, 3}, // vpand + vpandn + vpor
1510       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1511 
1512       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1513       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1514       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1515       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1516       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1517                                                   // + 2*por + vinsertf128
1518       {TTI::SK_PermuteSingleSrc, MVT::v16f16, 8}, // vextractf128 + 4*pshufb
1519                                                   // + 2*por + vinsertf128
1520       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1521                                                   // + 2*por + vinsertf128
1522 
1523       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1524       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1525       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1526       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1527       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1528                                                 // + 4*por + vinsertf128
1529       {TTI::SK_PermuteTwoSrc, MVT::v16f16, 15}, // 2*vextractf128 + 8*pshufb
1530                                                 // + 4*por + vinsertf128
1531       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1532                                                 // + 4*por + vinsertf128
1533   };
1534 
1535   if (ST->hasAVX())
1536     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1537       return LT.first * Entry->Cost;
1538 
1539   static const CostTblEntry SSE41ShuffleTbl[] = {
1540       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1541       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1542       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1543       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1544       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1545       {TTI::SK_Select, MVT::v8f16, 1}, // pblendw
1546       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1547   };
1548 
1549   if (ST->hasSSE41())
1550     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1551       return LT.first * Entry->Cost;
1552 
1553   static const CostTblEntry SSSE3ShuffleTbl[] = {
1554       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1555       {TTI::SK_Broadcast, MVT::v8f16, 1}, // pshufb
1556       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1557 
1558       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1559       {TTI::SK_Reverse, MVT::v8f16, 1}, // pshufb
1560       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1561 
1562       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1563       {TTI::SK_Select, MVT::v8f16, 3}, // 2*pshufb + por
1564       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1565 
1566       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1567       {TTI::SK_PermuteSingleSrc, MVT::v8f16, 1}, // pshufb
1568       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1569 
1570       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1571       {TTI::SK_PermuteTwoSrc, MVT::v8f16, 3}, // 2*pshufb + por
1572       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1573   };
1574 
1575   if (ST->hasSSSE3())
1576     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1577       return LT.first * Entry->Cost;
1578 
1579   static const CostTblEntry SSE2ShuffleTbl[] = {
1580       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1581       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1582       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1583       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1584       {TTI::SK_Broadcast, MVT::v8f16, 2}, // pshuflw + pshufd
1585       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1586 
1587       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1588       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1589       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1590       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1591       {TTI::SK_Reverse, MVT::v8f16, 3}, // pshuflw + pshufhw + pshufd
1592       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1593                                         // + 2*pshufd + 2*unpck + packus
1594 
1595       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1596       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1597       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1598       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1599       {TTI::SK_Select, MVT::v8f16, 3}, // pand + pandn + por
1600       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1601 
1602       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1603       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1604       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1605       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1606                                                   // + pshufd/unpck
1607       {TTI::SK_PermuteSingleSrc, MVT::v8f16, 5}, // 2*pshuflw + 2*pshufhw
1608                                                   // + pshufd/unpck
1609     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1610                                                   // + 2*pshufd + 2*unpck + 2*packus
1611 
1612     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1613     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1614     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1615     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1616     { TTI::SK_PermuteTwoSrc,    MVT::v8f16,  8 }, // blend+permute
1617     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1618   };
1619 
1620   static const CostTblEntry SSE3BroadcastLoadTbl[] = {
1621       {TTI::SK_Broadcast, MVT::v2f64, 0}, // broadcast handled by movddup
1622   };
1623 
1624   if (ST->hasSSE2()) {
1625     bool IsLoad =
1626         llvm::any_of(Args, [](const auto &V) { return isa<LoadInst>(V); });
1627     if (ST->hasSSE3() && IsLoad)
1628       if (const auto *Entry =
1629               CostTableLookup(SSE3BroadcastLoadTbl, Kind, LT.second)) {
1630         assert(isLegalBroadcastLoad(BaseTp->getElementType(),
1631                                     LT.second.getVectorElementCount()) &&
1632                "Table entry missing from isLegalBroadcastLoad()");
1633         return LT.first * Entry->Cost;
1634       }
1635 
1636     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1637       return LT.first * Entry->Cost;
1638   }
1639 
1640   static const CostTblEntry SSE1ShuffleTbl[] = {
1641     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1642     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1643     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1644     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1645     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1646   };
1647 
1648   if (ST->hasSSE1())
1649     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1650       return LT.first * Entry->Cost;
1651 
1652   return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1653 }
1654 
1655 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1656                                              Type *Src,
1657                                              TTI::CastContextHint CCH,
1658                                              TTI::TargetCostKind CostKind,
1659                                              const Instruction *I) {
1660   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1661   assert(ISD && "Invalid opcode");
1662 
1663   // TODO: Allow non-throughput costs that aren't binary.
1664   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1665     if (CostKind != TTI::TCK_RecipThroughput)
1666       return Cost == 0 ? 0 : 1;
1667     return Cost;
1668   };
1669 
1670   // The cost tables include both specific, custom (non-legal) src/dst type
1671   // conversions and generic, legalized types. We test for customs first, before
1672   // falling back to legalization.
1673   // FIXME: Need a better design of the cost table to handle non-simple types of
1674   // potential massive combinations (elem_num x src_type x dst_type).
1675   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1676     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1677     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1678 
1679     // Mask sign extend has an instruction.
1680     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   1 },
1681     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v2i1,   1 },
1682     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   1 },
1683     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v2i1,   1 },
1684     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   1 },
1685     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v4i1,   1 },
1686     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   1 },
1687     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v4i1,   1 },
1688     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   1 },
1689     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v8i1,   1 },
1690     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   1 },
1691     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  1 },
1692     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1693     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1,  1 },
1694     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1,  1 },
1695     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1,  1 },
1696     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v64i1,  1 },
1697 
1698     // Mask zero extend is a sext + shift.
1699     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   2 },
1700     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v2i1,   2 },
1701     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   2 },
1702     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v2i1,   2 },
1703     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   2 },
1704     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v4i1,   2 },
1705     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   2 },
1706     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v4i1,   2 },
1707     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   2 },
1708     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v8i1,   2 },
1709     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   2 },
1710     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  2 },
1711     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  2 },
1712     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1,  2 },
1713     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1,  2 },
1714     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1,  2 },
1715     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v64i1,  2 },
1716 
1717     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 },
1718     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v16i8,  2 },
1719     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 },
1720     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v8i16,  2 },
1721     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 },
1722     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v16i8,  2 },
1723     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 },
1724     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v8i16,  2 },
1725     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 },
1726     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v16i8,  2 },
1727     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 },
1728     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 },
1729     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 },
1730     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 },
1731     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1732     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1733     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v32i16, 2 },
1734 
1735     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1736     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1737     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // vpmovwb
1738     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // vpmovwb
1739     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // vpmovwb
1740   };
1741 
1742   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1743     // Mask sign extend has an instruction.
1744     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 },
1745     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v2i1,   1 },
1746     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 },
1747     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 },
1748     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 },
1749     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v16i1,  1 },
1750     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 },
1751     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 },
1752 
1753     // Mask zero extend is a sext + shift.
1754     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 },
1755     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v2i1,   2 },
1756     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 },
1757     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 },
1758     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 },
1759     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v16i1,  2 },
1760     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 },
1761     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1762 
1763     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i64,  2 },
1764     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v4i32,  2 },
1765     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i32,  2 },
1766     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  2 },
1767     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1768     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i64,  2 },
1769     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i32, 2 },
1770     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v8i64,  2 },
1771 
1772     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1773     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1774 
1775     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1776     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1777 
1778     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1779     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1780 
1781     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1782     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1783   };
1784 
1785   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1786   // 256-bit wide vectors.
1787 
1788   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1789     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1790     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1791     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1792 
1793     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1794     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1795     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1796     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1797     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1798     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1799     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1800     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1801     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1802     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1803     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1804     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1805     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1806     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1807     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1808     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i32,  2 }, // vpmovdb
1809     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i32,  2 }, // vpmovdb
1810     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 }, // vpmovdb
1811     { ISD::TRUNCATE,  MVT::v32i8,   MVT::v16i32, 2 }, // vpmovdb
1812     { ISD::TRUNCATE,  MVT::v64i8,   MVT::v16i32, 2 }, // vpmovdb
1813     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 }, // vpmovdw
1814     { ISD::TRUNCATE,  MVT::v32i16,  MVT::v16i32, 2 }, // vpmovdw
1815     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i64,  2 }, // vpmovqb
1816     { ISD::TRUNCATE,  MVT::v2i16,   MVT::v2i64,  1 }, // vpshufb
1817     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 }, // vpmovqb
1818     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v8i64,  2 }, // vpmovqb
1819     { ISD::TRUNCATE,  MVT::v32i8,   MVT::v8i64,  2 }, // vpmovqb
1820     { ISD::TRUNCATE,  MVT::v64i8,   MVT::v8i64,  2 }, // vpmovqb
1821     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 }, // vpmovqw
1822     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v8i64,  2 }, // vpmovqw
1823     { ISD::TRUNCATE,  MVT::v32i16,  MVT::v8i64,  2 }, // vpmovqw
1824     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 }, // vpmovqd
1825     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1826     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1827 
1828     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1829     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1830     { ISD::TRUNCATE,  MVT::v64i8,  MVT::v32i16,  8 },
1831 
1832     // Sign extend is zmm vpternlogd+vptruncdb.
1833     // Zero extend is zmm broadcast load+vptruncdw.
1834     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1835     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1836     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1837     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1838     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1839     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1840     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1841     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1842 
1843     // Sign extend is zmm vpternlogd+vptruncdw.
1844     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1845     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1846     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1847     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1848     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1849     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1850     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1851     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1852     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1853 
1854     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1855     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1856     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1857     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1858     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1859     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1860     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1861     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1862     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1863     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1864 
1865     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1866     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1867     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1868     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1869 
1870     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1871     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1872     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1873     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1874     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1875     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1876     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1877     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1878     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1879     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1880 
1881     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1882     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1883 
1884     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1885     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1886     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1887     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1888     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1889     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1890     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1891     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1892 
1893     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1894     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1895     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1896     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1897     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1898     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1899     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1900     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1901     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1902     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1903 
1904     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
1905     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f64, 7 },
1906     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f64,15 },
1907     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f32,11 },
1908     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f64,31 },
1909     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1910     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f64, 7 },
1911     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f32, 5 },
1912     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f64,15 },
1913     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  1 },
1914     { ISD::FP_TO_SINT,  MVT::v16i32, MVT::v16f64, 3 },
1915 
1916     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1917     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1918     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1919     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1920     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1921     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1922   };
1923 
1924   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1925     // Mask sign extend has an instruction.
1926     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   1 },
1927     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v2i1,   1 },
1928     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   1 },
1929     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v2i1,   1 },
1930     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   1 },
1931     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v4i1,   1 },
1932     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   1 },
1933     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v4i1,   1 },
1934     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   1 },
1935     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v8i1,   1 },
1936     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   1 },
1937     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  1 },
1938     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1939     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1,  1 },
1940     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v32i1,  1 },
1941     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v64i1,  1 },
1942     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v64i1,  1 },
1943 
1944     // Mask zero extend is a sext + shift.
1945     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   2 },
1946     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v2i1,   2 },
1947     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   2 },
1948     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v2i1,   2 },
1949     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   2 },
1950     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v4i1,   2 },
1951     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   2 },
1952     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v4i1,   2 },
1953     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   2 },
1954     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v8i1,   2 },
1955     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   2 },
1956     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  2 },
1957     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  2 },
1958     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1,  2 },
1959     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v32i1,  2 },
1960     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v64i1,  2 },
1961     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v64i1,  2 },
1962 
1963     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 },
1964     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v16i8,  2 },
1965     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 },
1966     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v8i16,  2 },
1967     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 },
1968     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v16i8,  2 },
1969     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 },
1970     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v8i16,  2 },
1971     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 },
1972     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v16i8,  2 },
1973     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 },
1974     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 },
1975     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 },
1976     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 },
1977     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v16i16, 2 },
1978     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v32i8,  2 },
1979     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v16i16, 2 },
1980 
1981     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1982   };
1983 
1984   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1985     // Mask sign extend has an instruction.
1986     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 },
1987     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v2i1,   1 },
1988     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 },
1989     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i1,  1 },
1990     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 },
1991     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i1,   1 },
1992     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i1,  1 },
1993     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 },
1994 
1995     // Mask zero extend is a sext + shift.
1996     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 },
1997     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v2i1,   2 },
1998     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 },
1999     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i1,  2 },
2000     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 },
2001     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i1,   2 },
2002     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i1,  2 },
2003     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 },
2004 
2005     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v4i64,  2 },
2006     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v8i32,  2 },
2007     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i64,  2 },
2008     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v4i32,  2 },
2009     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i32,  2 },
2010     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  2 },
2011     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v4i64,  2 },
2012     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
2013 
2014     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
2015     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
2016     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
2017     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
2018 
2019     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
2020     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
2021     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
2022     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
2023 
2024     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v4f32,  1 },
2025     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
2026     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
2027     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
2028 
2029     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v4f32,  1 },
2030     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
2031     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
2032     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
2033   };
2034 
2035   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
2036     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
2037     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
2038     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
2039     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
2040     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
2041     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
2042     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
2043     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
2044     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
2045     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
2046     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
2047     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
2048     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
2049     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
2050     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i64,  2 }, // vpmovqb
2051     { ISD::TRUNCATE,  MVT::v4i16,   MVT::v4i64,  2 }, // vpmovqw
2052     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i32,  2 }, // vpmovwb
2053 
2054     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
2055     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
2056     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
2057     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
2058     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
2059     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
2060     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
2061     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
2062     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
2063     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
2064 
2065     // sign extend is vpcmpeq+maskedmove+vpmovdw
2066     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
2067     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
2068     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
2069     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
2070     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
2071     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
2072     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
2073     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
2074     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
2075 
2076     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
2077     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
2078     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
2079     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
2080     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
2081     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
2082     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
2083     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
2084     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
2085     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
2086 
2087     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
2088     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
2089     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
2090     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
2091     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
2092     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
2093     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
2094     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
2095     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
2096     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
2097     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
2098     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
2099 
2100     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2101     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
2102     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2103     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
2104 
2105     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
2106     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
2107     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2108     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
2109     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2110     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
2111     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  1 },
2112     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
2113     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
2114     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
2115     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
2116     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
2117     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
2118 
2119     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
2120     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
2121     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f32, 5 },
2122 
2123     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
2124     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
2125     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
2126     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  1 },
2127     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
2128     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
2129     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
2130   };
2131 
2132   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
2133     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
2134     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
2135     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
2136     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
2137     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
2138     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
2139 
2140     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
2141     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
2142     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
2143     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
2144     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2145     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2146     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
2147     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
2148     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2149     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2150     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2151     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2152     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
2153     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
2154 
2155     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
2156 
2157     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 4 },
2158     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 4 },
2159     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  1 },
2160     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  1 },
2161     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  1 },
2162     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  4 },
2163     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  4 },
2164     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  1 },
2165     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  1 },
2166     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  5 },
2167     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  1 },
2168     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
2169 
2170     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
2171     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
2172 
2173     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  1 },
2174     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  1 },
2175     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  1 },
2176     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  3 },
2177 
2178     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    3 },
2179     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    3 },
2180     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  1 },
2181     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
2182     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2183     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  4 },
2184     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  3 },
2185     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  4 },
2186 
2187     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
2188     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
2189     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
2190     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
2191     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
2192     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
2193     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  3 },
2194 
2195     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
2196     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
2197     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
2198     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
2199     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
2200     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
2201     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  2 },
2202     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2203     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
2204     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
2205   };
2206 
2207   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
2208     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   6 },
2209     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   4 },
2210     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   7 },
2211     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   4 },
2212     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
2213     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
2214 
2215     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
2216     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
2217     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
2218     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
2219     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
2220     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
2221     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
2222     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
2223     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
2224     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
2225     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
2226     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
2227 
2228     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  4 },
2229     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  5 },
2230     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 4 },
2231     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i64,  9 },
2232     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i64, 11 },
2233 
2234     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
2235     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 6 },
2236     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // and+extract+packuswb
2237     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  5 },
2238     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2239     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  5 },
2240     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  3 }, // and+extract+2*packusdw
2241     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
2242 
2243     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   3 },
2244     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   3 },
2245     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   8 },
2246     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
2247     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
2248     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
2249     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
2250     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2251     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
2252     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
2253     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  5 },
2254     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  8 },
2255 
2256     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   7 },
2257     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   7 },
2258     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   6 },
2259     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
2260     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
2261     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
2262     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
2263     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  4 },
2264     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  4 },
2265     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
2266     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  6 },
2267     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
2268     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32, 10 },
2269     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64, 10 },
2270     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 18 },
2271     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
2272     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 10 },
2273 
2274     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
2275     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f64,  2 },
2276     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v8f32,  2 },
2277     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v4f64,  2 },
2278     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f32,  2 },
2279     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f64,  2 },
2280     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  2 },
2281     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v4f64,  2 },
2282     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  2 },
2283     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  2 },
2284     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  5 },
2285 
2286     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v8f32,  2 },
2287     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f64,  2 },
2288     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v8f32,  2 },
2289     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v4f64,  2 },
2290     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f32,  2 },
2291     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f64,  2 },
2292     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  2 },
2293     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v4f64,  2 },
2294     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
2295     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2296     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  6 },
2297     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  7 },
2298     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  7 },
2299 
2300     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
2301     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
2302   };
2303 
2304   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
2305     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2306     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2307     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2308     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2309     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2310     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2311     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2312     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2313     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2314     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2315     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2316     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2317 
2318     // These truncates end up widening elements.
2319     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
2320     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
2321     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
2322 
2323     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  2 },
2324     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  2 },
2325     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  2 },
2326 
2327     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2328     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2329     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
2330     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
2331     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2332     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2333     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2334     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2335     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
2336     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  1 },
2337     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2338 
2339     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2340     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2341     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
2342     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
2343     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2344     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2345     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2346     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2347     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  3 },
2348     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2349     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  2 },
2350     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 12 },
2351     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 22 },
2352     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  4 },
2353 
2354     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    1 },
2355     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    1 },
2356     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    1 },
2357     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    1 },
2358     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  2 },
2359     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  2 },
2360     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  1 },
2361     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  1 },
2362     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  1 },
2363     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  1 },
2364 
2365     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    1 },
2366     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2367     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    1 },
2368     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
2369     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  2 },
2370     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  2 },
2371     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  1 },
2372     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  1 },
2373     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  4 },
2374     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2375   };
2376 
2377   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
2378     // These are somewhat magic numbers justified by comparing the
2379     // output of llvm-mca for our various supported scheduler models
2380     // and basing it off the worst case scenario.
2381     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2382     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2383     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    3 },
2384     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    3 },
2385     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  3 },
2386     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2387     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  3 },
2388     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2389     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2390     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  4 },
2391     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  8 },
2392     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  8 },
2393 
2394     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2395     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2396     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    8 },
2397     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    9 },
2398     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2399     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  4 },
2400     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  4 },
2401     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2402     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  7 },
2403     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  7 },
2404     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
2405     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64, 15 },
2406     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 18 },
2407 
2408     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    4 },
2409     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    4 },
2410     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    4 },
2411     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    4 },
2412     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  6 },
2413     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  6 },
2414     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  5 },
2415     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  5 },
2416     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  4 },
2417     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  4 },
2418 
2419     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    4 },
2420     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2421     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    4 },
2422     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,   15 },
2423     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  6 },
2424     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  6 },
2425     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  5 },
2426     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  5 },
2427     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  8 },
2428     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  8 },
2429 
2430     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2431     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2432     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v16i8,  2 },
2433     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v16i8,  3 },
2434     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v16i8,  1 },
2435     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v16i8,  2 },
2436     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v8i16,  2 },
2437     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v8i16,  3 },
2438     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v8i16,  1 },
2439     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v8i16,  2 },
2440     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v4i32,  1 },
2441     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v4i32,  2 },
2442 
2443     // These truncates are really widening elements.
2444     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
2445     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
2446     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
2447     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
2448     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
2449     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
2450 
2451     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  2 }, // PAND+PACKUSWB
2452     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
2453     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  3 }, // PAND+2*PACKUSWB
2454     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2455     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
2456     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  3 },
2457     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2458     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32,10 },
2459     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2460     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2461     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v2i64,  1 }, // PSHUFD
2462   };
2463 
2464   // Attempt to map directly to (simple) MVT types to let us match custom entries.
2465   EVT SrcTy = TLI->getValueType(DL, Src);
2466   EVT DstTy = TLI->getValueType(DL, Dst);
2467 
2468   // The function getSimpleVT only handles simple value types.
2469   if (SrcTy.isSimple() && DstTy.isSimple()) {
2470     MVT SimpleSrcTy = SrcTy.getSimpleVT();
2471     MVT SimpleDstTy = DstTy.getSimpleVT();
2472 
2473     if (ST->useAVX512Regs()) {
2474       if (ST->hasBWI())
2475         if (const auto *Entry = ConvertCostTableLookup(
2476                 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2477           return AdjustCost(Entry->Cost);
2478 
2479       if (ST->hasDQI())
2480         if (const auto *Entry = ConvertCostTableLookup(
2481                 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2482           return AdjustCost(Entry->Cost);
2483 
2484       if (ST->hasAVX512())
2485         if (const auto *Entry = ConvertCostTableLookup(
2486                 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2487           return AdjustCost(Entry->Cost);
2488     }
2489 
2490     if (ST->hasBWI())
2491       if (const auto *Entry = ConvertCostTableLookup(
2492               AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2493         return AdjustCost(Entry->Cost);
2494 
2495     if (ST->hasDQI())
2496       if (const auto *Entry = ConvertCostTableLookup(
2497               AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2498         return AdjustCost(Entry->Cost);
2499 
2500     if (ST->hasAVX512())
2501       if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2502                                                      SimpleDstTy, SimpleSrcTy))
2503         return AdjustCost(Entry->Cost);
2504 
2505     if (ST->hasAVX2()) {
2506       if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2507                                                      SimpleDstTy, SimpleSrcTy))
2508         return AdjustCost(Entry->Cost);
2509     }
2510 
2511     if (ST->hasAVX()) {
2512       if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2513                                                      SimpleDstTy, SimpleSrcTy))
2514         return AdjustCost(Entry->Cost);
2515     }
2516 
2517     if (ST->hasSSE41()) {
2518       if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2519                                                      SimpleDstTy, SimpleSrcTy))
2520         return AdjustCost(Entry->Cost);
2521     }
2522 
2523     if (ST->hasSSE2()) {
2524       if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2525                                                      SimpleDstTy, SimpleSrcTy))
2526         return AdjustCost(Entry->Cost);
2527     }
2528   }
2529 
2530   // Fall back to legalized types.
2531   std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2532   std::pair<InstructionCost, MVT> LTDest =
2533       TLI->getTypeLegalizationCost(DL, Dst);
2534 
2535   // If we're truncating to the same legalized type - just assume its free.
2536   if (ISD == ISD::TRUNCATE && LTSrc.second == LTDest.second)
2537     return TTI::TCC_Free;
2538 
2539   if (ST->useAVX512Regs()) {
2540     if (ST->hasBWI())
2541       if (const auto *Entry = ConvertCostTableLookup(
2542               AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
2543         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2544 
2545     if (ST->hasDQI())
2546       if (const auto *Entry = ConvertCostTableLookup(
2547               AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
2548         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2549 
2550     if (ST->hasAVX512())
2551       if (const auto *Entry = ConvertCostTableLookup(
2552               AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
2553         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2554   }
2555 
2556   if (ST->hasBWI())
2557     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2558                                                    LTDest.second, LTSrc.second))
2559       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2560 
2561   if (ST->hasDQI())
2562     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2563                                                    LTDest.second, LTSrc.second))
2564       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2565 
2566   if (ST->hasAVX512())
2567     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2568                                                    LTDest.second, LTSrc.second))
2569       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2570 
2571   if (ST->hasAVX2())
2572     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2573                                                    LTDest.second, LTSrc.second))
2574       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2575 
2576   if (ST->hasAVX())
2577     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2578                                                    LTDest.second, LTSrc.second))
2579       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2580 
2581   if (ST->hasSSE41())
2582     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2583                                                    LTDest.second, LTSrc.second))
2584       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2585 
2586   if (ST->hasSSE2())
2587     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2588                                                    LTDest.second, LTSrc.second))
2589       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2590 
2591   // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
2592   // sitofp.
2593   if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
2594       1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
2595     Type *ExtSrc = Src->getWithNewBitWidth(32);
2596     unsigned ExtOpc =
2597         (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
2598 
2599     // For scalar loads the extend would be free.
2600     InstructionCost ExtCost = 0;
2601     if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0))))
2602       ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind);
2603 
2604     return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc,
2605                                       TTI::CastContextHint::None, CostKind);
2606   }
2607 
2608   // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
2609   // i32.
2610   if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
2611       1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
2612     Type *TruncDst = Dst->getWithNewBitWidth(32);
2613     return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) +
2614            getCastInstrCost(Instruction::Trunc, Dst, TruncDst,
2615                             TTI::CastContextHint::None, CostKind);
2616   }
2617 
2618   return AdjustCost(
2619       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2620 }
2621 
2622 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2623                                                Type *CondTy,
2624                                                CmpInst::Predicate VecPred,
2625                                                TTI::TargetCostKind CostKind,
2626                                                const Instruction *I) {
2627   // TODO: Handle other cost kinds.
2628   if (CostKind != TTI::TCK_RecipThroughput)
2629     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2630                                      I);
2631 
2632   // Legalize the type.
2633   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2634 
2635   MVT MTy = LT.second;
2636 
2637   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2638   assert(ISD && "Invalid opcode");
2639 
2640   InstructionCost ExtraCost = 0;
2641   if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
2642     // Some vector comparison predicates cost extra instructions.
2643     // TODO: Should we invert this and assume worst case cmp costs
2644     // and reduce for particular predicates?
2645     if (MTy.isVector() &&
2646         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2647           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2648           ST->hasBWI())) {
2649       // Fallback to I if a specific predicate wasn't specified.
2650       CmpInst::Predicate Pred = VecPred;
2651       if (I && (Pred == CmpInst::BAD_ICMP_PREDICATE ||
2652                 Pred == CmpInst::BAD_FCMP_PREDICATE))
2653         Pred = cast<CmpInst>(I)->getPredicate();
2654 
2655       switch (Pred) {
2656       case CmpInst::Predicate::ICMP_NE:
2657         // xor(cmpeq(x,y),-1)
2658         ExtraCost = 1;
2659         break;
2660       case CmpInst::Predicate::ICMP_SGE:
2661       case CmpInst::Predicate::ICMP_SLE:
2662         // xor(cmpgt(x,y),-1)
2663         ExtraCost = 1;
2664         break;
2665       case CmpInst::Predicate::ICMP_ULT:
2666       case CmpInst::Predicate::ICMP_UGT:
2667         // cmpgt(xor(x,signbit),xor(y,signbit))
2668         // xor(cmpeq(pmaxu(x,y),x),-1)
2669         ExtraCost = 2;
2670         break;
2671       case CmpInst::Predicate::ICMP_ULE:
2672       case CmpInst::Predicate::ICMP_UGE:
2673         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2674             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2675           // cmpeq(psubus(x,y),0)
2676           // cmpeq(pminu(x,y),x)
2677           ExtraCost = 1;
2678         } else {
2679           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2680           ExtraCost = 3;
2681         }
2682         break;
2683       case CmpInst::Predicate::BAD_ICMP_PREDICATE:
2684       case CmpInst::Predicate::BAD_FCMP_PREDICATE:
2685         // Assume worst case scenario and add the maximum extra cost.
2686         ExtraCost = 3;
2687         break;
2688       default:
2689         break;
2690       }
2691     }
2692   }
2693 
2694   static const CostTblEntry SLMCostTbl[] = {
2695     // slm pcmpeq/pcmpgt throughput is 2
2696     { ISD::SETCC,   MVT::v2i64,   2 },
2697   };
2698 
2699   static const CostTblEntry AVX512BWCostTbl[] = {
2700     { ISD::SETCC,   MVT::v32i16,  1 },
2701     { ISD::SETCC,   MVT::v64i8,   1 },
2702 
2703     { ISD::SELECT,  MVT::v32i16,  1 },
2704     { ISD::SELECT,  MVT::v64i8,   1 },
2705   };
2706 
2707   static const CostTblEntry AVX512CostTbl[] = {
2708     { ISD::SETCC,   MVT::v8i64,   1 },
2709     { ISD::SETCC,   MVT::v16i32,  1 },
2710     { ISD::SETCC,   MVT::v8f64,   1 },
2711     { ISD::SETCC,   MVT::v16f32,  1 },
2712 
2713     { ISD::SELECT,  MVT::v8i64,   1 },
2714     { ISD::SELECT,  MVT::v4i64,   1 },
2715     { ISD::SELECT,  MVT::v2i64,   1 },
2716     { ISD::SELECT,  MVT::v16i32,  1 },
2717     { ISD::SELECT,  MVT::v8i32,   1 },
2718     { ISD::SELECT,  MVT::v4i32,   1 },
2719     { ISD::SELECT,  MVT::v8f64,   1 },
2720     { ISD::SELECT,  MVT::v4f64,   1 },
2721     { ISD::SELECT,  MVT::v2f64,   1 },
2722     { ISD::SELECT,  MVT::f64,     1 },
2723     { ISD::SELECT,  MVT::v16f32,  1 },
2724     { ISD::SELECT,  MVT::v8f32 ,  1 },
2725     { ISD::SELECT,  MVT::v4f32,   1 },
2726     { ISD::SELECT,  MVT::f32  ,   1 },
2727 
2728     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2729     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2730 
2731     { ISD::SELECT,  MVT::v32i16,  2 },
2732     { ISD::SELECT,  MVT::v16i16,  1 },
2733     { ISD::SELECT,  MVT::v8i16,   1 },
2734     { ISD::SELECT,  MVT::v64i8,   2 },
2735     { ISD::SELECT,  MVT::v32i8,   1 },
2736     { ISD::SELECT,  MVT::v16i8,   1 },
2737   };
2738 
2739   static const CostTblEntry AVX2CostTbl[] = {
2740     { ISD::SETCC,   MVT::v4i64,   1 },
2741     { ISD::SETCC,   MVT::v8i32,   1 },
2742     { ISD::SETCC,   MVT::v16i16,  1 },
2743     { ISD::SETCC,   MVT::v32i8,   1 },
2744 
2745     { ISD::SELECT,  MVT::v4f64,   2 }, // vblendvpd
2746     { ISD::SELECT,  MVT::v8f32,   2 }, // vblendvps
2747     { ISD::SELECT,  MVT::v4i64,   2 }, // pblendvb
2748     { ISD::SELECT,  MVT::v8i32,   2 }, // pblendvb
2749     { ISD::SELECT,  MVT::v16i16,  2 }, // pblendvb
2750     { ISD::SELECT,  MVT::v32i8,   2 }, // pblendvb
2751   };
2752 
2753   static const CostTblEntry AVX1CostTbl[] = {
2754     { ISD::SETCC,   MVT::v4f64,   1 },
2755     { ISD::SETCC,   MVT::v8f32,   1 },
2756     // AVX1 does not support 8-wide integer compare.
2757     { ISD::SETCC,   MVT::v4i64,   4 },
2758     { ISD::SETCC,   MVT::v8i32,   4 },
2759     { ISD::SETCC,   MVT::v16i16,  4 },
2760     { ISD::SETCC,   MVT::v32i8,   4 },
2761 
2762     { ISD::SELECT,  MVT::v4f64,   3 }, // vblendvpd
2763     { ISD::SELECT,  MVT::v8f32,   3 }, // vblendvps
2764     { ISD::SELECT,  MVT::v4i64,   3 }, // vblendvpd
2765     { ISD::SELECT,  MVT::v8i32,   3 }, // vblendvps
2766     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2767     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2768   };
2769 
2770   static const CostTblEntry SSE42CostTbl[] = {
2771     { ISD::SETCC,   MVT::v2i64,   1 },
2772   };
2773 
2774   static const CostTblEntry SSE41CostTbl[] = {
2775     { ISD::SETCC,   MVT::v2f64,   1 },
2776     { ISD::SETCC,   MVT::v4f32,   1 },
2777 
2778     { ISD::SELECT,  MVT::v2f64,   2 }, // blendvpd
2779     { ISD::SELECT,  MVT::f64,     2 }, // blendvpd
2780     { ISD::SELECT,  MVT::v4f32,   2 }, // blendvps
2781     { ISD::SELECT,  MVT::f32  ,   2 }, // blendvps
2782     { ISD::SELECT,  MVT::v2i64,   2 }, // pblendvb
2783     { ISD::SELECT,  MVT::v4i32,   2 }, // pblendvb
2784     { ISD::SELECT,  MVT::v8i16,   2 }, // pblendvb
2785     { ISD::SELECT,  MVT::v16i8,   2 }, // pblendvb
2786   };
2787 
2788   static const CostTblEntry SSE2CostTbl[] = {
2789     { ISD::SETCC,   MVT::v2f64,   2 },
2790     { ISD::SETCC,   MVT::f64,     1 },
2791     { ISD::SETCC,   MVT::v2i64,   5 }, // pcmpeqd/pcmpgtd expansion
2792     { ISD::SETCC,   MVT::v4i32,   1 },
2793     { ISD::SETCC,   MVT::v8i16,   1 },
2794     { ISD::SETCC,   MVT::v16i8,   1 },
2795 
2796     { ISD::SELECT,  MVT::v2f64,   2 }, // andpd + andnpd + orpd
2797     { ISD::SELECT,  MVT::f64,     2 }, // andpd + andnpd + orpd
2798     { ISD::SELECT,  MVT::v2i64,   2 }, // pand + pandn + por
2799     { ISD::SELECT,  MVT::v4i32,   2 }, // pand + pandn + por
2800     { ISD::SELECT,  MVT::v8i16,   2 }, // pand + pandn + por
2801     { ISD::SELECT,  MVT::v16i8,   2 }, // pand + pandn + por
2802   };
2803 
2804   static const CostTblEntry SSE1CostTbl[] = {
2805     { ISD::SETCC,   MVT::v4f32,   2 },
2806     { ISD::SETCC,   MVT::f32,     1 },
2807 
2808     { ISD::SELECT,  MVT::v4f32,   2 }, // andps + andnps + orps
2809     { ISD::SELECT,  MVT::f32,     2 }, // andps + andnps + orps
2810   };
2811 
2812   if (ST->useSLMArithCosts())
2813     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2814       return LT.first * (ExtraCost + Entry->Cost);
2815 
2816   if (ST->hasBWI())
2817     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2818       return LT.first * (ExtraCost + Entry->Cost);
2819 
2820   if (ST->hasAVX512())
2821     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2822       return LT.first * (ExtraCost + Entry->Cost);
2823 
2824   if (ST->hasAVX2())
2825     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2826       return LT.first * (ExtraCost + Entry->Cost);
2827 
2828   if (ST->hasAVX())
2829     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2830       return LT.first * (ExtraCost + Entry->Cost);
2831 
2832   if (ST->hasSSE42())
2833     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2834       return LT.first * (ExtraCost + Entry->Cost);
2835 
2836   if (ST->hasSSE41())
2837     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2838       return LT.first * (ExtraCost + Entry->Cost);
2839 
2840   if (ST->hasSSE2())
2841     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2842       return LT.first * (ExtraCost + Entry->Cost);
2843 
2844   if (ST->hasSSE1())
2845     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2846       return LT.first * (ExtraCost + Entry->Cost);
2847 
2848   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2849 }
2850 
2851 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2852 
2853 InstructionCost
2854 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2855                                            TTI::TargetCostKind CostKind) {
2856 
2857   // Costs should match the codegen from:
2858   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2859   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2860   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2861   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2862   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2863 
2864   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2865   //       specialized in these tables yet.
2866   static const CostTblEntry AVX512BITALGCostTbl[] = {
2867     { ISD::CTPOP,      MVT::v32i16,  1 },
2868     { ISD::CTPOP,      MVT::v64i8,   1 },
2869     { ISD::CTPOP,      MVT::v16i16,  1 },
2870     { ISD::CTPOP,      MVT::v32i8,   1 },
2871     { ISD::CTPOP,      MVT::v8i16,   1 },
2872     { ISD::CTPOP,      MVT::v16i8,   1 },
2873   };
2874   static const CostTblEntry AVX512VPOPCNTDQCostTbl[] = {
2875     { ISD::CTPOP,      MVT::v8i64,   1 },
2876     { ISD::CTPOP,      MVT::v16i32,  1 },
2877     { ISD::CTPOP,      MVT::v4i64,   1 },
2878     { ISD::CTPOP,      MVT::v8i32,   1 },
2879     { ISD::CTPOP,      MVT::v2i64,   1 },
2880     { ISD::CTPOP,      MVT::v4i32,   1 },
2881   };
2882   static const CostTblEntry AVX512CDCostTbl[] = {
2883     { ISD::CTLZ,       MVT::v8i64,   1 },
2884     { ISD::CTLZ,       MVT::v16i32,  1 },
2885     { ISD::CTLZ,       MVT::v32i16,  8 },
2886     { ISD::CTLZ,       MVT::v64i8,  20 },
2887     { ISD::CTLZ,       MVT::v4i64,   1 },
2888     { ISD::CTLZ,       MVT::v8i32,   1 },
2889     { ISD::CTLZ,       MVT::v16i16,  4 },
2890     { ISD::CTLZ,       MVT::v32i8,  10 },
2891     { ISD::CTLZ,       MVT::v2i64,   1 },
2892     { ISD::CTLZ,       MVT::v4i32,   1 },
2893     { ISD::CTLZ,       MVT::v8i16,   4 },
2894     { ISD::CTLZ,       MVT::v16i8,   4 },
2895   };
2896   static const CostTblEntry AVX512BWCostTbl[] = {
2897     { ISD::ABS,        MVT::v32i16,  1 },
2898     { ISD::ABS,        MVT::v64i8,   1 },
2899     { ISD::BITREVERSE, MVT::v8i64,   3 },
2900     { ISD::BITREVERSE, MVT::v16i32,  3 },
2901     { ISD::BITREVERSE, MVT::v32i16,  3 },
2902     { ISD::BITREVERSE, MVT::v64i8,   2 },
2903     { ISD::BSWAP,      MVT::v8i64,   1 },
2904     { ISD::BSWAP,      MVT::v16i32,  1 },
2905     { ISD::BSWAP,      MVT::v32i16,  1 },
2906     { ISD::CTLZ,       MVT::v8i64,  23 },
2907     { ISD::CTLZ,       MVT::v16i32, 22 },
2908     { ISD::CTLZ,       MVT::v32i16, 18 },
2909     { ISD::CTLZ,       MVT::v64i8,  17 },
2910     { ISD::CTPOP,      MVT::v8i64,   7 },
2911     { ISD::CTPOP,      MVT::v16i32, 11 },
2912     { ISD::CTPOP,      MVT::v32i16,  9 },
2913     { ISD::CTPOP,      MVT::v64i8,   6 },
2914     { ISD::CTTZ,       MVT::v8i64,  10 },
2915     { ISD::CTTZ,       MVT::v16i32, 14 },
2916     { ISD::CTTZ,       MVT::v32i16, 12 },
2917     { ISD::CTTZ,       MVT::v64i8,   9 },
2918     { ISD::SADDSAT,    MVT::v32i16,  1 },
2919     { ISD::SADDSAT,    MVT::v64i8,   1 },
2920     { ISD::SMAX,       MVT::v32i16,  1 },
2921     { ISD::SMAX,       MVT::v64i8,   1 },
2922     { ISD::SMIN,       MVT::v32i16,  1 },
2923     { ISD::SMIN,       MVT::v64i8,   1 },
2924     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2925     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2926     { ISD::UADDSAT,    MVT::v32i16,  1 },
2927     { ISD::UADDSAT,    MVT::v64i8,   1 },
2928     { ISD::UMAX,       MVT::v32i16,  1 },
2929     { ISD::UMAX,       MVT::v64i8,   1 },
2930     { ISD::UMIN,       MVT::v32i16,  1 },
2931     { ISD::UMIN,       MVT::v64i8,   1 },
2932     { ISD::USUBSAT,    MVT::v32i16,  1 },
2933     { ISD::USUBSAT,    MVT::v64i8,   1 },
2934   };
2935   static const CostTblEntry AVX512CostTbl[] = {
2936     { ISD::ABS,        MVT::v8i64,   1 },
2937     { ISD::ABS,        MVT::v16i32,  1 },
2938     { ISD::ABS,        MVT::v32i16,  2 },
2939     { ISD::ABS,        MVT::v64i8,   2 },
2940     { ISD::ABS,        MVT::v4i64,   1 },
2941     { ISD::ABS,        MVT::v2i64,   1 },
2942     { ISD::BITREVERSE, MVT::v8i64,  36 },
2943     { ISD::BITREVERSE, MVT::v16i32, 24 },
2944     { ISD::BITREVERSE, MVT::v32i16, 10 },
2945     { ISD::BITREVERSE, MVT::v64i8,  10 },
2946     { ISD::BSWAP,      MVT::v8i64,   4 },
2947     { ISD::BSWAP,      MVT::v16i32,  4 },
2948     { ISD::BSWAP,      MVT::v32i16,  4 },
2949     { ISD::CTLZ,       MVT::v8i64,  29 },
2950     { ISD::CTLZ,       MVT::v16i32, 35 },
2951     { ISD::CTLZ,       MVT::v32i16, 28 },
2952     { ISD::CTLZ,       MVT::v64i8,  18 },
2953     { ISD::CTPOP,      MVT::v8i64,  16 },
2954     { ISD::CTPOP,      MVT::v16i32, 24 },
2955     { ISD::CTPOP,      MVT::v32i16, 18 },
2956     { ISD::CTPOP,      MVT::v64i8,  12 },
2957     { ISD::CTTZ,       MVT::v8i64,  20 },
2958     { ISD::CTTZ,       MVT::v16i32, 28 },
2959     { ISD::CTTZ,       MVT::v32i16, 24 },
2960     { ISD::CTTZ,       MVT::v64i8,  18 },
2961     { ISD::SMAX,       MVT::v8i64,   1 },
2962     { ISD::SMAX,       MVT::v16i32,  1 },
2963     { ISD::SMAX,       MVT::v32i16,  2 },
2964     { ISD::SMAX,       MVT::v64i8,   2 },
2965     { ISD::SMAX,       MVT::v4i64,   1 },
2966     { ISD::SMAX,       MVT::v2i64,   1 },
2967     { ISD::SMIN,       MVT::v8i64,   1 },
2968     { ISD::SMIN,       MVT::v16i32,  1 },
2969     { ISD::SMIN,       MVT::v32i16,  2 },
2970     { ISD::SMIN,       MVT::v64i8,   2 },
2971     { ISD::SMIN,       MVT::v4i64,   1 },
2972     { ISD::SMIN,       MVT::v2i64,   1 },
2973     { ISD::UMAX,       MVT::v8i64,   1 },
2974     { ISD::UMAX,       MVT::v16i32,  1 },
2975     { ISD::UMAX,       MVT::v32i16,  2 },
2976     { ISD::UMAX,       MVT::v64i8,   2 },
2977     { ISD::UMAX,       MVT::v4i64,   1 },
2978     { ISD::UMAX,       MVT::v2i64,   1 },
2979     { ISD::UMIN,       MVT::v8i64,   1 },
2980     { ISD::UMIN,       MVT::v16i32,  1 },
2981     { ISD::UMIN,       MVT::v32i16,  2 },
2982     { ISD::UMIN,       MVT::v64i8,   2 },
2983     { ISD::UMIN,       MVT::v4i64,   1 },
2984     { ISD::UMIN,       MVT::v2i64,   1 },
2985     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2986     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2987     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2988     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2989     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2990     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2991     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2992     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2993     { ISD::SADDSAT,    MVT::v32i16,  2 },
2994     { ISD::SADDSAT,    MVT::v64i8,   2 },
2995     { ISD::SSUBSAT,    MVT::v32i16,  2 },
2996     { ISD::SSUBSAT,    MVT::v64i8,   2 },
2997     { ISD::UADDSAT,    MVT::v32i16,  2 },
2998     { ISD::UADDSAT,    MVT::v64i8,   2 },
2999     { ISD::USUBSAT,    MVT::v32i16,  2 },
3000     { ISD::USUBSAT,    MVT::v64i8,   2 },
3001     { ISD::FMAXNUM,    MVT::f32,     2 },
3002     { ISD::FMAXNUM,    MVT::v4f32,   2 },
3003     { ISD::FMAXNUM,    MVT::v8f32,   2 },
3004     { ISD::FMAXNUM,    MVT::v16f32,  2 },
3005     { ISD::FMAXNUM,    MVT::f64,     2 },
3006     { ISD::FMAXNUM,    MVT::v2f64,   2 },
3007     { ISD::FMAXNUM,    MVT::v4f64,   2 },
3008     { ISD::FMAXNUM,    MVT::v8f64,   2 },
3009   };
3010   static const CostTblEntry XOPCostTbl[] = {
3011     { ISD::BITREVERSE, MVT::v4i64,   4 },
3012     { ISD::BITREVERSE, MVT::v8i32,   4 },
3013     { ISD::BITREVERSE, MVT::v16i16,  4 },
3014     { ISD::BITREVERSE, MVT::v32i8,   4 },
3015     { ISD::BITREVERSE, MVT::v2i64,   1 },
3016     { ISD::BITREVERSE, MVT::v4i32,   1 },
3017     { ISD::BITREVERSE, MVT::v8i16,   1 },
3018     { ISD::BITREVERSE, MVT::v16i8,   1 },
3019     { ISD::BITREVERSE, MVT::i64,     3 },
3020     { ISD::BITREVERSE, MVT::i32,     3 },
3021     { ISD::BITREVERSE, MVT::i16,     3 },
3022     { ISD::BITREVERSE, MVT::i8,      3 }
3023   };
3024   static const CostTblEntry AVX2CostTbl[] = {
3025     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3026     { ISD::ABS,        MVT::v8i32,   1 },
3027     { ISD::ABS,        MVT::v16i16,  1 },
3028     { ISD::ABS,        MVT::v32i8,   1 },
3029     { ISD::BITREVERSE, MVT::v2i64,   3 },
3030     { ISD::BITREVERSE, MVT::v4i64,   3 },
3031     { ISD::BITREVERSE, MVT::v4i32,   3 },
3032     { ISD::BITREVERSE, MVT::v8i32,   3 },
3033     { ISD::BITREVERSE, MVT::v8i16,   3 },
3034     { ISD::BITREVERSE, MVT::v16i16,  3 },
3035     { ISD::BITREVERSE, MVT::v16i8,   3 },
3036     { ISD::BITREVERSE, MVT::v32i8,   3 },
3037     { ISD::BSWAP,      MVT::v4i64,   1 },
3038     { ISD::BSWAP,      MVT::v8i32,   1 },
3039     { ISD::BSWAP,      MVT::v16i16,  1 },
3040     { ISD::CTLZ,       MVT::v2i64,   7 },
3041     { ISD::CTLZ,       MVT::v4i64,   7 },
3042     { ISD::CTLZ,       MVT::v4i32,   5 },
3043     { ISD::CTLZ,       MVT::v8i32,   5 },
3044     { ISD::CTLZ,       MVT::v8i16,   4 },
3045     { ISD::CTLZ,       MVT::v16i16,  4 },
3046     { ISD::CTLZ,       MVT::v16i8,   3 },
3047     { ISD::CTLZ,       MVT::v32i8,   3 },
3048     { ISD::CTPOP,      MVT::v2i64,   3 },
3049     { ISD::CTPOP,      MVT::v4i64,   3 },
3050     { ISD::CTPOP,      MVT::v4i32,   7 },
3051     { ISD::CTPOP,      MVT::v8i32,   7 },
3052     { ISD::CTPOP,      MVT::v8i16,   3 },
3053     { ISD::CTPOP,      MVT::v16i16,  3 },
3054     { ISD::CTPOP,      MVT::v16i8,   2 },
3055     { ISD::CTPOP,      MVT::v32i8,   2 },
3056     { ISD::CTTZ,       MVT::v2i64,   4 },
3057     { ISD::CTTZ,       MVT::v4i64,   4 },
3058     { ISD::CTTZ,       MVT::v4i32,   7 },
3059     { ISD::CTTZ,       MVT::v8i32,   7 },
3060     { ISD::CTTZ,       MVT::v8i16,   4 },
3061     { ISD::CTTZ,       MVT::v16i16,  4 },
3062     { ISD::CTTZ,       MVT::v16i8,   3 },
3063     { ISD::CTTZ,       MVT::v32i8,   3 },
3064     { ISD::SADDSAT,    MVT::v16i16,  1 },
3065     { ISD::SADDSAT,    MVT::v32i8,   1 },
3066     { ISD::SMAX,       MVT::v8i32,   1 },
3067     { ISD::SMAX,       MVT::v16i16,  1 },
3068     { ISD::SMAX,       MVT::v32i8,   1 },
3069     { ISD::SMIN,       MVT::v8i32,   1 },
3070     { ISD::SMIN,       MVT::v16i16,  1 },
3071     { ISD::SMIN,       MVT::v32i8,   1 },
3072     { ISD::SSUBSAT,    MVT::v16i16,  1 },
3073     { ISD::SSUBSAT,    MVT::v32i8,   1 },
3074     { ISD::UADDSAT,    MVT::v16i16,  1 },
3075     { ISD::UADDSAT,    MVT::v32i8,   1 },
3076     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
3077     { ISD::UMAX,       MVT::v8i32,   1 },
3078     { ISD::UMAX,       MVT::v16i16,  1 },
3079     { ISD::UMAX,       MVT::v32i8,   1 },
3080     { ISD::UMIN,       MVT::v8i32,   1 },
3081     { ISD::UMIN,       MVT::v16i16,  1 },
3082     { ISD::UMIN,       MVT::v32i8,   1 },
3083     { ISD::USUBSAT,    MVT::v16i16,  1 },
3084     { ISD::USUBSAT,    MVT::v32i8,   1 },
3085     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
3086     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
3087     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
3088     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
3089     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
3090     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
3091     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
3092     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
3093     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
3094   };
3095   static const CostTblEntry AVX1CostTbl[] = {
3096     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3097     { ISD::ABS,        MVT::v8i32,   3 },
3098     { ISD::ABS,        MVT::v16i16,  3 },
3099     { ISD::ABS,        MVT::v32i8,   3 },
3100     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
3101     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
3102     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
3103     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
3104     { ISD::BSWAP,      MVT::v4i64,   4 },
3105     { ISD::BSWAP,      MVT::v8i32,   4 },
3106     { ISD::BSWAP,      MVT::v16i16,  4 },
3107     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
3108     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
3109     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
3110     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
3111     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
3112     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
3113     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
3114     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
3115     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
3116     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
3117     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
3118     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
3119     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3120     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3121     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3122     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3123     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3124     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3125     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3126     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3127     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3128     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3129     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3130     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3131     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
3132     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3133     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3134     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3135     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3136     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3137     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3138     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3139     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3140     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
3141     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
3142     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
3143     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
3144     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
3145     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
3146     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
3147     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
3148     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
3149     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
3150     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
3151     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
3152     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
3153   };
3154   static const CostTblEntry GLMCostTbl[] = {
3155     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
3156     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
3157     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
3158     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
3159   };
3160   static const CostTblEntry SLMCostTbl[] = {
3161     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
3162     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
3163     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
3164     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
3165   };
3166   static const CostTblEntry SSE42CostTbl[] = {
3167     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
3168     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
3169     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
3170     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
3171   };
3172   static const CostTblEntry SSE41CostTbl[] = {
3173     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
3174     { ISD::SMAX,       MVT::v4i32,   1 },
3175     { ISD::SMAX,       MVT::v16i8,   1 },
3176     { ISD::SMIN,       MVT::v4i32,   1 },
3177     { ISD::SMIN,       MVT::v16i8,   1 },
3178     { ISD::UMAX,       MVT::v4i32,   1 },
3179     { ISD::UMAX,       MVT::v8i16,   1 },
3180     { ISD::UMIN,       MVT::v4i32,   1 },
3181     { ISD::UMIN,       MVT::v8i16,   1 },
3182   };
3183   static const CostTblEntry SSSE3CostTbl[] = {
3184     { ISD::ABS,        MVT::v4i32,   1 },
3185     { ISD::ABS,        MVT::v8i16,   1 },
3186     { ISD::ABS,        MVT::v16i8,   1 },
3187     { ISD::BITREVERSE, MVT::v2i64,   5 },
3188     { ISD::BITREVERSE, MVT::v4i32,   5 },
3189     { ISD::BITREVERSE, MVT::v8i16,   5 },
3190     { ISD::BITREVERSE, MVT::v16i8,   5 },
3191     { ISD::BSWAP,      MVT::v2i64,   1 },
3192     { ISD::BSWAP,      MVT::v4i32,   1 },
3193     { ISD::BSWAP,      MVT::v8i16,   1 },
3194     { ISD::CTLZ,       MVT::v2i64,  23 },
3195     { ISD::CTLZ,       MVT::v4i32,  18 },
3196     { ISD::CTLZ,       MVT::v8i16,  14 },
3197     { ISD::CTLZ,       MVT::v16i8,   9 },
3198     { ISD::CTPOP,      MVT::v2i64,   7 },
3199     { ISD::CTPOP,      MVT::v4i32,  11 },
3200     { ISD::CTPOP,      MVT::v8i16,   9 },
3201     { ISD::CTPOP,      MVT::v16i8,   6 },
3202     { ISD::CTTZ,       MVT::v2i64,  10 },
3203     { ISD::CTTZ,       MVT::v4i32,  14 },
3204     { ISD::CTTZ,       MVT::v8i16,  12 },
3205     { ISD::CTTZ,       MVT::v16i8,   9 }
3206   };
3207   static const CostTblEntry SSE2CostTbl[] = {
3208     { ISD::ABS,        MVT::v2i64,   4 },
3209     { ISD::ABS,        MVT::v4i32,   3 },
3210     { ISD::ABS,        MVT::v8i16,   2 },
3211     { ISD::ABS,        MVT::v16i8,   2 },
3212     { ISD::BITREVERSE, MVT::v2i64,  29 },
3213     { ISD::BITREVERSE, MVT::v4i32,  27 },
3214     { ISD::BITREVERSE, MVT::v8i16,  27 },
3215     { ISD::BITREVERSE, MVT::v16i8,  20 },
3216     { ISD::BSWAP,      MVT::v2i64,   7 },
3217     { ISD::BSWAP,      MVT::v4i32,   7 },
3218     { ISD::BSWAP,      MVT::v8i16,   7 },
3219     { ISD::CTLZ,       MVT::v2i64,  25 },
3220     { ISD::CTLZ,       MVT::v4i32,  26 },
3221     { ISD::CTLZ,       MVT::v8i16,  20 },
3222     { ISD::CTLZ,       MVT::v16i8,  17 },
3223     { ISD::CTPOP,      MVT::v2i64,  12 },
3224     { ISD::CTPOP,      MVT::v4i32,  15 },
3225     { ISD::CTPOP,      MVT::v8i16,  13 },
3226     { ISD::CTPOP,      MVT::v16i8,  10 },
3227     { ISD::CTTZ,       MVT::v2i64,  14 },
3228     { ISD::CTTZ,       MVT::v4i32,  18 },
3229     { ISD::CTTZ,       MVT::v8i16,  16 },
3230     { ISD::CTTZ,       MVT::v16i8,  13 },
3231     { ISD::SADDSAT,    MVT::v8i16,   1 },
3232     { ISD::SADDSAT,    MVT::v16i8,   1 },
3233     { ISD::SMAX,       MVT::v8i16,   1 },
3234     { ISD::SMIN,       MVT::v8i16,   1 },
3235     { ISD::SSUBSAT,    MVT::v8i16,   1 },
3236     { ISD::SSUBSAT,    MVT::v16i8,   1 },
3237     { ISD::UADDSAT,    MVT::v8i16,   1 },
3238     { ISD::UADDSAT,    MVT::v16i8,   1 },
3239     { ISD::UMAX,       MVT::v8i16,   2 },
3240     { ISD::UMAX,       MVT::v16i8,   1 },
3241     { ISD::UMIN,       MVT::v8i16,   2 },
3242     { ISD::UMIN,       MVT::v16i8,   1 },
3243     { ISD::USUBSAT,    MVT::v8i16,   1 },
3244     { ISD::USUBSAT,    MVT::v16i8,   1 },
3245     { ISD::FMAXNUM,    MVT::f64,     4 },
3246     { ISD::FMAXNUM,    MVT::v2f64,   4 },
3247     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
3248     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
3249   };
3250   static const CostTblEntry SSE1CostTbl[] = {
3251     { ISD::FMAXNUM,    MVT::f32,     4 },
3252     { ISD::FMAXNUM,    MVT::v4f32,   4 },
3253     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
3254     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
3255   };
3256   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
3257     { ISD::CTTZ,       MVT::i64,     1 },
3258   };
3259   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
3260     { ISD::CTTZ,       MVT::i32,     1 },
3261     { ISD::CTTZ,       MVT::i16,     1 },
3262     { ISD::CTTZ,       MVT::i8,      1 },
3263   };
3264   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
3265     { ISD::CTLZ,       MVT::i64,     1 },
3266   };
3267   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
3268     { ISD::CTLZ,       MVT::i32,     1 },
3269     { ISD::CTLZ,       MVT::i16,     1 },
3270     { ISD::CTLZ,       MVT::i8,      1 },
3271   };
3272   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
3273     { ISD::CTPOP,      MVT::i64,     1 },
3274   };
3275   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
3276     { ISD::CTPOP,      MVT::i32,     1 },
3277     { ISD::CTPOP,      MVT::i16,     1 },
3278     { ISD::CTPOP,      MVT::i8,      1 },
3279   };
3280   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3281     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
3282     { ISD::BITREVERSE, MVT::i64,    14 },
3283     { ISD::BSWAP,      MVT::i64,     1 },
3284     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
3285     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
3286     { ISD::CTPOP,      MVT::i64,    10 },
3287     { ISD::SADDO,      MVT::i64,     1 },
3288     { ISD::UADDO,      MVT::i64,     1 },
3289     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
3290   };
3291   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3292     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
3293     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
3294     { ISD::BITREVERSE, MVT::i32,    14 },
3295     { ISD::BITREVERSE, MVT::i16,    14 },
3296     { ISD::BITREVERSE, MVT::i8,     11 },
3297     { ISD::BSWAP,      MVT::i32,     1 },
3298     { ISD::BSWAP,      MVT::i16,     1 }, // ROL
3299     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
3300     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
3301     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
3302     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
3303     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
3304     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
3305     { ISD::CTPOP,      MVT::i32,     8 },
3306     { ISD::CTPOP,      MVT::i16,     9 },
3307     { ISD::CTPOP,      MVT::i8,      7 },
3308     { ISD::SADDO,      MVT::i32,     1 },
3309     { ISD::SADDO,      MVT::i16,     1 },
3310     { ISD::SADDO,      MVT::i8,      1 },
3311     { ISD::UADDO,      MVT::i32,     1 },
3312     { ISD::UADDO,      MVT::i16,     1 },
3313     { ISD::UADDO,      MVT::i8,      1 },
3314     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
3315     { ISD::UMULO,      MVT::i16,     2 },
3316     { ISD::UMULO,      MVT::i8,      2 },
3317   };
3318 
3319   Type *RetTy = ICA.getReturnType();
3320   Type *OpTy = RetTy;
3321   Intrinsic::ID IID = ICA.getID();
3322   unsigned ISD = ISD::DELETED_NODE;
3323   switch (IID) {
3324   default:
3325     break;
3326   case Intrinsic::abs:
3327     ISD = ISD::ABS;
3328     break;
3329   case Intrinsic::bitreverse:
3330     ISD = ISD::BITREVERSE;
3331     break;
3332   case Intrinsic::bswap:
3333     ISD = ISD::BSWAP;
3334     break;
3335   case Intrinsic::ctlz:
3336     ISD = ISD::CTLZ;
3337     break;
3338   case Intrinsic::ctpop:
3339     ISD = ISD::CTPOP;
3340     break;
3341   case Intrinsic::cttz:
3342     ISD = ISD::CTTZ;
3343     break;
3344   case Intrinsic::maxnum:
3345   case Intrinsic::minnum:
3346     // FMINNUM has same costs so don't duplicate.
3347     ISD = ISD::FMAXNUM;
3348     break;
3349   case Intrinsic::sadd_sat:
3350     ISD = ISD::SADDSAT;
3351     break;
3352   case Intrinsic::smax:
3353     ISD = ISD::SMAX;
3354     break;
3355   case Intrinsic::smin:
3356     ISD = ISD::SMIN;
3357     break;
3358   case Intrinsic::ssub_sat:
3359     ISD = ISD::SSUBSAT;
3360     break;
3361   case Intrinsic::uadd_sat:
3362     ISD = ISD::UADDSAT;
3363     break;
3364   case Intrinsic::umax:
3365     ISD = ISD::UMAX;
3366     break;
3367   case Intrinsic::umin:
3368     ISD = ISD::UMIN;
3369     break;
3370   case Intrinsic::usub_sat:
3371     ISD = ISD::USUBSAT;
3372     break;
3373   case Intrinsic::sqrt:
3374     ISD = ISD::FSQRT;
3375     break;
3376   case Intrinsic::sadd_with_overflow:
3377   case Intrinsic::ssub_with_overflow:
3378     // SSUBO has same costs so don't duplicate.
3379     ISD = ISD::SADDO;
3380     OpTy = RetTy->getContainedType(0);
3381     break;
3382   case Intrinsic::uadd_with_overflow:
3383   case Intrinsic::usub_with_overflow:
3384     // USUBO has same costs so don't duplicate.
3385     ISD = ISD::UADDO;
3386     OpTy = RetTy->getContainedType(0);
3387     break;
3388   case Intrinsic::umul_with_overflow:
3389   case Intrinsic::smul_with_overflow:
3390     // SMULO has same costs so don't duplicate.
3391     ISD = ISD::UMULO;
3392     OpTy = RetTy->getContainedType(0);
3393     break;
3394   }
3395 
3396   if (ISD != ISD::DELETED_NODE) {
3397     // Legalize the type.
3398     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
3399     MVT MTy = LT.second;
3400 
3401     // Attempt to lookup cost.
3402     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
3403         MTy.isVector()) {
3404       // With PSHUFB the code is very similar for all types. If we have integer
3405       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
3406       // we also need a PSHUFB.
3407       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
3408 
3409       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
3410       // instructions. We also need an extract and an insert.
3411       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
3412             (ST->hasBWI() && MTy.is512BitVector())))
3413         Cost = Cost * 2 + 2;
3414 
3415       return LT.first * Cost;
3416     }
3417 
3418     auto adjustTableCost = [](const CostTblEntry &Entry,
3419                               InstructionCost LegalizationCost,
3420                               FastMathFlags FMF) {
3421       // If there are no NANs to deal with, then these are reduced to a
3422       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
3423       // assume is used in the non-fast case.
3424       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
3425         if (FMF.noNaNs())
3426           return LegalizationCost * 1;
3427       }
3428       return LegalizationCost * (int)Entry.Cost;
3429     };
3430 
3431     if (ST->useGLMDivSqrtCosts())
3432       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
3433         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3434 
3435     if (ST->useSLMArithCosts())
3436       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
3437         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3438 
3439     if (ST->hasBITALG())
3440       if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy))
3441         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3442 
3443     if (ST->hasVPOPCNTDQ())
3444       if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy))
3445         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3446 
3447     if (ST->hasCDI())
3448       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
3449         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3450 
3451     if (ST->hasBWI())
3452       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3453         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3454 
3455     if (ST->hasAVX512())
3456       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3457         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3458 
3459     if (ST->hasXOP())
3460       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3461         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3462 
3463     if (ST->hasAVX2())
3464       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3465         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3466 
3467     if (ST->hasAVX())
3468       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3469         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3470 
3471     if (ST->hasSSE42())
3472       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3473         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3474 
3475     if (ST->hasSSE41())
3476       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3477         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3478 
3479     if (ST->hasSSSE3())
3480       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
3481         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3482 
3483     if (ST->hasSSE2())
3484       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3485         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3486 
3487     if (ST->hasSSE1())
3488       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3489         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3490 
3491     if (ST->hasBMI()) {
3492       if (ST->is64Bit())
3493         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
3494           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3495 
3496       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
3497         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3498     }
3499 
3500     if (ST->hasLZCNT()) {
3501       if (ST->is64Bit())
3502         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
3503           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3504 
3505       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
3506         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3507     }
3508 
3509     if (ST->hasPOPCNT()) {
3510       if (ST->is64Bit())
3511         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
3512           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3513 
3514       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
3515         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3516     }
3517 
3518     if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
3519       if (const Instruction *II = ICA.getInst()) {
3520         if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
3521           return TTI::TCC_Free;
3522         if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
3523           if (LI->hasOneUse())
3524             return TTI::TCC_Free;
3525         }
3526       }
3527     }
3528 
3529     if (ST->is64Bit())
3530       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3531         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3532 
3533     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3534       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3535   }
3536 
3537   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3538 }
3539 
3540 InstructionCost
3541 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3542                                   TTI::TargetCostKind CostKind) {
3543   if (ICA.isTypeBasedOnly())
3544     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
3545 
3546   static const CostTblEntry AVX512BWCostTbl[] = {
3547     { ISD::ROTL,       MVT::v32i16,  2 },
3548     { ISD::ROTL,       MVT::v16i16,  2 },
3549     { ISD::ROTL,       MVT::v8i16,   2 },
3550     { ISD::ROTL,       MVT::v64i8,   5 },
3551     { ISD::ROTL,       MVT::v32i8,   5 },
3552     { ISD::ROTL,       MVT::v16i8,   5 },
3553     { ISD::ROTR,       MVT::v32i16,  2 },
3554     { ISD::ROTR,       MVT::v16i16,  2 },
3555     { ISD::ROTR,       MVT::v8i16,   2 },
3556     { ISD::ROTR,       MVT::v64i8,   5 },
3557     { ISD::ROTR,       MVT::v32i8,   5 },
3558     { ISD::ROTR,       MVT::v16i8,   5 }
3559   };
3560   static const CostTblEntry AVX512CostTbl[] = {
3561     { ISD::ROTL,       MVT::v8i64,   1 },
3562     { ISD::ROTL,       MVT::v4i64,   1 },
3563     { ISD::ROTL,       MVT::v2i64,   1 },
3564     { ISD::ROTL,       MVT::v16i32,  1 },
3565     { ISD::ROTL,       MVT::v8i32,   1 },
3566     { ISD::ROTL,       MVT::v4i32,   1 },
3567     { ISD::ROTR,       MVT::v8i64,   1 },
3568     { ISD::ROTR,       MVT::v4i64,   1 },
3569     { ISD::ROTR,       MVT::v2i64,   1 },
3570     { ISD::ROTR,       MVT::v16i32,  1 },
3571     { ISD::ROTR,       MVT::v8i32,   1 },
3572     { ISD::ROTR,       MVT::v4i32,   1 }
3573   };
3574   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3575   static const CostTblEntry XOPCostTbl[] = {
3576     { ISD::ROTL,       MVT::v4i64,   4 },
3577     { ISD::ROTL,       MVT::v8i32,   4 },
3578     { ISD::ROTL,       MVT::v16i16,  4 },
3579     { ISD::ROTL,       MVT::v32i8,   4 },
3580     { ISD::ROTL,       MVT::v2i64,   1 },
3581     { ISD::ROTL,       MVT::v4i32,   1 },
3582     { ISD::ROTL,       MVT::v8i16,   1 },
3583     { ISD::ROTL,       MVT::v16i8,   1 },
3584     { ISD::ROTR,       MVT::v4i64,   6 },
3585     { ISD::ROTR,       MVT::v8i32,   6 },
3586     { ISD::ROTR,       MVT::v16i16,  6 },
3587     { ISD::ROTR,       MVT::v32i8,   6 },
3588     { ISD::ROTR,       MVT::v2i64,   2 },
3589     { ISD::ROTR,       MVT::v4i32,   2 },
3590     { ISD::ROTR,       MVT::v8i16,   2 },
3591     { ISD::ROTR,       MVT::v16i8,   2 }
3592   };
3593   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3594     { ISD::ROTL,       MVT::i64,     1 },
3595     { ISD::ROTR,       MVT::i64,     1 },
3596     { ISD::FSHL,       MVT::i64,     4 }
3597   };
3598   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3599     { ISD::ROTL,       MVT::i32,     1 },
3600     { ISD::ROTL,       MVT::i16,     1 },
3601     { ISD::ROTL,       MVT::i8,      1 },
3602     { ISD::ROTR,       MVT::i32,     1 },
3603     { ISD::ROTR,       MVT::i16,     1 },
3604     { ISD::ROTR,       MVT::i8,      1 },
3605     { ISD::FSHL,       MVT::i32,     4 },
3606     { ISD::FSHL,       MVT::i16,     4 },
3607     { ISD::FSHL,       MVT::i8,      4 }
3608   };
3609 
3610   Intrinsic::ID IID = ICA.getID();
3611   Type *RetTy = ICA.getReturnType();
3612   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
3613   unsigned ISD = ISD::DELETED_NODE;
3614   switch (IID) {
3615   default:
3616     break;
3617   case Intrinsic::fshl:
3618     ISD = ISD::FSHL;
3619     if (Args[0] == Args[1])
3620       ISD = ISD::ROTL;
3621     break;
3622   case Intrinsic::fshr:
3623     // FSHR has same costs so don't duplicate.
3624     ISD = ISD::FSHL;
3625     if (Args[0] == Args[1])
3626       ISD = ISD::ROTR;
3627     break;
3628   }
3629 
3630   if (ISD != ISD::DELETED_NODE) {
3631     // Legalize the type.
3632     std::pair<InstructionCost, MVT> LT =
3633         TLI->getTypeLegalizationCost(DL, RetTy);
3634     MVT MTy = LT.second;
3635 
3636     // Attempt to lookup cost.
3637     if (ST->hasBWI())
3638       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3639         return LT.first * Entry->Cost;
3640 
3641     if (ST->hasAVX512())
3642       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3643         return LT.first * Entry->Cost;
3644 
3645     if (ST->hasXOP())
3646       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3647         return LT.first * Entry->Cost;
3648 
3649     if (ST->is64Bit())
3650       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3651         return LT.first * Entry->Cost;
3652 
3653     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3654       return LT.first * Entry->Cost;
3655   }
3656 
3657   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3658 }
3659 
3660 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3661                                                unsigned Index) {
3662   static const CostTblEntry SLMCostTbl[] = {
3663      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
3664      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
3665      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
3666      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
3667    };
3668 
3669   assert(Val->isVectorTy() && "This must be a vector type");
3670   Type *ScalarType = Val->getScalarType();
3671   InstructionCost RegisterFileMoveCost = 0;
3672 
3673   // Non-immediate extraction/insertion can be handled as a sequence of
3674   // aliased loads+stores via the stack.
3675   if (Index == -1U && (Opcode == Instruction::ExtractElement ||
3676                        Opcode == Instruction::InsertElement)) {
3677     // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
3678     // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
3679 
3680     // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
3681     assert(isa<FixedVectorType>(Val) && "Fixed vector type expected");
3682     Align VecAlign = DL.getPrefTypeAlign(Val);
3683     Align SclAlign = DL.getPrefTypeAlign(ScalarType);
3684 
3685     // Extract - store vector to stack, load scalar.
3686     if (Opcode == Instruction::ExtractElement) {
3687       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3688                              TTI::TargetCostKind::TCK_RecipThroughput) +
3689              getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
3690                              TTI::TargetCostKind::TCK_RecipThroughput);
3691     }
3692     // Insert - store vector to stack, store scalar, load vector.
3693     if (Opcode == Instruction::InsertElement) {
3694       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3695                              TTI::TargetCostKind::TCK_RecipThroughput) +
3696              getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
3697                              TTI::TargetCostKind::TCK_RecipThroughput) +
3698              getMemoryOpCost(Instruction::Load, Val, VecAlign, 0,
3699                              TTI::TargetCostKind::TCK_RecipThroughput);
3700     }
3701   }
3702 
3703   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3704                        Opcode == Instruction::InsertElement)) {
3705     // Extraction of vXi1 elements are now efficiently handled by MOVMSK.
3706     if (Opcode == Instruction::ExtractElement &&
3707         ScalarType->getScalarSizeInBits() == 1 &&
3708         cast<FixedVectorType>(Val)->getNumElements() > 1)
3709       return 1;
3710 
3711     // Legalize the type.
3712     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3713 
3714     // This type is legalized to a scalar type.
3715     if (!LT.second.isVector())
3716       return 0;
3717 
3718     // The type may be split. Normalize the index to the new type.
3719     unsigned SizeInBits = LT.second.getSizeInBits();
3720     unsigned NumElts = LT.second.getVectorNumElements();
3721     unsigned SubNumElts = NumElts;
3722     Index = Index % NumElts;
3723 
3724     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3725     // For inserts, we also need to insert the subvector back.
3726     if (SizeInBits > 128) {
3727       assert((SizeInBits % 128) == 0 && "Illegal vector");
3728       unsigned NumSubVecs = SizeInBits / 128;
3729       SubNumElts = NumElts / NumSubVecs;
3730       if (SubNumElts <= Index) {
3731         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3732         Index %= SubNumElts;
3733       }
3734     }
3735 
3736     if (Index == 0) {
3737       // Floating point scalars are already located in index #0.
3738       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3739       // true for all.
3740       if (ScalarType->isFloatingPointTy())
3741         return RegisterFileMoveCost;
3742 
3743       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3744       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3745         return 1 + RegisterFileMoveCost;
3746     }
3747 
3748     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3749     assert(ISD && "Unexpected vector opcode");
3750     MVT MScalarTy = LT.second.getScalarType();
3751     if (ST->useSLMArithCosts())
3752       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3753         return Entry->Cost + RegisterFileMoveCost;
3754 
3755     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3756     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3757         (MScalarTy.isInteger() && ST->hasSSE41()))
3758       return 1 + RegisterFileMoveCost;
3759 
3760     // Assume insertps is relatively cheap on all targets.
3761     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3762         Opcode == Instruction::InsertElement)
3763       return 1 + RegisterFileMoveCost;
3764 
3765     // For extractions we just need to shuffle the element to index 0, which
3766     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3767     // the elements to its destination. In both cases we must handle the
3768     // subvector move(s).
3769     // If the vector type is already less than 128-bits then don't reduce it.
3770     // TODO: Under what circumstances should we shuffle using the full width?
3771     InstructionCost ShuffleCost = 1;
3772     if (Opcode == Instruction::InsertElement) {
3773       auto *SubTy = cast<VectorType>(Val);
3774       EVT VT = TLI->getValueType(DL, Val);
3775       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3776         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3777       ShuffleCost =
3778           getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3779     }
3780     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3781     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3782   }
3783 
3784   // Add to the base cost if we know that the extracted element of a vector is
3785   // destined to be moved to and used in the integer register file.
3786   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3787     RegisterFileMoveCost += 1;
3788 
3789   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3790 }
3791 
3792 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3793                                                      const APInt &DemandedElts,
3794                                                      bool Insert,
3795                                                      bool Extract) {
3796   assert(DemandedElts.getBitWidth() ==
3797              cast<FixedVectorType>(Ty)->getNumElements() &&
3798          "Vector size mismatch");
3799 
3800   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3801   MVT MScalarTy = LT.second.getScalarType();
3802   unsigned SizeInBits = LT.second.getSizeInBits();
3803 
3804   InstructionCost Cost = 0;
3805 
3806   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3807   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3808   if (Insert) {
3809     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3810         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3811         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3812       // For types we can insert directly, insertion into 128-bit sub vectors is
3813       // cheap, followed by a cheap chain of concatenations.
3814       if (SizeInBits <= 128) {
3815         Cost +=
3816             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3817       } else {
3818         // In each 128-lane, if at least one index is demanded but not all
3819         // indices are demanded and this 128-lane is not the first 128-lane of
3820         // the legalized-vector, then this 128-lane needs a extracti128; If in
3821         // each 128-lane, there is at least one demanded index, this 128-lane
3822         // needs a inserti128.
3823 
3824         // The following cases will help you build a better understanding:
3825         // Assume we insert several elements into a v8i32 vector in avx2,
3826         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3827         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3828         // inserti128.
3829         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3830         const int CostValue = *LT.first.getValue();
3831         assert(CostValue >= 0 && "Negative cost!");
3832         unsigned Num128Lanes = SizeInBits / 128 * CostValue;
3833         unsigned NumElts = LT.second.getVectorNumElements() * CostValue;
3834         APInt WidenedDemandedElts = DemandedElts.zext(NumElts);
3835         unsigned Scale = NumElts / Num128Lanes;
3836         // We iterate each 128-lane, and check if we need a
3837         // extracti128/inserti128 for this 128-lane.
3838         for (unsigned I = 0; I < NumElts; I += Scale) {
3839           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3840           APInt MaskedDE = Mask & WidenedDemandedElts;
3841           unsigned Population = MaskedDE.countPopulation();
3842           Cost += (Population > 0 && Population != Scale &&
3843                    I % LT.second.getVectorNumElements() != 0);
3844           Cost += Population > 0;
3845         }
3846         Cost += DemandedElts.countPopulation();
3847 
3848         // For vXf32 cases, insertion into the 0'th index in each v4f32
3849         // 128-bit vector is free.
3850         // NOTE: This assumes legalization widens vXf32 vectors.
3851         if (MScalarTy == MVT::f32)
3852           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3853                i < e; i += 4)
3854             if (DemandedElts[i])
3855               Cost--;
3856       }
3857     } else if (LT.second.isVector()) {
3858       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3859       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3860       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3861       // considered cheap.
3862       if (Ty->isIntOrIntVectorTy())
3863         Cost += DemandedElts.countPopulation();
3864 
3865       // Get the smaller of the legalized or original pow2-extended number of
3866       // vector elements, which represents the number of unpacks we'll end up
3867       // performing.
3868       unsigned NumElts = LT.second.getVectorNumElements();
3869       unsigned Pow2Elts =
3870           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3871       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3872     }
3873   }
3874 
3875   if (Extract) {
3876     // vXi1 can be efficiently extracted with MOVMSK.
3877     // TODO: AVX512 predicate mask handling.
3878     // NOTE: This doesn't work well for roundtrip scalarization.
3879     if (!Insert && Ty->getScalarSizeInBits() == 1 && !ST->hasAVX512()) {
3880       unsigned NumElts = cast<FixedVectorType>(Ty)->getNumElements();
3881       unsigned MaxElts = ST->hasAVX2() ? 32 : 16;
3882       unsigned MOVMSKCost = (NumElts + MaxElts - 1) / MaxElts;
3883       return MOVMSKCost;
3884     }
3885 
3886     if (LT.second.isVector()) {
3887       int CostValue = *LT.first.getValue();
3888       assert(CostValue >= 0 && "Negative cost!");
3889 
3890       unsigned NumElts = LT.second.getVectorNumElements() * CostValue;
3891       assert(NumElts >= DemandedElts.getBitWidth() &&
3892              "Vector has been legalized to smaller element count");
3893 
3894       // If we're extracting elements from a 128-bit subvector lane, we only need
3895       // to extract each lane once, not for every element.
3896       if (SizeInBits > 128) {
3897         assert((SizeInBits % 128) == 0 && "Illegal vector");
3898         unsigned NumLegal128Lanes = SizeInBits / 128;
3899         unsigned Num128Lanes = NumLegal128Lanes * CostValue;
3900         APInt WidenedDemandedElts = DemandedElts.zext(NumElts);
3901         unsigned Scale = NumElts / Num128Lanes;
3902 
3903         // Add cost for each demanded 128-bit subvector extraction.
3904         // Luckily this is a lot easier than for insertion.
3905         APInt DemandedUpper128Lanes =
3906             APIntOps::ScaleBitMask(WidenedDemandedElts, Num128Lanes);
3907         auto *Ty128 = FixedVectorType::get(Ty->getElementType(), Scale);
3908         for (unsigned I = 0; I != Num128Lanes; ++I)
3909           if (DemandedUpper128Lanes[I])
3910             Cost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, None,
3911                                    I * Scale, Ty128);
3912 
3913         // Add all the demanded element extractions together, but adjust the
3914         // index to use the equivalent of the bottom 128 bit lane.
3915         for (unsigned I = 0; I != NumElts; ++I)
3916           if (WidenedDemandedElts[I]) {
3917             unsigned Idx = I % Scale;
3918             Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, Idx);
3919           }
3920 
3921         return Cost;
3922       }
3923     }
3924 
3925     // Fallback to default extraction.
3926     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3927   }
3928 
3929   return Cost;
3930 }
3931 
3932 InstructionCost
3933 X86TTIImpl::getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
3934                                       int VF, const APInt &DemandedDstElts,
3935                                       TTI::TargetCostKind CostKind) {
3936   const unsigned EltTyBits = DL.getTypeSizeInBits(EltTy);
3937   // We don't differentiate element types here, only element bit width.
3938   EltTy = IntegerType::getIntNTy(EltTy->getContext(), EltTyBits);
3939 
3940   auto bailout = [&]() {
3941     return BaseT::getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
3942                                             DemandedDstElts, CostKind);
3943   };
3944 
3945   // For now, only deal with AVX512 cases.
3946   if (!ST->hasAVX512())
3947     return bailout();
3948 
3949   // Do we have a native shuffle for this element type, or should we promote?
3950   unsigned PromEltTyBits = EltTyBits;
3951   switch (EltTyBits) {
3952   case 32:
3953   case 64:
3954     break; // AVX512F.
3955   case 16:
3956     if (!ST->hasBWI())
3957       PromEltTyBits = 32; // promote to i32, AVX512F.
3958     break;                // AVX512BW
3959   case 8:
3960     if (!ST->hasVBMI())
3961       PromEltTyBits = 32; // promote to i32, AVX512F.
3962     break;                // AVX512VBMI
3963   case 1:
3964     // There is no support for shuffling i1 elements. We *must* promote.
3965     if (ST->hasBWI()) {
3966       if (ST->hasVBMI())
3967         PromEltTyBits = 8; // promote to i8, AVX512VBMI.
3968       else
3969         PromEltTyBits = 16; // promote to i16, AVX512BW.
3970       break;
3971     }
3972     if (ST->hasDQI()) {
3973       PromEltTyBits = 32; // promote to i32, AVX512F.
3974       break;
3975     }
3976     return bailout();
3977   default:
3978     return bailout();
3979   }
3980   auto *PromEltTy = IntegerType::getIntNTy(EltTy->getContext(), PromEltTyBits);
3981 
3982   auto *SrcVecTy = FixedVectorType::get(EltTy, VF);
3983   auto *PromSrcVecTy = FixedVectorType::get(PromEltTy, VF);
3984 
3985   int NumDstElements = VF * ReplicationFactor;
3986   auto *PromDstVecTy = FixedVectorType::get(PromEltTy, NumDstElements);
3987   auto *DstVecTy = FixedVectorType::get(EltTy, NumDstElements);
3988 
3989   // Legalize the types.
3990   MVT LegalSrcVecTy = TLI->getTypeLegalizationCost(DL, SrcVecTy).second;
3991   MVT LegalPromSrcVecTy = TLI->getTypeLegalizationCost(DL, PromSrcVecTy).second;
3992   MVT LegalPromDstVecTy = TLI->getTypeLegalizationCost(DL, PromDstVecTy).second;
3993   MVT LegalDstVecTy = TLI->getTypeLegalizationCost(DL, DstVecTy).second;
3994   // They should have legalized into vector types.
3995   if (!LegalSrcVecTy.isVector() || !LegalPromSrcVecTy.isVector() ||
3996       !LegalPromDstVecTy.isVector() || !LegalDstVecTy.isVector())
3997     return bailout();
3998 
3999   if (PromEltTyBits != EltTyBits) {
4000     // If we have to perform the shuffle with wider elt type than our data type,
4001     // then we will first need to anyext (we don't care about the new bits)
4002     // the source elements, and then truncate Dst elements.
4003     InstructionCost PromotionCost;
4004     PromotionCost += getCastInstrCost(
4005         Instruction::SExt, /*Dst=*/PromSrcVecTy, /*Src=*/SrcVecTy,
4006         TargetTransformInfo::CastContextHint::None, CostKind);
4007     PromotionCost +=
4008         getCastInstrCost(Instruction::Trunc, /*Dst=*/DstVecTy,
4009                          /*Src=*/PromDstVecTy,
4010                          TargetTransformInfo::CastContextHint::None, CostKind);
4011     return PromotionCost + getReplicationShuffleCost(PromEltTy,
4012                                                      ReplicationFactor, VF,
4013                                                      DemandedDstElts, CostKind);
4014   }
4015 
4016   assert(LegalSrcVecTy.getScalarSizeInBits() == EltTyBits &&
4017          LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() &&
4018          "We expect that the legalization doesn't affect the element width, "
4019          "doesn't coalesce/split elements.");
4020 
4021   unsigned NumEltsPerDstVec = LegalDstVecTy.getVectorNumElements();
4022   unsigned NumDstVectors =
4023       divideCeil(DstVecTy->getNumElements(), NumEltsPerDstVec);
4024 
4025   auto *SingleDstVecTy = FixedVectorType::get(EltTy, NumEltsPerDstVec);
4026 
4027   // Not all the produced Dst elements may be demanded. In our case,
4028   // given that a single Dst vector is formed by a single shuffle,
4029   // if all elements that will form a single Dst vector aren't demanded,
4030   // then we won't need to do that shuffle, so adjust the cost accordingly.
4031   APInt DemandedDstVectors = APIntOps::ScaleBitMask(
4032       DemandedDstElts.zext(NumDstVectors * NumEltsPerDstVec), NumDstVectors);
4033   unsigned NumDstVectorsDemanded = DemandedDstVectors.countPopulation();
4034 
4035   InstructionCost SingleShuffleCost =
4036       getShuffleCost(TTI::SK_PermuteSingleSrc, SingleDstVecTy,
4037                      /*Mask=*/None, /*Index=*/0, /*SubTp=*/nullptr);
4038   return NumDstVectorsDemanded * SingleShuffleCost;
4039 }
4040 
4041 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
4042                                             MaybeAlign Alignment,
4043                                             unsigned AddressSpace,
4044                                             TTI::TargetCostKind CostKind,
4045                                             const Instruction *I) {
4046   // TODO: Handle other cost kinds.
4047   if (CostKind != TTI::TCK_RecipThroughput) {
4048     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
4049       // Store instruction with index and scale costs 2 Uops.
4050       // Check the preceding GEP to identify non-const indices.
4051       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
4052         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
4053           return TTI::TCC_Basic * 2;
4054       }
4055     }
4056     return TTI::TCC_Basic;
4057   }
4058 
4059   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
4060          "Invalid Opcode");
4061   // Type legalization can't handle structs
4062   if (TLI->getValueType(DL, Src, true) == MVT::Other)
4063     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
4064                                   CostKind);
4065 
4066   // Legalize the type.
4067   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
4068 
4069   auto *VTy = dyn_cast<FixedVectorType>(Src);
4070 
4071   // Handle the simple case of non-vectors.
4072   // NOTE: this assumes that legalization never creates vector from scalars!
4073   if (!VTy || !LT.second.isVector())
4074     // Each load/store unit costs 1.
4075     return LT.first * 1;
4076 
4077   bool IsLoad = Opcode == Instruction::Load;
4078 
4079   Type *EltTy = VTy->getElementType();
4080 
4081   const int EltTyBits = DL.getTypeSizeInBits(EltTy);
4082 
4083   InstructionCost Cost = 0;
4084 
4085   // Source of truth: how many elements were there in the original IR vector?
4086   const unsigned SrcNumElt = VTy->getNumElements();
4087 
4088   // How far have we gotten?
4089   int NumEltRemaining = SrcNumElt;
4090   // Note that we intentionally capture by-reference, NumEltRemaining changes.
4091   auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
4092 
4093   const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
4094 
4095   // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
4096   const unsigned XMMBits = 128;
4097   if (XMMBits % EltTyBits != 0)
4098     // Vector size must be a multiple of the element size. I.e. no padding.
4099     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
4100                                   CostKind);
4101   const int NumEltPerXMM = XMMBits / EltTyBits;
4102 
4103   auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
4104 
4105   for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
4106        NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
4107     // How many elements would a single op deal with at once?
4108     if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
4109       // Vector size must be a multiple of the element size. I.e. no padding.
4110       return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
4111                                     CostKind);
4112     int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
4113 
4114     assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
4115     assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
4116             (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
4117            "Unless we haven't halved the op size yet, "
4118            "we have less than two op's sized units of work left.");
4119 
4120     auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
4121                           ? FixedVectorType::get(EltTy, CurrNumEltPerOp)
4122                           : XMMVecTy;
4123 
4124     assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
4125            "After halving sizes, the vector elt count is no longer a multiple "
4126            "of number of elements per operation?");
4127     auto *CoalescedVecTy =
4128         CurrNumEltPerOp == 1
4129             ? CurrVecTy
4130             : FixedVectorType::get(
4131                   IntegerType::get(Src->getContext(),
4132                                    EltTyBits * CurrNumEltPerOp),
4133                   CurrVecTy->getNumElements() / CurrNumEltPerOp);
4134     assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
4135                DL.getTypeSizeInBits(CurrVecTy) &&
4136            "coalesciing elements doesn't change vector width.");
4137 
4138     while (NumEltRemaining > 0) {
4139       assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
4140 
4141       // Can we use this vector size, as per the remaining element count?
4142       // Iff the vector is naturally aligned, we can do a wide load regardless.
4143       if (NumEltRemaining < CurrNumEltPerOp &&
4144           (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
4145           CurrOpSizeBytes != 1)
4146         break; // Try smalled vector size.
4147 
4148       bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
4149 
4150       // If we have fully processed the previous reg, we need to replenish it.
4151       if (SubVecEltsLeft == 0) {
4152         SubVecEltsLeft += CurrVecTy->getNumElements();
4153         // And that's free only for the 0'th subvector of a legalized vector.
4154         if (!Is0thSubVec)
4155           Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
4156                                         : TTI::ShuffleKind::SK_ExtractSubvector,
4157                                  VTy, None, NumEltDone(), CurrVecTy);
4158       }
4159 
4160       // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
4161       // for smaller widths (32/16/8) we have to insert/extract them separately.
4162       // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
4163       // but let's pretend that it is also true for 16/8 bit wide ops...)
4164       if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
4165         int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
4166         assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
4167         int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
4168         APInt DemandedElts =
4169             APInt::getBitsSet(CoalescedVecTy->getNumElements(),
4170                               CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
4171         assert(DemandedElts.countPopulation() == 1 && "Inserting single value");
4172         Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
4173                                          !IsLoad);
4174       }
4175 
4176       // This isn't exactly right. We're using slow unaligned 32-byte accesses
4177       // as a proxy for a double-pumped AVX memory interface such as on
4178       // Sandybridge.
4179       if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
4180         Cost += 2;
4181       else
4182         Cost += 1;
4183 
4184       SubVecEltsLeft -= CurrNumEltPerOp;
4185       NumEltRemaining -= CurrNumEltPerOp;
4186       Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
4187     }
4188   }
4189 
4190   assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
4191 
4192   return Cost;
4193 }
4194 
4195 InstructionCost
4196 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
4197                                   unsigned AddressSpace,
4198                                   TTI::TargetCostKind CostKind) {
4199   bool IsLoad = (Instruction::Load == Opcode);
4200   bool IsStore = (Instruction::Store == Opcode);
4201 
4202   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
4203   if (!SrcVTy)
4204     // To calculate scalar take the regular cost, without mask
4205     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
4206 
4207   unsigned NumElem = SrcVTy->getNumElements();
4208   auto *MaskTy =
4209       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
4210   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
4211       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
4212     // Scalarization
4213     APInt DemandedElts = APInt::getAllOnes(NumElem);
4214     InstructionCost MaskSplitCost =
4215         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4216     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4217         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
4218         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4219     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4220     InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
4221     InstructionCost ValueSplitCost =
4222         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
4223     InstructionCost MemopCost =
4224         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4225                                          Alignment, AddressSpace, CostKind);
4226     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
4227   }
4228 
4229   // Legalize the type.
4230   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4231   auto VT = TLI->getValueType(DL, SrcVTy);
4232   InstructionCost Cost = 0;
4233   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
4234       LT.second.getVectorNumElements() == NumElem)
4235     // Promotion requires extend/truncate for data and a shuffle for mask.
4236     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
4237             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
4238 
4239   else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
4240     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
4241                                            LT.second.getVectorNumElements());
4242     // Expanding requires fill mask with zeroes
4243     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
4244   }
4245 
4246   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
4247   if (!ST->hasAVX512())
4248     return Cost + LT.first * (IsLoad ? 2 : 8);
4249 
4250   // AVX-512 masked load/store is cheapper
4251   return Cost + LT.first;
4252 }
4253 
4254 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
4255                                                       ScalarEvolution *SE,
4256                                                       const SCEV *Ptr) {
4257   // Address computations in vectorized code with non-consecutive addresses will
4258   // likely result in more instructions compared to scalar code where the
4259   // computation can more often be merged into the index mode. The resulting
4260   // extra micro-ops can significantly decrease throughput.
4261   const unsigned NumVectorInstToHideOverhead = 10;
4262 
4263   // Cost modeling of Strided Access Computation is hidden by the indexing
4264   // modes of X86 regardless of the stride value. We dont believe that there
4265   // is a difference between constant strided access in gerenal and constant
4266   // strided value which is less than or equal to 64.
4267   // Even in the case of (loop invariant) stride whose value is not known at
4268   // compile time, the address computation will not incur more than one extra
4269   // ADD instruction.
4270   if (Ty->isVectorTy() && SE && !ST->hasAVX2()) {
4271     // TODO: AVX2 is the current cut-off because we don't have correct
4272     //       interleaving costs for prior ISA's.
4273     if (!BaseT::isStridedAccess(Ptr))
4274       return NumVectorInstToHideOverhead;
4275     if (!BaseT::getConstantStrideStep(SE, Ptr))
4276       return 1;
4277   }
4278 
4279   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
4280 }
4281 
4282 InstructionCost
4283 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
4284                                        Optional<FastMathFlags> FMF,
4285                                        TTI::TargetCostKind CostKind) {
4286   if (TTI::requiresOrderedReduction(FMF))
4287     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
4288 
4289   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4290   // and make it as the cost.
4291 
4292   static const CostTblEntry SLMCostTblNoPairWise[] = {
4293     { ISD::FADD,  MVT::v2f64,   3 },
4294     { ISD::ADD,   MVT::v2i64,   5 },
4295   };
4296 
4297   static const CostTblEntry SSE2CostTblNoPairWise[] = {
4298     { ISD::FADD,  MVT::v2f64,   2 },
4299     { ISD::FADD,  MVT::v2f32,   2 },
4300     { ISD::FADD,  MVT::v4f32,   4 },
4301     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
4302     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
4303     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
4304     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
4305     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
4306     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
4307     { ISD::ADD,   MVT::v2i8,    2 },
4308     { ISD::ADD,   MVT::v4i8,    2 },
4309     { ISD::ADD,   MVT::v8i8,    2 },
4310     { ISD::ADD,   MVT::v16i8,   3 },
4311   };
4312 
4313   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4314     { ISD::FADD,  MVT::v4f64,   3 },
4315     { ISD::FADD,  MVT::v4f32,   3 },
4316     { ISD::FADD,  MVT::v8f32,   4 },
4317     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
4318     { ISD::ADD,   MVT::v4i64,   3 },
4319     { ISD::ADD,   MVT::v8i32,   5 },
4320     { ISD::ADD,   MVT::v16i16,  5 },
4321     { ISD::ADD,   MVT::v32i8,   4 },
4322   };
4323 
4324   int ISD = TLI->InstructionOpcodeToISD(Opcode);
4325   assert(ISD && "Invalid opcode");
4326 
4327   // Before legalizing the type, give a chance to look up illegal narrow types
4328   // in the table.
4329   // FIXME: Is there a better way to do this?
4330   EVT VT = TLI->getValueType(DL, ValTy);
4331   if (VT.isSimple()) {
4332     MVT MTy = VT.getSimpleVT();
4333     if (ST->useSLMArithCosts())
4334       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
4335         return Entry->Cost;
4336 
4337     if (ST->hasAVX())
4338       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4339         return Entry->Cost;
4340 
4341     if (ST->hasSSE2())
4342       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4343         return Entry->Cost;
4344   }
4345 
4346   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4347 
4348   MVT MTy = LT.second;
4349 
4350   auto *ValVTy = cast<FixedVectorType>(ValTy);
4351 
4352   // Special case: vXi8 mul reductions are performed as vXi16.
4353   if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
4354     auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
4355     auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
4356     return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
4357                             TargetTransformInfo::CastContextHint::None,
4358                             CostKind) +
4359            getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind);
4360   }
4361 
4362   InstructionCost ArithmeticCost = 0;
4363   if (LT.first != 1 && MTy.isVector() &&
4364       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4365     // Type needs to be split. We need LT.first - 1 arithmetic ops.
4366     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
4367                                             MTy.getVectorNumElements());
4368     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
4369     ArithmeticCost *= LT.first - 1;
4370   }
4371 
4372   if (ST->useSLMArithCosts())
4373     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
4374       return ArithmeticCost + Entry->Cost;
4375 
4376   if (ST->hasAVX())
4377     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4378       return ArithmeticCost + Entry->Cost;
4379 
4380   if (ST->hasSSE2())
4381     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4382       return ArithmeticCost + Entry->Cost;
4383 
4384   // FIXME: These assume a naive kshift+binop lowering, which is probably
4385   // conservative in most cases.
4386   static const CostTblEntry AVX512BoolReduction[] = {
4387     { ISD::AND,  MVT::v2i1,   3 },
4388     { ISD::AND,  MVT::v4i1,   5 },
4389     { ISD::AND,  MVT::v8i1,   7 },
4390     { ISD::AND,  MVT::v16i1,  9 },
4391     { ISD::AND,  MVT::v32i1, 11 },
4392     { ISD::AND,  MVT::v64i1, 13 },
4393     { ISD::OR,   MVT::v2i1,   3 },
4394     { ISD::OR,   MVT::v4i1,   5 },
4395     { ISD::OR,   MVT::v8i1,   7 },
4396     { ISD::OR,   MVT::v16i1,  9 },
4397     { ISD::OR,   MVT::v32i1, 11 },
4398     { ISD::OR,   MVT::v64i1, 13 },
4399   };
4400 
4401   static const CostTblEntry AVX2BoolReduction[] = {
4402     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
4403     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
4404     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
4405     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
4406   };
4407 
4408   static const CostTblEntry AVX1BoolReduction[] = {
4409     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
4410     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
4411     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
4412     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
4413     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
4414     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
4415     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
4416     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
4417   };
4418 
4419   static const CostTblEntry SSE2BoolReduction[] = {
4420     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
4421     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
4422     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
4423     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
4424     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
4425     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
4426     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
4427     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
4428   };
4429 
4430   // Handle bool allof/anyof patterns.
4431   if (ValVTy->getElementType()->isIntegerTy(1)) {
4432     InstructionCost ArithmeticCost = 0;
4433     if (LT.first != 1 && MTy.isVector() &&
4434         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4435       // Type needs to be split. We need LT.first - 1 arithmetic ops.
4436       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
4437                                               MTy.getVectorNumElements());
4438       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
4439       ArithmeticCost *= LT.first - 1;
4440     }
4441 
4442     if (ST->hasAVX512())
4443       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
4444         return ArithmeticCost + Entry->Cost;
4445     if (ST->hasAVX2())
4446       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
4447         return ArithmeticCost + Entry->Cost;
4448     if (ST->hasAVX())
4449       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
4450         return ArithmeticCost + Entry->Cost;
4451     if (ST->hasSSE2())
4452       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
4453         return ArithmeticCost + Entry->Cost;
4454 
4455     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
4456   }
4457 
4458   unsigned NumVecElts = ValVTy->getNumElements();
4459   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
4460 
4461   // Special case power of 2 reductions where the scalar type isn't changed
4462   // by type legalization.
4463   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
4464     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
4465 
4466   InstructionCost ReductionCost = 0;
4467 
4468   auto *Ty = ValVTy;
4469   if (LT.first != 1 && MTy.isVector() &&
4470       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4471     // Type needs to be split. We need LT.first - 1 arithmetic ops.
4472     Ty = FixedVectorType::get(ValVTy->getElementType(),
4473                               MTy.getVectorNumElements());
4474     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
4475     ReductionCost *= LT.first - 1;
4476     NumVecElts = MTy.getVectorNumElements();
4477   }
4478 
4479   // Now handle reduction with the legal type, taking into account size changes
4480   // at each level.
4481   while (NumVecElts > 1) {
4482     // Determine the size of the remaining vector we need to reduce.
4483     unsigned Size = NumVecElts * ScalarSize;
4484     NumVecElts /= 2;
4485     // If we're reducing from 256/512 bits, use an extract_subvector.
4486     if (Size > 128) {
4487       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4488       ReductionCost +=
4489           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4490       Ty = SubTy;
4491     } else if (Size == 128) {
4492       // Reducing from 128 bits is a permute of v2f64/v2i64.
4493       FixedVectorType *ShufTy;
4494       if (ValVTy->isFloatingPointTy())
4495         ShufTy =
4496             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
4497       else
4498         ShufTy =
4499             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
4500       ReductionCost +=
4501           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4502     } else if (Size == 64) {
4503       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4504       FixedVectorType *ShufTy;
4505       if (ValVTy->isFloatingPointTy())
4506         ShufTy =
4507             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
4508       else
4509         ShufTy =
4510             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
4511       ReductionCost +=
4512           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4513     } else {
4514       // Reducing from smaller size is a shift by immediate.
4515       auto *ShiftTy = FixedVectorType::get(
4516           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
4517       ReductionCost += getArithmeticInstrCost(
4518           Instruction::LShr, ShiftTy, CostKind,
4519           TargetTransformInfo::OK_AnyValue,
4520           TargetTransformInfo::OK_UniformConstantValue,
4521           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4522     }
4523 
4524     // Add the arithmetic op for this level.
4525     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
4526   }
4527 
4528   // Add the final extract element to the cost.
4529   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4530 }
4531 
4532 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy,
4533                                           bool IsUnsigned) {
4534   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
4535 
4536   MVT MTy = LT.second;
4537 
4538   int ISD;
4539   if (Ty->isIntOrIntVectorTy()) {
4540     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4541   } else {
4542     assert(Ty->isFPOrFPVectorTy() &&
4543            "Expected float point or integer vector type.");
4544     ISD = ISD::FMINNUM;
4545   }
4546 
4547   static const CostTblEntry SSE1CostTbl[] = {
4548     {ISD::FMINNUM, MVT::v4f32, 1},
4549   };
4550 
4551   static const CostTblEntry SSE2CostTbl[] = {
4552     {ISD::FMINNUM, MVT::v2f64, 1},
4553     {ISD::SMIN,    MVT::v8i16, 1},
4554     {ISD::UMIN,    MVT::v16i8, 1},
4555   };
4556 
4557   static const CostTblEntry SSE41CostTbl[] = {
4558     {ISD::SMIN,    MVT::v4i32, 1},
4559     {ISD::UMIN,    MVT::v4i32, 1},
4560     {ISD::UMIN,    MVT::v8i16, 1},
4561     {ISD::SMIN,    MVT::v16i8, 1},
4562   };
4563 
4564   static const CostTblEntry SSE42CostTbl[] = {
4565     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
4566   };
4567 
4568   static const CostTblEntry AVX1CostTbl[] = {
4569     {ISD::FMINNUM, MVT::v8f32,  1},
4570     {ISD::FMINNUM, MVT::v4f64,  1},
4571     {ISD::SMIN,    MVT::v8i32,  3},
4572     {ISD::UMIN,    MVT::v8i32,  3},
4573     {ISD::SMIN,    MVT::v16i16, 3},
4574     {ISD::UMIN,    MVT::v16i16, 3},
4575     {ISD::SMIN,    MVT::v32i8,  3},
4576     {ISD::UMIN,    MVT::v32i8,  3},
4577   };
4578 
4579   static const CostTblEntry AVX2CostTbl[] = {
4580     {ISD::SMIN,    MVT::v8i32,  1},
4581     {ISD::UMIN,    MVT::v8i32,  1},
4582     {ISD::SMIN,    MVT::v16i16, 1},
4583     {ISD::UMIN,    MVT::v16i16, 1},
4584     {ISD::SMIN,    MVT::v32i8,  1},
4585     {ISD::UMIN,    MVT::v32i8,  1},
4586   };
4587 
4588   static const CostTblEntry AVX512CostTbl[] = {
4589     {ISD::FMINNUM, MVT::v16f32, 1},
4590     {ISD::FMINNUM, MVT::v8f64,  1},
4591     {ISD::SMIN,    MVT::v2i64,  1},
4592     {ISD::UMIN,    MVT::v2i64,  1},
4593     {ISD::SMIN,    MVT::v4i64,  1},
4594     {ISD::UMIN,    MVT::v4i64,  1},
4595     {ISD::SMIN,    MVT::v8i64,  1},
4596     {ISD::UMIN,    MVT::v8i64,  1},
4597     {ISD::SMIN,    MVT::v16i32, 1},
4598     {ISD::UMIN,    MVT::v16i32, 1},
4599   };
4600 
4601   static const CostTblEntry AVX512BWCostTbl[] = {
4602     {ISD::SMIN,    MVT::v32i16, 1},
4603     {ISD::UMIN,    MVT::v32i16, 1},
4604     {ISD::SMIN,    MVT::v64i8,  1},
4605     {ISD::UMIN,    MVT::v64i8,  1},
4606   };
4607 
4608   // If we have a native MIN/MAX instruction for this type, use it.
4609   if (ST->hasBWI())
4610     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
4611       return LT.first * Entry->Cost;
4612 
4613   if (ST->hasAVX512())
4614     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
4615       return LT.first * Entry->Cost;
4616 
4617   if (ST->hasAVX2())
4618     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
4619       return LT.first * Entry->Cost;
4620 
4621   if (ST->hasAVX())
4622     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
4623       return LT.first * Entry->Cost;
4624 
4625   if (ST->hasSSE42())
4626     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
4627       return LT.first * Entry->Cost;
4628 
4629   if (ST->hasSSE41())
4630     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
4631       return LT.first * Entry->Cost;
4632 
4633   if (ST->hasSSE2())
4634     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
4635       return LT.first * Entry->Cost;
4636 
4637   if (ST->hasSSE1())
4638     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
4639       return LT.first * Entry->Cost;
4640 
4641   unsigned CmpOpcode;
4642   if (Ty->isFPOrFPVectorTy()) {
4643     CmpOpcode = Instruction::FCmp;
4644   } else {
4645     assert(Ty->isIntOrIntVectorTy() &&
4646            "expecting floating point or integer type for min/max reduction");
4647     CmpOpcode = Instruction::ICmp;
4648   }
4649 
4650   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4651   // Otherwise fall back to cmp+select.
4652   InstructionCost Result =
4653       getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
4654                          CostKind) +
4655       getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
4656                          CmpInst::BAD_ICMP_PREDICATE, CostKind);
4657   return Result;
4658 }
4659 
4660 InstructionCost
4661 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
4662                                    bool IsUnsigned,
4663                                    TTI::TargetCostKind CostKind) {
4664   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4665 
4666   MVT MTy = LT.second;
4667 
4668   int ISD;
4669   if (ValTy->isIntOrIntVectorTy()) {
4670     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4671   } else {
4672     assert(ValTy->isFPOrFPVectorTy() &&
4673            "Expected float point or integer vector type.");
4674     ISD = ISD::FMINNUM;
4675   }
4676 
4677   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4678   // and make it as the cost.
4679 
4680   static const CostTblEntry SSE2CostTblNoPairWise[] = {
4681       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
4682       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
4683       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
4684   };
4685 
4686   static const CostTblEntry SSE41CostTblNoPairWise[] = {
4687       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
4688       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
4689       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
4690       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
4691       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
4692       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
4693       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
4694       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
4695       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
4696       {ISD::SMIN, MVT::v16i8, 6},
4697       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
4698       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
4699       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
4700       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
4701   };
4702 
4703   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4704       {ISD::SMIN, MVT::v16i16, 6},
4705       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
4706       {ISD::SMIN, MVT::v32i8, 8},
4707       {ISD::UMIN, MVT::v32i8, 8},
4708   };
4709 
4710   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
4711       {ISD::SMIN, MVT::v32i16, 8},
4712       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
4713       {ISD::SMIN, MVT::v64i8, 10},
4714       {ISD::UMIN, MVT::v64i8, 10},
4715   };
4716 
4717   // Before legalizing the type, give a chance to look up illegal narrow types
4718   // in the table.
4719   // FIXME: Is there a better way to do this?
4720   EVT VT = TLI->getValueType(DL, ValTy);
4721   if (VT.isSimple()) {
4722     MVT MTy = VT.getSimpleVT();
4723     if (ST->hasBWI())
4724       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4725         return Entry->Cost;
4726 
4727     if (ST->hasAVX())
4728       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4729         return Entry->Cost;
4730 
4731     if (ST->hasSSE41())
4732       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4733         return Entry->Cost;
4734 
4735     if (ST->hasSSE2())
4736       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4737         return Entry->Cost;
4738   }
4739 
4740   auto *ValVTy = cast<FixedVectorType>(ValTy);
4741   unsigned NumVecElts = ValVTy->getNumElements();
4742 
4743   auto *Ty = ValVTy;
4744   InstructionCost MinMaxCost = 0;
4745   if (LT.first != 1 && MTy.isVector() &&
4746       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4747     // Type needs to be split. We need LT.first - 1 operations ops.
4748     Ty = FixedVectorType::get(ValVTy->getElementType(),
4749                               MTy.getVectorNumElements());
4750     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
4751                                            MTy.getVectorNumElements());
4752     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4753     MinMaxCost *= LT.first - 1;
4754     NumVecElts = MTy.getVectorNumElements();
4755   }
4756 
4757   if (ST->hasBWI())
4758     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4759       return MinMaxCost + Entry->Cost;
4760 
4761   if (ST->hasAVX())
4762     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4763       return MinMaxCost + Entry->Cost;
4764 
4765   if (ST->hasSSE41())
4766     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4767       return MinMaxCost + Entry->Cost;
4768 
4769   if (ST->hasSSE2())
4770     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4771       return MinMaxCost + Entry->Cost;
4772 
4773   unsigned ScalarSize = ValTy->getScalarSizeInBits();
4774 
4775   // Special case power of 2 reductions where the scalar type isn't changed
4776   // by type legalization.
4777   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
4778       ScalarSize != MTy.getScalarSizeInBits())
4779     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsUnsigned, CostKind);
4780 
4781   // Now handle reduction with the legal type, taking into account size changes
4782   // at each level.
4783   while (NumVecElts > 1) {
4784     // Determine the size of the remaining vector we need to reduce.
4785     unsigned Size = NumVecElts * ScalarSize;
4786     NumVecElts /= 2;
4787     // If we're reducing from 256/512 bits, use an extract_subvector.
4788     if (Size > 128) {
4789       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4790       MinMaxCost +=
4791           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4792       Ty = SubTy;
4793     } else if (Size == 128) {
4794       // Reducing from 128 bits is a permute of v2f64/v2i64.
4795       VectorType *ShufTy;
4796       if (ValTy->isFloatingPointTy())
4797         ShufTy =
4798             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
4799       else
4800         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
4801       MinMaxCost +=
4802           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4803     } else if (Size == 64) {
4804       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4805       FixedVectorType *ShufTy;
4806       if (ValTy->isFloatingPointTy())
4807         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
4808       else
4809         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
4810       MinMaxCost +=
4811           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4812     } else {
4813       // Reducing from smaller size is a shift by immediate.
4814       auto *ShiftTy = FixedVectorType::get(
4815           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
4816       MinMaxCost += getArithmeticInstrCost(
4817           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
4818           TargetTransformInfo::OK_AnyValue,
4819           TargetTransformInfo::OK_UniformConstantValue,
4820           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4821     }
4822 
4823     // Add the arithmetic op for this level.
4824     auto *SubCondTy =
4825         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
4826     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4827   }
4828 
4829   // Add the final extract element to the cost.
4830   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4831 }
4832 
4833 /// Calculate the cost of materializing a 64-bit value. This helper
4834 /// method might only calculate a fraction of a larger immediate. Therefore it
4835 /// is valid to return a cost of ZERO.
4836 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
4837   if (Val == 0)
4838     return TTI::TCC_Free;
4839 
4840   if (isInt<32>(Val))
4841     return TTI::TCC_Basic;
4842 
4843   return 2 * TTI::TCC_Basic;
4844 }
4845 
4846 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
4847                                           TTI::TargetCostKind CostKind) {
4848   assert(Ty->isIntegerTy());
4849 
4850   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4851   if (BitSize == 0)
4852     return ~0U;
4853 
4854   // Never hoist constants larger than 128bit, because this might lead to
4855   // incorrect code generation or assertions in codegen.
4856   // Fixme: Create a cost model for types larger than i128 once the codegen
4857   // issues have been fixed.
4858   if (BitSize > 128)
4859     return TTI::TCC_Free;
4860 
4861   if (Imm == 0)
4862     return TTI::TCC_Free;
4863 
4864   // Sign-extend all constants to a multiple of 64-bit.
4865   APInt ImmVal = Imm;
4866   if (BitSize % 64 != 0)
4867     ImmVal = Imm.sext(alignTo(BitSize, 64));
4868 
4869   // Split the constant into 64-bit chunks and calculate the cost for each
4870   // chunk.
4871   InstructionCost Cost = 0;
4872   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
4873     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
4874     int64_t Val = Tmp.getSExtValue();
4875     Cost += getIntImmCost(Val);
4876   }
4877   // We need at least one instruction to materialize the constant.
4878   return std::max<InstructionCost>(1, Cost);
4879 }
4880 
4881 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
4882                                               const APInt &Imm, Type *Ty,
4883                                               TTI::TargetCostKind CostKind,
4884                                               Instruction *Inst) {
4885   assert(Ty->isIntegerTy());
4886 
4887   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4888   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4889   // here, so that constant hoisting will ignore this constant.
4890   if (BitSize == 0)
4891     return TTI::TCC_Free;
4892 
4893   unsigned ImmIdx = ~0U;
4894   switch (Opcode) {
4895   default:
4896     return TTI::TCC_Free;
4897   case Instruction::GetElementPtr:
4898     // Always hoist the base address of a GetElementPtr. This prevents the
4899     // creation of new constants for every base constant that gets constant
4900     // folded with the offset.
4901     if (Idx == 0)
4902       return 2 * TTI::TCC_Basic;
4903     return TTI::TCC_Free;
4904   case Instruction::Store:
4905     ImmIdx = 0;
4906     break;
4907   case Instruction::ICmp:
4908     // This is an imperfect hack to prevent constant hoisting of
4909     // compares that might be trying to check if a 64-bit value fits in
4910     // 32-bits. The backend can optimize these cases using a right shift by 32.
4911     // Ideally we would check the compare predicate here. There also other
4912     // similar immediates the backend can use shifts for.
4913     if (Idx == 1 && Imm.getBitWidth() == 64) {
4914       uint64_t ImmVal = Imm.getZExtValue();
4915       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
4916         return TTI::TCC_Free;
4917     }
4918     ImmIdx = 1;
4919     break;
4920   case Instruction::And:
4921     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
4922     // by using a 32-bit operation with implicit zero extension. Detect such
4923     // immediates here as the normal path expects bit 31 to be sign extended.
4924     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
4925       return TTI::TCC_Free;
4926     ImmIdx = 1;
4927     break;
4928   case Instruction::Add:
4929   case Instruction::Sub:
4930     // For add/sub, we can use the opposite instruction for INT32_MIN.
4931     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
4932       return TTI::TCC_Free;
4933     ImmIdx = 1;
4934     break;
4935   case Instruction::UDiv:
4936   case Instruction::SDiv:
4937   case Instruction::URem:
4938   case Instruction::SRem:
4939     // Division by constant is typically expanded later into a different
4940     // instruction sequence. This completely changes the constants.
4941     // Report them as "free" to stop ConstantHoist from marking them as opaque.
4942     return TTI::TCC_Free;
4943   case Instruction::Mul:
4944   case Instruction::Or:
4945   case Instruction::Xor:
4946     ImmIdx = 1;
4947     break;
4948   // Always return TCC_Free for the shift value of a shift instruction.
4949   case Instruction::Shl:
4950   case Instruction::LShr:
4951   case Instruction::AShr:
4952     if (Idx == 1)
4953       return TTI::TCC_Free;
4954     break;
4955   case Instruction::Trunc:
4956   case Instruction::ZExt:
4957   case Instruction::SExt:
4958   case Instruction::IntToPtr:
4959   case Instruction::PtrToInt:
4960   case Instruction::BitCast:
4961   case Instruction::PHI:
4962   case Instruction::Call:
4963   case Instruction::Select:
4964   case Instruction::Ret:
4965   case Instruction::Load:
4966     break;
4967   }
4968 
4969   if (Idx == ImmIdx) {
4970     int NumConstants = divideCeil(BitSize, 64);
4971     InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4972     return (Cost <= NumConstants * TTI::TCC_Basic)
4973                ? static_cast<int>(TTI::TCC_Free)
4974                : Cost;
4975   }
4976 
4977   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4978 }
4979 
4980 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4981                                                 const APInt &Imm, Type *Ty,
4982                                                 TTI::TargetCostKind CostKind) {
4983   assert(Ty->isIntegerTy());
4984 
4985   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4986   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4987   // here, so that constant hoisting will ignore this constant.
4988   if (BitSize == 0)
4989     return TTI::TCC_Free;
4990 
4991   switch (IID) {
4992   default:
4993     return TTI::TCC_Free;
4994   case Intrinsic::sadd_with_overflow:
4995   case Intrinsic::uadd_with_overflow:
4996   case Intrinsic::ssub_with_overflow:
4997   case Intrinsic::usub_with_overflow:
4998   case Intrinsic::smul_with_overflow:
4999   case Intrinsic::umul_with_overflow:
5000     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
5001       return TTI::TCC_Free;
5002     break;
5003   case Intrinsic::experimental_stackmap:
5004     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
5005       return TTI::TCC_Free;
5006     break;
5007   case Intrinsic::experimental_patchpoint_void:
5008   case Intrinsic::experimental_patchpoint_i64:
5009     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
5010       return TTI::TCC_Free;
5011     break;
5012   }
5013   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
5014 }
5015 
5016 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
5017                                            TTI::TargetCostKind CostKind,
5018                                            const Instruction *I) {
5019   if (CostKind != TTI::TCK_RecipThroughput)
5020     return Opcode == Instruction::PHI ? 0 : 1;
5021   // Branches are assumed to be predicted.
5022   return 0;
5023 }
5024 
5025 int X86TTIImpl::getGatherOverhead() const {
5026   // Some CPUs have more overhead for gather. The specified overhead is relative
5027   // to the Load operation. "2" is the number provided by Intel architects. This
5028   // parameter is used for cost estimation of Gather Op and comparison with
5029   // other alternatives.
5030   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
5031   // enable gather with a -march.
5032   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
5033     return 2;
5034 
5035   return 1024;
5036 }
5037 
5038 int X86TTIImpl::getScatterOverhead() const {
5039   if (ST->hasAVX512())
5040     return 2;
5041 
5042   return 1024;
5043 }
5044 
5045 // Return an average cost of Gather / Scatter instruction, maybe improved later.
5046 // FIXME: Add TargetCostKind support.
5047 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
5048                                             const Value *Ptr, Align Alignment,
5049                                             unsigned AddressSpace) {
5050 
5051   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
5052   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
5053 
5054   // Try to reduce index size from 64 bit (default for GEP)
5055   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
5056   // operation will use 16 x 64 indices which do not fit in a zmm and needs
5057   // to split. Also check that the base pointer is the same for all lanes,
5058   // and that there's at most one variable index.
5059   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
5060     unsigned IndexSize = DL.getPointerSizeInBits();
5061     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
5062     if (IndexSize < 64 || !GEP)
5063       return IndexSize;
5064 
5065     unsigned NumOfVarIndices = 0;
5066     const Value *Ptrs = GEP->getPointerOperand();
5067     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
5068       return IndexSize;
5069     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
5070       if (isa<Constant>(GEP->getOperand(i)))
5071         continue;
5072       Type *IndxTy = GEP->getOperand(i)->getType();
5073       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
5074         IndxTy = IndexVTy->getElementType();
5075       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
5076           !isa<SExtInst>(GEP->getOperand(i))) ||
5077          ++NumOfVarIndices > 1)
5078         return IndexSize; // 64
5079     }
5080     return (unsigned)32;
5081   };
5082 
5083   // Trying to reduce IndexSize to 32 bits for vector 16.
5084   // By default the IndexSize is equal to pointer size.
5085   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
5086                            ? getIndexSizeInBits(Ptr, DL)
5087                            : DL.getPointerSizeInBits();
5088 
5089   auto *IndexVTy = FixedVectorType::get(
5090       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
5091   std::pair<InstructionCost, MVT> IdxsLT =
5092       TLI->getTypeLegalizationCost(DL, IndexVTy);
5093   std::pair<InstructionCost, MVT> SrcLT =
5094       TLI->getTypeLegalizationCost(DL, SrcVTy);
5095   InstructionCost::CostType SplitFactor =
5096       *std::max(IdxsLT.first, SrcLT.first).getValue();
5097   if (SplitFactor > 1) {
5098     // Handle splitting of vector of pointers
5099     auto *SplitSrcTy =
5100         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
5101     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
5102                                          AddressSpace);
5103   }
5104 
5105   // The gather / scatter cost is given by Intel architects. It is a rough
5106   // number since we are looking at one instruction in a time.
5107   const int GSOverhead = (Opcode == Instruction::Load)
5108                              ? getGatherOverhead()
5109                              : getScatterOverhead();
5110   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
5111                                            MaybeAlign(Alignment), AddressSpace,
5112                                            TTI::TCK_RecipThroughput);
5113 }
5114 
5115 /// Return the cost of full scalarization of gather / scatter operation.
5116 ///
5117 /// Opcode - Load or Store instruction.
5118 /// SrcVTy - The type of the data vector that should be gathered or scattered.
5119 /// VariableMask - The mask is non-constant at compile time.
5120 /// Alignment - Alignment for one element.
5121 /// AddressSpace - pointer[s] address space.
5122 ///
5123 /// FIXME: Add TargetCostKind support.
5124 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
5125                                             bool VariableMask, Align Alignment,
5126                                             unsigned AddressSpace) {
5127   Type *ScalarTy = SrcVTy->getScalarType();
5128   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
5129   APInt DemandedElts = APInt::getAllOnes(VF);
5130   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5131 
5132   InstructionCost MaskUnpackCost = 0;
5133   if (VariableMask) {
5134     auto *MaskTy =
5135         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
5136     MaskUnpackCost = getScalarizationOverhead(
5137         MaskTy, DemandedElts, /*Insert=*/false, /*Extract=*/true);
5138     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
5139         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
5140         CmpInst::BAD_ICMP_PREDICATE, CostKind);
5141     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
5142     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
5143   }
5144 
5145   InstructionCost AddressUnpackCost = getScalarizationOverhead(
5146       FixedVectorType::get(ScalarTy->getPointerTo(), VF), DemandedElts,
5147       /*Insert=*/false, /*Extract=*/true);
5148 
5149   // The cost of the scalar loads/stores.
5150   InstructionCost MemoryOpCost =
5151       VF * getMemoryOpCost(Opcode, ScalarTy, MaybeAlign(Alignment),
5152                            AddressSpace, CostKind);
5153 
5154   // The cost of forming the vector from loaded scalars/
5155   // scalarizing the vector to perform scalar stores.
5156   InstructionCost InsertExtractCost =
5157       getScalarizationOverhead(cast<FixedVectorType>(SrcVTy), DemandedElts,
5158                                /*Insert=*/Opcode == Instruction::Load,
5159                                /*Extract=*/Opcode == Instruction::Store);
5160 
5161   return AddressUnpackCost + MemoryOpCost + MaskUnpackCost + InsertExtractCost;
5162 }
5163 
5164 /// Calculate the cost of Gather / Scatter operation
5165 InstructionCost X86TTIImpl::getGatherScatterOpCost(
5166     unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
5167     Align Alignment, TTI::TargetCostKind CostKind,
5168     const Instruction *I = nullptr) {
5169   if (CostKind != TTI::TCK_RecipThroughput) {
5170     if ((Opcode == Instruction::Load &&
5171          isLegalMaskedGather(SrcVTy, Align(Alignment)) &&
5172          !forceScalarizeMaskedGather(cast<VectorType>(SrcVTy),
5173                                      Align(Alignment))) ||
5174         (Opcode == Instruction::Store &&
5175          isLegalMaskedScatter(SrcVTy, Align(Alignment)) &&
5176          !forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy),
5177                                       Align(Alignment))))
5178       return 1;
5179     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
5180                                          Alignment, CostKind, I);
5181   }
5182 
5183   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
5184   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
5185   if (!PtrTy && Ptr->getType()->isVectorTy())
5186     PtrTy = dyn_cast<PointerType>(
5187         cast<VectorType>(Ptr->getType())->getElementType());
5188   assert(PtrTy && "Unexpected type for Ptr argument");
5189   unsigned AddressSpace = PtrTy->getAddressSpace();
5190 
5191   if ((Opcode == Instruction::Load &&
5192        (!isLegalMaskedGather(SrcVTy, Align(Alignment)) ||
5193         forceScalarizeMaskedGather(cast<VectorType>(SrcVTy),
5194                                    Align(Alignment)))) ||
5195       (Opcode == Instruction::Store &&
5196        (!isLegalMaskedScatter(SrcVTy, Align(Alignment)) ||
5197         forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy),
5198                                     Align(Alignment)))))
5199     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
5200                            AddressSpace);
5201 
5202   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
5203 }
5204 
5205 bool X86TTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
5206                                const TargetTransformInfo::LSRCost &C2) {
5207     // X86 specific here are "instruction number 1st priority".
5208     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
5209                     C1.NumIVMuls, C1.NumBaseAdds,
5210                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
5211            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
5212                     C2.NumIVMuls, C2.NumBaseAdds,
5213                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
5214 }
5215 
5216 bool X86TTIImpl::canMacroFuseCmp() {
5217   return ST->hasMacroFusion() || ST->hasBranchFusion();
5218 }
5219 
5220 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
5221   if (!ST->hasAVX())
5222     return false;
5223 
5224   // The backend can't handle a single element vector.
5225   if (isa<VectorType>(DataTy) &&
5226       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5227     return false;
5228   Type *ScalarTy = DataTy->getScalarType();
5229 
5230   if (ScalarTy->isPointerTy())
5231     return true;
5232 
5233   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5234     return true;
5235 
5236   if (ScalarTy->isHalfTy() && ST->hasBWI())
5237     return true;
5238 
5239   if (!ScalarTy->isIntegerTy())
5240     return false;
5241 
5242   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5243   return IntWidth == 32 || IntWidth == 64 ||
5244          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
5245 }
5246 
5247 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
5248   return isLegalMaskedLoad(DataType, Alignment);
5249 }
5250 
5251 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
5252   unsigned DataSize = DL.getTypeStoreSize(DataType);
5253   // The only supported nontemporal loads are for aligned vectors of 16 or 32
5254   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
5255   // (the equivalent stores only require AVX).
5256   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
5257     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
5258 
5259   return false;
5260 }
5261 
5262 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
5263   unsigned DataSize = DL.getTypeStoreSize(DataType);
5264 
5265   // SSE4A supports nontemporal stores of float and double at arbitrary
5266   // alignment.
5267   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
5268     return true;
5269 
5270   // Besides the SSE4A subtarget exception above, only aligned stores are
5271   // available nontemporaly on any other subtarget.  And only stores with a size
5272   // of 4..32 bytes (powers of 2, only) are permitted.
5273   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
5274       !isPowerOf2_32(DataSize))
5275     return false;
5276 
5277   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
5278   // loads require AVX2).
5279   if (DataSize == 32)
5280     return ST->hasAVX();
5281   if (DataSize == 16)
5282     return ST->hasSSE1();
5283   return true;
5284 }
5285 
5286 bool X86TTIImpl::isLegalBroadcastLoad(Type *ElementTy,
5287                                       ElementCount NumElements) const {
5288   // movddup
5289   return ST->hasSSE3() && !NumElements.isScalable() &&
5290          NumElements.getFixedValue() == 2 &&
5291          ElementTy == Type::getDoubleTy(ElementTy->getContext());
5292 }
5293 
5294 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
5295   if (!isa<VectorType>(DataTy))
5296     return false;
5297 
5298   if (!ST->hasAVX512())
5299     return false;
5300 
5301   // The backend can't handle a single element vector.
5302   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5303     return false;
5304 
5305   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
5306 
5307   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5308     return true;
5309 
5310   if (!ScalarTy->isIntegerTy())
5311     return false;
5312 
5313   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5314   return IntWidth == 32 || IntWidth == 64 ||
5315          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
5316 }
5317 
5318 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
5319   return isLegalMaskedExpandLoad(DataTy);
5320 }
5321 
5322 bool X86TTIImpl::supportsGather() const {
5323   // Some CPUs have better gather performance than others.
5324   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
5325   // enable gather with a -march.
5326   return ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2());
5327 }
5328 
5329 bool X86TTIImpl::forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) {
5330   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
5331   // Vector-4 of gather/scatter instruction does not exist on KNL. We can extend
5332   // it to 8 elements, but zeroing upper bits of the mask vector will add more
5333   // instructions. Right now we give the scalar cost of vector-4 for KNL. TODO:
5334   // Check, maybe the gather/scatter instruction is better in the VariableMask
5335   // case.
5336   unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements();
5337   return NumElts == 1 ||
5338          (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())));
5339 }
5340 
5341 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
5342   if (!supportsGather())
5343     return false;
5344   Type *ScalarTy = DataTy->getScalarType();
5345   if (ScalarTy->isPointerTy())
5346     return true;
5347 
5348   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5349     return true;
5350 
5351   if (!ScalarTy->isIntegerTy())
5352     return false;
5353 
5354   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5355   return IntWidth == 32 || IntWidth == 64;
5356 }
5357 
5358 bool X86TTIImpl::isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
5359                                  unsigned Opcode1,
5360                                  const SmallBitVector &OpcodeMask) const {
5361   // ADDSUBPS  4xf32 SSE3
5362   // VADDSUBPS 4xf32 AVX
5363   // VADDSUBPS 8xf32 AVX2
5364   // ADDSUBPD  2xf64 SSE3
5365   // VADDSUBPD 2xf64 AVX
5366   // VADDSUBPD 4xf64 AVX2
5367 
5368   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
5369   assert(OpcodeMask.size() == NumElements && "Mask and VecTy are incompatible");
5370   if (!isPowerOf2_32(NumElements))
5371     return false;
5372   // Check the opcode pattern. We apply the mask on the opcode arguments and
5373   // then check if it is what we expect.
5374   for (int Lane : seq<int>(0, NumElements)) {
5375     unsigned Opc = OpcodeMask.test(Lane) ? Opcode1 : Opcode0;
5376     // We expect FSub for even lanes and FAdd for odd lanes.
5377     if (Lane % 2 == 0 && Opc != Instruction::FSub)
5378       return false;
5379     if (Lane % 2 == 1 && Opc != Instruction::FAdd)
5380       return false;
5381   }
5382   // Now check that the pattern is supported by the target ISA.
5383   Type *ElemTy = cast<VectorType>(VecTy)->getElementType();
5384   if (ElemTy->isFloatTy())
5385     return ST->hasSSE3() && NumElements % 4 == 0;
5386   if (ElemTy->isDoubleTy())
5387     return ST->hasSSE3() && NumElements % 2 == 0;
5388   return false;
5389 }
5390 
5391 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
5392   // AVX2 doesn't support scatter
5393   if (!ST->hasAVX512())
5394     return false;
5395   return isLegalMaskedGather(DataType, Alignment);
5396 }
5397 
5398 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
5399   EVT VT = TLI->getValueType(DL, DataType);
5400   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
5401 }
5402 
5403 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
5404   return false;
5405 }
5406 
5407 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
5408                                      const Function *Callee) const {
5409   const TargetMachine &TM = getTLI()->getTargetMachine();
5410 
5411   // Work this as a subsetting of subtarget features.
5412   const FeatureBitset &CallerBits =
5413       TM.getSubtargetImpl(*Caller)->getFeatureBits();
5414   const FeatureBitset &CalleeBits =
5415       TM.getSubtargetImpl(*Callee)->getFeatureBits();
5416 
5417   // Check whether features are the same (apart from the ignore list).
5418   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
5419   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
5420   if (RealCallerBits == RealCalleeBits)
5421     return true;
5422 
5423   // If the features are a subset, we need to additionally check for calls
5424   // that may become ABI-incompatible as a result of inlining.
5425   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
5426     return false;
5427 
5428   for (const Instruction &I : instructions(Callee)) {
5429     if (const auto *CB = dyn_cast<CallBase>(&I)) {
5430       SmallVector<Type *, 8> Types;
5431       for (Value *Arg : CB->args())
5432         Types.push_back(Arg->getType());
5433       if (!CB->getType()->isVoidTy())
5434         Types.push_back(CB->getType());
5435 
5436       // Simple types are always ABI compatible.
5437       auto IsSimpleTy = [](Type *Ty) {
5438         return !Ty->isVectorTy() && !Ty->isAggregateType();
5439       };
5440       if (all_of(Types, IsSimpleTy))
5441         continue;
5442 
5443       if (Function *NestedCallee = CB->getCalledFunction()) {
5444         // Assume that intrinsics are always ABI compatible.
5445         if (NestedCallee->isIntrinsic())
5446           continue;
5447 
5448         // Do a precise compatibility check.
5449         if (!areTypesABICompatible(Caller, NestedCallee, Types))
5450           return false;
5451       } else {
5452         // We don't know the target features of the callee,
5453         // assume it is incompatible.
5454         return false;
5455       }
5456     }
5457   }
5458   return true;
5459 }
5460 
5461 bool X86TTIImpl::areTypesABICompatible(const Function *Caller,
5462                                        const Function *Callee,
5463                                        const ArrayRef<Type *> &Types) const {
5464   if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
5465     return false;
5466 
5467   // If we get here, we know the target features match. If one function
5468   // considers 512-bit vectors legal and the other does not, consider them
5469   // incompatible.
5470   const TargetMachine &TM = getTLI()->getTargetMachine();
5471 
5472   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
5473       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
5474     return true;
5475 
5476   // Consider the arguments compatible if they aren't vectors or aggregates.
5477   // FIXME: Look at the size of vectors.
5478   // FIXME: Look at the element types of aggregates to see if there are vectors.
5479   return llvm::none_of(Types,
5480       [](Type *T) { return T->isVectorTy() || T->isAggregateType(); });
5481 }
5482 
5483 X86TTIImpl::TTI::MemCmpExpansionOptions
5484 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
5485   TTI::MemCmpExpansionOptions Options;
5486   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
5487   Options.NumLoadsPerBlock = 2;
5488   // All GPR and vector loads can be unaligned.
5489   Options.AllowOverlappingLoads = true;
5490   if (IsZeroCmp) {
5491     // Only enable vector loads for equality comparison. Right now the vector
5492     // version is not as fast for three way compare (see #33329).
5493     const unsigned PreferredWidth = ST->getPreferVectorWidth();
5494     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
5495     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
5496     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
5497   }
5498   if (ST->is64Bit()) {
5499     Options.LoadSizes.push_back(8);
5500   }
5501   Options.LoadSizes.push_back(4);
5502   Options.LoadSizes.push_back(2);
5503   Options.LoadSizes.push_back(1);
5504   return Options;
5505 }
5506 
5507 bool X86TTIImpl::prefersVectorizedAddressing() const {
5508   return supportsGather();
5509 }
5510 
5511 bool X86TTIImpl::supportsEfficientVectorElementLoadStore() const {
5512   return false;
5513 }
5514 
5515 bool X86TTIImpl::enableInterleavedAccessVectorization() {
5516   // TODO: We expect this to be beneficial regardless of arch,
5517   // but there are currently some unexplained performance artifacts on Atom.
5518   // As a temporary solution, disable on Atom.
5519   return !(ST->isAtom());
5520 }
5521 
5522 // Get estimation for interleaved load/store operations and strided load.
5523 // \p Indices contains indices for strided load.
5524 // \p Factor - the factor of interleaving.
5525 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
5526 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
5527     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
5528     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
5529     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
5530   // VecTy for interleave memop is <VF*Factor x Elt>.
5531   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5532   // VecTy = <12 x i32>.
5533 
5534   // Calculate the number of memory operations (NumOfMemOps), required
5535   // for load/store the VecTy.
5536   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5537   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
5538   unsigned LegalVTSize = LegalVT.getStoreSize();
5539   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
5540 
5541   // Get the cost of one memory operation.
5542   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
5543                                              LegalVT.getVectorNumElements());
5544   InstructionCost MemOpCost;
5545   bool UseMaskedMemOp = UseMaskForCond || UseMaskForGaps;
5546   if (UseMaskedMemOp)
5547     MemOpCost = getMaskedMemoryOpCost(Opcode, SingleMemOpTy, Alignment,
5548                                       AddressSpace, CostKind);
5549   else
5550     MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy, MaybeAlign(Alignment),
5551                                 AddressSpace, CostKind);
5552 
5553   unsigned VF = VecTy->getNumElements() / Factor;
5554   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
5555 
5556   InstructionCost MaskCost;
5557   if (UseMaskedMemOp) {
5558     APInt DemandedLoadStoreElts = APInt::getZero(VecTy->getNumElements());
5559     for (unsigned Index : Indices) {
5560       assert(Index < Factor && "Invalid index for interleaved memory op");
5561       for (unsigned Elm = 0; Elm < VF; Elm++)
5562         DemandedLoadStoreElts.setBit(Index + Elm * Factor);
5563     }
5564 
5565     Type *I1Type = Type::getInt1Ty(VecTy->getContext());
5566 
5567     MaskCost = getReplicationShuffleCost(
5568         I1Type, Factor, VF,
5569         UseMaskForGaps ? DemandedLoadStoreElts
5570                        : APInt::getAllOnes(VecTy->getNumElements()),
5571         CostKind);
5572 
5573     // The Gaps mask is invariant and created outside the loop, therefore the
5574     // cost of creating it is not accounted for here. However if we have both
5575     // a MaskForGaps and some other mask that guards the execution of the
5576     // memory access, we need to account for the cost of And-ing the two masks
5577     // inside the loop.
5578     if (UseMaskForGaps) {
5579       auto *MaskVT = FixedVectorType::get(I1Type, VecTy->getNumElements());
5580       MaskCost += getArithmeticInstrCost(BinaryOperator::And, MaskVT, CostKind);
5581     }
5582   }
5583 
5584   if (Opcode == Instruction::Load) {
5585     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
5586     // contain the cost of the optimized shuffle sequence that the
5587     // X86InterleavedAccess pass will generate.
5588     // The cost of loads and stores are computed separately from the table.
5589 
5590     // X86InterleavedAccess support only the following interleaved-access group.
5591     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
5592         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
5593         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
5594         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
5595     };
5596 
5597     if (const auto *Entry =
5598             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
5599       return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
5600     //If an entry does not exist, fallback to the default implementation.
5601 
5602     // Kind of shuffle depends on number of loaded values.
5603     // If we load the entire data in one register, we can use a 1-src shuffle.
5604     // Otherwise, we'll merge 2 sources in each operation.
5605     TTI::ShuffleKind ShuffleKind =
5606         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
5607 
5608     InstructionCost ShuffleCost =
5609         getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
5610 
5611     unsigned NumOfLoadsInInterleaveGrp =
5612         Indices.size() ? Indices.size() : Factor;
5613     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
5614                                           VecTy->getNumElements() / Factor);
5615     InstructionCost NumOfResults =
5616         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
5617         NumOfLoadsInInterleaveGrp;
5618 
5619     // About a half of the loads may be folded in shuffles when we have only
5620     // one result. If we have more than one result, or the loads are masked,
5621     // we do not fold loads at all.
5622     unsigned NumOfUnfoldedLoads =
5623         UseMaskedMemOp || NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
5624 
5625     // Get a number of shuffle operations per result.
5626     unsigned NumOfShufflesPerResult =
5627         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
5628 
5629     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5630     // When we have more than one destination, we need additional instructions
5631     // to keep sources.
5632     InstructionCost NumOfMoves = 0;
5633     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
5634       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
5635 
5636     InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
5637                            MaskCost + NumOfUnfoldedLoads * MemOpCost +
5638                            NumOfMoves;
5639 
5640     return Cost;
5641   }
5642 
5643   // Store.
5644   assert(Opcode == Instruction::Store &&
5645          "Expected Store Instruction at this  point");
5646   // X86InterleavedAccess support only the following interleaved-access group.
5647   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
5648       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
5649       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
5650       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
5651 
5652       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
5653       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
5654       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
5655       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
5656   };
5657 
5658   if (const auto *Entry =
5659           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
5660     return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
5661   //If an entry does not exist, fallback to the default implementation.
5662 
5663   // There is no strided stores meanwhile. And store can't be folded in
5664   // shuffle.
5665   unsigned NumOfSources = Factor; // The number of values to be merged.
5666   InstructionCost ShuffleCost =
5667       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
5668   unsigned NumOfShufflesPerStore = NumOfSources - 1;
5669 
5670   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5671   // We need additional instructions to keep sources.
5672   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
5673   InstructionCost Cost =
5674       MaskCost +
5675       NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
5676       NumOfMoves;
5677   return Cost;
5678 }
5679 
5680 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
5681     unsigned Opcode, Type *BaseTy, unsigned Factor, ArrayRef<unsigned> Indices,
5682     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
5683     bool UseMaskForCond, bool UseMaskForGaps) {
5684   auto *VecTy = cast<FixedVectorType>(BaseTy);
5685 
5686   auto isSupportedOnAVX512 = [&](Type *VecTy, bool HasBW) {
5687     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
5688     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
5689         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
5690       return true;
5691     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) || EltTy->isHalfTy())
5692       return HasBW;
5693     return false;
5694   };
5695   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
5696     return getInterleavedMemoryOpCostAVX512(
5697         Opcode, VecTy, Factor, Indices, Alignment,
5698         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5699 
5700   if (UseMaskForCond || UseMaskForGaps)
5701     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5702                                              Alignment, AddressSpace, CostKind,
5703                                              UseMaskForCond, UseMaskForGaps);
5704 
5705   // Get estimation for interleaved load/store operations for SSE-AVX2.
5706   // As opposed to AVX-512, SSE-AVX2 do not have generic shuffles that allow
5707   // computing the cost using a generic formula as a function of generic
5708   // shuffles. We therefore use a lookup table instead, filled according to
5709   // the instruction sequences that codegen currently generates.
5710 
5711   // VecTy for interleave memop is <VF*Factor x Elt>.
5712   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5713   // VecTy = <12 x i32>.
5714   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5715 
5716   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
5717   // the VF=2, while v2i128 is an unsupported MVT vector type
5718   // (see MachineValueType.h::getVectorVT()).
5719   if (!LegalVT.isVector())
5720     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5721                                              Alignment, AddressSpace, CostKind);
5722 
5723   unsigned VF = VecTy->getNumElements() / Factor;
5724   Type *ScalarTy = VecTy->getElementType();
5725   // Deduplicate entries, model floats/pointers as appropriately-sized integers.
5726   if (!ScalarTy->isIntegerTy())
5727     ScalarTy =
5728         Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
5729 
5730   // Get the cost of all the memory operations.
5731   // FIXME: discount dead loads.
5732   InstructionCost MemOpCosts = getMemoryOpCost(
5733       Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
5734 
5735   auto *VT = FixedVectorType::get(ScalarTy, VF);
5736   EVT ETy = TLI->getValueType(DL, VT);
5737   if (!ETy.isSimple())
5738     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5739                                              Alignment, AddressSpace, CostKind);
5740 
5741   // TODO: Complete for other data-types and strides.
5742   // Each combination of Stride, element bit width and VF results in a different
5743   // sequence; The cost tables are therefore accessed with:
5744   // Factor (stride) and VectorType=VFxiN.
5745   // The Cost accounts only for the shuffle sequence;
5746   // The cost of the loads/stores is accounted for separately.
5747   //
5748   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
5749       {2, MVT::v2i8, 2},  // (load 4i8 and) deinterleave into 2 x 2i8
5750       {2, MVT::v4i8, 2},  // (load 8i8 and) deinterleave into 2 x 4i8
5751       {2, MVT::v8i8, 2},  // (load 16i8 and) deinterleave into 2 x 8i8
5752       {2, MVT::v16i8, 4}, // (load 32i8 and) deinterleave into 2 x 16i8
5753       {2, MVT::v32i8, 6}, // (load 64i8 and) deinterleave into 2 x 32i8
5754 
5755       {2, MVT::v8i16, 6},   // (load 16i16 and) deinterleave into 2 x 8i16
5756       {2, MVT::v16i16, 9},  // (load 32i16 and) deinterleave into 2 x 16i16
5757       {2, MVT::v32i16, 18}, // (load 64i16 and) deinterleave into 2 x 32i16
5758 
5759       {2, MVT::v8i32, 4},   // (load 16i32 and) deinterleave into 2 x 8i32
5760       {2, MVT::v16i32, 8},  // (load 32i32 and) deinterleave into 2 x 16i32
5761       {2, MVT::v32i32, 16}, // (load 64i32 and) deinterleave into 2 x 32i32
5762 
5763       {2, MVT::v4i64, 4},   // (load 8i64 and) deinterleave into 2 x 4i64
5764       {2, MVT::v8i64, 8},   // (load 16i64 and) deinterleave into 2 x 8i64
5765       {2, MVT::v16i64, 16}, // (load 32i64 and) deinterleave into 2 x 16i64
5766       {2, MVT::v32i64, 32}, // (load 64i64 and) deinterleave into 2 x 32i64
5767 
5768       {3, MVT::v2i8, 3},   // (load 6i8 and) deinterleave into 3 x 2i8
5769       {3, MVT::v4i8, 3},   // (load 12i8 and) deinterleave into 3 x 4i8
5770       {3, MVT::v8i8, 6},   // (load 24i8 and) deinterleave into 3 x 8i8
5771       {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
5772       {3, MVT::v32i8, 14}, // (load 96i8 and) deinterleave into 3 x 32i8
5773 
5774       {3, MVT::v2i16, 5},   // (load 6i16 and) deinterleave into 3 x 2i16
5775       {3, MVT::v4i16, 7},   // (load 12i16 and) deinterleave into 3 x 4i16
5776       {3, MVT::v8i16, 9},   // (load 24i16 and) deinterleave into 3 x 8i16
5777       {3, MVT::v16i16, 28}, // (load 48i16 and) deinterleave into 3 x 16i16
5778       {3, MVT::v32i16, 56}, // (load 96i16 and) deinterleave into 3 x 32i16
5779 
5780       {3, MVT::v2i32, 3},   // (load 6i32 and) deinterleave into 3 x 2i32
5781       {3, MVT::v4i32, 3},   // (load 12i32 and) deinterleave into 3 x 4i32
5782       {3, MVT::v8i32, 7},   // (load 24i32 and) deinterleave into 3 x 8i32
5783       {3, MVT::v16i32, 14}, // (load 48i32 and) deinterleave into 3 x 16i32
5784       {3, MVT::v32i32, 32}, // (load 96i32 and) deinterleave into 3 x 32i32
5785 
5786       {3, MVT::v2i64, 1},   // (load 6i64 and) deinterleave into 3 x 2i64
5787       {3, MVT::v4i64, 5},   // (load 12i64 and) deinterleave into 3 x 4i64
5788       {3, MVT::v8i64, 10},  // (load 24i64 and) deinterleave into 3 x 8i64
5789       {3, MVT::v16i64, 20}, // (load 48i64 and) deinterleave into 3 x 16i64
5790 
5791       {4, MVT::v2i8, 4},   // (load 8i8 and) deinterleave into 4 x 2i8
5792       {4, MVT::v4i8, 4},   // (load 16i8 and) deinterleave into 4 x 4i8
5793       {4, MVT::v8i8, 12},  // (load 32i8 and) deinterleave into 4 x 8i8
5794       {4, MVT::v16i8, 24}, // (load 64i8 and) deinterleave into 4 x 16i8
5795       {4, MVT::v32i8, 56}, // (load 128i8 and) deinterleave into 4 x 32i8
5796 
5797       {4, MVT::v2i16, 6},    // (load 8i16 and) deinterleave into 4 x 2i16
5798       {4, MVT::v4i16, 17},   // (load 16i16 and) deinterleave into 4 x 4i16
5799       {4, MVT::v8i16, 33},   // (load 32i16 and) deinterleave into 4 x 8i16
5800       {4, MVT::v16i16, 75},  // (load 64i16 and) deinterleave into 4 x 16i16
5801       {4, MVT::v32i16, 150}, // (load 128i16 and) deinterleave into 4 x 32i16
5802 
5803       {4, MVT::v2i32, 4},   // (load 8i32 and) deinterleave into 4 x 2i32
5804       {4, MVT::v4i32, 8},   // (load 16i32 and) deinterleave into 4 x 4i32
5805       {4, MVT::v8i32, 16},  // (load 32i32 and) deinterleave into 4 x 8i32
5806       {4, MVT::v16i32, 32}, // (load 64i32 and) deinterleave into 4 x 16i32
5807       {4, MVT::v32i32, 68}, // (load 128i32 and) deinterleave into 4 x 32i32
5808 
5809       {4, MVT::v2i64, 6},  // (load 8i64 and) deinterleave into 4 x 2i64
5810       {4, MVT::v4i64, 8},  // (load 16i64 and) deinterleave into 4 x 4i64
5811       {4, MVT::v8i64, 20}, // (load 32i64 and) deinterleave into 4 x 8i64
5812       {4, MVT::v16i64, 40}, // (load 64i64 and) deinterleave into 4 x 16i64
5813 
5814       {6, MVT::v2i8, 6},   // (load 12i8 and) deinterleave into 6 x 2i8
5815       {6, MVT::v4i8, 14},  // (load 24i8 and) deinterleave into 6 x 4i8
5816       {6, MVT::v8i8, 18},  // (load 48i8 and) deinterleave into 6 x 8i8
5817       {6, MVT::v16i8, 43}, // (load 96i8 and) deinterleave into 6 x 16i8
5818       {6, MVT::v32i8, 82}, // (load 192i8 and) deinterleave into 6 x 32i8
5819 
5820       {6, MVT::v2i16, 13},   // (load 12i16 and) deinterleave into 6 x 2i16
5821       {6, MVT::v4i16, 9},    // (load 24i16 and) deinterleave into 6 x 4i16
5822       {6, MVT::v8i16, 39},   // (load 48i16 and) deinterleave into 6 x 8i16
5823       {6, MVT::v16i16, 106}, // (load 96i16 and) deinterleave into 6 x 16i16
5824       {6, MVT::v32i16, 212}, // (load 192i16 and) deinterleave into 6 x 32i16
5825 
5826       {6, MVT::v2i32, 6},   // (load 12i32 and) deinterleave into 6 x 2i32
5827       {6, MVT::v4i32, 15},  // (load 24i32 and) deinterleave into 6 x 4i32
5828       {6, MVT::v8i32, 31},  // (load 48i32 and) deinterleave into 6 x 8i32
5829       {6, MVT::v16i32, 64}, // (load 96i32 and) deinterleave into 6 x 16i32
5830 
5831       {6, MVT::v2i64, 6},  // (load 12i64 and) deinterleave into 6 x 2i64
5832       {6, MVT::v4i64, 18}, // (load 24i64 and) deinterleave into 6 x 4i64
5833       {6, MVT::v8i64, 36}, // (load 48i64 and) deinterleave into 6 x 8i64
5834 
5835       {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
5836   };
5837 
5838   static const CostTblEntry SSSE3InterleavedLoadTbl[] = {
5839       {2, MVT::v4i16, 2},   // (load 8i16 and) deinterleave into 2 x 4i16
5840   };
5841 
5842   static const CostTblEntry SSE2InterleavedLoadTbl[] = {
5843       {2, MVT::v2i16, 2},   // (load 4i16 and) deinterleave into 2 x 2i16
5844       {2, MVT::v4i16, 7},   // (load 8i16 and) deinterleave into 2 x 4i16
5845 
5846       {2, MVT::v2i32, 2},   // (load 4i32 and) deinterleave into 2 x 2i32
5847       {2, MVT::v4i32, 2},   // (load 8i32 and) deinterleave into 2 x 4i32
5848 
5849       {2, MVT::v2i64, 2},   // (load 4i64 and) deinterleave into 2 x 2i64
5850   };
5851 
5852   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
5853       {2, MVT::v16i8, 3}, // interleave 2 x 16i8 into 32i8 (and store)
5854       {2, MVT::v32i8, 4}, // interleave 2 x 32i8 into 64i8 (and store)
5855 
5856       {2, MVT::v8i16, 3},  // interleave 2 x 8i16 into 16i16 (and store)
5857       {2, MVT::v16i16, 4}, // interleave 2 x 16i16 into 32i16 (and store)
5858       {2, MVT::v32i16, 8}, // interleave 2 x 32i16 into 64i16 (and store)
5859 
5860       {2, MVT::v4i32, 2},   // interleave 2 x 4i32 into 8i32 (and store)
5861       {2, MVT::v8i32, 4},   // interleave 2 x 8i32 into 16i32 (and store)
5862       {2, MVT::v16i32, 8},  // interleave 2 x 16i32 into 32i32 (and store)
5863       {2, MVT::v32i32, 16}, // interleave 2 x 32i32 into 64i32 (and store)
5864 
5865       {2, MVT::v2i64, 2},   // interleave 2 x 2i64 into 4i64 (and store)
5866       {2, MVT::v4i64, 4},   // interleave 2 x 4i64 into 8i64 (and store)
5867       {2, MVT::v8i64, 8},   // interleave 2 x 8i64 into 16i64 (and store)
5868       {2, MVT::v16i64, 16}, // interleave 2 x 16i64 into 32i64 (and store)
5869       {2, MVT::v32i64, 32}, // interleave 2 x 32i64 into 64i64 (and store)
5870 
5871       {3, MVT::v2i8, 4},   // interleave 3 x 2i8 into 6i8 (and store)
5872       {3, MVT::v4i8, 4},   // interleave 3 x 4i8 into 12i8 (and store)
5873       {3, MVT::v8i8, 6},   // interleave 3 x 8i8 into 24i8 (and store)
5874       {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
5875       {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
5876 
5877       {3, MVT::v2i16, 4},   // interleave 3 x 2i16 into 6i16 (and store)
5878       {3, MVT::v4i16, 6},   // interleave 3 x 4i16 into 12i16 (and store)
5879       {3, MVT::v8i16, 12},  // interleave 3 x 8i16 into 24i16 (and store)
5880       {3, MVT::v16i16, 27}, // interleave 3 x 16i16 into 48i16 (and store)
5881       {3, MVT::v32i16, 54}, // interleave 3 x 32i16 into 96i16 (and store)
5882 
5883       {3, MVT::v2i32, 4},   // interleave 3 x 2i32 into 6i32 (and store)
5884       {3, MVT::v4i32, 5},   // interleave 3 x 4i32 into 12i32 (and store)
5885       {3, MVT::v8i32, 11},  // interleave 3 x 8i32 into 24i32 (and store)
5886       {3, MVT::v16i32, 22}, // interleave 3 x 16i32 into 48i32 (and store)
5887       {3, MVT::v32i32, 48}, // interleave 3 x 32i32 into 96i32 (and store)
5888 
5889       {3, MVT::v2i64, 4},   // interleave 3 x 2i64 into 6i64 (and store)
5890       {3, MVT::v4i64, 6},   // interleave 3 x 4i64 into 12i64 (and store)
5891       {3, MVT::v8i64, 12},  // interleave 3 x 8i64 into 24i64 (and store)
5892       {3, MVT::v16i64, 24}, // interleave 3 x 16i64 into 48i64 (and store)
5893 
5894       {4, MVT::v2i8, 4},   // interleave 4 x 2i8 into 8i8 (and store)
5895       {4, MVT::v4i8, 4},   // interleave 4 x 4i8 into 16i8 (and store)
5896       {4, MVT::v8i8, 4},   // interleave 4 x 8i8 into 32i8 (and store)
5897       {4, MVT::v16i8, 8},  // interleave 4 x 16i8 into 64i8 (and store)
5898       {4, MVT::v32i8, 12}, // interleave 4 x 32i8 into 128i8 (and store)
5899 
5900       {4, MVT::v2i16, 2},   // interleave 4 x 2i16 into 8i16 (and store)
5901       {4, MVT::v4i16, 6},   // interleave 4 x 4i16 into 16i16 (and store)
5902       {4, MVT::v8i16, 10},  // interleave 4 x 8i16 into 32i16 (and store)
5903       {4, MVT::v16i16, 32}, // interleave 4 x 16i16 into 64i16 (and store)
5904       {4, MVT::v32i16, 64}, // interleave 4 x 32i16 into 128i16 (and store)
5905 
5906       {4, MVT::v2i32, 5},   // interleave 4 x 2i32 into 8i32 (and store)
5907       {4, MVT::v4i32, 6},   // interleave 4 x 4i32 into 16i32 (and store)
5908       {4, MVT::v8i32, 16},  // interleave 4 x 8i32 into 32i32 (and store)
5909       {4, MVT::v16i32, 32}, // interleave 4 x 16i32 into 64i32 (and store)
5910       {4, MVT::v32i32, 64}, // interleave 4 x 32i32 into 128i32 (and store)
5911 
5912       {4, MVT::v2i64, 6},  // interleave 4 x 2i64 into 8i64 (and store)
5913       {4, MVT::v4i64, 8},  // interleave 4 x 4i64 into 16i64 (and store)
5914       {4, MVT::v8i64, 20}, // interleave 4 x 8i64 into 32i64 (and store)
5915       {4, MVT::v16i64, 40}, // interleave 4 x 16i64 into 64i64 (and store)
5916 
5917       {6, MVT::v2i8, 7},   // interleave 6 x 2i8 into 12i8 (and store)
5918       {6, MVT::v4i8, 9},   // interleave 6 x 4i8 into 24i8 (and store)
5919       {6, MVT::v8i8, 16},  // interleave 6 x 8i8 into 48i8 (and store)
5920       {6, MVT::v16i8, 27}, // interleave 6 x 16i8 into 96i8 (and store)
5921       {6, MVT::v32i8, 90}, // interleave 6 x 32i8 into 192i8 (and store)
5922 
5923       {6, MVT::v2i16, 10},  // interleave 6 x 2i16 into 12i16 (and store)
5924       {6, MVT::v4i16, 15},  // interleave 6 x 4i16 into 24i16 (and store)
5925       {6, MVT::v8i16, 21},  // interleave 6 x 8i16 into 48i16 (and store)
5926       {6, MVT::v16i16, 58}, // interleave 6 x 16i16 into 96i16 (and store)
5927       {6, MVT::v32i16, 90}, // interleave 6 x 32i16 into 192i16 (and store)
5928 
5929       {6, MVT::v2i32, 9},   // interleave 6 x 2i32 into 12i32 (and store)
5930       {6, MVT::v4i32, 12},  // interleave 6 x 4i32 into 24i32 (and store)
5931       {6, MVT::v8i32, 33},  // interleave 6 x 8i32 into 48i32 (and store)
5932       {6, MVT::v16i32, 66}, // interleave 6 x 16i32 into 96i32 (and store)
5933 
5934       {6, MVT::v2i64, 8},  // interleave 6 x 2i64 into 12i64 (and store)
5935       {6, MVT::v4i64, 15}, // interleave 6 x 4i64 into 24i64 (and store)
5936       {6, MVT::v8i64, 30}, // interleave 6 x 8i64 into 48i64 (and store)
5937   };
5938 
5939   static const CostTblEntry SSE2InterleavedStoreTbl[] = {
5940       {2, MVT::v2i8, 1},   // interleave 2 x 2i8 into 4i8 (and store)
5941       {2, MVT::v4i8, 1},   // interleave 2 x 4i8 into 8i8 (and store)
5942       {2, MVT::v8i8, 1},   // interleave 2 x 8i8 into 16i8 (and store)
5943 
5944       {2, MVT::v2i16, 1},  // interleave 2 x 2i16 into 4i16 (and store)
5945       {2, MVT::v4i16, 1},  // interleave 2 x 4i16 into 8i16 (and store)
5946 
5947       {2, MVT::v2i32, 1},  // interleave 2 x 2i32 into 4i32 (and store)
5948   };
5949 
5950   if (Opcode == Instruction::Load) {
5951     auto GetDiscountedCost = [Factor, NumMembers = Indices.size(),
5952                               MemOpCosts](const CostTblEntry *Entry) {
5953       // NOTE: this is just an approximation!
5954       //       It can over/under -estimate the cost!
5955       return MemOpCosts + divideCeil(NumMembers * Entry->Cost, Factor);
5956     };
5957 
5958     if (ST->hasAVX2())
5959       if (const auto *Entry = CostTableLookup(AVX2InterleavedLoadTbl, Factor,
5960                                               ETy.getSimpleVT()))
5961         return GetDiscountedCost(Entry);
5962 
5963     if (ST->hasSSSE3())
5964       if (const auto *Entry = CostTableLookup(SSSE3InterleavedLoadTbl, Factor,
5965                                               ETy.getSimpleVT()))
5966         return GetDiscountedCost(Entry);
5967 
5968     if (ST->hasSSE2())
5969       if (const auto *Entry = CostTableLookup(SSE2InterleavedLoadTbl, Factor,
5970                                               ETy.getSimpleVT()))
5971         return GetDiscountedCost(Entry);
5972   } else {
5973     assert(Opcode == Instruction::Store &&
5974            "Expected Store Instruction at this point");
5975     assert((!Indices.size() || Indices.size() == Factor) &&
5976            "Interleaved store only supports fully-interleaved groups.");
5977     if (ST->hasAVX2())
5978       if (const auto *Entry = CostTableLookup(AVX2InterleavedStoreTbl, Factor,
5979                                               ETy.getSimpleVT()))
5980         return MemOpCosts + Entry->Cost;
5981 
5982     if (ST->hasSSE2())
5983       if (const auto *Entry = CostTableLookup(SSE2InterleavedStoreTbl, Factor,
5984                                               ETy.getSimpleVT()))
5985         return MemOpCosts + Entry->Cost;
5986   }
5987 
5988   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5989                                            Alignment, AddressSpace, CostKind,
5990                                            UseMaskForCond, UseMaskForGaps);
5991 }
5992