1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements a TargetTransformInfo analysis pass specific to the 10 /// X86 target machine. It uses the target's detailed information to provide 11 /// more precise answers to certain TTI queries, while letting the target 12 /// independent and default TTI implementations handle the rest. 13 /// 14 //===----------------------------------------------------------------------===// 15 /// About Cost Model numbers used below it's necessary to say the following: 16 /// the numbers correspond to some "generic" X86 CPU instead of usage of 17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature 18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in 19 /// the lookups below the cost is based on Nehalem as that was the first CPU 20 /// to support that feature level and thus has most likely the worst case cost. 21 /// Some examples of other technologies/CPUs: 22 /// SSE 3 - Pentium4 / Athlon64 23 /// SSE 4.1 - Penryn 24 /// SSE 4.2 - Nehalem 25 /// AVX - Sandy Bridge 26 /// AVX2 - Haswell 27 /// AVX-512 - Xeon Phi / Skylake 28 /// And some examples of instruction target dependent costs (latency) 29 /// divss sqrtss rsqrtss 30 /// AMD K7 11-16 19 3 31 /// Piledriver 9-24 13-15 5 32 /// Jaguar 14 16 2 33 /// Pentium II,III 18 30 2 34 /// Nehalem 7-14 7-18 3 35 /// Haswell 10-13 11 5 36 /// TODO: Develop and implement the target dependent cost model and 37 /// specialize cost numbers for different Cost Model Targets such as throughput, 38 /// code size, latency and uop count. 39 //===----------------------------------------------------------------------===// 40 41 #include "X86TargetTransformInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/CodeGen/BasicTTIImpl.h" 44 #include "llvm/CodeGen/CostTable.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/IR/InstIterator.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/Support/Debug.h" 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "x86tti" 53 54 //===----------------------------------------------------------------------===// 55 // 56 // X86 cost model. 57 // 58 //===----------------------------------------------------------------------===// 59 60 TargetTransformInfo::PopcntSupportKind 61 X86TTIImpl::getPopcntSupport(unsigned TyWidth) { 62 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 63 // TODO: Currently the __builtin_popcount() implementation using SSE3 64 // instructions is inefficient. Once the problem is fixed, we should 65 // call ST->hasSSE3() instead of ST->hasPOPCNT(). 66 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software; 67 } 68 69 llvm::Optional<unsigned> X86TTIImpl::getCacheSize( 70 TargetTransformInfo::CacheLevel Level) const { 71 switch (Level) { 72 case TargetTransformInfo::CacheLevel::L1D: 73 // - Penryn 74 // - Nehalem 75 // - Westmere 76 // - Sandy Bridge 77 // - Ivy Bridge 78 // - Haswell 79 // - Broadwell 80 // - Skylake 81 // - Kabylake 82 return 32 * 1024; // 32 KByte 83 case TargetTransformInfo::CacheLevel::L2D: 84 // - Penryn 85 // - Nehalem 86 // - Westmere 87 // - Sandy Bridge 88 // - Ivy Bridge 89 // - Haswell 90 // - Broadwell 91 // - Skylake 92 // - Kabylake 93 return 256 * 1024; // 256 KByte 94 } 95 96 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); 97 } 98 99 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity( 100 TargetTransformInfo::CacheLevel Level) const { 101 // - Penryn 102 // - Nehalem 103 // - Westmere 104 // - Sandy Bridge 105 // - Ivy Bridge 106 // - Haswell 107 // - Broadwell 108 // - Skylake 109 // - Kabylake 110 switch (Level) { 111 case TargetTransformInfo::CacheLevel::L1D: 112 LLVM_FALLTHROUGH; 113 case TargetTransformInfo::CacheLevel::L2D: 114 return 8; 115 } 116 117 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); 118 } 119 120 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const { 121 bool Vector = (ClassID == 1); 122 if (Vector && !ST->hasSSE1()) 123 return 0; 124 125 if (ST->is64Bit()) { 126 if (Vector && ST->hasAVX512()) 127 return 32; 128 return 16; 129 } 130 return 8; 131 } 132 133 TypeSize 134 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 135 unsigned PreferVectorWidth = ST->getPreferVectorWidth(); 136 switch (K) { 137 case TargetTransformInfo::RGK_Scalar: 138 return TypeSize::getFixed(ST->is64Bit() ? 64 : 32); 139 case TargetTransformInfo::RGK_FixedWidthVector: 140 if (ST->hasAVX512() && PreferVectorWidth >= 512) 141 return TypeSize::getFixed(512); 142 if (ST->hasAVX() && PreferVectorWidth >= 256) 143 return TypeSize::getFixed(256); 144 if (ST->hasSSE1() && PreferVectorWidth >= 128) 145 return TypeSize::getFixed(128); 146 return TypeSize::getFixed(0); 147 case TargetTransformInfo::RGK_ScalableVector: 148 return TypeSize::getScalable(0); 149 } 150 151 llvm_unreachable("Unsupported register kind"); 152 } 153 154 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const { 155 return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 156 .getFixedSize(); 157 } 158 159 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) { 160 // If the loop will not be vectorized, don't interleave the loop. 161 // Let regular unroll to unroll the loop, which saves the overflow 162 // check and memory check cost. 163 if (VF == 1) 164 return 1; 165 166 if (ST->isAtom()) 167 return 1; 168 169 // Sandybridge and Haswell have multiple execution ports and pipelined 170 // vector units. 171 if (ST->hasAVX()) 172 return 4; 173 174 return 2; 175 } 176 177 InstructionCost X86TTIImpl::getArithmeticInstrCost( 178 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 179 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 180 TTI::OperandValueProperties Opd1PropInfo, 181 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 182 const Instruction *CxtI) { 183 // TODO: Handle more cost kinds. 184 if (CostKind != TTI::TCK_RecipThroughput) 185 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 186 Op2Info, Opd1PropInfo, 187 Opd2PropInfo, Args, CxtI); 188 189 // vXi8 multiplications are always promoted to vXi16. 190 if (Opcode == Instruction::Mul && Ty->isVectorTy() && 191 Ty->getScalarSizeInBits() == 8) { 192 Type *WideVecTy = 193 VectorType::getExtendedElementVectorType(cast<VectorType>(Ty)); 194 return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty, 195 TargetTransformInfo::CastContextHint::None, 196 CostKind) + 197 getCastInstrCost(Instruction::Trunc, Ty, WideVecTy, 198 TargetTransformInfo::CastContextHint::None, 199 CostKind) + 200 getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info, 201 Opd1PropInfo, Opd2PropInfo); 202 } 203 204 // Legalize the type. 205 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 206 207 int ISD = TLI->InstructionOpcodeToISD(Opcode); 208 assert(ISD && "Invalid opcode"); 209 210 if (ISD == ISD::MUL && Args.size() == 2 && LT.second.isVector() && 211 LT.second.getScalarType() == MVT::i32) { 212 // Check if the operands can be represented as a smaller datatype. 213 bool Op1Signed = false, Op2Signed = false; 214 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed); 215 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed); 216 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize); 217 218 // If both are representable as i15 and at least one is constant, 219 // zero-extended, or sign-extended from vXi16 (or less pre-SSE41) then we 220 // can treat this as PMADDWD which has the same costs as a vXi16 multiply. 221 if (OpMinSize <= 15 && !ST->isPMADDWDSlow()) { 222 bool Op1Constant = 223 isa<ConstantDataVector>(Args[0]) || isa<ConstantVector>(Args[0]); 224 bool Op2Constant = 225 isa<ConstantDataVector>(Args[1]) || isa<ConstantVector>(Args[1]); 226 bool Op1Sext = isa<SExtInst>(Args[0]) && 227 (Op1MinSize == 15 || (Op1MinSize < 15 && !ST->hasSSE41())); 228 bool Op2Sext = isa<SExtInst>(Args[1]) && 229 (Op2MinSize == 15 || (Op2MinSize < 15 && !ST->hasSSE41())); 230 231 bool IsZeroExtended = !Op1Signed || !Op2Signed; 232 bool IsConstant = Op1Constant || Op2Constant; 233 bool IsSext = Op1Sext || Op2Sext; 234 if (IsConstant || IsZeroExtended || IsSext) 235 LT.second = 236 MVT::getVectorVT(MVT::i16, 2 * LT.second.getVectorNumElements()); 237 } 238 } 239 240 // Vector multiply by pow2 will be simplified to shifts. 241 if (ISD == ISD::MUL && 242 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 243 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 244 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) 245 return getArithmeticInstrCost(Instruction::Shl, Ty, CostKind, Op1Info, 246 Op2Info, TargetTransformInfo::OP_None, 247 TargetTransformInfo::OP_None); 248 249 // On X86, vector signed division by constants power-of-two are 250 // normally expanded to the sequence SRA + SRL + ADD + SRA. 251 // The OperandValue properties may not be the same as that of the previous 252 // operation; conservatively assume OP_None. 253 if ((ISD == ISD::SDIV || ISD == ISD::SREM) && 254 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 255 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 256 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 257 InstructionCost Cost = 258 2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info, 259 Op2Info, TargetTransformInfo::OP_None, 260 TargetTransformInfo::OP_None); 261 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info, 262 Op2Info, TargetTransformInfo::OP_None, 263 TargetTransformInfo::OP_None); 264 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info, 265 Op2Info, TargetTransformInfo::OP_None, 266 TargetTransformInfo::OP_None); 267 268 if (ISD == ISD::SREM) { 269 // For SREM: (X % C) is the equivalent of (X - (X/C)*C) 270 Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info, 271 Op2Info); 272 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info, 273 Op2Info); 274 } 275 276 return Cost; 277 } 278 279 // Vector unsigned division/remainder will be simplified to shifts/masks. 280 if ((ISD == ISD::UDIV || ISD == ISD::UREM) && 281 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 282 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 283 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 284 if (ISD == ISD::UDIV) 285 return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info, 286 Op2Info, TargetTransformInfo::OP_None, 287 TargetTransformInfo::OP_None); 288 // UREM 289 return getArithmeticInstrCost(Instruction::And, Ty, CostKind, Op1Info, 290 Op2Info, TargetTransformInfo::OP_None, 291 TargetTransformInfo::OP_None); 292 } 293 294 static const CostTblEntry GLMCostTable[] = { 295 { ISD::FDIV, MVT::f32, 18 }, // divss 296 { ISD::FDIV, MVT::v4f32, 35 }, // divps 297 { ISD::FDIV, MVT::f64, 33 }, // divsd 298 { ISD::FDIV, MVT::v2f64, 65 }, // divpd 299 }; 300 301 if (ST->useGLMDivSqrtCosts()) 302 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD, 303 LT.second)) 304 return LT.first * Entry->Cost; 305 306 static const CostTblEntry SLMCostTable[] = { 307 { ISD::MUL, MVT::v4i32, 11 }, // pmulld 308 { ISD::MUL, MVT::v8i16, 2 }, // pmullw 309 { ISD::FMUL, MVT::f64, 2 }, // mulsd 310 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd 311 { ISD::FMUL, MVT::v4f32, 2 }, // mulps 312 { ISD::FDIV, MVT::f32, 17 }, // divss 313 { ISD::FDIV, MVT::v4f32, 39 }, // divps 314 { ISD::FDIV, MVT::f64, 32 }, // divsd 315 { ISD::FDIV, MVT::v2f64, 69 }, // divpd 316 { ISD::FADD, MVT::v2f64, 2 }, // addpd 317 { ISD::FSUB, MVT::v2f64, 2 }, // subpd 318 // v2i64/v4i64 mul is custom lowered as a series of long: 319 // multiplies(3), shifts(3) and adds(2) 320 // slm muldq version throughput is 2 and addq throughput 4 321 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) + 322 // 3X4 (addq throughput) = 17 323 { ISD::MUL, MVT::v2i64, 17 }, 324 // slm addq\subq throughput is 4 325 { ISD::ADD, MVT::v2i64, 4 }, 326 { ISD::SUB, MVT::v2i64, 4 }, 327 }; 328 329 if (ST->useSLMArithCosts()) { 330 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) { 331 // Check if the operands can be shrinked into a smaller datatype. 332 // TODO: Merge this into generiic vXi32 MUL patterns above. 333 bool Op1Signed = false; 334 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed); 335 bool Op2Signed = false; 336 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed); 337 338 bool SignedMode = Op1Signed || Op2Signed; 339 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize); 340 341 if (OpMinSize <= 7) 342 return LT.first * 3; // pmullw/sext 343 if (!SignedMode && OpMinSize <= 8) 344 return LT.first * 3; // pmullw/zext 345 if (OpMinSize <= 15) 346 return LT.first * 5; // pmullw/pmulhw/pshuf 347 if (!SignedMode && OpMinSize <= 16) 348 return LT.first * 5; // pmullw/pmulhw/pshuf 349 } 350 351 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD, 352 LT.second)) { 353 return LT.first * Entry->Cost; 354 } 355 } 356 357 static const CostTblEntry AVX512BWUniformConstCostTable[] = { 358 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand. 359 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand. 360 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb. 361 }; 362 363 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 364 ST->hasBWI()) { 365 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD, 366 LT.second)) 367 return LT.first * Entry->Cost; 368 } 369 370 static const CostTblEntry AVX512UniformConstCostTable[] = { 371 { ISD::SRA, MVT::v2i64, 1 }, 372 { ISD::SRA, MVT::v4i64, 1 }, 373 { ISD::SRA, MVT::v8i64, 1 }, 374 375 { ISD::SHL, MVT::v64i8, 4 }, // psllw + pand. 376 { ISD::SRL, MVT::v64i8, 4 }, // psrlw + pand. 377 { ISD::SRA, MVT::v64i8, 8 }, // psrlw, pand, pxor, psubb. 378 379 { ISD::SDIV, MVT::v16i32, 6 }, // pmuludq sequence 380 { ISD::SREM, MVT::v16i32, 8 }, // pmuludq+mul+sub sequence 381 { ISD::UDIV, MVT::v16i32, 5 }, // pmuludq sequence 382 { ISD::UREM, MVT::v16i32, 7 }, // pmuludq+mul+sub sequence 383 }; 384 385 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 386 ST->hasAVX512()) { 387 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD, 388 LT.second)) 389 return LT.first * Entry->Cost; 390 } 391 392 static const CostTblEntry AVX2UniformConstCostTable[] = { 393 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand. 394 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand. 395 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb. 396 397 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle. 398 399 { ISD::SDIV, MVT::v8i32, 6 }, // pmuludq sequence 400 { ISD::SREM, MVT::v8i32, 8 }, // pmuludq+mul+sub sequence 401 { ISD::UDIV, MVT::v8i32, 5 }, // pmuludq sequence 402 { ISD::UREM, MVT::v8i32, 7 }, // pmuludq+mul+sub sequence 403 }; 404 405 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 406 ST->hasAVX2()) { 407 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD, 408 LT.second)) 409 return LT.first * Entry->Cost; 410 } 411 412 static const CostTblEntry SSE2UniformConstCostTable[] = { 413 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand. 414 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand. 415 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. 416 417 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split. 418 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split. 419 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split. 420 421 { ISD::SDIV, MVT::v8i32, 12+2 }, // 2*pmuludq sequence + split. 422 { ISD::SREM, MVT::v8i32, 16+2 }, // 2*pmuludq+mul+sub sequence + split. 423 { ISD::SDIV, MVT::v4i32, 6 }, // pmuludq sequence 424 { ISD::SREM, MVT::v4i32, 8 }, // pmuludq+mul+sub sequence 425 { ISD::UDIV, MVT::v8i32, 10+2 }, // 2*pmuludq sequence + split. 426 { ISD::UREM, MVT::v8i32, 14+2 }, // 2*pmuludq+mul+sub sequence + split. 427 { ISD::UDIV, MVT::v4i32, 5 }, // pmuludq sequence 428 { ISD::UREM, MVT::v4i32, 7 }, // pmuludq+mul+sub sequence 429 }; 430 431 // XOP has faster vXi8 shifts. 432 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 433 ST->hasSSE2() && !ST->hasXOP()) { 434 if (const auto *Entry = 435 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second)) 436 return LT.first * Entry->Cost; 437 } 438 439 static const CostTblEntry AVX512BWConstCostTable[] = { 440 { ISD::SDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence 441 { ISD::SREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 442 { ISD::UDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence 443 { ISD::UREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 444 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence 445 { ISD::SREM, MVT::v32i16, 8 }, // vpmulhw+mul+sub sequence 446 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence 447 { ISD::UREM, MVT::v32i16, 8 }, // vpmulhuw+mul+sub sequence 448 }; 449 450 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 451 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 452 ST->hasBWI()) { 453 if (const auto *Entry = 454 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second)) 455 return LT.first * Entry->Cost; 456 } 457 458 static const CostTblEntry AVX512ConstCostTable[] = { 459 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence 460 { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence 461 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence 462 { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence 463 { ISD::SDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence 464 { ISD::SREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence 465 { ISD::UDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence 466 { ISD::UREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence 467 { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence 468 { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence 469 { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence 470 { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence 471 }; 472 473 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 474 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 475 ST->hasAVX512()) { 476 if (const auto *Entry = 477 CostTableLookup(AVX512ConstCostTable, ISD, LT.second)) 478 return LT.first * Entry->Cost; 479 } 480 481 static const CostTblEntry AVX2ConstCostTable[] = { 482 { ISD::SDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence 483 { ISD::SREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 484 { ISD::UDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence 485 { ISD::UREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 486 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence 487 { ISD::SREM, MVT::v16i16, 8 }, // vpmulhw+mul+sub sequence 488 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence 489 { ISD::UREM, MVT::v16i16, 8 }, // vpmulhuw+mul+sub sequence 490 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence 491 { ISD::SREM, MVT::v8i32, 19 }, // vpmuldq+mul+sub sequence 492 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence 493 { ISD::UREM, MVT::v8i32, 19 }, // vpmuludq+mul+sub sequence 494 }; 495 496 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 497 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 498 ST->hasAVX2()) { 499 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second)) 500 return LT.first * Entry->Cost; 501 } 502 503 static const CostTblEntry SSE2ConstCostTable[] = { 504 { ISD::SDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split. 505 { ISD::SREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split. 506 { ISD::SDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence 507 { ISD::SREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 508 { ISD::UDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split. 509 { ISD::UREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split. 510 { ISD::UDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence 511 { ISD::UREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 512 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split. 513 { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split. 514 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence 515 { ISD::SREM, MVT::v8i16, 8 }, // pmulhw+mul+sub sequence 516 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split. 517 { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split. 518 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence 519 { ISD::UREM, MVT::v8i16, 8 }, // pmulhuw+mul+sub sequence 520 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split. 521 { ISD::SREM, MVT::v8i32, 48+2 }, // 2*pmuludq+mul+sub sequence + split. 522 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence 523 { ISD::SREM, MVT::v4i32, 24 }, // pmuludq+mul+sub sequence 524 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split. 525 { ISD::UREM, MVT::v8i32, 40+2 }, // 2*pmuludq+mul+sub sequence + split. 526 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence 527 { ISD::UREM, MVT::v4i32, 20 }, // pmuludq+mul+sub sequence 528 }; 529 530 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 531 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 532 ST->hasSSE2()) { 533 // pmuldq sequence. 534 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX()) 535 return LT.first * 32; 536 if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX()) 537 return LT.first * 38; 538 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41()) 539 return LT.first * 15; 540 if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41()) 541 return LT.first * 20; 542 543 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second)) 544 return LT.first * Entry->Cost; 545 } 546 547 static const CostTblEntry AVX512BWShiftCostTable[] = { 548 { ISD::SHL, MVT::v16i8, 4 }, // extend/vpsllvw/pack sequence. 549 { ISD::SRL, MVT::v16i8, 4 }, // extend/vpsrlvw/pack sequence. 550 { ISD::SRA, MVT::v16i8, 4 }, // extend/vpsravw/pack sequence. 551 { ISD::SHL, MVT::v32i8, 4 }, // extend/vpsllvw/pack sequence. 552 { ISD::SRL, MVT::v32i8, 4 }, // extend/vpsrlvw/pack sequence. 553 { ISD::SRA, MVT::v32i8, 6 }, // extend/vpsravw/pack sequence. 554 { ISD::SHL, MVT::v64i8, 6 }, // extend/vpsllvw/pack sequence. 555 { ISD::SRL, MVT::v64i8, 7 }, // extend/vpsrlvw/pack sequence. 556 { ISD::SRA, MVT::v64i8, 15 }, // extend/vpsravw/pack sequence. 557 558 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw 559 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw 560 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw 561 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw 562 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw 563 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw 564 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw 565 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw 566 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw 567 }; 568 569 if (ST->hasBWI()) 570 if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second)) 571 return LT.first * Entry->Cost; 572 573 static const CostTblEntry AVX2UniformCostTable[] = { 574 // Uniform splats are cheaper for the following instructions. 575 { ISD::SHL, MVT::v16i16, 1 }, // psllw. 576 { ISD::SRL, MVT::v16i16, 1 }, // psrlw. 577 { ISD::SRA, MVT::v16i16, 1 }, // psraw. 578 { ISD::SHL, MVT::v32i16, 2 }, // 2*psllw. 579 { ISD::SRL, MVT::v32i16, 2 }, // 2*psrlw. 580 { ISD::SRA, MVT::v32i16, 2 }, // 2*psraw. 581 582 { ISD::SHL, MVT::v8i32, 1 }, // pslld 583 { ISD::SRL, MVT::v8i32, 1 }, // psrld 584 { ISD::SRA, MVT::v8i32, 1 }, // psrad 585 { ISD::SHL, MVT::v4i64, 1 }, // psllq 586 { ISD::SRL, MVT::v4i64, 1 }, // psrlq 587 }; 588 589 if (ST->hasAVX2() && 590 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 591 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 592 if (const auto *Entry = 593 CostTableLookup(AVX2UniformCostTable, ISD, LT.second)) 594 return LT.first * Entry->Cost; 595 } 596 597 static const CostTblEntry SSE2UniformCostTable[] = { 598 // Uniform splats are cheaper for the following instructions. 599 { ISD::SHL, MVT::v8i16, 1 }, // psllw. 600 { ISD::SHL, MVT::v4i32, 1 }, // pslld 601 { ISD::SHL, MVT::v2i64, 1 }, // psllq. 602 603 { ISD::SRL, MVT::v8i16, 1 }, // psrlw. 604 { ISD::SRL, MVT::v4i32, 1 }, // psrld. 605 { ISD::SRL, MVT::v2i64, 1 }, // psrlq. 606 607 { ISD::SRA, MVT::v8i16, 1 }, // psraw. 608 { ISD::SRA, MVT::v4i32, 1 }, // psrad. 609 }; 610 611 if (ST->hasSSE2() && 612 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 613 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 614 if (const auto *Entry = 615 CostTableLookup(SSE2UniformCostTable, ISD, LT.second)) 616 return LT.first * Entry->Cost; 617 } 618 619 static const CostTblEntry AVX512DQCostTable[] = { 620 { ISD::MUL, MVT::v2i64, 2 }, // pmullq 621 { ISD::MUL, MVT::v4i64, 2 }, // pmullq 622 { ISD::MUL, MVT::v8i64, 2 } // pmullq 623 }; 624 625 // Look for AVX512DQ lowering tricks for custom cases. 626 if (ST->hasDQI()) 627 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second)) 628 return LT.first * Entry->Cost; 629 630 static const CostTblEntry AVX512BWCostTable[] = { 631 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence. 632 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence. 633 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence. 634 }; 635 636 // Look for AVX512BW lowering tricks for custom cases. 637 if (ST->hasBWI()) 638 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second)) 639 return LT.first * Entry->Cost; 640 641 static const CostTblEntry AVX512CostTable[] = { 642 { ISD::SHL, MVT::v4i32, 1 }, 643 { ISD::SRL, MVT::v4i32, 1 }, 644 { ISD::SRA, MVT::v4i32, 1 }, 645 { ISD::SHL, MVT::v8i32, 1 }, 646 { ISD::SRL, MVT::v8i32, 1 }, 647 { ISD::SRA, MVT::v8i32, 1 }, 648 { ISD::SHL, MVT::v16i32, 1 }, 649 { ISD::SRL, MVT::v16i32, 1 }, 650 { ISD::SRA, MVT::v16i32, 1 }, 651 652 { ISD::SHL, MVT::v2i64, 1 }, 653 { ISD::SRL, MVT::v2i64, 1 }, 654 { ISD::SHL, MVT::v4i64, 1 }, 655 { ISD::SRL, MVT::v4i64, 1 }, 656 { ISD::SHL, MVT::v8i64, 1 }, 657 { ISD::SRL, MVT::v8i64, 1 }, 658 659 { ISD::SRA, MVT::v2i64, 1 }, 660 { ISD::SRA, MVT::v4i64, 1 }, 661 { ISD::SRA, MVT::v8i64, 1 }, 662 663 { ISD::MUL, MVT::v16i32, 1 }, // pmulld (Skylake from agner.org) 664 { ISD::MUL, MVT::v8i32, 1 }, // pmulld (Skylake from agner.org) 665 { ISD::MUL, MVT::v4i32, 1 }, // pmulld (Skylake from agner.org) 666 { ISD::MUL, MVT::v8i64, 6 }, // 3*pmuludq/3*shift/2*add 667 { ISD::MUL, MVT::i64, 1 }, // Skylake from http://www.agner.org/ 668 669 { ISD::FNEG, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 670 { ISD::FADD, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 671 { ISD::FSUB, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 672 { ISD::FMUL, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 673 { ISD::FDIV, MVT::f64, 4 }, // Skylake from http://www.agner.org/ 674 { ISD::FDIV, MVT::v2f64, 4 }, // Skylake from http://www.agner.org/ 675 { ISD::FDIV, MVT::v4f64, 8 }, // Skylake from http://www.agner.org/ 676 { ISD::FDIV, MVT::v8f64, 16 }, // Skylake from http://www.agner.org/ 677 678 { ISD::FNEG, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 679 { ISD::FADD, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 680 { ISD::FSUB, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 681 { ISD::FMUL, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 682 { ISD::FDIV, MVT::f32, 3 }, // Skylake from http://www.agner.org/ 683 { ISD::FDIV, MVT::v4f32, 3 }, // Skylake from http://www.agner.org/ 684 { ISD::FDIV, MVT::v8f32, 5 }, // Skylake from http://www.agner.org/ 685 { ISD::FDIV, MVT::v16f32, 10 }, // Skylake from http://www.agner.org/ 686 }; 687 688 if (ST->hasAVX512()) 689 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second)) 690 return LT.first * Entry->Cost; 691 692 static const CostTblEntry AVX2ShiftCostTable[] = { 693 // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to 694 // customize them to detect the cases where shift amount is a scalar one. 695 { ISD::SHL, MVT::v4i32, 2 }, // vpsllvd (Haswell from agner.org) 696 { ISD::SRL, MVT::v4i32, 2 }, // vpsrlvd (Haswell from agner.org) 697 { ISD::SRA, MVT::v4i32, 2 }, // vpsravd (Haswell from agner.org) 698 { ISD::SHL, MVT::v8i32, 2 }, // vpsllvd (Haswell from agner.org) 699 { ISD::SRL, MVT::v8i32, 2 }, // vpsrlvd (Haswell from agner.org) 700 { ISD::SRA, MVT::v8i32, 2 }, // vpsravd (Haswell from agner.org) 701 { ISD::SHL, MVT::v2i64, 1 }, // vpsllvq (Haswell from agner.org) 702 { ISD::SRL, MVT::v2i64, 1 }, // vpsrlvq (Haswell from agner.org) 703 { ISD::SHL, MVT::v4i64, 1 }, // vpsllvq (Haswell from agner.org) 704 { ISD::SRL, MVT::v4i64, 1 }, // vpsrlvq (Haswell from agner.org) 705 }; 706 707 if (ST->hasAVX512()) { 708 if (ISD == ISD::SHL && LT.second == MVT::v32i16 && 709 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 710 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 711 // On AVX512, a packed v32i16 shift left by a constant build_vector 712 // is lowered into a vector multiply (vpmullw). 713 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 714 Op1Info, Op2Info, 715 TargetTransformInfo::OP_None, 716 TargetTransformInfo::OP_None); 717 } 718 719 // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts). 720 if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) { 721 if (ISD == ISD::SHL && LT.second == MVT::v16i16 && 722 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 723 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 724 // On AVX2, a packed v16i16 shift left by a constant build_vector 725 // is lowered into a vector multiply (vpmullw). 726 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 727 Op1Info, Op2Info, 728 TargetTransformInfo::OP_None, 729 TargetTransformInfo::OP_None); 730 731 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second)) 732 return LT.first * Entry->Cost; 733 } 734 735 static const CostTblEntry XOPShiftCostTable[] = { 736 // 128bit shifts take 1cy, but right shifts require negation beforehand. 737 { ISD::SHL, MVT::v16i8, 1 }, 738 { ISD::SRL, MVT::v16i8, 2 }, 739 { ISD::SRA, MVT::v16i8, 2 }, 740 { ISD::SHL, MVT::v8i16, 1 }, 741 { ISD::SRL, MVT::v8i16, 2 }, 742 { ISD::SRA, MVT::v8i16, 2 }, 743 { ISD::SHL, MVT::v4i32, 1 }, 744 { ISD::SRL, MVT::v4i32, 2 }, 745 { ISD::SRA, MVT::v4i32, 2 }, 746 { ISD::SHL, MVT::v2i64, 1 }, 747 { ISD::SRL, MVT::v2i64, 2 }, 748 { ISD::SRA, MVT::v2i64, 2 }, 749 // 256bit shifts require splitting if AVX2 didn't catch them above. 750 { ISD::SHL, MVT::v32i8, 2+2 }, 751 { ISD::SRL, MVT::v32i8, 4+2 }, 752 { ISD::SRA, MVT::v32i8, 4+2 }, 753 { ISD::SHL, MVT::v16i16, 2+2 }, 754 { ISD::SRL, MVT::v16i16, 4+2 }, 755 { ISD::SRA, MVT::v16i16, 4+2 }, 756 { ISD::SHL, MVT::v8i32, 2+2 }, 757 { ISD::SRL, MVT::v8i32, 4+2 }, 758 { ISD::SRA, MVT::v8i32, 4+2 }, 759 { ISD::SHL, MVT::v4i64, 2+2 }, 760 { ISD::SRL, MVT::v4i64, 4+2 }, 761 { ISD::SRA, MVT::v4i64, 4+2 }, 762 }; 763 764 // Look for XOP lowering tricks. 765 if (ST->hasXOP()) { 766 // If the right shift is constant then we'll fold the negation so 767 // it's as cheap as a left shift. 768 int ShiftISD = ISD; 769 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) && 770 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 771 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 772 ShiftISD = ISD::SHL; 773 if (const auto *Entry = 774 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second)) 775 return LT.first * Entry->Cost; 776 } 777 778 static const CostTblEntry SSE2UniformShiftCostTable[] = { 779 // Uniform splats are cheaper for the following instructions. 780 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split. 781 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split. 782 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split. 783 784 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split. 785 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split. 786 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split. 787 788 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split. 789 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split. 790 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle. 791 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split. 792 }; 793 794 if (ST->hasSSE2() && 795 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 796 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 797 798 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table. 799 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2()) 800 return LT.first * 4; // 2*psrad + shuffle. 801 802 if (const auto *Entry = 803 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second)) 804 return LT.first * Entry->Cost; 805 } 806 807 if (ISD == ISD::SHL && 808 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) { 809 MVT VT = LT.second; 810 // Vector shift left by non uniform constant can be lowered 811 // into vector multiply. 812 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) || 813 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX())) 814 ISD = ISD::MUL; 815 } 816 817 static const CostTblEntry AVX2CostTable[] = { 818 { ISD::SHL, MVT::v16i8, 6 }, // vpblendvb sequence. 819 { ISD::SHL, MVT::v32i8, 6 }, // vpblendvb sequence. 820 { ISD::SHL, MVT::v64i8, 12 }, // 2*vpblendvb sequence. 821 { ISD::SHL, MVT::v8i16, 5 }, // extend/vpsrlvd/pack sequence. 822 { ISD::SHL, MVT::v16i16, 7 }, // extend/vpsrlvd/pack sequence. 823 { ISD::SHL, MVT::v32i16, 14 }, // 2*extend/vpsrlvd/pack sequence. 824 825 { ISD::SRL, MVT::v16i8, 6 }, // vpblendvb sequence. 826 { ISD::SRL, MVT::v32i8, 6 }, // vpblendvb sequence. 827 { ISD::SRL, MVT::v64i8, 12 }, // 2*vpblendvb sequence. 828 { ISD::SRL, MVT::v8i16, 5 }, // extend/vpsrlvd/pack sequence. 829 { ISD::SRL, MVT::v16i16, 7 }, // extend/vpsrlvd/pack sequence. 830 { ISD::SRL, MVT::v32i16, 14 }, // 2*extend/vpsrlvd/pack sequence. 831 832 { ISD::SRA, MVT::v16i8, 17 }, // vpblendvb sequence. 833 { ISD::SRA, MVT::v32i8, 17 }, // vpblendvb sequence. 834 { ISD::SRA, MVT::v64i8, 34 }, // 2*vpblendvb sequence. 835 { ISD::SRA, MVT::v8i16, 5 }, // extend/vpsravd/pack sequence. 836 { ISD::SRA, MVT::v16i16, 7 }, // extend/vpsravd/pack sequence. 837 { ISD::SRA, MVT::v32i16, 14 }, // 2*extend/vpsravd/pack sequence. 838 { ISD::SRA, MVT::v2i64, 2 }, // srl/xor/sub sequence. 839 { ISD::SRA, MVT::v4i64, 2 }, // srl/xor/sub sequence. 840 841 { ISD::SUB, MVT::v32i8, 1 }, // psubb 842 { ISD::ADD, MVT::v32i8, 1 }, // paddb 843 { ISD::SUB, MVT::v16i16, 1 }, // psubw 844 { ISD::ADD, MVT::v16i16, 1 }, // paddw 845 { ISD::SUB, MVT::v8i32, 1 }, // psubd 846 { ISD::ADD, MVT::v8i32, 1 }, // paddd 847 { ISD::SUB, MVT::v4i64, 1 }, // psubq 848 { ISD::ADD, MVT::v4i64, 1 }, // paddq 849 850 { ISD::MUL, MVT::v16i16, 1 }, // pmullw 851 { ISD::MUL, MVT::v8i32, 2 }, // pmulld (Haswell from agner.org) 852 { ISD::MUL, MVT::v4i64, 6 }, // 3*pmuludq/3*shift/2*add 853 854 { ISD::FNEG, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 855 { ISD::FNEG, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 856 { ISD::FADD, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 857 { ISD::FADD, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 858 { ISD::FSUB, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 859 { ISD::FSUB, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 860 { ISD::FMUL, MVT::f64, 1 }, // Haswell from http://www.agner.org/ 861 { ISD::FMUL, MVT::v2f64, 1 }, // Haswell from http://www.agner.org/ 862 { ISD::FMUL, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 863 { ISD::FMUL, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 864 865 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/ 866 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/ 867 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/ 868 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/ 869 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/ 870 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/ 871 }; 872 873 // Look for AVX2 lowering tricks for custom cases. 874 if (ST->hasAVX2()) 875 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second)) 876 return LT.first * Entry->Cost; 877 878 static const CostTblEntry AVX1CostTable[] = { 879 // We don't have to scalarize unsupported ops. We can issue two half-sized 880 // operations and we only need to extract the upper YMM half. 881 // Two ops + 1 extract + 1 insert = 4. 882 { ISD::MUL, MVT::v16i16, 4 }, 883 { ISD::MUL, MVT::v8i32, 5 }, // BTVER2 from http://www.agner.org/ 884 { ISD::MUL, MVT::v4i64, 12 }, 885 886 { ISD::SUB, MVT::v32i8, 4 }, 887 { ISD::ADD, MVT::v32i8, 4 }, 888 { ISD::SUB, MVT::v16i16, 4 }, 889 { ISD::ADD, MVT::v16i16, 4 }, 890 { ISD::SUB, MVT::v8i32, 4 }, 891 { ISD::ADD, MVT::v8i32, 4 }, 892 { ISD::SUB, MVT::v4i64, 4 }, 893 { ISD::ADD, MVT::v4i64, 4 }, 894 895 { ISD::SHL, MVT::v32i8, 22 }, // pblendvb sequence + split. 896 { ISD::SHL, MVT::v8i16, 6 }, // pblendvb sequence. 897 { ISD::SHL, MVT::v16i16, 13 }, // pblendvb sequence + split. 898 { ISD::SHL, MVT::v4i32, 3 }, // pslld/paddd/cvttps2dq/pmulld 899 { ISD::SHL, MVT::v8i32, 9 }, // pslld/paddd/cvttps2dq/pmulld + split 900 { ISD::SHL, MVT::v2i64, 2 }, // Shift each lane + blend. 901 { ISD::SHL, MVT::v4i64, 6 }, // Shift each lane + blend + split. 902 903 { ISD::SRL, MVT::v32i8, 23 }, // pblendvb sequence + split. 904 { ISD::SRL, MVT::v16i16, 28 }, // pblendvb sequence + split. 905 { ISD::SRL, MVT::v4i32, 6 }, // Shift each lane + blend. 906 { ISD::SRL, MVT::v8i32, 14 }, // Shift each lane + blend + split. 907 { ISD::SRL, MVT::v2i64, 2 }, // Shift each lane + blend. 908 { ISD::SRL, MVT::v4i64, 6 }, // Shift each lane + blend + split. 909 910 { ISD::SRA, MVT::v32i8, 44 }, // pblendvb sequence + split. 911 { ISD::SRA, MVT::v16i16, 28 }, // pblendvb sequence + split. 912 { ISD::SRA, MVT::v4i32, 6 }, // Shift each lane + blend. 913 { ISD::SRA, MVT::v8i32, 14 }, // Shift each lane + blend + split. 914 { ISD::SRA, MVT::v2i64, 5 }, // Shift each lane + blend. 915 { ISD::SRA, MVT::v4i64, 12 }, // Shift each lane + blend + split. 916 917 { ISD::FNEG, MVT::v4f64, 2 }, // BTVER2 from http://www.agner.org/ 918 { ISD::FNEG, MVT::v8f32, 2 }, // BTVER2 from http://www.agner.org/ 919 920 { ISD::FMUL, MVT::f64, 2 }, // BTVER2 from http://www.agner.org/ 921 { ISD::FMUL, MVT::v2f64, 2 }, // BTVER2 from http://www.agner.org/ 922 { ISD::FMUL, MVT::v4f64, 4 }, // BTVER2 from http://www.agner.org/ 923 924 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/ 925 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/ 926 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/ 927 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/ 928 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/ 929 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/ 930 }; 931 932 if (ST->hasAVX()) 933 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second)) 934 return LT.first * Entry->Cost; 935 936 static const CostTblEntry SSE42CostTable[] = { 937 { ISD::FADD, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 938 { ISD::FADD, MVT::f32, 1 }, // Nehalem from http://www.agner.org/ 939 { ISD::FADD, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 940 { ISD::FADD, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 941 942 { ISD::FSUB, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 943 { ISD::FSUB, MVT::f32 , 1 }, // Nehalem from http://www.agner.org/ 944 { ISD::FSUB, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 945 { ISD::FSUB, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 946 947 { ISD::FMUL, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 948 { ISD::FMUL, MVT::f32, 1 }, // Nehalem from http://www.agner.org/ 949 { ISD::FMUL, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 950 { ISD::FMUL, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 951 952 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/ 953 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/ 954 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/ 955 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/ 956 957 { ISD::MUL, MVT::v2i64, 6 } // 3*pmuludq/3*shift/2*add 958 }; 959 960 if (ST->hasSSE42()) 961 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second)) 962 return LT.first * Entry->Cost; 963 964 static const CostTblEntry SSE41CostTable[] = { 965 { ISD::SHL, MVT::v16i8, 10 }, // pblendvb sequence. 966 { ISD::SHL, MVT::v8i16, 11 }, // pblendvb sequence. 967 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld 968 969 { ISD::SRL, MVT::v16i8, 11 }, // pblendvb sequence. 970 { ISD::SRL, MVT::v8i16, 13 }, // pblendvb sequence. 971 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend. 972 973 { ISD::SRA, MVT::v16i8, 21 }, // pblendvb sequence. 974 { ISD::SRA, MVT::v8i16, 13 }, // pblendvb sequence. 975 976 { ISD::MUL, MVT::v4i32, 2 } // pmulld (Nehalem from agner.org) 977 }; 978 979 if (ST->hasSSE41()) 980 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second)) 981 return LT.first * Entry->Cost; 982 983 static const CostTblEntry SSE2CostTable[] = { 984 // We don't correctly identify costs of casts because they are marked as 985 // custom. 986 { ISD::SHL, MVT::v16i8, 13 }, // cmpgtb sequence. 987 { ISD::SHL, MVT::v8i16, 25 }, // cmpgtw sequence. 988 { ISD::SHL, MVT::v4i32, 16 }, // pslld/paddd/cvttps2dq/pmuludq. 989 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence. 990 991 { ISD::SRL, MVT::v16i8, 14 }, // cmpgtb sequence. 992 { ISD::SRL, MVT::v8i16, 16 }, // cmpgtw sequence. 993 { ISD::SRL, MVT::v4i32, 12 }, // Shift each lane + blend. 994 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence. 995 996 { ISD::SRA, MVT::v16i8, 27 }, // unpacked cmpgtb sequence. 997 { ISD::SRA, MVT::v8i16, 16 }, // cmpgtw sequence. 998 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend. 999 { ISD::SRA, MVT::v2i64, 8 }, // srl/xor/sub splat+shuffle sequence. 1000 1001 { ISD::MUL, MVT::v8i16, 1 }, // pmullw 1002 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle 1003 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add 1004 1005 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/ 1006 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/ 1007 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/ 1008 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/ 1009 1010 { ISD::FNEG, MVT::f32, 1 }, // Pentium IV from http://www.agner.org/ 1011 { ISD::FNEG, MVT::f64, 1 }, // Pentium IV from http://www.agner.org/ 1012 { ISD::FNEG, MVT::v4f32, 1 }, // Pentium IV from http://www.agner.org/ 1013 { ISD::FNEG, MVT::v2f64, 1 }, // Pentium IV from http://www.agner.org/ 1014 1015 { ISD::FADD, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/ 1016 { ISD::FADD, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/ 1017 1018 { ISD::FSUB, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/ 1019 { ISD::FSUB, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/ 1020 }; 1021 1022 if (ST->hasSSE2()) 1023 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second)) 1024 return LT.first * Entry->Cost; 1025 1026 static const CostTblEntry SSE1CostTable[] = { 1027 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/ 1028 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/ 1029 1030 { ISD::FNEG, MVT::f32, 2 }, // Pentium III from http://www.agner.org/ 1031 { ISD::FNEG, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 1032 1033 { ISD::FADD, MVT::f32, 1 }, // Pentium III from http://www.agner.org/ 1034 { ISD::FADD, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 1035 1036 { ISD::FSUB, MVT::f32, 1 }, // Pentium III from http://www.agner.org/ 1037 { ISD::FSUB, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 1038 }; 1039 1040 if (ST->hasSSE1()) 1041 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second)) 1042 return LT.first * Entry->Cost; 1043 1044 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 1045 { ISD::ADD, MVT::i64, 1 }, // Core (Merom) from http://www.agner.org/ 1046 { ISD::SUB, MVT::i64, 1 }, // Core (Merom) from http://www.agner.org/ 1047 { ISD::MUL, MVT::i64, 2 }, // Nehalem from http://www.agner.org/ 1048 }; 1049 1050 if (ST->is64Bit()) 1051 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second)) 1052 return LT.first * Entry->Cost; 1053 1054 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 1055 { ISD::ADD, MVT::i8, 1 }, // Pentium III from http://www.agner.org/ 1056 { ISD::ADD, MVT::i16, 1 }, // Pentium III from http://www.agner.org/ 1057 { ISD::ADD, MVT::i32, 1 }, // Pentium III from http://www.agner.org/ 1058 1059 { ISD::SUB, MVT::i8, 1 }, // Pentium III from http://www.agner.org/ 1060 { ISD::SUB, MVT::i16, 1 }, // Pentium III from http://www.agner.org/ 1061 { ISD::SUB, MVT::i32, 1 }, // Pentium III from http://www.agner.org/ 1062 }; 1063 1064 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second)) 1065 return LT.first * Entry->Cost; 1066 1067 // It is not a good idea to vectorize division. We have to scalarize it and 1068 // in the process we will often end up having to spilling regular 1069 // registers. The overhead of division is going to dominate most kernels 1070 // anyways so try hard to prevent vectorization of division - it is 1071 // generally a bad idea. Assume somewhat arbitrarily that we have to be able 1072 // to hide "20 cycles" for each lane. 1073 if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM || 1074 ISD == ISD::UDIV || ISD == ISD::UREM)) { 1075 InstructionCost ScalarCost = getArithmeticInstrCost( 1076 Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info, 1077 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1078 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost; 1079 } 1080 1081 // Fallback to the default implementation. 1082 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info); 1083 } 1084 1085 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1086 VectorType *BaseTp, 1087 ArrayRef<int> Mask, int Index, 1088 VectorType *SubTp) { 1089 // 64-bit packed float vectors (v2f32) are widened to type v4f32. 1090 // 64-bit packed integer vectors (v2i32) are widened to type v4i32. 1091 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp); 1092 1093 Kind = improveShuffleKindFromMask(Kind, Mask); 1094 // Treat Transpose as 2-op shuffles - there's no difference in lowering. 1095 if (Kind == TTI::SK_Transpose) 1096 Kind = TTI::SK_PermuteTwoSrc; 1097 1098 // For Broadcasts we are splatting the first element from the first input 1099 // register, so only need to reference that input and all the output 1100 // registers are the same. 1101 if (Kind == TTI::SK_Broadcast) 1102 LT.first = 1; 1103 1104 // Subvector extractions are free if they start at the beginning of a 1105 // vector and cheap if the subvectors are aligned. 1106 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) { 1107 int NumElts = LT.second.getVectorNumElements(); 1108 if ((Index % NumElts) == 0) 1109 return 0; 1110 std::pair<InstructionCost, MVT> SubLT = 1111 TLI->getTypeLegalizationCost(DL, SubTp); 1112 if (SubLT.second.isVector()) { 1113 int NumSubElts = SubLT.second.getVectorNumElements(); 1114 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0) 1115 return SubLT.first; 1116 // Handle some cases for widening legalization. For now we only handle 1117 // cases where the original subvector was naturally aligned and evenly 1118 // fit in its legalized subvector type. 1119 // FIXME: Remove some of the alignment restrictions. 1120 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit 1121 // vectors. 1122 int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements(); 1123 if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 && 1124 (NumSubElts % OrigSubElts) == 0 && 1125 LT.second.getVectorElementType() == 1126 SubLT.second.getVectorElementType() && 1127 LT.second.getVectorElementType().getSizeInBits() == 1128 BaseTp->getElementType()->getPrimitiveSizeInBits()) { 1129 assert(NumElts >= NumSubElts && NumElts > OrigSubElts && 1130 "Unexpected number of elements!"); 1131 auto *VecTy = FixedVectorType::get(BaseTp->getElementType(), 1132 LT.second.getVectorNumElements()); 1133 auto *SubTy = FixedVectorType::get(BaseTp->getElementType(), 1134 SubLT.second.getVectorNumElements()); 1135 int ExtractIndex = alignDown((Index % NumElts), NumSubElts); 1136 InstructionCost ExtractCost = getShuffleCost( 1137 TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy); 1138 1139 // If the original size is 32-bits or more, we can use pshufd. Otherwise 1140 // if we have SSSE3 we can use pshufb. 1141 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3()) 1142 return ExtractCost + 1; // pshufd or pshufb 1143 1144 assert(SubTp->getPrimitiveSizeInBits() == 16 && 1145 "Unexpected vector size"); 1146 1147 return ExtractCost + 2; // worst case pshufhw + pshufd 1148 } 1149 } 1150 } 1151 1152 // Subvector insertions are cheap if the subvectors are aligned. 1153 // Note that in general, the insertion starting at the beginning of a vector 1154 // isn't free, because we need to preserve the rest of the wide vector. 1155 if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) { 1156 int NumElts = LT.second.getVectorNumElements(); 1157 std::pair<InstructionCost, MVT> SubLT = 1158 TLI->getTypeLegalizationCost(DL, SubTp); 1159 if (SubLT.second.isVector()) { 1160 int NumSubElts = SubLT.second.getVectorNumElements(); 1161 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0) 1162 return SubLT.first; 1163 } 1164 1165 // If the insertion isn't aligned, treat it like a 2-op shuffle. 1166 Kind = TTI::SK_PermuteTwoSrc; 1167 } 1168 1169 // Handle some common (illegal) sub-vector types as they are often very cheap 1170 // to shuffle even on targets without PSHUFB. 1171 EVT VT = TLI->getValueType(DL, BaseTp); 1172 if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 && 1173 !ST->hasSSSE3()) { 1174 static const CostTblEntry SSE2SubVectorShuffleTbl[] = { 1175 {TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw 1176 {TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw 1177 {TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw 1178 {TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw 1179 {TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck 1180 1181 {TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw 1182 {TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw 1183 {TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus 1184 {TTI::SK_Reverse, MVT::v2i8, 1}, // punpck 1185 1186 {TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw 1187 {TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw 1188 {TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw 1189 {TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw 1190 {TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck 1191 1192 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw 1193 {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw 1194 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw 1195 {TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw 1196 {TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck 1197 }; 1198 1199 if (ST->hasSSE2()) 1200 if (const auto *Entry = 1201 CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT())) 1202 return Entry->Cost; 1203 } 1204 1205 // We are going to permute multiple sources and the result will be in multiple 1206 // destinations. Providing an accurate cost only for splits where the element 1207 // type remains the same. 1208 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) { 1209 MVT LegalVT = LT.second; 1210 if (LegalVT.isVector() && 1211 LegalVT.getVectorElementType().getSizeInBits() == 1212 BaseTp->getElementType()->getPrimitiveSizeInBits() && 1213 LegalVT.getVectorNumElements() < 1214 cast<FixedVectorType>(BaseTp)->getNumElements()) { 1215 1216 unsigned VecTySize = DL.getTypeStoreSize(BaseTp); 1217 unsigned LegalVTSize = LegalVT.getStoreSize(); 1218 // Number of source vectors after legalization: 1219 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize; 1220 // Number of destination vectors after legalization: 1221 InstructionCost NumOfDests = LT.first; 1222 1223 auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(), 1224 LegalVT.getVectorNumElements()); 1225 1226 InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests; 1227 return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 1228 None, 0, nullptr); 1229 } 1230 1231 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp); 1232 } 1233 1234 // For 2-input shuffles, we must account for splitting the 2 inputs into many. 1235 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) { 1236 // We assume that source and destination have the same vector type. 1237 InstructionCost NumOfDests = LT.first; 1238 InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1; 1239 LT.first = NumOfDests * NumOfShufflesPerDest; 1240 } 1241 1242 static const CostTblEntry AVX512FP16ShuffleTbl[] = { 1243 {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw 1244 {TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw 1245 {TTI::SK_Broadcast, MVT::v8f16, 1}, // vpbroadcastw 1246 1247 {TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw 1248 {TTI::SK_Reverse, MVT::v16f16, 2}, // vpermw 1249 {TTI::SK_Reverse, MVT::v8f16, 1}, // vpshufb 1250 1251 {TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw 1252 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw 1253 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 1}, // vpshufb 1254 1255 {TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w 1256 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 2}, // vpermt2w 1257 {TTI::SK_PermuteTwoSrc, MVT::v8f16, 2} // vpermt2w 1258 }; 1259 1260 if (!ST->useSoftFloat() && ST->hasFP16()) 1261 if (const auto *Entry = 1262 CostTableLookup(AVX512FP16ShuffleTbl, Kind, LT.second)) 1263 return LT.first * Entry->Cost; 1264 1265 static const CostTblEntry AVX512VBMIShuffleTbl[] = { 1266 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb 1267 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb 1268 1269 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb 1270 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb 1271 1272 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b 1273 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b 1274 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b 1275 }; 1276 1277 if (ST->hasVBMI()) 1278 if (const auto *Entry = 1279 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second)) 1280 return LT.first * Entry->Cost; 1281 1282 static const CostTblEntry AVX512BWShuffleTbl[] = { 1283 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw 1284 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb 1285 1286 {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw 1287 {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw 1288 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2 1289 1290 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw 1291 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw 1292 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16 1293 1294 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w 1295 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w 1296 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w 1297 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1 1298 1299 {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw 1300 {TTI::SK_Select, MVT::v64i8, 1}, // vblendmb 1301 }; 1302 1303 if (ST->hasBWI()) 1304 if (const auto *Entry = 1305 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second)) 1306 return LT.first * Entry->Cost; 1307 1308 static const CostTblEntry AVX512ShuffleTbl[] = { 1309 {TTI::SK_Broadcast, MVT::v8f64, 1}, // vbroadcastpd 1310 {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps 1311 {TTI::SK_Broadcast, MVT::v8i64, 1}, // vpbroadcastq 1312 {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd 1313 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw 1314 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb 1315 1316 {TTI::SK_Reverse, MVT::v8f64, 1}, // vpermpd 1317 {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps 1318 {TTI::SK_Reverse, MVT::v8i64, 1}, // vpermq 1319 {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd 1320 {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca 1321 {TTI::SK_Reverse, MVT::v64i8, 7}, // per mca 1322 1323 {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1}, // vpermpd 1324 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd 1325 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // vpermpd 1326 {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps 1327 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps 1328 {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1}, // vpermps 1329 {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1}, // vpermq 1330 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq 1331 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // vpermq 1332 {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd 1333 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd 1334 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // vpermd 1335 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb 1336 1337 {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1}, // vpermt2pd 1338 {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps 1339 {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1}, // vpermt2q 1340 {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d 1341 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1}, // vpermt2pd 1342 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1}, // vpermt2ps 1343 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1}, // vpermt2q 1344 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1}, // vpermt2d 1345 {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1}, // vpermt2pd 1346 {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1}, // vpermt2ps 1347 {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1}, // vpermt2q 1348 {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}, // vpermt2d 1349 1350 // FIXME: This just applies the type legalization cost rules above 1351 // assuming these completely split. 1352 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14}, 1353 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 14}, 1354 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 42}, 1355 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 42}, 1356 1357 {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq 1358 {TTI::SK_Select, MVT::v64i8, 1}, // vpternlogq 1359 {TTI::SK_Select, MVT::v8f64, 1}, // vblendmpd 1360 {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps 1361 {TTI::SK_Select, MVT::v8i64, 1}, // vblendmq 1362 {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd 1363 }; 1364 1365 if (ST->hasAVX512()) 1366 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second)) 1367 return LT.first * Entry->Cost; 1368 1369 static const CostTblEntry AVX2ShuffleTbl[] = { 1370 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd 1371 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps 1372 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq 1373 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd 1374 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw 1375 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb 1376 1377 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd 1378 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps 1379 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq 1380 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd 1381 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb 1382 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb 1383 1384 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb 1385 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb 1386 1387 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd 1388 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps 1389 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq 1390 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd 1391 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb 1392 // + vpblendvb 1393 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb 1394 // + vpblendvb 1395 1396 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd 1397 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps 1398 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd 1399 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd 1400 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb 1401 // + vpblendvb 1402 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb 1403 // + vpblendvb 1404 }; 1405 1406 if (ST->hasAVX2()) 1407 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second)) 1408 return LT.first * Entry->Cost; 1409 1410 static const CostTblEntry XOPShuffleTbl[] = { 1411 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd 1412 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps 1413 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd 1414 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps 1415 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm 1416 // + vinsertf128 1417 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm 1418 // + vinsertf128 1419 1420 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm 1421 // + vinsertf128 1422 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm 1423 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm 1424 // + vinsertf128 1425 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm 1426 }; 1427 1428 if (ST->hasXOP()) 1429 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second)) 1430 return LT.first * Entry->Cost; 1431 1432 static const CostTblEntry AVX1ShuffleTbl[] = { 1433 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd 1434 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps 1435 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd 1436 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps 1437 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128 1438 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128 1439 1440 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd 1441 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps 1442 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd 1443 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps 1444 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb 1445 // + vinsertf128 1446 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb 1447 // + vinsertf128 1448 1449 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd 1450 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd 1451 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps 1452 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps 1453 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor 1454 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor 1455 1456 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd 1457 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd 1458 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps 1459 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps 1460 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb 1461 // + 2*por + vinsertf128 1462 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb 1463 // + 2*por + vinsertf128 1464 1465 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd 1466 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd 1467 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps 1468 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps 1469 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb 1470 // + 4*por + vinsertf128 1471 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb 1472 // + 4*por + vinsertf128 1473 }; 1474 1475 if (ST->hasAVX()) 1476 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second)) 1477 return LT.first * Entry->Cost; 1478 1479 static const CostTblEntry SSE41ShuffleTbl[] = { 1480 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw 1481 {TTI::SK_Select, MVT::v2f64, 1}, // movsd 1482 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw 1483 {TTI::SK_Select, MVT::v4f32, 1}, // blendps 1484 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw 1485 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb 1486 }; 1487 1488 if (ST->hasSSE41()) 1489 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second)) 1490 return LT.first * Entry->Cost; 1491 1492 static const CostTblEntry SSSE3ShuffleTbl[] = { 1493 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb 1494 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb 1495 1496 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb 1497 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb 1498 1499 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por 1500 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por 1501 1502 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb 1503 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb 1504 1505 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por 1506 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por 1507 }; 1508 1509 if (ST->hasSSSE3()) 1510 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second)) 1511 return LT.first * Entry->Cost; 1512 1513 static const CostTblEntry SSE2ShuffleTbl[] = { 1514 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd 1515 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd 1516 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd 1517 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd 1518 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd 1519 1520 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd 1521 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd 1522 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd 1523 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd 1524 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw 1525 // + 2*pshufd + 2*unpck + packus 1526 1527 {TTI::SK_Select, MVT::v2i64, 1}, // movsd 1528 {TTI::SK_Select, MVT::v2f64, 1}, // movsd 1529 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps 1530 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por 1531 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por 1532 1533 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd 1534 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd 1535 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd 1536 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw 1537 // + pshufd/unpck 1538 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw 1539 // + 2*pshufd + 2*unpck + 2*packus 1540 1541 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd 1542 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd 1543 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd} 1544 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute 1545 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute 1546 }; 1547 1548 if (ST->hasSSE2()) 1549 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second)) 1550 return LT.first * Entry->Cost; 1551 1552 static const CostTblEntry SSE1ShuffleTbl[] = { 1553 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps 1554 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps 1555 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps 1556 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps 1557 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps 1558 }; 1559 1560 if (ST->hasSSE1()) 1561 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second)) 1562 return LT.first * Entry->Cost; 1563 1564 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp); 1565 } 1566 1567 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 1568 Type *Src, 1569 TTI::CastContextHint CCH, 1570 TTI::TargetCostKind CostKind, 1571 const Instruction *I) { 1572 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1573 assert(ISD && "Invalid opcode"); 1574 1575 // TODO: Allow non-throughput costs that aren't binary. 1576 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 1577 if (CostKind != TTI::TCK_RecipThroughput) 1578 return Cost == 0 ? 0 : 1; 1579 return Cost; 1580 }; 1581 1582 // The cost tables include both specific, custom (non-legal) src/dst type 1583 // conversions and generic, legalized types. We test for customs first, before 1584 // falling back to legalization. 1585 // FIXME: Need a better design of the cost table to handle non-simple types of 1586 // potential massive combinations (elem_num x src_type x dst_type). 1587 static const TypeConversionCostTblEntry AVX512BWConversionTbl[] { 1588 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 }, 1589 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 }, 1590 1591 // Mask sign extend has an instruction. 1592 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 }, 1593 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, 1 }, 1594 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 }, 1595 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, 1 }, 1596 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 }, 1597 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, 1 }, 1598 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 }, 1599 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, 1 }, 1600 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 }, 1601 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, 1 }, 1602 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 }, 1603 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 }, 1604 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1605 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 }, 1606 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 }, 1607 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 }, 1608 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v64i1, 1 }, 1609 1610 // Mask zero extend is a sext + shift. 1611 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 }, 1612 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, 2 }, 1613 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 }, 1614 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, 2 }, 1615 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 }, 1616 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, 2 }, 1617 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 }, 1618 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, 2 }, 1619 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 }, 1620 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, 2 }, 1621 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 }, 1622 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 }, 1623 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 }, 1624 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 }, 1625 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 }, 1626 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 }, 1627 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v64i1, 2 }, 1628 1629 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, 1630 { ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, 2 }, 1631 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, 1632 { ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, 2 }, 1633 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, 1634 { ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, 2 }, 1635 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, 1636 { ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, 2 }, 1637 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, 1638 { ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, 2 }, 1639 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, 1640 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, 1641 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, 1642 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, 1643 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, 2 }, 1644 { ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, 2 }, 1645 { ISD::TRUNCATE, MVT::v64i1, MVT::v32i16, 2 }, 1646 1647 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 2 }, 1648 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // widen to zmm 1649 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // vpmovwb 1650 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // vpmovwb 1651 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // vpmovwb 1652 }; 1653 1654 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = { 1655 // Mask sign extend has an instruction. 1656 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, 1657 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, 1 }, 1658 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, 1659 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, 1660 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, 1661 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i1, 1 }, 1662 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, 1663 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, 1664 1665 // Mask zero extend is a sext + shift. 1666 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, 1667 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, 2 }, 1668 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, 1669 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, 1670 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, 1671 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i1, 2 }, 1672 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, 1673 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, 1674 1675 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, 1676 { ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, 2 }, 1677 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, 1678 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, 1679 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, 1680 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, 1681 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, 1682 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i64, 2 }, 1683 1684 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, 1685 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, 1686 1687 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, 1688 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, 1689 1690 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 }, 1691 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 }, 1692 1693 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 }, 1694 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 }, 1695 }; 1696 1697 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and 1698 // 256-bit wide vectors. 1699 1700 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = { 1701 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 }, 1702 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 }, 1703 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 }, 1704 1705 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd 1706 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd 1707 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd 1708 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 3 }, // sext+vpslld+vptestmd 1709 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq 1710 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq 1711 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq 1712 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 3 }, // sext+vpslld+vptestmd 1713 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // zmm vpslld+vptestmd 1714 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // zmm vpslld+vptestmd 1715 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // zmm vpslld+vptestmd 1716 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, // vpslld+vptestmd 1717 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // zmm vpsllq+vptestmq 1718 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // zmm vpsllq+vptestmq 1719 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, // vpsllq+vptestmq 1720 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 2 }, // vpmovdb 1721 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 2 }, // vpmovdb 1722 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 2 }, // vpmovdb 1723 { ISD::TRUNCATE, MVT::v32i8, MVT::v16i32, 2 }, // vpmovdb 1724 { ISD::TRUNCATE, MVT::v64i8, MVT::v16i32, 2 }, // vpmovdb 1725 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2 }, // vpmovdw 1726 { ISD::TRUNCATE, MVT::v32i16, MVT::v16i32, 2 }, // vpmovdw 1727 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 2 }, // vpmovqb 1728 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1 }, // vpshufb 1729 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 2 }, // vpmovqb 1730 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i64, 2 }, // vpmovqb 1731 { ISD::TRUNCATE, MVT::v32i8, MVT::v8i64, 2 }, // vpmovqb 1732 { ISD::TRUNCATE, MVT::v64i8, MVT::v8i64, 2 }, // vpmovqb 1733 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 2 }, // vpmovqw 1734 { ISD::TRUNCATE, MVT::v16i16, MVT::v8i64, 2 }, // vpmovqw 1735 { ISD::TRUNCATE, MVT::v32i16, MVT::v8i64, 2 }, // vpmovqw 1736 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, // vpmovqd 1737 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // zmm vpmovqd 1738 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb 1739 1740 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, // extend to v16i32 1741 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 8 }, 1742 { ISD::TRUNCATE, MVT::v64i8, MVT::v32i16, 8 }, 1743 1744 // Sign extend is zmm vpternlogd+vptruncdb. 1745 // Zero extend is zmm broadcast load+vptruncdw. 1746 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 3 }, 1747 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 4 }, 1748 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 3 }, 1749 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 4 }, 1750 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 3 }, 1751 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 4 }, 1752 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 3 }, 1753 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 4 }, 1754 1755 // Sign extend is zmm vpternlogd+vptruncdw. 1756 // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw. 1757 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 3 }, 1758 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 4 }, 1759 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 3 }, 1760 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 4 }, 1761 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 3 }, 1762 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 4 }, 1763 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 3 }, 1764 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1765 1766 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // zmm vpternlogd 1767 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // zmm vpternlogd+psrld 1768 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // zmm vpternlogd 1769 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // zmm vpternlogd+psrld 1770 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // zmm vpternlogd 1771 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // zmm vpternlogd+psrld 1772 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // zmm vpternlogq 1773 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // zmm vpternlogq+psrlq 1774 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // zmm vpternlogq 1775 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // zmm vpternlogq+psrlq 1776 1777 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, // vpternlogd 1778 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, // vpternlogd+psrld 1779 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, // vpternlogq 1780 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, // vpternlogq+psrlq 1781 1782 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 1783 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 1784 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 1785 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 1786 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 }, 1787 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 }, 1788 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, 1789 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, 1790 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, 1791 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, 1792 1793 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right 1794 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right 1795 1796 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, 1797 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, 1798 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 }, 1799 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 }, 1800 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, 1801 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 }, 1802 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, 1803 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, 1804 1805 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, 1806 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, 1807 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 }, 1808 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 }, 1809 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, 1810 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 }, 1811 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, 1812 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, 1813 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 }, 1814 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 }, 1815 1816 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 }, 1817 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f64, 7 }, 1818 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f64,15 }, 1819 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f32,11 }, 1820 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f64,31 }, 1821 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, 3 }, 1822 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f64, 7 }, 1823 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f32, 5 }, 1824 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f64,15 }, 1825 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 1 }, 1826 { ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f64, 3 }, 1827 1828 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 }, 1829 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 3 }, 1830 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 3 }, 1831 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 }, 1832 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 3 }, 1833 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 3 }, 1834 }; 1835 1836 static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] { 1837 // Mask sign extend has an instruction. 1838 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 }, 1839 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, 1 }, 1840 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 }, 1841 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, 1 }, 1842 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 }, 1843 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, 1 }, 1844 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 }, 1845 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, 1 }, 1846 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 }, 1847 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, 1 }, 1848 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 }, 1849 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 }, 1850 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1851 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 }, 1852 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v32i1, 1 }, 1853 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v64i1, 1 }, 1854 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v64i1, 1 }, 1855 1856 // Mask zero extend is a sext + shift. 1857 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 }, 1858 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, 2 }, 1859 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 }, 1860 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, 2 }, 1861 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 }, 1862 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, 2 }, 1863 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 }, 1864 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, 2 }, 1865 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 }, 1866 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, 2 }, 1867 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 }, 1868 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 }, 1869 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 }, 1870 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 }, 1871 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v32i1, 2 }, 1872 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v64i1, 2 }, 1873 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v64i1, 2 }, 1874 1875 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, 1876 { ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, 2 }, 1877 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, 1878 { ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, 2 }, 1879 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, 1880 { ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, 2 }, 1881 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, 1882 { ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, 2 }, 1883 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, 1884 { ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, 2 }, 1885 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, 1886 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, 1887 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, 1888 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, 1889 { ISD::TRUNCATE, MVT::v32i1, MVT::v16i16, 2 }, 1890 { ISD::TRUNCATE, MVT::v64i1, MVT::v32i8, 2 }, 1891 { ISD::TRUNCATE, MVT::v64i1, MVT::v16i16, 2 }, 1892 1893 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, 1894 }; 1895 1896 static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = { 1897 // Mask sign extend has an instruction. 1898 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, 1899 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, 1 }, 1900 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, 1901 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i1, 1 }, 1902 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, 1903 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i1, 1 }, 1904 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i1, 1 }, 1905 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, 1906 1907 // Mask zero extend is a sext + shift. 1908 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, 1909 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, 2 }, 1910 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, 1911 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i1, 2 }, 1912 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, 1913 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i1, 2 }, 1914 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i1, 2 }, 1915 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, 1916 1917 { ISD::TRUNCATE, MVT::v16i1, MVT::v4i64, 2 }, 1918 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i32, 2 }, 1919 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, 1920 { ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, 2 }, 1921 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, 1922 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, 1923 { ISD::TRUNCATE, MVT::v8i1, MVT::v4i64, 2 }, 1924 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, 1925 1926 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, 1927 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1928 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, 1929 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, 1930 1931 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, 1932 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1933 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, 1934 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, 1935 1936 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v4f32, 1 }, 1937 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 }, 1938 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 1939 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 }, 1940 1941 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v4f32, 1 }, 1942 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 }, 1943 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 1944 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 }, 1945 }; 1946 1947 static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = { 1948 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd 1949 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd 1950 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd 1951 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 8 }, // split+2*v8i8 1952 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq 1953 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq 1954 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq 1955 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 8 }, // split+2*v8i16 1956 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // vpslld+vptestmd 1957 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // vpslld+vptestmd 1958 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // vpslld+vptestmd 1959 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // vpsllq+vptestmq 1960 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // vpsllq+vptestmq 1961 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // vpmovqd 1962 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, // vpmovqb 1963 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, // vpmovqw 1964 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, // vpmovwb 1965 1966 // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb 1967 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb 1968 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 5 }, 1969 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 6 }, 1970 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 5 }, 1971 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 6 }, 1972 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 5 }, 1973 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 6 }, 1974 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 10 }, 1975 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 12 }, 1976 1977 // sign extend is vpcmpeq+maskedmove+vpmovdw 1978 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw 1979 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 4 }, 1980 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 5 }, 1981 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 4 }, 1982 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 5 }, 1983 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 4 }, 1984 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 5 }, 1985 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 }, 1986 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 }, 1987 1988 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // vpternlogd 1989 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // vpternlogd+psrld 1990 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // vpternlogd 1991 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // vpternlogd+psrld 1992 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // vpternlogd 1993 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // vpternlogd+psrld 1994 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // vpternlogq 1995 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // vpternlogq+psrlq 1996 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // vpternlogq 1997 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // vpternlogq+psrlq 1998 1999 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 1 }, 2000 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 1 }, 2001 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 1 }, 2002 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 1 }, 2003 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 2004 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 2005 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 1 }, 2006 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 1 }, 2007 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 2008 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 2009 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 2010 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 2011 2012 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 }, 2013 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 }, 2014 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 }, 2015 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 }, 2016 2017 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 }, 2018 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 }, 2019 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 }, 2020 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 }, 2021 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 }, 2022 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 }, 2023 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 2024 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 2025 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, 2026 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, 2027 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 }, 2028 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, 2029 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 }, 2030 2031 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 }, 2032 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 }, 2033 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f32, 5 }, 2034 2035 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 }, 2036 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 }, 2037 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 2038 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 1 }, 2039 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 }, 2040 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 }, 2041 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 }, 2042 }; 2043 2044 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = { 2045 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 2046 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 2047 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 2048 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 2049 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 2050 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 2051 2052 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 2 }, 2053 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 2 }, 2054 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 2 }, 2055 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 2 }, 2056 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 2057 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 2058 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 2 }, 2059 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 2 }, 2060 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 2061 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 2062 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 }, 2063 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 }, 2064 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 2065 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 2066 2067 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, 2068 2069 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 4 }, 2070 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 4 }, 2071 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 1 }, 2072 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 1 }, 2073 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 1 }, 2074 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 4 }, 2075 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 4 }, 2076 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 1 }, 2077 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 1 }, 2078 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 5 }, 2079 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, 2080 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 }, 2081 2082 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 }, 2083 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 }, 2084 2085 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 1 }, 2086 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 1 }, 2087 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 1 }, 2088 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 3 }, 2089 2090 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 3 }, 2091 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 3 }, 2092 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 1 }, 2093 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 }, 2094 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 }, 2095 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4 }, 2096 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 3 }, 2097 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 4 }, 2098 2099 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 }, 2100 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 }, 2101 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 }, 2102 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 }, 2103 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, 2104 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, 2105 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 3 }, 2106 2107 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 }, 2108 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 }, 2109 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 }, 2110 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 }, 2111 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 }, 2112 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 }, 2113 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 2 }, 2114 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 }, 2115 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 2116 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 }, 2117 }; 2118 2119 static const TypeConversionCostTblEntry AVXConversionTbl[] = { 2120 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 }, 2121 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 }, 2122 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 }, 2123 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 }, 2124 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 2125 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 2126 2127 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 3 }, 2128 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 3 }, 2129 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 3 }, 2130 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 3 }, 2131 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 3 }, 2132 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 }, 2133 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 3 }, 2134 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 3 }, 2135 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 3 }, 2136 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 }, 2137 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 3 }, 2138 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 }, 2139 2140 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 4 }, 2141 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 5 }, 2142 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 4 }, 2143 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 9 }, 2144 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, 11 }, 2145 2146 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 }, 2147 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 2148 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // and+extract+packuswb 2149 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 5 }, 2150 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, 2151 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 5 }, 2152 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 3 }, // and+extract+2*packusdw 2153 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, 2154 2155 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 2156 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 }, 2157 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 }, 2158 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 }, 2159 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 }, 2160 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 2161 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 }, 2162 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 }, 2163 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 2164 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 }, 2165 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 5 }, 2166 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 8 }, 2167 2168 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 }, 2169 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 }, 2170 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 }, 2171 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 }, 2172 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 }, 2173 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 2174 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 }, 2175 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 4 }, 2176 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 4 }, 2177 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 }, 2178 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 }, 2179 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 }, 2180 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 10 }, 2181 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 10 }, 2182 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 18 }, 2183 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, 2184 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 10 }, 2185 2186 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 }, 2187 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f64, 2 }, 2188 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v8f32, 2 }, 2189 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v4f64, 2 }, 2190 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 2 }, 2191 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f64, 2 }, 2192 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 2 }, 2193 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v4f64, 2 }, 2194 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 2 }, 2195 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 2 }, 2196 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 5 }, 2197 2198 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v8f32, 2 }, 2199 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f64, 2 }, 2200 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v8f32, 2 }, 2201 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v4f64, 2 }, 2202 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 2 }, 2203 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f64, 2 }, 2204 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 2 }, 2205 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v4f64, 2 }, 2206 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 }, 2207 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 }, 2208 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 6 }, 2209 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 7 }, 2210 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 7 }, 2211 2212 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 }, 2213 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 }, 2214 }; 2215 2216 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = { 2217 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 1 }, 2218 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 1 }, 2219 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 1 }, 2220 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 1 }, 2221 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 }, 2222 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 1 }, 2223 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 1 }, 2224 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 1 }, 2225 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 }, 2226 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 1 }, 2227 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 }, 2228 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 1 }, 2229 2230 // These truncates end up widening elements. 2231 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 1 }, // PMOVXZBQ 2232 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 1 }, // PMOVXZWQ 2233 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 1 }, // PMOVXZBD 2234 2235 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 2 }, 2236 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 2 }, 2237 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 2 }, 2238 2239 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 1 }, 2240 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 1 }, 2241 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 1 }, 2242 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 1 }, 2243 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 }, 2244 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 }, 2245 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 }, 2246 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 }, 2247 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 2248 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 1 }, 2249 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 }, 2250 2251 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 1 }, 2252 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 1 }, 2253 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 }, 2254 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 }, 2255 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 }, 2256 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 }, 2257 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 }, 2258 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 }, 2259 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 3 }, 2260 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 }, 2261 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 2 }, 2262 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 12 }, 2263 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 22 }, 2264 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 4 }, 2265 2266 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 1 }, 2267 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 1 }, 2268 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 1 }, 2269 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 1 }, 2270 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 2 }, 2271 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 2 }, 2272 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 1 }, 2273 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 1 }, 2274 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 2275 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 1 }, 2276 2277 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 1 }, 2278 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 }, 2279 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 1 }, 2280 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 }, 2281 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 2 }, 2282 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 2 }, 2283 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 1 }, 2284 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 1 }, 2285 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 4 }, 2286 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 }, 2287 }; 2288 2289 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = { 2290 // These are somewhat magic numbers justified by comparing the 2291 // output of llvm-mca for our various supported scheduler models 2292 // and basing it off the worst case scenario. 2293 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 3 }, 2294 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 3 }, 2295 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 3 }, 2296 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 3 }, 2297 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 3 }, 2298 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 }, 2299 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 3 }, 2300 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 }, 2301 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 }, 2302 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4 }, 2303 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 8 }, 2304 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 8 }, 2305 2306 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 3 }, 2307 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 3 }, 2308 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 8 }, 2309 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 9 }, 2310 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 }, 2311 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 4 }, 2312 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 4 }, 2313 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 }, 2314 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 7 }, 2315 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 7 }, 2316 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 }, 2317 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 15 }, 2318 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 18 }, 2319 2320 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 4 }, 2321 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 4 }, 2322 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 4 }, 2323 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 4 }, 2324 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 6 }, 2325 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 6 }, 2326 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 5 }, 2327 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 5 }, 2328 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 4 }, 2329 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 4 }, 2330 2331 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 4 }, 2332 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 }, 2333 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 4 }, 2334 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 15 }, 2335 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 6 }, 2336 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 6 }, 2337 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 5 }, 2338 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 5 }, 2339 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 8 }, 2340 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 8 }, 2341 2342 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 4 }, 2343 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 4 }, 2344 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 2 }, 2345 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 3 }, 2346 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 }, 2347 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 2 }, 2348 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 2 }, 2349 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 3 }, 2350 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 }, 2351 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 2 }, 2352 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 }, 2353 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 2 }, 2354 2355 // These truncates are really widening elements. 2356 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 1 }, // PSHUFD 2357 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // PUNPCKLWD+DQ 2358 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // PUNPCKLBW+WD+PSHUFD 2359 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 1 }, // PUNPCKLWD 2360 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // PUNPCKLBW+WD 2361 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 1 }, // PUNPCKLBW 2362 2363 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 2 }, // PAND+PACKUSWB 2364 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, 2365 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 3 }, // PAND+2*PACKUSWB 2366 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 }, 2367 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 }, 2368 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 3 }, 2369 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, 2370 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32,10 }, 2371 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB 2372 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW 2373 { ISD::TRUNCATE, MVT::v4i32, MVT::v2i64, 1 }, // PSHUFD 2374 }; 2375 2376 // Attempt to map directly to (simple) MVT types to let us match custom entries. 2377 EVT SrcTy = TLI->getValueType(DL, Src); 2378 EVT DstTy = TLI->getValueType(DL, Dst); 2379 2380 // The function getSimpleVT only handles simple value types. 2381 if (SrcTy.isSimple() && DstTy.isSimple()) { 2382 MVT SimpleSrcTy = SrcTy.getSimpleVT(); 2383 MVT SimpleDstTy = DstTy.getSimpleVT(); 2384 2385 if (ST->useAVX512Regs()) { 2386 if (ST->hasBWI()) 2387 if (const auto *Entry = ConvertCostTableLookup( 2388 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy)) 2389 return AdjustCost(Entry->Cost); 2390 2391 if (ST->hasDQI()) 2392 if (const auto *Entry = ConvertCostTableLookup( 2393 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy)) 2394 return AdjustCost(Entry->Cost); 2395 2396 if (ST->hasAVX512()) 2397 if (const auto *Entry = ConvertCostTableLookup( 2398 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy)) 2399 return AdjustCost(Entry->Cost); 2400 } 2401 2402 if (ST->hasBWI()) 2403 if (const auto *Entry = ConvertCostTableLookup( 2404 AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy)) 2405 return AdjustCost(Entry->Cost); 2406 2407 if (ST->hasDQI()) 2408 if (const auto *Entry = ConvertCostTableLookup( 2409 AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy)) 2410 return AdjustCost(Entry->Cost); 2411 2412 if (ST->hasAVX512()) 2413 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD, 2414 SimpleDstTy, SimpleSrcTy)) 2415 return AdjustCost(Entry->Cost); 2416 2417 if (ST->hasAVX2()) { 2418 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD, 2419 SimpleDstTy, SimpleSrcTy)) 2420 return AdjustCost(Entry->Cost); 2421 } 2422 2423 if (ST->hasAVX()) { 2424 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD, 2425 SimpleDstTy, SimpleSrcTy)) 2426 return AdjustCost(Entry->Cost); 2427 } 2428 2429 if (ST->hasSSE41()) { 2430 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD, 2431 SimpleDstTy, SimpleSrcTy)) 2432 return AdjustCost(Entry->Cost); 2433 } 2434 2435 if (ST->hasSSE2()) { 2436 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, 2437 SimpleDstTy, SimpleSrcTy)) 2438 return AdjustCost(Entry->Cost); 2439 } 2440 } 2441 2442 // Fall back to legalized types. 2443 std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src); 2444 std::pair<InstructionCost, MVT> LTDest = 2445 TLI->getTypeLegalizationCost(DL, Dst); 2446 2447 if (ST->useAVX512Regs()) { 2448 if (ST->hasBWI()) 2449 if (const auto *Entry = ConvertCostTableLookup( 2450 AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second)) 2451 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2452 2453 if (ST->hasDQI()) 2454 if (const auto *Entry = ConvertCostTableLookup( 2455 AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second)) 2456 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2457 2458 if (ST->hasAVX512()) 2459 if (const auto *Entry = ConvertCostTableLookup( 2460 AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second)) 2461 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2462 } 2463 2464 if (ST->hasBWI()) 2465 if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD, 2466 LTDest.second, LTSrc.second)) 2467 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2468 2469 if (ST->hasDQI()) 2470 if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD, 2471 LTDest.second, LTSrc.second)) 2472 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2473 2474 if (ST->hasAVX512()) 2475 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD, 2476 LTDest.second, LTSrc.second)) 2477 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2478 2479 if (ST->hasAVX2()) 2480 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD, 2481 LTDest.second, LTSrc.second)) 2482 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2483 2484 if (ST->hasAVX()) 2485 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD, 2486 LTDest.second, LTSrc.second)) 2487 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2488 2489 if (ST->hasSSE41()) 2490 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD, 2491 LTDest.second, LTSrc.second)) 2492 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2493 2494 if (ST->hasSSE2()) 2495 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, 2496 LTDest.second, LTSrc.second)) 2497 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost); 2498 2499 // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for 2500 // sitofp. 2501 if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) && 2502 1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) { 2503 Type *ExtSrc = Src->getWithNewBitWidth(32); 2504 unsigned ExtOpc = 2505 (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt; 2506 2507 // For scalar loads the extend would be free. 2508 InstructionCost ExtCost = 0; 2509 if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0)))) 2510 ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind); 2511 2512 return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc, 2513 TTI::CastContextHint::None, CostKind); 2514 } 2515 2516 // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi 2517 // i32. 2518 if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) && 2519 1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) { 2520 Type *TruncDst = Dst->getWithNewBitWidth(32); 2521 return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) + 2522 getCastInstrCost(Instruction::Trunc, Dst, TruncDst, 2523 TTI::CastContextHint::None, CostKind); 2524 } 2525 2526 return AdjustCost( 2527 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 2528 } 2529 2530 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 2531 Type *CondTy, 2532 CmpInst::Predicate VecPred, 2533 TTI::TargetCostKind CostKind, 2534 const Instruction *I) { 2535 // TODO: Handle other cost kinds. 2536 if (CostKind != TTI::TCK_RecipThroughput) 2537 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 2538 I); 2539 2540 // Legalize the type. 2541 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2542 2543 MVT MTy = LT.second; 2544 2545 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2546 assert(ISD && "Invalid opcode"); 2547 2548 unsigned ExtraCost = 0; 2549 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 2550 // Some vector comparison predicates cost extra instructions. 2551 // TODO: Should we invert this and assume worst case cmp costs 2552 // and reduce for particular predicates? 2553 if (MTy.isVector() && 2554 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) || 2555 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) || 2556 ST->hasBWI())) { 2557 // Fallback to I if a specific predicate wasn't specified. 2558 CmpInst::Predicate Pred = VecPred; 2559 if (I && (Pred == CmpInst::BAD_ICMP_PREDICATE || 2560 Pred == CmpInst::BAD_FCMP_PREDICATE)) 2561 Pred = cast<CmpInst>(I)->getPredicate(); 2562 2563 switch (Pred) { 2564 case CmpInst::Predicate::ICMP_NE: 2565 // xor(cmpeq(x,y),-1) 2566 ExtraCost = 1; 2567 break; 2568 case CmpInst::Predicate::ICMP_SGE: 2569 case CmpInst::Predicate::ICMP_SLE: 2570 // xor(cmpgt(x,y),-1) 2571 ExtraCost = 1; 2572 break; 2573 case CmpInst::Predicate::ICMP_ULT: 2574 case CmpInst::Predicate::ICMP_UGT: 2575 // cmpgt(xor(x,signbit),xor(y,signbit)) 2576 // xor(cmpeq(pmaxu(x,y),x),-1) 2577 ExtraCost = 2; 2578 break; 2579 case CmpInst::Predicate::ICMP_ULE: 2580 case CmpInst::Predicate::ICMP_UGE: 2581 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) || 2582 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) { 2583 // cmpeq(psubus(x,y),0) 2584 // cmpeq(pminu(x,y),x) 2585 ExtraCost = 1; 2586 } else { 2587 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1) 2588 ExtraCost = 3; 2589 } 2590 break; 2591 case CmpInst::Predicate::BAD_ICMP_PREDICATE: 2592 case CmpInst::Predicate::BAD_FCMP_PREDICATE: 2593 // Assume worst case scenario and add the maximum extra cost. 2594 ExtraCost = 3; 2595 break; 2596 default: 2597 break; 2598 } 2599 } 2600 } 2601 2602 static const CostTblEntry SLMCostTbl[] = { 2603 // slm pcmpeq/pcmpgt throughput is 2 2604 { ISD::SETCC, MVT::v2i64, 2 }, 2605 }; 2606 2607 static const CostTblEntry AVX512BWCostTbl[] = { 2608 { ISD::SETCC, MVT::v32i16, 1 }, 2609 { ISD::SETCC, MVT::v64i8, 1 }, 2610 2611 { ISD::SELECT, MVT::v32i16, 1 }, 2612 { ISD::SELECT, MVT::v64i8, 1 }, 2613 }; 2614 2615 static const CostTblEntry AVX512CostTbl[] = { 2616 { ISD::SETCC, MVT::v8i64, 1 }, 2617 { ISD::SETCC, MVT::v16i32, 1 }, 2618 { ISD::SETCC, MVT::v8f64, 1 }, 2619 { ISD::SETCC, MVT::v16f32, 1 }, 2620 2621 { ISD::SELECT, MVT::v8i64, 1 }, 2622 { ISD::SELECT, MVT::v16i32, 1 }, 2623 { ISD::SELECT, MVT::v8f64, 1 }, 2624 { ISD::SELECT, MVT::v16f32, 1 }, 2625 2626 { ISD::SETCC, MVT::v32i16, 2 }, // FIXME: should probably be 4 2627 { ISD::SETCC, MVT::v64i8, 2 }, // FIXME: should probably be 4 2628 2629 { ISD::SELECT, MVT::v32i16, 2 }, // FIXME: should be 3 2630 { ISD::SELECT, MVT::v64i8, 2 }, // FIXME: should be 3 2631 }; 2632 2633 static const CostTblEntry AVX2CostTbl[] = { 2634 { ISD::SETCC, MVT::v4i64, 1 }, 2635 { ISD::SETCC, MVT::v8i32, 1 }, 2636 { ISD::SETCC, MVT::v16i16, 1 }, 2637 { ISD::SETCC, MVT::v32i8, 1 }, 2638 2639 { ISD::SELECT, MVT::v4i64, 1 }, // pblendvb 2640 { ISD::SELECT, MVT::v8i32, 1 }, // pblendvb 2641 { ISD::SELECT, MVT::v16i16, 1 }, // pblendvb 2642 { ISD::SELECT, MVT::v32i8, 1 }, // pblendvb 2643 }; 2644 2645 static const CostTblEntry AVX1CostTbl[] = { 2646 { ISD::SETCC, MVT::v4f64, 1 }, 2647 { ISD::SETCC, MVT::v8f32, 1 }, 2648 // AVX1 does not support 8-wide integer compare. 2649 { ISD::SETCC, MVT::v4i64, 4 }, 2650 { ISD::SETCC, MVT::v8i32, 4 }, 2651 { ISD::SETCC, MVT::v16i16, 4 }, 2652 { ISD::SETCC, MVT::v32i8, 4 }, 2653 2654 { ISD::SELECT, MVT::v4f64, 1 }, // vblendvpd 2655 { ISD::SELECT, MVT::v8f32, 1 }, // vblendvps 2656 { ISD::SELECT, MVT::v4i64, 1 }, // vblendvpd 2657 { ISD::SELECT, MVT::v8i32, 1 }, // vblendvps 2658 { ISD::SELECT, MVT::v16i16, 3 }, // vandps + vandnps + vorps 2659 { ISD::SELECT, MVT::v32i8, 3 }, // vandps + vandnps + vorps 2660 }; 2661 2662 static const CostTblEntry SSE42CostTbl[] = { 2663 { ISD::SETCC, MVT::v2f64, 1 }, 2664 { ISD::SETCC, MVT::v4f32, 1 }, 2665 { ISD::SETCC, MVT::v2i64, 1 }, 2666 }; 2667 2668 static const CostTblEntry SSE41CostTbl[] = { 2669 { ISD::SELECT, MVT::v2f64, 1 }, // blendvpd 2670 { ISD::SELECT, MVT::v4f32, 1 }, // blendvps 2671 { ISD::SELECT, MVT::v2i64, 1 }, // pblendvb 2672 { ISD::SELECT, MVT::v4i32, 1 }, // pblendvb 2673 { ISD::SELECT, MVT::v8i16, 1 }, // pblendvb 2674 { ISD::SELECT, MVT::v16i8, 1 }, // pblendvb 2675 }; 2676 2677 static const CostTblEntry SSE2CostTbl[] = { 2678 { ISD::SETCC, MVT::v2f64, 2 }, 2679 { ISD::SETCC, MVT::f64, 1 }, 2680 { ISD::SETCC, MVT::v2i64, 8 }, 2681 { ISD::SETCC, MVT::v4i32, 1 }, 2682 { ISD::SETCC, MVT::v8i16, 1 }, 2683 { ISD::SETCC, MVT::v16i8, 1 }, 2684 2685 { ISD::SELECT, MVT::v2f64, 3 }, // andpd + andnpd + orpd 2686 { ISD::SELECT, MVT::v2i64, 3 }, // pand + pandn + por 2687 { ISD::SELECT, MVT::v4i32, 3 }, // pand + pandn + por 2688 { ISD::SELECT, MVT::v8i16, 3 }, // pand + pandn + por 2689 { ISD::SELECT, MVT::v16i8, 3 }, // pand + pandn + por 2690 }; 2691 2692 static const CostTblEntry SSE1CostTbl[] = { 2693 { ISD::SETCC, MVT::v4f32, 2 }, 2694 { ISD::SETCC, MVT::f32, 1 }, 2695 2696 { ISD::SELECT, MVT::v4f32, 3 }, // andps + andnps + orps 2697 }; 2698 2699 if (ST->useSLMArithCosts()) 2700 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy)) 2701 return LT.first * (ExtraCost + Entry->Cost); 2702 2703 if (ST->hasBWI()) 2704 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 2705 return LT.first * (ExtraCost + Entry->Cost); 2706 2707 if (ST->hasAVX512()) 2708 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 2709 return LT.first * (ExtraCost + Entry->Cost); 2710 2711 if (ST->hasAVX2()) 2712 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 2713 return LT.first * (ExtraCost + Entry->Cost); 2714 2715 if (ST->hasAVX()) 2716 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 2717 return LT.first * (ExtraCost + Entry->Cost); 2718 2719 if (ST->hasSSE42()) 2720 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 2721 return LT.first * (ExtraCost + Entry->Cost); 2722 2723 if (ST->hasSSE41()) 2724 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 2725 return LT.first * (ExtraCost + Entry->Cost); 2726 2727 if (ST->hasSSE2()) 2728 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 2729 return LT.first * (ExtraCost + Entry->Cost); 2730 2731 if (ST->hasSSE1()) 2732 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 2733 return LT.first * (ExtraCost + Entry->Cost); 2734 2735 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 2736 } 2737 2738 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; } 2739 2740 InstructionCost 2741 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 2742 TTI::TargetCostKind CostKind) { 2743 2744 // Costs should match the codegen from: 2745 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll 2746 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll 2747 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll 2748 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll 2749 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll 2750 2751 // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not 2752 // specialized in these tables yet. 2753 static const CostTblEntry AVX512BITALGCostTbl[] = { 2754 { ISD::CTPOP, MVT::v32i16, 1 }, 2755 { ISD::CTPOP, MVT::v64i8, 1 }, 2756 { ISD::CTPOP, MVT::v16i16, 1 }, 2757 { ISD::CTPOP, MVT::v32i8, 1 }, 2758 { ISD::CTPOP, MVT::v8i16, 1 }, 2759 { ISD::CTPOP, MVT::v16i8, 1 }, 2760 }; 2761 static const CostTblEntry AVX512VPOPCNTDQCostTbl[] = { 2762 { ISD::CTPOP, MVT::v8i64, 1 }, 2763 { ISD::CTPOP, MVT::v16i32, 1 }, 2764 { ISD::CTPOP, MVT::v4i64, 1 }, 2765 { ISD::CTPOP, MVT::v8i32, 1 }, 2766 { ISD::CTPOP, MVT::v2i64, 1 }, 2767 { ISD::CTPOP, MVT::v4i32, 1 }, 2768 }; 2769 static const CostTblEntry AVX512CDCostTbl[] = { 2770 { ISD::CTLZ, MVT::v8i64, 1 }, 2771 { ISD::CTLZ, MVT::v16i32, 1 }, 2772 { ISD::CTLZ, MVT::v32i16, 8 }, 2773 { ISD::CTLZ, MVT::v64i8, 20 }, 2774 { ISD::CTLZ, MVT::v4i64, 1 }, 2775 { ISD::CTLZ, MVT::v8i32, 1 }, 2776 { ISD::CTLZ, MVT::v16i16, 4 }, 2777 { ISD::CTLZ, MVT::v32i8, 10 }, 2778 { ISD::CTLZ, MVT::v2i64, 1 }, 2779 { ISD::CTLZ, MVT::v4i32, 1 }, 2780 { ISD::CTLZ, MVT::v8i16, 4 }, 2781 { ISD::CTLZ, MVT::v16i8, 4 }, 2782 }; 2783 static const CostTblEntry AVX512BWCostTbl[] = { 2784 { ISD::ABS, MVT::v32i16, 1 }, 2785 { ISD::ABS, MVT::v64i8, 1 }, 2786 { ISD::BITREVERSE, MVT::v8i64, 3 }, 2787 { ISD::BITREVERSE, MVT::v16i32, 3 }, 2788 { ISD::BITREVERSE, MVT::v32i16, 3 }, 2789 { ISD::BITREVERSE, MVT::v64i8, 2 }, 2790 { ISD::BSWAP, MVT::v8i64, 1 }, 2791 { ISD::BSWAP, MVT::v16i32, 1 }, 2792 { ISD::BSWAP, MVT::v32i16, 1 }, 2793 { ISD::CTLZ, MVT::v8i64, 23 }, 2794 { ISD::CTLZ, MVT::v16i32, 22 }, 2795 { ISD::CTLZ, MVT::v32i16, 18 }, 2796 { ISD::CTLZ, MVT::v64i8, 17 }, 2797 { ISD::CTPOP, MVT::v8i64, 7 }, 2798 { ISD::CTPOP, MVT::v16i32, 11 }, 2799 { ISD::CTPOP, MVT::v32i16, 9 }, 2800 { ISD::CTPOP, MVT::v64i8, 6 }, 2801 { ISD::CTTZ, MVT::v8i64, 10 }, 2802 { ISD::CTTZ, MVT::v16i32, 14 }, 2803 { ISD::CTTZ, MVT::v32i16, 12 }, 2804 { ISD::CTTZ, MVT::v64i8, 9 }, 2805 { ISD::SADDSAT, MVT::v32i16, 1 }, 2806 { ISD::SADDSAT, MVT::v64i8, 1 }, 2807 { ISD::SMAX, MVT::v32i16, 1 }, 2808 { ISD::SMAX, MVT::v64i8, 1 }, 2809 { ISD::SMIN, MVT::v32i16, 1 }, 2810 { ISD::SMIN, MVT::v64i8, 1 }, 2811 { ISD::SSUBSAT, MVT::v32i16, 1 }, 2812 { ISD::SSUBSAT, MVT::v64i8, 1 }, 2813 { ISD::UADDSAT, MVT::v32i16, 1 }, 2814 { ISD::UADDSAT, MVT::v64i8, 1 }, 2815 { ISD::UMAX, MVT::v32i16, 1 }, 2816 { ISD::UMAX, MVT::v64i8, 1 }, 2817 { ISD::UMIN, MVT::v32i16, 1 }, 2818 { ISD::UMIN, MVT::v64i8, 1 }, 2819 { ISD::USUBSAT, MVT::v32i16, 1 }, 2820 { ISD::USUBSAT, MVT::v64i8, 1 }, 2821 }; 2822 static const CostTblEntry AVX512CostTbl[] = { 2823 { ISD::ABS, MVT::v8i64, 1 }, 2824 { ISD::ABS, MVT::v16i32, 1 }, 2825 { ISD::ABS, MVT::v32i16, 2 }, 2826 { ISD::ABS, MVT::v64i8, 2 }, 2827 { ISD::ABS, MVT::v4i64, 1 }, 2828 { ISD::ABS, MVT::v2i64, 1 }, 2829 { ISD::BITREVERSE, MVT::v8i64, 36 }, 2830 { ISD::BITREVERSE, MVT::v16i32, 24 }, 2831 { ISD::BITREVERSE, MVT::v32i16, 10 }, 2832 { ISD::BITREVERSE, MVT::v64i8, 10 }, 2833 { ISD::BSWAP, MVT::v8i64, 4 }, 2834 { ISD::BSWAP, MVT::v16i32, 4 }, 2835 { ISD::BSWAP, MVT::v32i16, 4 }, 2836 { ISD::CTLZ, MVT::v8i64, 29 }, 2837 { ISD::CTLZ, MVT::v16i32, 35 }, 2838 { ISD::CTLZ, MVT::v32i16, 28 }, 2839 { ISD::CTLZ, MVT::v64i8, 18 }, 2840 { ISD::CTPOP, MVT::v8i64, 16 }, 2841 { ISD::CTPOP, MVT::v16i32, 24 }, 2842 { ISD::CTPOP, MVT::v32i16, 18 }, 2843 { ISD::CTPOP, MVT::v64i8, 12 }, 2844 { ISD::CTTZ, MVT::v8i64, 20 }, 2845 { ISD::CTTZ, MVT::v16i32, 28 }, 2846 { ISD::CTTZ, MVT::v32i16, 24 }, 2847 { ISD::CTTZ, MVT::v64i8, 18 }, 2848 { ISD::SMAX, MVT::v8i64, 1 }, 2849 { ISD::SMAX, MVT::v16i32, 1 }, 2850 { ISD::SMAX, MVT::v32i16, 2 }, 2851 { ISD::SMAX, MVT::v64i8, 2 }, 2852 { ISD::SMAX, MVT::v4i64, 1 }, 2853 { ISD::SMAX, MVT::v2i64, 1 }, 2854 { ISD::SMIN, MVT::v8i64, 1 }, 2855 { ISD::SMIN, MVT::v16i32, 1 }, 2856 { ISD::SMIN, MVT::v32i16, 2 }, 2857 { ISD::SMIN, MVT::v64i8, 2 }, 2858 { ISD::SMIN, MVT::v4i64, 1 }, 2859 { ISD::SMIN, MVT::v2i64, 1 }, 2860 { ISD::UMAX, MVT::v8i64, 1 }, 2861 { ISD::UMAX, MVT::v16i32, 1 }, 2862 { ISD::UMAX, MVT::v32i16, 2 }, 2863 { ISD::UMAX, MVT::v64i8, 2 }, 2864 { ISD::UMAX, MVT::v4i64, 1 }, 2865 { ISD::UMAX, MVT::v2i64, 1 }, 2866 { ISD::UMIN, MVT::v8i64, 1 }, 2867 { ISD::UMIN, MVT::v16i32, 1 }, 2868 { ISD::UMIN, MVT::v32i16, 2 }, 2869 { ISD::UMIN, MVT::v64i8, 2 }, 2870 { ISD::UMIN, MVT::v4i64, 1 }, 2871 { ISD::UMIN, MVT::v2i64, 1 }, 2872 { ISD::USUBSAT, MVT::v16i32, 2 }, // pmaxud + psubd 2873 { ISD::USUBSAT, MVT::v2i64, 2 }, // pmaxuq + psubq 2874 { ISD::USUBSAT, MVT::v4i64, 2 }, // pmaxuq + psubq 2875 { ISD::USUBSAT, MVT::v8i64, 2 }, // pmaxuq + psubq 2876 { ISD::UADDSAT, MVT::v16i32, 3 }, // not + pminud + paddd 2877 { ISD::UADDSAT, MVT::v2i64, 3 }, // not + pminuq + paddq 2878 { ISD::UADDSAT, MVT::v4i64, 3 }, // not + pminuq + paddq 2879 { ISD::UADDSAT, MVT::v8i64, 3 }, // not + pminuq + paddq 2880 { ISD::SADDSAT, MVT::v32i16, 2 }, 2881 { ISD::SADDSAT, MVT::v64i8, 2 }, 2882 { ISD::SSUBSAT, MVT::v32i16, 2 }, 2883 { ISD::SSUBSAT, MVT::v64i8, 2 }, 2884 { ISD::UADDSAT, MVT::v32i16, 2 }, 2885 { ISD::UADDSAT, MVT::v64i8, 2 }, 2886 { ISD::USUBSAT, MVT::v32i16, 2 }, 2887 { ISD::USUBSAT, MVT::v64i8, 2 }, 2888 { ISD::FMAXNUM, MVT::f32, 2 }, 2889 { ISD::FMAXNUM, MVT::v4f32, 2 }, 2890 { ISD::FMAXNUM, MVT::v8f32, 2 }, 2891 { ISD::FMAXNUM, MVT::v16f32, 2 }, 2892 { ISD::FMAXNUM, MVT::f64, 2 }, 2893 { ISD::FMAXNUM, MVT::v2f64, 2 }, 2894 { ISD::FMAXNUM, MVT::v4f64, 2 }, 2895 { ISD::FMAXNUM, MVT::v8f64, 2 }, 2896 }; 2897 static const CostTblEntry XOPCostTbl[] = { 2898 { ISD::BITREVERSE, MVT::v4i64, 4 }, 2899 { ISD::BITREVERSE, MVT::v8i32, 4 }, 2900 { ISD::BITREVERSE, MVT::v16i16, 4 }, 2901 { ISD::BITREVERSE, MVT::v32i8, 4 }, 2902 { ISD::BITREVERSE, MVT::v2i64, 1 }, 2903 { ISD::BITREVERSE, MVT::v4i32, 1 }, 2904 { ISD::BITREVERSE, MVT::v8i16, 1 }, 2905 { ISD::BITREVERSE, MVT::v16i8, 1 }, 2906 { ISD::BITREVERSE, MVT::i64, 3 }, 2907 { ISD::BITREVERSE, MVT::i32, 3 }, 2908 { ISD::BITREVERSE, MVT::i16, 3 }, 2909 { ISD::BITREVERSE, MVT::i8, 3 } 2910 }; 2911 static const CostTblEntry AVX2CostTbl[] = { 2912 { ISD::ABS, MVT::v4i64, 2 }, // VBLENDVPD(X,VPSUBQ(0,X),X) 2913 { ISD::ABS, MVT::v8i32, 1 }, 2914 { ISD::ABS, MVT::v16i16, 1 }, 2915 { ISD::ABS, MVT::v32i8, 1 }, 2916 { ISD::BITREVERSE, MVT::v2i64, 3 }, 2917 { ISD::BITREVERSE, MVT::v4i64, 3 }, 2918 { ISD::BITREVERSE, MVT::v4i32, 3 }, 2919 { ISD::BITREVERSE, MVT::v8i32, 3 }, 2920 { ISD::BITREVERSE, MVT::v8i16, 3 }, 2921 { ISD::BITREVERSE, MVT::v16i16, 3 }, 2922 { ISD::BITREVERSE, MVT::v16i8, 3 }, 2923 { ISD::BITREVERSE, MVT::v32i8, 3 }, 2924 { ISD::BSWAP, MVT::v4i64, 1 }, 2925 { ISD::BSWAP, MVT::v8i32, 1 }, 2926 { ISD::BSWAP, MVT::v16i16, 1 }, 2927 { ISD::CTLZ, MVT::v2i64, 7 }, 2928 { ISD::CTLZ, MVT::v4i64, 7 }, 2929 { ISD::CTLZ, MVT::v4i32, 5 }, 2930 { ISD::CTLZ, MVT::v8i32, 5 }, 2931 { ISD::CTLZ, MVT::v8i16, 4 }, 2932 { ISD::CTLZ, MVT::v16i16, 4 }, 2933 { ISD::CTLZ, MVT::v16i8, 3 }, 2934 { ISD::CTLZ, MVT::v32i8, 3 }, 2935 { ISD::CTPOP, MVT::v2i64, 3 }, 2936 { ISD::CTPOP, MVT::v4i64, 3 }, 2937 { ISD::CTPOP, MVT::v4i32, 7 }, 2938 { ISD::CTPOP, MVT::v8i32, 7 }, 2939 { ISD::CTPOP, MVT::v8i16, 3 }, 2940 { ISD::CTPOP, MVT::v16i16, 3 }, 2941 { ISD::CTPOP, MVT::v16i8, 2 }, 2942 { ISD::CTPOP, MVT::v32i8, 2 }, 2943 { ISD::CTTZ, MVT::v2i64, 4 }, 2944 { ISD::CTTZ, MVT::v4i64, 4 }, 2945 { ISD::CTTZ, MVT::v4i32, 7 }, 2946 { ISD::CTTZ, MVT::v8i32, 7 }, 2947 { ISD::CTTZ, MVT::v8i16, 4 }, 2948 { ISD::CTTZ, MVT::v16i16, 4 }, 2949 { ISD::CTTZ, MVT::v16i8, 3 }, 2950 { ISD::CTTZ, MVT::v32i8, 3 }, 2951 { ISD::SADDSAT, MVT::v16i16, 1 }, 2952 { ISD::SADDSAT, MVT::v32i8, 1 }, 2953 { ISD::SMAX, MVT::v8i32, 1 }, 2954 { ISD::SMAX, MVT::v16i16, 1 }, 2955 { ISD::SMAX, MVT::v32i8, 1 }, 2956 { ISD::SMIN, MVT::v8i32, 1 }, 2957 { ISD::SMIN, MVT::v16i16, 1 }, 2958 { ISD::SMIN, MVT::v32i8, 1 }, 2959 { ISD::SSUBSAT, MVT::v16i16, 1 }, 2960 { ISD::SSUBSAT, MVT::v32i8, 1 }, 2961 { ISD::UADDSAT, MVT::v16i16, 1 }, 2962 { ISD::UADDSAT, MVT::v32i8, 1 }, 2963 { ISD::UADDSAT, MVT::v8i32, 3 }, // not + pminud + paddd 2964 { ISD::UMAX, MVT::v8i32, 1 }, 2965 { ISD::UMAX, MVT::v16i16, 1 }, 2966 { ISD::UMAX, MVT::v32i8, 1 }, 2967 { ISD::UMIN, MVT::v8i32, 1 }, 2968 { ISD::UMIN, MVT::v16i16, 1 }, 2969 { ISD::UMIN, MVT::v32i8, 1 }, 2970 { ISD::USUBSAT, MVT::v16i16, 1 }, 2971 { ISD::USUBSAT, MVT::v32i8, 1 }, 2972 { ISD::USUBSAT, MVT::v8i32, 2 }, // pmaxud + psubd 2973 { ISD::FMAXNUM, MVT::v8f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS 2974 { ISD::FMAXNUM, MVT::v4f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD 2975 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/ 2976 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/ 2977 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/ 2978 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/ 2979 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/ 2980 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/ 2981 }; 2982 static const CostTblEntry AVX1CostTbl[] = { 2983 { ISD::ABS, MVT::v4i64, 5 }, // VBLENDVPD(X,VPSUBQ(0,X),X) 2984 { ISD::ABS, MVT::v8i32, 3 }, 2985 { ISD::ABS, MVT::v16i16, 3 }, 2986 { ISD::ABS, MVT::v32i8, 3 }, 2987 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert 2988 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert 2989 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert 2990 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert 2991 { ISD::BSWAP, MVT::v4i64, 4 }, 2992 { ISD::BSWAP, MVT::v8i32, 4 }, 2993 { ISD::BSWAP, MVT::v16i16, 4 }, 2994 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert 2995 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert 2996 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert 2997 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert 2998 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert 2999 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert 3000 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert 3001 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert 3002 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert 3003 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert 3004 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert 3005 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert 3006 { ISD::SADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 3007 { ISD::SADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 3008 { ISD::SMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 3009 { ISD::SMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 3010 { ISD::SMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 3011 { ISD::SMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 3012 { ISD::SMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 3013 { ISD::SMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 3014 { ISD::SSUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 3015 { ISD::SSUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 3016 { ISD::UADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 3017 { ISD::UADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 3018 { ISD::UADDSAT, MVT::v8i32, 8 }, // 2 x 128-bit Op + extract/insert 3019 { ISD::UMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 3020 { ISD::UMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 3021 { ISD::UMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 3022 { ISD::UMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 3023 { ISD::UMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 3024 { ISD::UMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 3025 { ISD::USUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 3026 { ISD::USUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 3027 { ISD::USUBSAT, MVT::v8i32, 6 }, // 2 x 128-bit Op + extract/insert 3028 { ISD::FMAXNUM, MVT::f32, 3 }, // MAXSS + CMPUNORDSS + BLENDVPS 3029 { ISD::FMAXNUM, MVT::v4f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS 3030 { ISD::FMAXNUM, MVT::v8f32, 5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ? 3031 { ISD::FMAXNUM, MVT::f64, 3 }, // MAXSD + CMPUNORDSD + BLENDVPD 3032 { ISD::FMAXNUM, MVT::v2f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD 3033 { ISD::FMAXNUM, MVT::v4f64, 5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ? 3034 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/ 3035 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/ 3036 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/ 3037 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/ 3038 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/ 3039 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/ 3040 }; 3041 static const CostTblEntry GLMCostTbl[] = { 3042 { ISD::FSQRT, MVT::f32, 19 }, // sqrtss 3043 { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps 3044 { ISD::FSQRT, MVT::f64, 34 }, // sqrtsd 3045 { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd 3046 }; 3047 static const CostTblEntry SLMCostTbl[] = { 3048 { ISD::FSQRT, MVT::f32, 20 }, // sqrtss 3049 { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps 3050 { ISD::FSQRT, MVT::f64, 35 }, // sqrtsd 3051 { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd 3052 }; 3053 static const CostTblEntry SSE42CostTbl[] = { 3054 { ISD::USUBSAT, MVT::v4i32, 2 }, // pmaxud + psubd 3055 { ISD::UADDSAT, MVT::v4i32, 3 }, // not + pminud + paddd 3056 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/ 3057 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/ 3058 }; 3059 static const CostTblEntry SSE41CostTbl[] = { 3060 { ISD::ABS, MVT::v2i64, 2 }, // BLENDVPD(X,PSUBQ(0,X),X) 3061 { ISD::SMAX, MVT::v4i32, 1 }, 3062 { ISD::SMAX, MVT::v16i8, 1 }, 3063 { ISD::SMIN, MVT::v4i32, 1 }, 3064 { ISD::SMIN, MVT::v16i8, 1 }, 3065 { ISD::UMAX, MVT::v4i32, 1 }, 3066 { ISD::UMAX, MVT::v8i16, 1 }, 3067 { ISD::UMIN, MVT::v4i32, 1 }, 3068 { ISD::UMIN, MVT::v8i16, 1 }, 3069 }; 3070 static const CostTblEntry SSSE3CostTbl[] = { 3071 { ISD::ABS, MVT::v4i32, 1 }, 3072 { ISD::ABS, MVT::v8i16, 1 }, 3073 { ISD::ABS, MVT::v16i8, 1 }, 3074 { ISD::BITREVERSE, MVT::v2i64, 5 }, 3075 { ISD::BITREVERSE, MVT::v4i32, 5 }, 3076 { ISD::BITREVERSE, MVT::v8i16, 5 }, 3077 { ISD::BITREVERSE, MVT::v16i8, 5 }, 3078 { ISD::BSWAP, MVT::v2i64, 1 }, 3079 { ISD::BSWAP, MVT::v4i32, 1 }, 3080 { ISD::BSWAP, MVT::v8i16, 1 }, 3081 { ISD::CTLZ, MVT::v2i64, 23 }, 3082 { ISD::CTLZ, MVT::v4i32, 18 }, 3083 { ISD::CTLZ, MVT::v8i16, 14 }, 3084 { ISD::CTLZ, MVT::v16i8, 9 }, 3085 { ISD::CTPOP, MVT::v2i64, 7 }, 3086 { ISD::CTPOP, MVT::v4i32, 11 }, 3087 { ISD::CTPOP, MVT::v8i16, 9 }, 3088 { ISD::CTPOP, MVT::v16i8, 6 }, 3089 { ISD::CTTZ, MVT::v2i64, 10 }, 3090 { ISD::CTTZ, MVT::v4i32, 14 }, 3091 { ISD::CTTZ, MVT::v8i16, 12 }, 3092 { ISD::CTTZ, MVT::v16i8, 9 } 3093 }; 3094 static const CostTblEntry SSE2CostTbl[] = { 3095 { ISD::ABS, MVT::v2i64, 4 }, 3096 { ISD::ABS, MVT::v4i32, 3 }, 3097 { ISD::ABS, MVT::v8i16, 2 }, 3098 { ISD::ABS, MVT::v16i8, 2 }, 3099 { ISD::BITREVERSE, MVT::v2i64, 29 }, 3100 { ISD::BITREVERSE, MVT::v4i32, 27 }, 3101 { ISD::BITREVERSE, MVT::v8i16, 27 }, 3102 { ISD::BITREVERSE, MVT::v16i8, 20 }, 3103 { ISD::BSWAP, MVT::v2i64, 7 }, 3104 { ISD::BSWAP, MVT::v4i32, 7 }, 3105 { ISD::BSWAP, MVT::v8i16, 7 }, 3106 { ISD::CTLZ, MVT::v2i64, 25 }, 3107 { ISD::CTLZ, MVT::v4i32, 26 }, 3108 { ISD::CTLZ, MVT::v8i16, 20 }, 3109 { ISD::CTLZ, MVT::v16i8, 17 }, 3110 { ISD::CTPOP, MVT::v2i64, 12 }, 3111 { ISD::CTPOP, MVT::v4i32, 15 }, 3112 { ISD::CTPOP, MVT::v8i16, 13 }, 3113 { ISD::CTPOP, MVT::v16i8, 10 }, 3114 { ISD::CTTZ, MVT::v2i64, 14 }, 3115 { ISD::CTTZ, MVT::v4i32, 18 }, 3116 { ISD::CTTZ, MVT::v8i16, 16 }, 3117 { ISD::CTTZ, MVT::v16i8, 13 }, 3118 { ISD::SADDSAT, MVT::v8i16, 1 }, 3119 { ISD::SADDSAT, MVT::v16i8, 1 }, 3120 { ISD::SMAX, MVT::v8i16, 1 }, 3121 { ISD::SMIN, MVT::v8i16, 1 }, 3122 { ISD::SSUBSAT, MVT::v8i16, 1 }, 3123 { ISD::SSUBSAT, MVT::v16i8, 1 }, 3124 { ISD::UADDSAT, MVT::v8i16, 1 }, 3125 { ISD::UADDSAT, MVT::v16i8, 1 }, 3126 { ISD::UMAX, MVT::v8i16, 2 }, 3127 { ISD::UMAX, MVT::v16i8, 1 }, 3128 { ISD::UMIN, MVT::v8i16, 2 }, 3129 { ISD::UMIN, MVT::v16i8, 1 }, 3130 { ISD::USUBSAT, MVT::v8i16, 1 }, 3131 { ISD::USUBSAT, MVT::v16i8, 1 }, 3132 { ISD::FMAXNUM, MVT::f64, 4 }, 3133 { ISD::FMAXNUM, MVT::v2f64, 4 }, 3134 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/ 3135 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/ 3136 }; 3137 static const CostTblEntry SSE1CostTbl[] = { 3138 { ISD::FMAXNUM, MVT::f32, 4 }, 3139 { ISD::FMAXNUM, MVT::v4f32, 4 }, 3140 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/ 3141 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/ 3142 }; 3143 static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets 3144 { ISD::CTTZ, MVT::i64, 1 }, 3145 }; 3146 static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets 3147 { ISD::CTTZ, MVT::i32, 1 }, 3148 { ISD::CTTZ, MVT::i16, 1 }, 3149 { ISD::CTTZ, MVT::i8, 1 }, 3150 }; 3151 static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets 3152 { ISD::CTLZ, MVT::i64, 1 }, 3153 }; 3154 static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets 3155 { ISD::CTLZ, MVT::i32, 1 }, 3156 { ISD::CTLZ, MVT::i16, 1 }, 3157 { ISD::CTLZ, MVT::i8, 1 }, 3158 }; 3159 static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets 3160 { ISD::CTPOP, MVT::i64, 1 }, 3161 }; 3162 static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets 3163 { ISD::CTPOP, MVT::i32, 1 }, 3164 { ISD::CTPOP, MVT::i16, 1 }, 3165 { ISD::CTPOP, MVT::i8, 1 }, 3166 }; 3167 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 3168 { ISD::ABS, MVT::i64, 2 }, // SUB+CMOV 3169 { ISD::BITREVERSE, MVT::i64, 14 }, 3170 { ISD::BSWAP, MVT::i64, 1 }, 3171 { ISD::CTLZ, MVT::i64, 4 }, // BSR+XOR or BSR+XOR+CMOV 3172 { ISD::CTTZ, MVT::i64, 3 }, // TEST+BSF+CMOV/BRANCH 3173 { ISD::CTPOP, MVT::i64, 10 }, 3174 { ISD::SADDO, MVT::i64, 1 }, 3175 { ISD::UADDO, MVT::i64, 1 }, 3176 { ISD::UMULO, MVT::i64, 2 }, // mulq + seto 3177 }; 3178 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 3179 { ISD::ABS, MVT::i32, 2 }, // SUB+CMOV 3180 { ISD::ABS, MVT::i16, 2 }, // SUB+CMOV 3181 { ISD::BITREVERSE, MVT::i32, 14 }, 3182 { ISD::BITREVERSE, MVT::i16, 14 }, 3183 { ISD::BITREVERSE, MVT::i8, 11 }, 3184 { ISD::BSWAP, MVT::i32, 1 }, 3185 { ISD::BSWAP, MVT::i16, 1 }, // ROL 3186 { ISD::CTLZ, MVT::i32, 4 }, // BSR+XOR or BSR+XOR+CMOV 3187 { ISD::CTLZ, MVT::i16, 4 }, // BSR+XOR or BSR+XOR+CMOV 3188 { ISD::CTLZ, MVT::i8, 4 }, // BSR+XOR or BSR+XOR+CMOV 3189 { ISD::CTTZ, MVT::i32, 3 }, // TEST+BSF+CMOV/BRANCH 3190 { ISD::CTTZ, MVT::i16, 3 }, // TEST+BSF+CMOV/BRANCH 3191 { ISD::CTTZ, MVT::i8, 3 }, // TEST+BSF+CMOV/BRANCH 3192 { ISD::CTPOP, MVT::i32, 8 }, 3193 { ISD::CTPOP, MVT::i16, 9 }, 3194 { ISD::CTPOP, MVT::i8, 7 }, 3195 { ISD::SADDO, MVT::i32, 1 }, 3196 { ISD::SADDO, MVT::i16, 1 }, 3197 { ISD::SADDO, MVT::i8, 1 }, 3198 { ISD::UADDO, MVT::i32, 1 }, 3199 { ISD::UADDO, MVT::i16, 1 }, 3200 { ISD::UADDO, MVT::i8, 1 }, 3201 { ISD::UMULO, MVT::i32, 2 }, // mul + seto 3202 { ISD::UMULO, MVT::i16, 2 }, 3203 { ISD::UMULO, MVT::i8, 2 }, 3204 }; 3205 3206 Type *RetTy = ICA.getReturnType(); 3207 Type *OpTy = RetTy; 3208 Intrinsic::ID IID = ICA.getID(); 3209 unsigned ISD = ISD::DELETED_NODE; 3210 switch (IID) { 3211 default: 3212 break; 3213 case Intrinsic::abs: 3214 ISD = ISD::ABS; 3215 break; 3216 case Intrinsic::bitreverse: 3217 ISD = ISD::BITREVERSE; 3218 break; 3219 case Intrinsic::bswap: 3220 ISD = ISD::BSWAP; 3221 break; 3222 case Intrinsic::ctlz: 3223 ISD = ISD::CTLZ; 3224 break; 3225 case Intrinsic::ctpop: 3226 ISD = ISD::CTPOP; 3227 break; 3228 case Intrinsic::cttz: 3229 ISD = ISD::CTTZ; 3230 break; 3231 case Intrinsic::maxnum: 3232 case Intrinsic::minnum: 3233 // FMINNUM has same costs so don't duplicate. 3234 ISD = ISD::FMAXNUM; 3235 break; 3236 case Intrinsic::sadd_sat: 3237 ISD = ISD::SADDSAT; 3238 break; 3239 case Intrinsic::smax: 3240 ISD = ISD::SMAX; 3241 break; 3242 case Intrinsic::smin: 3243 ISD = ISD::SMIN; 3244 break; 3245 case Intrinsic::ssub_sat: 3246 ISD = ISD::SSUBSAT; 3247 break; 3248 case Intrinsic::uadd_sat: 3249 ISD = ISD::UADDSAT; 3250 break; 3251 case Intrinsic::umax: 3252 ISD = ISD::UMAX; 3253 break; 3254 case Intrinsic::umin: 3255 ISD = ISD::UMIN; 3256 break; 3257 case Intrinsic::usub_sat: 3258 ISD = ISD::USUBSAT; 3259 break; 3260 case Intrinsic::sqrt: 3261 ISD = ISD::FSQRT; 3262 break; 3263 case Intrinsic::sadd_with_overflow: 3264 case Intrinsic::ssub_with_overflow: 3265 // SSUBO has same costs so don't duplicate. 3266 ISD = ISD::SADDO; 3267 OpTy = RetTy->getContainedType(0); 3268 break; 3269 case Intrinsic::uadd_with_overflow: 3270 case Intrinsic::usub_with_overflow: 3271 // USUBO has same costs so don't duplicate. 3272 ISD = ISD::UADDO; 3273 OpTy = RetTy->getContainedType(0); 3274 break; 3275 case Intrinsic::umul_with_overflow: 3276 case Intrinsic::smul_with_overflow: 3277 // SMULO has same costs so don't duplicate. 3278 ISD = ISD::UMULO; 3279 OpTy = RetTy->getContainedType(0); 3280 break; 3281 } 3282 3283 if (ISD != ISD::DELETED_NODE) { 3284 // Legalize the type. 3285 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy); 3286 MVT MTy = LT.second; 3287 3288 // Attempt to lookup cost. 3289 if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() && 3290 MTy.isVector()) { 3291 // With PSHUFB the code is very similar for all types. If we have integer 3292 // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types 3293 // we also need a PSHUFB. 3294 unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2; 3295 3296 // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB 3297 // instructions. We also need an extract and an insert. 3298 if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) || 3299 (ST->hasBWI() && MTy.is512BitVector()))) 3300 Cost = Cost * 2 + 2; 3301 3302 return LT.first * Cost; 3303 } 3304 3305 auto adjustTableCost = [](const CostTblEntry &Entry, 3306 InstructionCost LegalizationCost, 3307 FastMathFlags FMF) { 3308 // If there are no NANs to deal with, then these are reduced to a 3309 // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we 3310 // assume is used in the non-fast case. 3311 if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) { 3312 if (FMF.noNaNs()) 3313 return LegalizationCost * 1; 3314 } 3315 return LegalizationCost * (int)Entry.Cost; 3316 }; 3317 3318 if (ST->useGLMDivSqrtCosts()) 3319 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy)) 3320 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3321 3322 if (ST->useSLMArithCosts()) 3323 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy)) 3324 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3325 3326 if (ST->hasBITALG()) 3327 if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy)) 3328 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3329 3330 if (ST->hasVPOPCNTDQ()) 3331 if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy)) 3332 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3333 3334 if (ST->hasCDI()) 3335 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy)) 3336 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3337 3338 if (ST->hasBWI()) 3339 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 3340 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3341 3342 if (ST->hasAVX512()) 3343 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 3344 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3345 3346 if (ST->hasXOP()) 3347 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy)) 3348 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3349 3350 if (ST->hasAVX2()) 3351 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 3352 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3353 3354 if (ST->hasAVX()) 3355 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 3356 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3357 3358 if (ST->hasSSE42()) 3359 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 3360 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3361 3362 if (ST->hasSSE41()) 3363 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 3364 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3365 3366 if (ST->hasSSSE3()) 3367 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy)) 3368 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3369 3370 if (ST->hasSSE2()) 3371 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 3372 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3373 3374 if (ST->hasSSE1()) 3375 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 3376 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3377 3378 if (ST->hasBMI()) { 3379 if (ST->is64Bit()) 3380 if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy)) 3381 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3382 3383 if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy)) 3384 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3385 } 3386 3387 if (ST->hasLZCNT()) { 3388 if (ST->is64Bit()) 3389 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy)) 3390 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3391 3392 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy)) 3393 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3394 } 3395 3396 if (ST->hasPOPCNT()) { 3397 if (ST->is64Bit()) 3398 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy)) 3399 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3400 3401 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy)) 3402 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3403 } 3404 3405 if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) { 3406 if (const Instruction *II = ICA.getInst()) { 3407 if (II->hasOneUse() && isa<StoreInst>(II->user_back())) 3408 return TTI::TCC_Free; 3409 if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) { 3410 if (LI->hasOneUse()) 3411 return TTI::TCC_Free; 3412 } 3413 } 3414 } 3415 3416 if (ST->is64Bit()) 3417 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy)) 3418 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3419 3420 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy)) 3421 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3422 } 3423 3424 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 3425 } 3426 3427 InstructionCost 3428 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 3429 TTI::TargetCostKind CostKind) { 3430 if (ICA.isTypeBasedOnly()) 3431 return getTypeBasedIntrinsicInstrCost(ICA, CostKind); 3432 3433 static const CostTblEntry AVX512BWCostTbl[] = { 3434 { ISD::ROTL, MVT::v32i16, 2 }, 3435 { ISD::ROTL, MVT::v16i16, 2 }, 3436 { ISD::ROTL, MVT::v8i16, 2 }, 3437 { ISD::ROTL, MVT::v64i8, 5 }, 3438 { ISD::ROTL, MVT::v32i8, 5 }, 3439 { ISD::ROTL, MVT::v16i8, 5 }, 3440 { ISD::ROTR, MVT::v32i16, 2 }, 3441 { ISD::ROTR, MVT::v16i16, 2 }, 3442 { ISD::ROTR, MVT::v8i16, 2 }, 3443 { ISD::ROTR, MVT::v64i8, 5 }, 3444 { ISD::ROTR, MVT::v32i8, 5 }, 3445 { ISD::ROTR, MVT::v16i8, 5 } 3446 }; 3447 static const CostTblEntry AVX512CostTbl[] = { 3448 { ISD::ROTL, MVT::v8i64, 1 }, 3449 { ISD::ROTL, MVT::v4i64, 1 }, 3450 { ISD::ROTL, MVT::v2i64, 1 }, 3451 { ISD::ROTL, MVT::v16i32, 1 }, 3452 { ISD::ROTL, MVT::v8i32, 1 }, 3453 { ISD::ROTL, MVT::v4i32, 1 }, 3454 { ISD::ROTR, MVT::v8i64, 1 }, 3455 { ISD::ROTR, MVT::v4i64, 1 }, 3456 { ISD::ROTR, MVT::v2i64, 1 }, 3457 { ISD::ROTR, MVT::v16i32, 1 }, 3458 { ISD::ROTR, MVT::v8i32, 1 }, 3459 { ISD::ROTR, MVT::v4i32, 1 } 3460 }; 3461 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y)) 3462 static const CostTblEntry XOPCostTbl[] = { 3463 { ISD::ROTL, MVT::v4i64, 4 }, 3464 { ISD::ROTL, MVT::v8i32, 4 }, 3465 { ISD::ROTL, MVT::v16i16, 4 }, 3466 { ISD::ROTL, MVT::v32i8, 4 }, 3467 { ISD::ROTL, MVT::v2i64, 1 }, 3468 { ISD::ROTL, MVT::v4i32, 1 }, 3469 { ISD::ROTL, MVT::v8i16, 1 }, 3470 { ISD::ROTL, MVT::v16i8, 1 }, 3471 { ISD::ROTR, MVT::v4i64, 6 }, 3472 { ISD::ROTR, MVT::v8i32, 6 }, 3473 { ISD::ROTR, MVT::v16i16, 6 }, 3474 { ISD::ROTR, MVT::v32i8, 6 }, 3475 { ISD::ROTR, MVT::v2i64, 2 }, 3476 { ISD::ROTR, MVT::v4i32, 2 }, 3477 { ISD::ROTR, MVT::v8i16, 2 }, 3478 { ISD::ROTR, MVT::v16i8, 2 } 3479 }; 3480 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 3481 { ISD::ROTL, MVT::i64, 1 }, 3482 { ISD::ROTR, MVT::i64, 1 }, 3483 { ISD::FSHL, MVT::i64, 4 } 3484 }; 3485 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 3486 { ISD::ROTL, MVT::i32, 1 }, 3487 { ISD::ROTL, MVT::i16, 1 }, 3488 { ISD::ROTL, MVT::i8, 1 }, 3489 { ISD::ROTR, MVT::i32, 1 }, 3490 { ISD::ROTR, MVT::i16, 1 }, 3491 { ISD::ROTR, MVT::i8, 1 }, 3492 { ISD::FSHL, MVT::i32, 4 }, 3493 { ISD::FSHL, MVT::i16, 4 }, 3494 { ISD::FSHL, MVT::i8, 4 } 3495 }; 3496 3497 Intrinsic::ID IID = ICA.getID(); 3498 Type *RetTy = ICA.getReturnType(); 3499 const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); 3500 unsigned ISD = ISD::DELETED_NODE; 3501 switch (IID) { 3502 default: 3503 break; 3504 case Intrinsic::fshl: 3505 ISD = ISD::FSHL; 3506 if (Args[0] == Args[1]) 3507 ISD = ISD::ROTL; 3508 break; 3509 case Intrinsic::fshr: 3510 // FSHR has same costs so don't duplicate. 3511 ISD = ISD::FSHL; 3512 if (Args[0] == Args[1]) 3513 ISD = ISD::ROTR; 3514 break; 3515 } 3516 3517 if (ISD != ISD::DELETED_NODE) { 3518 // Legalize the type. 3519 std::pair<InstructionCost, MVT> LT = 3520 TLI->getTypeLegalizationCost(DL, RetTy); 3521 MVT MTy = LT.second; 3522 3523 // Attempt to lookup cost. 3524 if (ST->hasBWI()) 3525 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 3526 return LT.first * Entry->Cost; 3527 3528 if (ST->hasAVX512()) 3529 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 3530 return LT.first * Entry->Cost; 3531 3532 if (ST->hasXOP()) 3533 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy)) 3534 return LT.first * Entry->Cost; 3535 3536 if (ST->is64Bit()) 3537 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy)) 3538 return LT.first * Entry->Cost; 3539 3540 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy)) 3541 return LT.first * Entry->Cost; 3542 } 3543 3544 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 3545 } 3546 3547 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 3548 unsigned Index) { 3549 static const CostTblEntry SLMCostTbl[] = { 3550 { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 }, 3551 { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 }, 3552 { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 }, 3553 { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 } 3554 }; 3555 3556 assert(Val->isVectorTy() && "This must be a vector type"); 3557 Type *ScalarType = Val->getScalarType(); 3558 int RegisterFileMoveCost = 0; 3559 3560 // Non-immediate extraction/insertion can be handled as a sequence of 3561 // aliased loads+stores via the stack. 3562 if (Index == -1U && (Opcode == Instruction::ExtractElement || 3563 Opcode == Instruction::InsertElement)) { 3564 // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns: 3565 // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0. 3566 3567 // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling. 3568 assert(isa<FixedVectorType>(Val) && "Fixed vector type expected"); 3569 Align VecAlign = DL.getPrefTypeAlign(Val); 3570 Align SclAlign = DL.getPrefTypeAlign(ScalarType); 3571 3572 // Extract - store vector to stack, load scalar. 3573 if (Opcode == Instruction::ExtractElement) { 3574 return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, 3575 TTI::TargetCostKind::TCK_RecipThroughput) + 3576 getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0, 3577 TTI::TargetCostKind::TCK_RecipThroughput); 3578 } 3579 // Insert - store vector to stack, store scalar, load vector. 3580 if (Opcode == Instruction::InsertElement) { 3581 return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, 3582 TTI::TargetCostKind::TCK_RecipThroughput) + 3583 getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0, 3584 TTI::TargetCostKind::TCK_RecipThroughput) + 3585 getMemoryOpCost(Instruction::Load, Val, VecAlign, 0, 3586 TTI::TargetCostKind::TCK_RecipThroughput); 3587 } 3588 } 3589 3590 if (Index != -1U && (Opcode == Instruction::ExtractElement || 3591 Opcode == Instruction::InsertElement)) { 3592 // Legalize the type. 3593 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 3594 3595 // This type is legalized to a scalar type. 3596 if (!LT.second.isVector()) 3597 return 0; 3598 3599 // The type may be split. Normalize the index to the new type. 3600 unsigned NumElts = LT.second.getVectorNumElements(); 3601 unsigned SubNumElts = NumElts; 3602 Index = Index % NumElts; 3603 3604 // For >128-bit vectors, we need to extract higher 128-bit subvectors. 3605 // For inserts, we also need to insert the subvector back. 3606 if (LT.second.getSizeInBits() > 128) { 3607 assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector"); 3608 unsigned NumSubVecs = LT.second.getSizeInBits() / 128; 3609 SubNumElts = NumElts / NumSubVecs; 3610 if (SubNumElts <= Index) { 3611 RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1); 3612 Index %= SubNumElts; 3613 } 3614 } 3615 3616 if (Index == 0) { 3617 // Floating point scalars are already located in index #0. 3618 // Many insertions to #0 can fold away for scalar fp-ops, so let's assume 3619 // true for all. 3620 if (ScalarType->isFloatingPointTy()) 3621 return RegisterFileMoveCost; 3622 3623 // Assume movd/movq XMM -> GPR is relatively cheap on all targets. 3624 if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement) 3625 return 1 + RegisterFileMoveCost; 3626 } 3627 3628 int ISD = TLI->InstructionOpcodeToISD(Opcode); 3629 assert(ISD && "Unexpected vector opcode"); 3630 MVT MScalarTy = LT.second.getScalarType(); 3631 if (ST->useSLMArithCosts()) 3632 if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy)) 3633 return Entry->Cost + RegisterFileMoveCost; 3634 3635 // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets. 3636 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) || 3637 (MScalarTy.isInteger() && ST->hasSSE41())) 3638 return 1 + RegisterFileMoveCost; 3639 3640 // Assume insertps is relatively cheap on all targets. 3641 if (MScalarTy == MVT::f32 && ST->hasSSE41() && 3642 Opcode == Instruction::InsertElement) 3643 return 1 + RegisterFileMoveCost; 3644 3645 // For extractions we just need to shuffle the element to index 0, which 3646 // should be very cheap (assume cost = 1). For insertions we need to shuffle 3647 // the elements to its destination. In both cases we must handle the 3648 // subvector move(s). 3649 // If the vector type is already less than 128-bits then don't reduce it. 3650 // TODO: Under what circumstances should we shuffle using the full width? 3651 InstructionCost ShuffleCost = 1; 3652 if (Opcode == Instruction::InsertElement) { 3653 auto *SubTy = cast<VectorType>(Val); 3654 EVT VT = TLI->getValueType(DL, Val); 3655 if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128) 3656 SubTy = FixedVectorType::get(ScalarType, SubNumElts); 3657 ShuffleCost = 3658 getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy); 3659 } 3660 int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1; 3661 return ShuffleCost + IntOrFpCost + RegisterFileMoveCost; 3662 } 3663 3664 // Add to the base cost if we know that the extracted element of a vector is 3665 // destined to be moved to and used in the integer register file. 3666 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy()) 3667 RegisterFileMoveCost += 1; 3668 3669 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost; 3670 } 3671 3672 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty, 3673 const APInt &DemandedElts, 3674 bool Insert, 3675 bool Extract) { 3676 InstructionCost Cost = 0; 3677 3678 // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much 3679 // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT. 3680 if (Insert) { 3681 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 3682 MVT MScalarTy = LT.second.getScalarType(); 3683 3684 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) || 3685 (MScalarTy.isInteger() && ST->hasSSE41()) || 3686 (MScalarTy == MVT::f32 && ST->hasSSE41())) { 3687 // For types we can insert directly, insertion into 128-bit sub vectors is 3688 // cheap, followed by a cheap chain of concatenations. 3689 if (LT.second.getSizeInBits() <= 128) { 3690 Cost += 3691 BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false); 3692 } else { 3693 // In each 128-lane, if at least one index is demanded but not all 3694 // indices are demanded and this 128-lane is not the first 128-lane of 3695 // the legalized-vector, then this 128-lane needs a extracti128; If in 3696 // each 128-lane, there is at least one demanded index, this 128-lane 3697 // needs a inserti128. 3698 3699 // The following cases will help you build a better understanding: 3700 // Assume we insert several elements into a v8i32 vector in avx2, 3701 // Case#1: inserting into 1th index needs vpinsrd + inserti128. 3702 // Case#2: inserting into 5th index needs extracti128 + vpinsrd + 3703 // inserti128. 3704 // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128. 3705 const int CostValue = *LT.first.getValue(); 3706 assert(CostValue >= 0 && "Negative cost!"); 3707 unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * CostValue; 3708 unsigned NumElts = LT.second.getVectorNumElements() * CostValue; 3709 APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts); 3710 unsigned Scale = NumElts / Num128Lanes; 3711 // We iterate each 128-lane, and check if we need a 3712 // extracti128/inserti128 for this 128-lane. 3713 for (unsigned I = 0; I < NumElts; I += Scale) { 3714 APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale); 3715 APInt MaskedDE = Mask & WidenedDemandedElts; 3716 unsigned Population = MaskedDE.countPopulation(); 3717 Cost += (Population > 0 && Population != Scale && 3718 I % LT.second.getVectorNumElements() != 0); 3719 Cost += Population > 0; 3720 } 3721 Cost += DemandedElts.countPopulation(); 3722 3723 // For vXf32 cases, insertion into the 0'th index in each v4f32 3724 // 128-bit vector is free. 3725 // NOTE: This assumes legalization widens vXf32 vectors. 3726 if (MScalarTy == MVT::f32) 3727 for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements(); 3728 i < e; i += 4) 3729 if (DemandedElts[i]) 3730 Cost--; 3731 } 3732 } else if (LT.second.isVector()) { 3733 // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded 3734 // integer element as a SCALAR_TO_VECTOR, then we build the vector as a 3735 // series of UNPCK followed by CONCAT_VECTORS - all of these can be 3736 // considered cheap. 3737 if (Ty->isIntOrIntVectorTy()) 3738 Cost += DemandedElts.countPopulation(); 3739 3740 // Get the smaller of the legalized or original pow2-extended number of 3741 // vector elements, which represents the number of unpacks we'll end up 3742 // performing. 3743 unsigned NumElts = LT.second.getVectorNumElements(); 3744 unsigned Pow2Elts = 3745 PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements()); 3746 Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first; 3747 } 3748 } 3749 3750 // TODO: Use default extraction for now, but we should investigate extending this 3751 // to handle repeated subvector extraction. 3752 if (Extract) 3753 Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract); 3754 3755 return Cost; 3756 } 3757 3758 InstructionCost 3759 X86TTIImpl::getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, 3760 int VF, const APInt &DemandedDstElts, 3761 TTI::TargetCostKind CostKind) { 3762 const unsigned EltTyBits = DL.getTypeSizeInBits(EltTy); 3763 // We don't differentiate element types here, only element bit width. 3764 EltTy = IntegerType::getIntNTy(EltTy->getContext(), EltTyBits); 3765 3766 auto bailout = [&]() { 3767 return BaseT::getReplicationShuffleCost(EltTy, ReplicationFactor, VF, 3768 DemandedDstElts, CostKind); 3769 }; 3770 3771 // For now, only deal with AVX512 cases. 3772 if (!ST->hasAVX512()) 3773 return bailout(); 3774 3775 // Do we have a native shuffle for this element type, or should we promote? 3776 unsigned PromEltTyBits = EltTyBits; 3777 switch (EltTyBits) { 3778 case 32: 3779 case 64: 3780 break; // AVX512F. 3781 case 16: 3782 if (!ST->hasBWI()) 3783 PromEltTyBits = 32; // promote to i32, AVX512F. 3784 break; // AVX512BW 3785 case 8: 3786 if (!ST->hasVBMI()) 3787 PromEltTyBits = 32; // promote to i32, AVX512F. 3788 break; // AVX512VBMI 3789 case 1: 3790 // There is no support for shuffling i1 elements. We *must* promote. 3791 if (ST->hasBWI()) { 3792 if (ST->hasVBMI()) 3793 PromEltTyBits = 8; // promote to i8, AVX512VBMI. 3794 else 3795 PromEltTyBits = 16; // promote to i16, AVX512BW. 3796 break; 3797 } 3798 if (ST->hasDQI()) { 3799 PromEltTyBits = 32; // promote to i32, AVX512F. 3800 break; 3801 } 3802 return bailout(); 3803 default: 3804 return bailout(); 3805 } 3806 auto *PromEltTy = IntegerType::getIntNTy(EltTy->getContext(), PromEltTyBits); 3807 3808 auto *SrcVecTy = FixedVectorType::get(EltTy, VF); 3809 auto *PromSrcVecTy = FixedVectorType::get(PromEltTy, VF); 3810 3811 int NumDstElements = VF * ReplicationFactor; 3812 auto *PromDstVecTy = FixedVectorType::get(PromEltTy, NumDstElements); 3813 auto *DstVecTy = FixedVectorType::get(EltTy, NumDstElements); 3814 3815 // Legalize the types. 3816 MVT LegalSrcVecTy = TLI->getTypeLegalizationCost(DL, SrcVecTy).second; 3817 MVT LegalPromSrcVecTy = TLI->getTypeLegalizationCost(DL, PromSrcVecTy).second; 3818 MVT LegalPromDstVecTy = TLI->getTypeLegalizationCost(DL, PromDstVecTy).second; 3819 MVT LegalDstVecTy = TLI->getTypeLegalizationCost(DL, DstVecTy).second; 3820 // They should have legalized into vector types. 3821 if (!LegalSrcVecTy.isVector() || !LegalPromSrcVecTy.isVector() || 3822 !LegalPromDstVecTy.isVector() || !LegalDstVecTy.isVector()) 3823 return bailout(); 3824 3825 if (PromEltTyBits != EltTyBits) { 3826 // If we have to perform the shuffle with wider elt type than our data type, 3827 // then we will first need to anyext (we don't care about the new bits) 3828 // the source elements, and then truncate Dst elements. 3829 InstructionCost PromotionCost; 3830 PromotionCost += getCastInstrCost( 3831 Instruction::SExt, /*Dst=*/PromSrcVecTy, /*Src=*/SrcVecTy, 3832 TargetTransformInfo::CastContextHint::None, CostKind); 3833 PromotionCost += 3834 getCastInstrCost(Instruction::Trunc, /*Dst=*/DstVecTy, 3835 /*Src=*/PromDstVecTy, 3836 TargetTransformInfo::CastContextHint::None, CostKind); 3837 return PromotionCost + getReplicationShuffleCost(PromEltTy, 3838 ReplicationFactor, VF, 3839 DemandedDstElts, CostKind); 3840 } 3841 3842 assert(LegalSrcVecTy.getScalarSizeInBits() == EltTyBits && 3843 LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() && 3844 "We expect that the legalization doesn't affect the element width, " 3845 "doesn't coalesce/split elements."); 3846 3847 unsigned NumEltsPerDstVec = LegalDstVecTy.getVectorNumElements(); 3848 unsigned NumDstVectors = 3849 divideCeil(DstVecTy->getNumElements(), NumEltsPerDstVec); 3850 3851 auto *SingleDstVecTy = FixedVectorType::get(EltTy, NumEltsPerDstVec); 3852 3853 // Not all the produced Dst elements may be demanded. In our case, 3854 // given that a single Dst vector is formed by a single shuffle, 3855 // if all elements that will form a single Dst vector aren't demanded, 3856 // then we won't need to do that shuffle, so adjust the cost accordingly. 3857 APInt DemandedDstVectors = APIntOps::ScaleBitMask( 3858 DemandedDstElts.zextOrSelf(NumDstVectors * NumEltsPerDstVec), 3859 NumDstVectors); 3860 unsigned NumDstVectorsDemanded = DemandedDstVectors.countPopulation(); 3861 3862 InstructionCost SingleShuffleCost = 3863 getShuffleCost(TTI::SK_PermuteSingleSrc, SingleDstVecTy, 3864 /*Mask=*/None, /*Index=*/0, /*SubTp=*/nullptr); 3865 return NumDstVectorsDemanded * SingleShuffleCost; 3866 } 3867 3868 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 3869 MaybeAlign Alignment, 3870 unsigned AddressSpace, 3871 TTI::TargetCostKind CostKind, 3872 const Instruction *I) { 3873 // TODO: Handle other cost kinds. 3874 if (CostKind != TTI::TCK_RecipThroughput) { 3875 if (auto *SI = dyn_cast_or_null<StoreInst>(I)) { 3876 // Store instruction with index and scale costs 2 Uops. 3877 // Check the preceding GEP to identify non-const indices. 3878 if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) { 3879 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); })) 3880 return TTI::TCC_Basic * 2; 3881 } 3882 } 3883 return TTI::TCC_Basic; 3884 } 3885 3886 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 3887 "Invalid Opcode"); 3888 // Type legalization can't handle structs 3889 if (TLI->getValueType(DL, Src, true) == MVT::Other) 3890 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 3891 CostKind); 3892 3893 // Legalize the type. 3894 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 3895 3896 auto *VTy = dyn_cast<FixedVectorType>(Src); 3897 3898 // Handle the simple case of non-vectors. 3899 // NOTE: this assumes that legalization never creates vector from scalars! 3900 if (!VTy || !LT.second.isVector()) 3901 // Each load/store unit costs 1. 3902 return LT.first * 1; 3903 3904 bool IsLoad = Opcode == Instruction::Load; 3905 3906 Type *EltTy = VTy->getElementType(); 3907 3908 const int EltTyBits = DL.getTypeSizeInBits(EltTy); 3909 3910 InstructionCost Cost = 0; 3911 3912 // Source of truth: how many elements were there in the original IR vector? 3913 const unsigned SrcNumElt = VTy->getNumElements(); 3914 3915 // How far have we gotten? 3916 int NumEltRemaining = SrcNumElt; 3917 // Note that we intentionally capture by-reference, NumEltRemaining changes. 3918 auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; }; 3919 3920 const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8); 3921 3922 // Note that even if we can store 64 bits of an XMM, we still operate on XMM. 3923 const unsigned XMMBits = 128; 3924 if (XMMBits % EltTyBits != 0) 3925 // Vector size must be a multiple of the element size. I.e. no padding. 3926 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 3927 CostKind); 3928 const int NumEltPerXMM = XMMBits / EltTyBits; 3929 3930 auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM); 3931 3932 for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0; 3933 NumEltRemaining > 0; CurrOpSizeBytes /= 2) { 3934 // How many elements would a single op deal with at once? 3935 if ((8 * CurrOpSizeBytes) % EltTyBits != 0) 3936 // Vector size must be a multiple of the element size. I.e. no padding. 3937 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 3938 CostKind); 3939 int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits; 3940 3941 assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?"); 3942 assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) || 3943 (CurrOpSizeBytes == MaxLegalOpSizeBytes)) && 3944 "Unless we haven't halved the op size yet, " 3945 "we have less than two op's sized units of work left."); 3946 3947 auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM 3948 ? FixedVectorType::get(EltTy, CurrNumEltPerOp) 3949 : XMMVecTy; 3950 3951 assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 && 3952 "After halving sizes, the vector elt count is no longer a multiple " 3953 "of number of elements per operation?"); 3954 auto *CoalescedVecTy = 3955 CurrNumEltPerOp == 1 3956 ? CurrVecTy 3957 : FixedVectorType::get( 3958 IntegerType::get(Src->getContext(), 3959 EltTyBits * CurrNumEltPerOp), 3960 CurrVecTy->getNumElements() / CurrNumEltPerOp); 3961 assert(DL.getTypeSizeInBits(CoalescedVecTy) == 3962 DL.getTypeSizeInBits(CurrVecTy) && 3963 "coalesciing elements doesn't change vector width."); 3964 3965 while (NumEltRemaining > 0) { 3966 assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?"); 3967 3968 // Can we use this vector size, as per the remaining element count? 3969 // Iff the vector is naturally aligned, we can do a wide load regardless. 3970 if (NumEltRemaining < CurrNumEltPerOp && 3971 (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) && 3972 CurrOpSizeBytes != 1) 3973 break; // Try smalled vector size. 3974 3975 bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0; 3976 3977 // If we have fully processed the previous reg, we need to replenish it. 3978 if (SubVecEltsLeft == 0) { 3979 SubVecEltsLeft += CurrVecTy->getNumElements(); 3980 // And that's free only for the 0'th subvector of a legalized vector. 3981 if (!Is0thSubVec) 3982 Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector 3983 : TTI::ShuffleKind::SK_ExtractSubvector, 3984 VTy, None, NumEltDone(), CurrVecTy); 3985 } 3986 3987 // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM, 3988 // for smaller widths (32/16/8) we have to insert/extract them separately. 3989 // Again, it's free for the 0'th subreg (if op is 32/64 bit wide, 3990 // but let's pretend that it is also true for 16/8 bit wide ops...) 3991 if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) { 3992 int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM; 3993 assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && ""); 3994 int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp; 3995 APInt DemandedElts = 3996 APInt::getBitsSet(CoalescedVecTy->getNumElements(), 3997 CoalescedVecEltIdx, CoalescedVecEltIdx + 1); 3998 assert(DemandedElts.countPopulation() == 1 && "Inserting single value"); 3999 Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad, 4000 !IsLoad); 4001 } 4002 4003 // This isn't exactly right. We're using slow unaligned 32-byte accesses 4004 // as a proxy for a double-pumped AVX memory interface such as on 4005 // Sandybridge. 4006 if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow()) 4007 Cost += 2; 4008 else 4009 Cost += 1; 4010 4011 SubVecEltsLeft -= CurrNumEltPerOp; 4012 NumEltRemaining -= CurrNumEltPerOp; 4013 Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes); 4014 } 4015 } 4016 4017 assert(NumEltRemaining <= 0 && "Should have processed all the elements."); 4018 4019 return Cost; 4020 } 4021 4022 InstructionCost 4023 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment, 4024 unsigned AddressSpace, 4025 TTI::TargetCostKind CostKind) { 4026 bool IsLoad = (Instruction::Load == Opcode); 4027 bool IsStore = (Instruction::Store == Opcode); 4028 4029 auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy); 4030 if (!SrcVTy) 4031 // To calculate scalar take the regular cost, without mask 4032 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind); 4033 4034 unsigned NumElem = SrcVTy->getNumElements(); 4035 auto *MaskTy = 4036 FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem); 4037 if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) || 4038 (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) { 4039 // Scalarization 4040 APInt DemandedElts = APInt::getAllOnes(NumElem); 4041 InstructionCost MaskSplitCost = 4042 getScalarizationOverhead(MaskTy, DemandedElts, false, true); 4043 InstructionCost ScalarCompareCost = getCmpSelInstrCost( 4044 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr, 4045 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4046 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind); 4047 InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost); 4048 InstructionCost ValueSplitCost = 4049 getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore); 4050 InstructionCost MemopCost = 4051 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 4052 Alignment, AddressSpace, CostKind); 4053 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost; 4054 } 4055 4056 // Legalize the type. 4057 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy); 4058 auto VT = TLI->getValueType(DL, SrcVTy); 4059 InstructionCost Cost = 0; 4060 if (VT.isSimple() && LT.second != VT.getSimpleVT() && 4061 LT.second.getVectorNumElements() == NumElem) 4062 // Promotion requires extend/truncate for data and a shuffle for mask. 4063 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) + 4064 getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr); 4065 4066 else if (LT.first * LT.second.getVectorNumElements() > NumElem) { 4067 auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(), 4068 LT.second.getVectorNumElements()); 4069 // Expanding requires fill mask with zeroes 4070 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy); 4071 } 4072 4073 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8. 4074 if (!ST->hasAVX512()) 4075 return Cost + LT.first * (IsLoad ? 2 : 8); 4076 4077 // AVX-512 masked load/store is cheapper 4078 return Cost + LT.first; 4079 } 4080 4081 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty, 4082 ScalarEvolution *SE, 4083 const SCEV *Ptr) { 4084 // Address computations in vectorized code with non-consecutive addresses will 4085 // likely result in more instructions compared to scalar code where the 4086 // computation can more often be merged into the index mode. The resulting 4087 // extra micro-ops can significantly decrease throughput. 4088 const unsigned NumVectorInstToHideOverhead = 10; 4089 4090 // Cost modeling of Strided Access Computation is hidden by the indexing 4091 // modes of X86 regardless of the stride value. We dont believe that there 4092 // is a difference between constant strided access in gerenal and constant 4093 // strided value which is less than or equal to 64. 4094 // Even in the case of (loop invariant) stride whose value is not known at 4095 // compile time, the address computation will not incur more than one extra 4096 // ADD instruction. 4097 if (Ty->isVectorTy() && SE && !ST->hasAVX2()) { 4098 // TODO: AVX2 is the current cut-off because we don't have correct 4099 // interleaving costs for prior ISA's. 4100 if (!BaseT::isStridedAccess(Ptr)) 4101 return NumVectorInstToHideOverhead; 4102 if (!BaseT::getConstantStrideStep(SE, Ptr)) 4103 return 1; 4104 } 4105 4106 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 4107 } 4108 4109 InstructionCost 4110 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 4111 Optional<FastMathFlags> FMF, 4112 TTI::TargetCostKind CostKind) { 4113 if (TTI::requiresOrderedReduction(FMF)) 4114 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 4115 4116 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 4117 // and make it as the cost. 4118 4119 static const CostTblEntry SLMCostTblNoPairWise[] = { 4120 { ISD::FADD, MVT::v2f64, 3 }, 4121 { ISD::ADD, MVT::v2i64, 5 }, 4122 }; 4123 4124 static const CostTblEntry SSE2CostTblNoPairWise[] = { 4125 { ISD::FADD, MVT::v2f64, 2 }, 4126 { ISD::FADD, MVT::v2f32, 2 }, 4127 { ISD::FADD, MVT::v4f32, 4 }, 4128 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". 4129 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32 4130 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3". 4131 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3". 4132 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3". 4133 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3". 4134 { ISD::ADD, MVT::v2i8, 2 }, 4135 { ISD::ADD, MVT::v4i8, 2 }, 4136 { ISD::ADD, MVT::v8i8, 2 }, 4137 { ISD::ADD, MVT::v16i8, 3 }, 4138 }; 4139 4140 static const CostTblEntry AVX1CostTblNoPairWise[] = { 4141 { ISD::FADD, MVT::v4f64, 3 }, 4142 { ISD::FADD, MVT::v4f32, 3 }, 4143 { ISD::FADD, MVT::v8f32, 4 }, 4144 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". 4145 { ISD::ADD, MVT::v4i64, 3 }, 4146 { ISD::ADD, MVT::v8i32, 5 }, 4147 { ISD::ADD, MVT::v16i16, 5 }, 4148 { ISD::ADD, MVT::v32i8, 4 }, 4149 }; 4150 4151 int ISD = TLI->InstructionOpcodeToISD(Opcode); 4152 assert(ISD && "Invalid opcode"); 4153 4154 // Before legalizing the type, give a chance to look up illegal narrow types 4155 // in the table. 4156 // FIXME: Is there a better way to do this? 4157 EVT VT = TLI->getValueType(DL, ValTy); 4158 if (VT.isSimple()) { 4159 MVT MTy = VT.getSimpleVT(); 4160 if (ST->useSLMArithCosts()) 4161 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy)) 4162 return Entry->Cost; 4163 4164 if (ST->hasAVX()) 4165 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 4166 return Entry->Cost; 4167 4168 if (ST->hasSSE2()) 4169 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 4170 return Entry->Cost; 4171 } 4172 4173 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 4174 4175 MVT MTy = LT.second; 4176 4177 auto *ValVTy = cast<FixedVectorType>(ValTy); 4178 4179 // Special case: vXi8 mul reductions are performed as vXi16. 4180 if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) { 4181 auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16); 4182 auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements()); 4183 return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy, 4184 TargetTransformInfo::CastContextHint::None, 4185 CostKind) + 4186 getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind); 4187 } 4188 4189 InstructionCost ArithmeticCost = 0; 4190 if (LT.first != 1 && MTy.isVector() && 4191 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 4192 // Type needs to be split. We need LT.first - 1 arithmetic ops. 4193 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(), 4194 MTy.getVectorNumElements()); 4195 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind); 4196 ArithmeticCost *= LT.first - 1; 4197 } 4198 4199 if (ST->useSLMArithCosts()) 4200 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy)) 4201 return ArithmeticCost + Entry->Cost; 4202 4203 if (ST->hasAVX()) 4204 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 4205 return ArithmeticCost + Entry->Cost; 4206 4207 if (ST->hasSSE2()) 4208 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 4209 return ArithmeticCost + Entry->Cost; 4210 4211 // FIXME: These assume a naive kshift+binop lowering, which is probably 4212 // conservative in most cases. 4213 static const CostTblEntry AVX512BoolReduction[] = { 4214 { ISD::AND, MVT::v2i1, 3 }, 4215 { ISD::AND, MVT::v4i1, 5 }, 4216 { ISD::AND, MVT::v8i1, 7 }, 4217 { ISD::AND, MVT::v16i1, 9 }, 4218 { ISD::AND, MVT::v32i1, 11 }, 4219 { ISD::AND, MVT::v64i1, 13 }, 4220 { ISD::OR, MVT::v2i1, 3 }, 4221 { ISD::OR, MVT::v4i1, 5 }, 4222 { ISD::OR, MVT::v8i1, 7 }, 4223 { ISD::OR, MVT::v16i1, 9 }, 4224 { ISD::OR, MVT::v32i1, 11 }, 4225 { ISD::OR, MVT::v64i1, 13 }, 4226 }; 4227 4228 static const CostTblEntry AVX2BoolReduction[] = { 4229 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp 4230 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp 4231 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp 4232 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp 4233 }; 4234 4235 static const CostTblEntry AVX1BoolReduction[] = { 4236 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp 4237 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp 4238 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp 4239 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp 4240 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp 4241 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp 4242 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp 4243 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp 4244 }; 4245 4246 static const CostTblEntry SSE2BoolReduction[] = { 4247 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp 4248 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp 4249 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp 4250 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp 4251 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp 4252 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp 4253 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp 4254 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp 4255 }; 4256 4257 // Handle bool allof/anyof patterns. 4258 if (ValVTy->getElementType()->isIntegerTy(1)) { 4259 InstructionCost ArithmeticCost = 0; 4260 if (LT.first != 1 && MTy.isVector() && 4261 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 4262 // Type needs to be split. We need LT.first - 1 arithmetic ops. 4263 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(), 4264 MTy.getVectorNumElements()); 4265 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind); 4266 ArithmeticCost *= LT.first - 1; 4267 } 4268 4269 if (ST->hasAVX512()) 4270 if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy)) 4271 return ArithmeticCost + Entry->Cost; 4272 if (ST->hasAVX2()) 4273 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy)) 4274 return ArithmeticCost + Entry->Cost; 4275 if (ST->hasAVX()) 4276 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy)) 4277 return ArithmeticCost + Entry->Cost; 4278 if (ST->hasSSE2()) 4279 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy)) 4280 return ArithmeticCost + Entry->Cost; 4281 4282 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind); 4283 } 4284 4285 unsigned NumVecElts = ValVTy->getNumElements(); 4286 unsigned ScalarSize = ValVTy->getScalarSizeInBits(); 4287 4288 // Special case power of 2 reductions where the scalar type isn't changed 4289 // by type legalization. 4290 if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits()) 4291 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind); 4292 4293 InstructionCost ReductionCost = 0; 4294 4295 auto *Ty = ValVTy; 4296 if (LT.first != 1 && MTy.isVector() && 4297 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 4298 // Type needs to be split. We need LT.first - 1 arithmetic ops. 4299 Ty = FixedVectorType::get(ValVTy->getElementType(), 4300 MTy.getVectorNumElements()); 4301 ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind); 4302 ReductionCost *= LT.first - 1; 4303 NumVecElts = MTy.getVectorNumElements(); 4304 } 4305 4306 // Now handle reduction with the legal type, taking into account size changes 4307 // at each level. 4308 while (NumVecElts > 1) { 4309 // Determine the size of the remaining vector we need to reduce. 4310 unsigned Size = NumVecElts * ScalarSize; 4311 NumVecElts /= 2; 4312 // If we're reducing from 256/512 bits, use an extract_subvector. 4313 if (Size > 128) { 4314 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts); 4315 ReductionCost += 4316 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy); 4317 Ty = SubTy; 4318 } else if (Size == 128) { 4319 // Reducing from 128 bits is a permute of v2f64/v2i64. 4320 FixedVectorType *ShufTy; 4321 if (ValVTy->isFloatingPointTy()) 4322 ShufTy = 4323 FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2); 4324 else 4325 ShufTy = 4326 FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2); 4327 ReductionCost += 4328 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 4329 } else if (Size == 64) { 4330 // Reducing from 64 bits is a shuffle of v4f32/v4i32. 4331 FixedVectorType *ShufTy; 4332 if (ValVTy->isFloatingPointTy()) 4333 ShufTy = 4334 FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4); 4335 else 4336 ShufTy = 4337 FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4); 4338 ReductionCost += 4339 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 4340 } else { 4341 // Reducing from smaller size is a shift by immediate. 4342 auto *ShiftTy = FixedVectorType::get( 4343 Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size); 4344 ReductionCost += getArithmeticInstrCost( 4345 Instruction::LShr, ShiftTy, CostKind, 4346 TargetTransformInfo::OK_AnyValue, 4347 TargetTransformInfo::OK_UniformConstantValue, 4348 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 4349 } 4350 4351 // Add the arithmetic op for this level. 4352 ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind); 4353 } 4354 4355 // Add the final extract element to the cost. 4356 return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0); 4357 } 4358 4359 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, 4360 bool IsUnsigned) { 4361 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 4362 4363 MVT MTy = LT.second; 4364 4365 int ISD; 4366 if (Ty->isIntOrIntVectorTy()) { 4367 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN; 4368 } else { 4369 assert(Ty->isFPOrFPVectorTy() && 4370 "Expected float point or integer vector type."); 4371 ISD = ISD::FMINNUM; 4372 } 4373 4374 static const CostTblEntry SSE1CostTbl[] = { 4375 {ISD::FMINNUM, MVT::v4f32, 1}, 4376 }; 4377 4378 static const CostTblEntry SSE2CostTbl[] = { 4379 {ISD::FMINNUM, MVT::v2f64, 1}, 4380 {ISD::SMIN, MVT::v8i16, 1}, 4381 {ISD::UMIN, MVT::v16i8, 1}, 4382 }; 4383 4384 static const CostTblEntry SSE41CostTbl[] = { 4385 {ISD::SMIN, MVT::v4i32, 1}, 4386 {ISD::UMIN, MVT::v4i32, 1}, 4387 {ISD::UMIN, MVT::v8i16, 1}, 4388 {ISD::SMIN, MVT::v16i8, 1}, 4389 }; 4390 4391 static const CostTblEntry SSE42CostTbl[] = { 4392 {ISD::UMIN, MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd 4393 }; 4394 4395 static const CostTblEntry AVX1CostTbl[] = { 4396 {ISD::FMINNUM, MVT::v8f32, 1}, 4397 {ISD::FMINNUM, MVT::v4f64, 1}, 4398 {ISD::SMIN, MVT::v8i32, 3}, 4399 {ISD::UMIN, MVT::v8i32, 3}, 4400 {ISD::SMIN, MVT::v16i16, 3}, 4401 {ISD::UMIN, MVT::v16i16, 3}, 4402 {ISD::SMIN, MVT::v32i8, 3}, 4403 {ISD::UMIN, MVT::v32i8, 3}, 4404 }; 4405 4406 static const CostTblEntry AVX2CostTbl[] = { 4407 {ISD::SMIN, MVT::v8i32, 1}, 4408 {ISD::UMIN, MVT::v8i32, 1}, 4409 {ISD::SMIN, MVT::v16i16, 1}, 4410 {ISD::UMIN, MVT::v16i16, 1}, 4411 {ISD::SMIN, MVT::v32i8, 1}, 4412 {ISD::UMIN, MVT::v32i8, 1}, 4413 }; 4414 4415 static const CostTblEntry AVX512CostTbl[] = { 4416 {ISD::FMINNUM, MVT::v16f32, 1}, 4417 {ISD::FMINNUM, MVT::v8f64, 1}, 4418 {ISD::SMIN, MVT::v2i64, 1}, 4419 {ISD::UMIN, MVT::v2i64, 1}, 4420 {ISD::SMIN, MVT::v4i64, 1}, 4421 {ISD::UMIN, MVT::v4i64, 1}, 4422 {ISD::SMIN, MVT::v8i64, 1}, 4423 {ISD::UMIN, MVT::v8i64, 1}, 4424 {ISD::SMIN, MVT::v16i32, 1}, 4425 {ISD::UMIN, MVT::v16i32, 1}, 4426 }; 4427 4428 static const CostTblEntry AVX512BWCostTbl[] = { 4429 {ISD::SMIN, MVT::v32i16, 1}, 4430 {ISD::UMIN, MVT::v32i16, 1}, 4431 {ISD::SMIN, MVT::v64i8, 1}, 4432 {ISD::UMIN, MVT::v64i8, 1}, 4433 }; 4434 4435 // If we have a native MIN/MAX instruction for this type, use it. 4436 if (ST->hasBWI()) 4437 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 4438 return LT.first * Entry->Cost; 4439 4440 if (ST->hasAVX512()) 4441 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 4442 return LT.first * Entry->Cost; 4443 4444 if (ST->hasAVX2()) 4445 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 4446 return LT.first * Entry->Cost; 4447 4448 if (ST->hasAVX()) 4449 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 4450 return LT.first * Entry->Cost; 4451 4452 if (ST->hasSSE42()) 4453 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 4454 return LT.first * Entry->Cost; 4455 4456 if (ST->hasSSE41()) 4457 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 4458 return LT.first * Entry->Cost; 4459 4460 if (ST->hasSSE2()) 4461 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 4462 return LT.first * Entry->Cost; 4463 4464 if (ST->hasSSE1()) 4465 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 4466 return LT.first * Entry->Cost; 4467 4468 unsigned CmpOpcode; 4469 if (Ty->isFPOrFPVectorTy()) { 4470 CmpOpcode = Instruction::FCmp; 4471 } else { 4472 assert(Ty->isIntOrIntVectorTy() && 4473 "expecting floating point or integer type for min/max reduction"); 4474 CmpOpcode = Instruction::ICmp; 4475 } 4476 4477 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4478 // Otherwise fall back to cmp+select. 4479 InstructionCost Result = 4480 getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE, 4481 CostKind) + 4482 getCmpSelInstrCost(Instruction::Select, Ty, CondTy, 4483 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4484 return Result; 4485 } 4486 4487 InstructionCost 4488 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy, 4489 bool IsUnsigned, 4490 TTI::TargetCostKind CostKind) { 4491 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 4492 4493 MVT MTy = LT.second; 4494 4495 int ISD; 4496 if (ValTy->isIntOrIntVectorTy()) { 4497 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN; 4498 } else { 4499 assert(ValTy->isFPOrFPVectorTy() && 4500 "Expected float point or integer vector type."); 4501 ISD = ISD::FMINNUM; 4502 } 4503 4504 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 4505 // and make it as the cost. 4506 4507 static const CostTblEntry SSE2CostTblNoPairWise[] = { 4508 {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw 4509 {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw 4510 {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw 4511 }; 4512 4513 static const CostTblEntry SSE41CostTblNoPairWise[] = { 4514 {ISD::SMIN, MVT::v2i16, 3}, // same as sse2 4515 {ISD::SMIN, MVT::v4i16, 5}, // same as sse2 4516 {ISD::UMIN, MVT::v2i16, 5}, // same as sse2 4517 {ISD::UMIN, MVT::v4i16, 7}, // same as sse2 4518 {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor 4519 {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax 4520 {ISD::SMIN, MVT::v2i8, 3}, // pminsb 4521 {ISD::SMIN, MVT::v4i8, 5}, // pminsb 4522 {ISD::SMIN, MVT::v8i8, 7}, // pminsb 4523 {ISD::SMIN, MVT::v16i8, 6}, 4524 {ISD::UMIN, MVT::v2i8, 3}, // same as sse2 4525 {ISD::UMIN, MVT::v4i8, 5}, // same as sse2 4526 {ISD::UMIN, MVT::v8i8, 7}, // same as sse2 4527 {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax 4528 }; 4529 4530 static const CostTblEntry AVX1CostTblNoPairWise[] = { 4531 {ISD::SMIN, MVT::v16i16, 6}, 4532 {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax 4533 {ISD::SMIN, MVT::v32i8, 8}, 4534 {ISD::UMIN, MVT::v32i8, 8}, 4535 }; 4536 4537 static const CostTblEntry AVX512BWCostTblNoPairWise[] = { 4538 {ISD::SMIN, MVT::v32i16, 8}, 4539 {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax 4540 {ISD::SMIN, MVT::v64i8, 10}, 4541 {ISD::UMIN, MVT::v64i8, 10}, 4542 }; 4543 4544 // Before legalizing the type, give a chance to look up illegal narrow types 4545 // in the table. 4546 // FIXME: Is there a better way to do this? 4547 EVT VT = TLI->getValueType(DL, ValTy); 4548 if (VT.isSimple()) { 4549 MVT MTy = VT.getSimpleVT(); 4550 if (ST->hasBWI()) 4551 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy)) 4552 return Entry->Cost; 4553 4554 if (ST->hasAVX()) 4555 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 4556 return Entry->Cost; 4557 4558 if (ST->hasSSE41()) 4559 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy)) 4560 return Entry->Cost; 4561 4562 if (ST->hasSSE2()) 4563 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 4564 return Entry->Cost; 4565 } 4566 4567 auto *ValVTy = cast<FixedVectorType>(ValTy); 4568 unsigned NumVecElts = ValVTy->getNumElements(); 4569 4570 auto *Ty = ValVTy; 4571 InstructionCost MinMaxCost = 0; 4572 if (LT.first != 1 && MTy.isVector() && 4573 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 4574 // Type needs to be split. We need LT.first - 1 operations ops. 4575 Ty = FixedVectorType::get(ValVTy->getElementType(), 4576 MTy.getVectorNumElements()); 4577 auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(), 4578 MTy.getVectorNumElements()); 4579 MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned); 4580 MinMaxCost *= LT.first - 1; 4581 NumVecElts = MTy.getVectorNumElements(); 4582 } 4583 4584 if (ST->hasBWI()) 4585 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy)) 4586 return MinMaxCost + Entry->Cost; 4587 4588 if (ST->hasAVX()) 4589 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 4590 return MinMaxCost + Entry->Cost; 4591 4592 if (ST->hasSSE41()) 4593 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy)) 4594 return MinMaxCost + Entry->Cost; 4595 4596 if (ST->hasSSE2()) 4597 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 4598 return MinMaxCost + Entry->Cost; 4599 4600 unsigned ScalarSize = ValTy->getScalarSizeInBits(); 4601 4602 // Special case power of 2 reductions where the scalar type isn't changed 4603 // by type legalization. 4604 if (!isPowerOf2_32(ValVTy->getNumElements()) || 4605 ScalarSize != MTy.getScalarSizeInBits()) 4606 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsUnsigned, CostKind); 4607 4608 // Now handle reduction with the legal type, taking into account size changes 4609 // at each level. 4610 while (NumVecElts > 1) { 4611 // Determine the size of the remaining vector we need to reduce. 4612 unsigned Size = NumVecElts * ScalarSize; 4613 NumVecElts /= 2; 4614 // If we're reducing from 256/512 bits, use an extract_subvector. 4615 if (Size > 128) { 4616 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts); 4617 MinMaxCost += 4618 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy); 4619 Ty = SubTy; 4620 } else if (Size == 128) { 4621 // Reducing from 128 bits is a permute of v2f64/v2i64. 4622 VectorType *ShufTy; 4623 if (ValTy->isFloatingPointTy()) 4624 ShufTy = 4625 FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2); 4626 else 4627 ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2); 4628 MinMaxCost += 4629 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 4630 } else if (Size == 64) { 4631 // Reducing from 64 bits is a shuffle of v4f32/v4i32. 4632 FixedVectorType *ShufTy; 4633 if (ValTy->isFloatingPointTy()) 4634 ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4); 4635 else 4636 ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4); 4637 MinMaxCost += 4638 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 4639 } else { 4640 // Reducing from smaller size is a shift by immediate. 4641 auto *ShiftTy = FixedVectorType::get( 4642 Type::getIntNTy(ValTy->getContext(), Size), 128 / Size); 4643 MinMaxCost += getArithmeticInstrCost( 4644 Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput, 4645 TargetTransformInfo::OK_AnyValue, 4646 TargetTransformInfo::OK_UniformConstantValue, 4647 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 4648 } 4649 4650 // Add the arithmetic op for this level. 4651 auto *SubCondTy = 4652 FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements()); 4653 MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned); 4654 } 4655 4656 // Add the final extract element to the cost. 4657 return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0); 4658 } 4659 4660 /// Calculate the cost of materializing a 64-bit value. This helper 4661 /// method might only calculate a fraction of a larger immediate. Therefore it 4662 /// is valid to return a cost of ZERO. 4663 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) { 4664 if (Val == 0) 4665 return TTI::TCC_Free; 4666 4667 if (isInt<32>(Val)) 4668 return TTI::TCC_Basic; 4669 4670 return 2 * TTI::TCC_Basic; 4671 } 4672 4673 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 4674 TTI::TargetCostKind CostKind) { 4675 assert(Ty->isIntegerTy()); 4676 4677 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 4678 if (BitSize == 0) 4679 return ~0U; 4680 4681 // Never hoist constants larger than 128bit, because this might lead to 4682 // incorrect code generation or assertions in codegen. 4683 // Fixme: Create a cost model for types larger than i128 once the codegen 4684 // issues have been fixed. 4685 if (BitSize > 128) 4686 return TTI::TCC_Free; 4687 4688 if (Imm == 0) 4689 return TTI::TCC_Free; 4690 4691 // Sign-extend all constants to a multiple of 64-bit. 4692 APInt ImmVal = Imm; 4693 if (BitSize % 64 != 0) 4694 ImmVal = Imm.sext(alignTo(BitSize, 64)); 4695 4696 // Split the constant into 64-bit chunks and calculate the cost for each 4697 // chunk. 4698 InstructionCost Cost = 0; 4699 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 4700 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 4701 int64_t Val = Tmp.getSExtValue(); 4702 Cost += getIntImmCost(Val); 4703 } 4704 // We need at least one instruction to materialize the constant. 4705 return std::max<InstructionCost>(1, Cost); 4706 } 4707 4708 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 4709 const APInt &Imm, Type *Ty, 4710 TTI::TargetCostKind CostKind, 4711 Instruction *Inst) { 4712 assert(Ty->isIntegerTy()); 4713 4714 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 4715 // There is no cost model for constants with a bit size of 0. Return TCC_Free 4716 // here, so that constant hoisting will ignore this constant. 4717 if (BitSize == 0) 4718 return TTI::TCC_Free; 4719 4720 unsigned ImmIdx = ~0U; 4721 switch (Opcode) { 4722 default: 4723 return TTI::TCC_Free; 4724 case Instruction::GetElementPtr: 4725 // Always hoist the base address of a GetElementPtr. This prevents the 4726 // creation of new constants for every base constant that gets constant 4727 // folded with the offset. 4728 if (Idx == 0) 4729 return 2 * TTI::TCC_Basic; 4730 return TTI::TCC_Free; 4731 case Instruction::Store: 4732 ImmIdx = 0; 4733 break; 4734 case Instruction::ICmp: 4735 // This is an imperfect hack to prevent constant hoisting of 4736 // compares that might be trying to check if a 64-bit value fits in 4737 // 32-bits. The backend can optimize these cases using a right shift by 32. 4738 // Ideally we would check the compare predicate here. There also other 4739 // similar immediates the backend can use shifts for. 4740 if (Idx == 1 && Imm.getBitWidth() == 64) { 4741 uint64_t ImmVal = Imm.getZExtValue(); 4742 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff) 4743 return TTI::TCC_Free; 4744 } 4745 ImmIdx = 1; 4746 break; 4747 case Instruction::And: 4748 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes 4749 // by using a 32-bit operation with implicit zero extension. Detect such 4750 // immediates here as the normal path expects bit 31 to be sign extended. 4751 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue())) 4752 return TTI::TCC_Free; 4753 ImmIdx = 1; 4754 break; 4755 case Instruction::Add: 4756 case Instruction::Sub: 4757 // For add/sub, we can use the opposite instruction for INT32_MIN. 4758 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000) 4759 return TTI::TCC_Free; 4760 ImmIdx = 1; 4761 break; 4762 case Instruction::UDiv: 4763 case Instruction::SDiv: 4764 case Instruction::URem: 4765 case Instruction::SRem: 4766 // Division by constant is typically expanded later into a different 4767 // instruction sequence. This completely changes the constants. 4768 // Report them as "free" to stop ConstantHoist from marking them as opaque. 4769 return TTI::TCC_Free; 4770 case Instruction::Mul: 4771 case Instruction::Or: 4772 case Instruction::Xor: 4773 ImmIdx = 1; 4774 break; 4775 // Always return TCC_Free for the shift value of a shift instruction. 4776 case Instruction::Shl: 4777 case Instruction::LShr: 4778 case Instruction::AShr: 4779 if (Idx == 1) 4780 return TTI::TCC_Free; 4781 break; 4782 case Instruction::Trunc: 4783 case Instruction::ZExt: 4784 case Instruction::SExt: 4785 case Instruction::IntToPtr: 4786 case Instruction::PtrToInt: 4787 case Instruction::BitCast: 4788 case Instruction::PHI: 4789 case Instruction::Call: 4790 case Instruction::Select: 4791 case Instruction::Ret: 4792 case Instruction::Load: 4793 break; 4794 } 4795 4796 if (Idx == ImmIdx) { 4797 int NumConstants = divideCeil(BitSize, 64); 4798 InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4799 return (Cost <= NumConstants * TTI::TCC_Basic) 4800 ? static_cast<int>(TTI::TCC_Free) 4801 : Cost; 4802 } 4803 4804 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4805 } 4806 4807 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 4808 const APInt &Imm, Type *Ty, 4809 TTI::TargetCostKind CostKind) { 4810 assert(Ty->isIntegerTy()); 4811 4812 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 4813 // There is no cost model for constants with a bit size of 0. Return TCC_Free 4814 // here, so that constant hoisting will ignore this constant. 4815 if (BitSize == 0) 4816 return TTI::TCC_Free; 4817 4818 switch (IID) { 4819 default: 4820 return TTI::TCC_Free; 4821 case Intrinsic::sadd_with_overflow: 4822 case Intrinsic::uadd_with_overflow: 4823 case Intrinsic::ssub_with_overflow: 4824 case Intrinsic::usub_with_overflow: 4825 case Intrinsic::smul_with_overflow: 4826 case Intrinsic::umul_with_overflow: 4827 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue())) 4828 return TTI::TCC_Free; 4829 break; 4830 case Intrinsic::experimental_stackmap: 4831 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 4832 return TTI::TCC_Free; 4833 break; 4834 case Intrinsic::experimental_patchpoint_void: 4835 case Intrinsic::experimental_patchpoint_i64: 4836 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 4837 return TTI::TCC_Free; 4838 break; 4839 } 4840 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4841 } 4842 4843 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode, 4844 TTI::TargetCostKind CostKind, 4845 const Instruction *I) { 4846 if (CostKind != TTI::TCK_RecipThroughput) 4847 return Opcode == Instruction::PHI ? 0 : 1; 4848 // Branches are assumed to be predicted. 4849 return 0; 4850 } 4851 4852 int X86TTIImpl::getGatherOverhead() const { 4853 // Some CPUs have more overhead for gather. The specified overhead is relative 4854 // to the Load operation. "2" is the number provided by Intel architects. This 4855 // parameter is used for cost estimation of Gather Op and comparison with 4856 // other alternatives. 4857 // TODO: Remove the explicit hasAVX512()?, That would mean we would only 4858 // enable gather with a -march. 4859 if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather())) 4860 return 2; 4861 4862 return 1024; 4863 } 4864 4865 int X86TTIImpl::getScatterOverhead() const { 4866 if (ST->hasAVX512()) 4867 return 2; 4868 4869 return 1024; 4870 } 4871 4872 // Return an average cost of Gather / Scatter instruction, maybe improved later. 4873 // FIXME: Add TargetCostKind support. 4874 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, 4875 const Value *Ptr, Align Alignment, 4876 unsigned AddressSpace) { 4877 4878 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost"); 4879 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4880 4881 // Try to reduce index size from 64 bit (default for GEP) 4882 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the 4883 // operation will use 16 x 64 indices which do not fit in a zmm and needs 4884 // to split. Also check that the base pointer is the same for all lanes, 4885 // and that there's at most one variable index. 4886 auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) { 4887 unsigned IndexSize = DL.getPointerSizeInBits(); 4888 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4889 if (IndexSize < 64 || !GEP) 4890 return IndexSize; 4891 4892 unsigned NumOfVarIndices = 0; 4893 const Value *Ptrs = GEP->getPointerOperand(); 4894 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs)) 4895 return IndexSize; 4896 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) { 4897 if (isa<Constant>(GEP->getOperand(i))) 4898 continue; 4899 Type *IndxTy = GEP->getOperand(i)->getType(); 4900 if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy)) 4901 IndxTy = IndexVTy->getElementType(); 4902 if ((IndxTy->getPrimitiveSizeInBits() == 64 && 4903 !isa<SExtInst>(GEP->getOperand(i))) || 4904 ++NumOfVarIndices > 1) 4905 return IndexSize; // 64 4906 } 4907 return (unsigned)32; 4908 }; 4909 4910 // Trying to reduce IndexSize to 32 bits for vector 16. 4911 // By default the IndexSize is equal to pointer size. 4912 unsigned IndexSize = (ST->hasAVX512() && VF >= 16) 4913 ? getIndexSizeInBits(Ptr, DL) 4914 : DL.getPointerSizeInBits(); 4915 4916 auto *IndexVTy = FixedVectorType::get( 4917 IntegerType::get(SrcVTy->getContext(), IndexSize), VF); 4918 std::pair<InstructionCost, MVT> IdxsLT = 4919 TLI->getTypeLegalizationCost(DL, IndexVTy); 4920 std::pair<InstructionCost, MVT> SrcLT = 4921 TLI->getTypeLegalizationCost(DL, SrcVTy); 4922 InstructionCost::CostType SplitFactor = 4923 *std::max(IdxsLT.first, SrcLT.first).getValue(); 4924 if (SplitFactor > 1) { 4925 // Handle splitting of vector of pointers 4926 auto *SplitSrcTy = 4927 FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor); 4928 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment, 4929 AddressSpace); 4930 } 4931 4932 // The gather / scatter cost is given by Intel architects. It is a rough 4933 // number since we are looking at one instruction in a time. 4934 const int GSOverhead = (Opcode == Instruction::Load) 4935 ? getGatherOverhead() 4936 : getScatterOverhead(); 4937 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 4938 MaybeAlign(Alignment), AddressSpace, 4939 TTI::TCK_RecipThroughput); 4940 } 4941 4942 /// Return the cost of full scalarization of gather / scatter operation. 4943 /// 4944 /// Opcode - Load or Store instruction. 4945 /// SrcVTy - The type of the data vector that should be gathered or scattered. 4946 /// VariableMask - The mask is non-constant at compile time. 4947 /// Alignment - Alignment for one element. 4948 /// AddressSpace - pointer[s] address space. 4949 /// 4950 /// FIXME: Add TargetCostKind support. 4951 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy, 4952 bool VariableMask, Align Alignment, 4953 unsigned AddressSpace) { 4954 Type *ScalarTy = SrcVTy->getScalarType(); 4955 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4956 APInt DemandedElts = APInt::getAllOnes(VF); 4957 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4958 4959 InstructionCost MaskUnpackCost = 0; 4960 if (VariableMask) { 4961 auto *MaskTy = 4962 FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF); 4963 MaskUnpackCost = getScalarizationOverhead( 4964 MaskTy, DemandedElts, /*Insert=*/false, /*Extract=*/true); 4965 InstructionCost ScalarCompareCost = getCmpSelInstrCost( 4966 Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr, 4967 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4968 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind); 4969 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost); 4970 } 4971 4972 InstructionCost AddressUnpackCost = getScalarizationOverhead( 4973 FixedVectorType::get(ScalarTy->getPointerTo(), VF), DemandedElts, 4974 /*Insert=*/false, /*Extract=*/true); 4975 4976 // The cost of the scalar loads/stores. 4977 InstructionCost MemoryOpCost = 4978 VF * getMemoryOpCost(Opcode, ScalarTy, MaybeAlign(Alignment), 4979 AddressSpace, CostKind); 4980 4981 // The cost of forming the vector from loaded scalars/ 4982 // scalarizing the vector to perform scalar stores. 4983 InstructionCost InsertExtractCost = 4984 getScalarizationOverhead(cast<FixedVectorType>(SrcVTy), DemandedElts, 4985 /*Insert=*/Opcode == Instruction::Load, 4986 /*Extract=*/Opcode == Instruction::Store); 4987 4988 return AddressUnpackCost + MemoryOpCost + MaskUnpackCost + InsertExtractCost; 4989 } 4990 4991 /// Calculate the cost of Gather / Scatter operation 4992 InstructionCost X86TTIImpl::getGatherScatterOpCost( 4993 unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask, 4994 Align Alignment, TTI::TargetCostKind CostKind, 4995 const Instruction *I = nullptr) { 4996 if (CostKind != TTI::TCK_RecipThroughput) { 4997 if ((Opcode == Instruction::Load && 4998 isLegalMaskedGather(SrcVTy, Align(Alignment)) && 4999 !forceScalarizeMaskedGather(cast<VectorType>(SrcVTy), 5000 Align(Alignment))) || 5001 (Opcode == Instruction::Store && 5002 isLegalMaskedScatter(SrcVTy, Align(Alignment)) && 5003 !forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy), 5004 Align(Alignment)))) 5005 return 1; 5006 return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask, 5007 Alignment, CostKind, I); 5008 } 5009 5010 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter"); 5011 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5012 if (!PtrTy && Ptr->getType()->isVectorTy()) 5013 PtrTy = dyn_cast<PointerType>( 5014 cast<VectorType>(Ptr->getType())->getElementType()); 5015 assert(PtrTy && "Unexpected type for Ptr argument"); 5016 unsigned AddressSpace = PtrTy->getAddressSpace(); 5017 5018 if ((Opcode == Instruction::Load && 5019 (!isLegalMaskedGather(SrcVTy, Align(Alignment)) || 5020 forceScalarizeMaskedGather(cast<VectorType>(SrcVTy), 5021 Align(Alignment)))) || 5022 (Opcode == Instruction::Store && 5023 (!isLegalMaskedScatter(SrcVTy, Align(Alignment)) || 5024 forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy), 5025 Align(Alignment))))) 5026 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, 5027 AddressSpace); 5028 5029 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace); 5030 } 5031 5032 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 5033 TargetTransformInfo::LSRCost &C2) { 5034 // X86 specific here are "instruction number 1st priority". 5035 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 5036 C1.NumIVMuls, C1.NumBaseAdds, 5037 C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 5038 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 5039 C2.NumIVMuls, C2.NumBaseAdds, 5040 C2.ScaleCost, C2.ImmCost, C2.SetupCost); 5041 } 5042 5043 bool X86TTIImpl::canMacroFuseCmp() { 5044 return ST->hasMacroFusion() || ST->hasBranchFusion(); 5045 } 5046 5047 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 5048 if (!ST->hasAVX()) 5049 return false; 5050 5051 // The backend can't handle a single element vector. 5052 if (isa<VectorType>(DataTy) && 5053 cast<FixedVectorType>(DataTy)->getNumElements() == 1) 5054 return false; 5055 Type *ScalarTy = DataTy->getScalarType(); 5056 5057 if (ScalarTy->isPointerTy()) 5058 return true; 5059 5060 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 5061 return true; 5062 5063 if (ScalarTy->isHalfTy() && ST->hasBWI() && ST->hasFP16()) 5064 return true; 5065 5066 if (!ScalarTy->isIntegerTy()) 5067 return false; 5068 5069 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 5070 return IntWidth == 32 || IntWidth == 64 || 5071 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI()); 5072 } 5073 5074 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) { 5075 return isLegalMaskedLoad(DataType, Alignment); 5076 } 5077 5078 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) { 5079 unsigned DataSize = DL.getTypeStoreSize(DataType); 5080 // The only supported nontemporal loads are for aligned vectors of 16 or 32 5081 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2 5082 // (the equivalent stores only require AVX). 5083 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32)) 5084 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2(); 5085 5086 return false; 5087 } 5088 5089 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) { 5090 unsigned DataSize = DL.getTypeStoreSize(DataType); 5091 5092 // SSE4A supports nontemporal stores of float and double at arbitrary 5093 // alignment. 5094 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy())) 5095 return true; 5096 5097 // Besides the SSE4A subtarget exception above, only aligned stores are 5098 // available nontemporaly on any other subtarget. And only stores with a size 5099 // of 4..32 bytes (powers of 2, only) are permitted. 5100 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 || 5101 !isPowerOf2_32(DataSize)) 5102 return false; 5103 5104 // 32-byte vector nontemporal stores are supported by AVX (the equivalent 5105 // loads require AVX2). 5106 if (DataSize == 32) 5107 return ST->hasAVX(); 5108 if (DataSize == 16) 5109 return ST->hasSSE1(); 5110 return true; 5111 } 5112 5113 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) { 5114 if (!isa<VectorType>(DataTy)) 5115 return false; 5116 5117 if (!ST->hasAVX512()) 5118 return false; 5119 5120 // The backend can't handle a single element vector. 5121 if (cast<FixedVectorType>(DataTy)->getNumElements() == 1) 5122 return false; 5123 5124 Type *ScalarTy = cast<VectorType>(DataTy)->getElementType(); 5125 5126 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 5127 return true; 5128 5129 if (!ScalarTy->isIntegerTy()) 5130 return false; 5131 5132 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 5133 return IntWidth == 32 || IntWidth == 64 || 5134 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2()); 5135 } 5136 5137 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) { 5138 return isLegalMaskedExpandLoad(DataTy); 5139 } 5140 5141 bool X86TTIImpl::supportsGather() const { 5142 // Some CPUs have better gather performance than others. 5143 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only 5144 // enable gather with a -march. 5145 return ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2()); 5146 } 5147 5148 bool X86TTIImpl::forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) { 5149 // Gather / Scatter for vector 2 is not profitable on KNL / SKX 5150 // Vector-4 of gather/scatter instruction does not exist on KNL. We can extend 5151 // it to 8 elements, but zeroing upper bits of the mask vector will add more 5152 // instructions. Right now we give the scalar cost of vector-4 for KNL. TODO: 5153 // Check, maybe the gather/scatter instruction is better in the VariableMask 5154 // case. 5155 unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements(); 5156 return NumElts == 1 || 5157 (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX()))); 5158 } 5159 5160 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) { 5161 if (!supportsGather()) 5162 return false; 5163 Type *ScalarTy = DataTy->getScalarType(); 5164 if (ScalarTy->isPointerTy()) 5165 return true; 5166 5167 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 5168 return true; 5169 5170 if (!ScalarTy->isIntegerTy()) 5171 return false; 5172 5173 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 5174 return IntWidth == 32 || IntWidth == 64; 5175 } 5176 5177 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) { 5178 // AVX2 doesn't support scatter 5179 if (!ST->hasAVX512()) 5180 return false; 5181 return isLegalMaskedGather(DataType, Alignment); 5182 } 5183 5184 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 5185 EVT VT = TLI->getValueType(DL, DataType); 5186 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT); 5187 } 5188 5189 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) { 5190 return false; 5191 } 5192 5193 bool X86TTIImpl::areInlineCompatible(const Function *Caller, 5194 const Function *Callee) const { 5195 const TargetMachine &TM = getTLI()->getTargetMachine(); 5196 5197 // Work this as a subsetting of subtarget features. 5198 const FeatureBitset &CallerBits = 5199 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 5200 const FeatureBitset &CalleeBits = 5201 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 5202 5203 // Check whether features are the same (apart from the ignore list). 5204 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 5205 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 5206 if (RealCallerBits == RealCalleeBits) 5207 return true; 5208 5209 // If the features are a subset, we need to additionally check for calls 5210 // that may become ABI-incompatible as a result of inlining. 5211 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 5212 return false; 5213 5214 for (const Instruction &I : instructions(Callee)) { 5215 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5216 SmallVector<Type *, 8> Types; 5217 for (Value *Arg : CB->args()) 5218 Types.push_back(Arg->getType()); 5219 if (!CB->getType()->isVoidTy()) 5220 Types.push_back(CB->getType()); 5221 5222 // Simple types are always ABI compatible. 5223 auto IsSimpleTy = [](Type *Ty) { 5224 return !Ty->isVectorTy() && !Ty->isAggregateType(); 5225 }; 5226 if (all_of(Types, IsSimpleTy)) 5227 continue; 5228 5229 if (Function *NestedCallee = CB->getCalledFunction()) { 5230 // Assume that intrinsics are always ABI compatible. 5231 if (NestedCallee->isIntrinsic()) 5232 continue; 5233 5234 // Do a precise compatibility check. 5235 if (!areTypesABICompatible(Caller, NestedCallee, Types)) 5236 return false; 5237 } else { 5238 // We don't know the target features of the callee, 5239 // assume it is incompatible. 5240 return false; 5241 } 5242 } 5243 } 5244 return true; 5245 } 5246 5247 bool X86TTIImpl::areTypesABICompatible(const Function *Caller, 5248 const Function *Callee, 5249 const ArrayRef<Type *> &Types) const { 5250 if (!BaseT::areTypesABICompatible(Caller, Callee, Types)) 5251 return false; 5252 5253 // If we get here, we know the target features match. If one function 5254 // considers 512-bit vectors legal and the other does not, consider them 5255 // incompatible. 5256 const TargetMachine &TM = getTLI()->getTargetMachine(); 5257 5258 if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() == 5259 TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs()) 5260 return true; 5261 5262 // Consider the arguments compatible if they aren't vectors or aggregates. 5263 // FIXME: Look at the size of vectors. 5264 // FIXME: Look at the element types of aggregates to see if there are vectors. 5265 return llvm::none_of(Types, 5266 [](Type *T) { return T->isVectorTy() || T->isAggregateType(); }); 5267 } 5268 5269 X86TTIImpl::TTI::MemCmpExpansionOptions 5270 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 5271 TTI::MemCmpExpansionOptions Options; 5272 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 5273 Options.NumLoadsPerBlock = 2; 5274 // All GPR and vector loads can be unaligned. 5275 Options.AllowOverlappingLoads = true; 5276 if (IsZeroCmp) { 5277 // Only enable vector loads for equality comparison. Right now the vector 5278 // version is not as fast for three way compare (see #33329). 5279 const unsigned PreferredWidth = ST->getPreferVectorWidth(); 5280 if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64); 5281 if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32); 5282 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16); 5283 } 5284 if (ST->is64Bit()) { 5285 Options.LoadSizes.push_back(8); 5286 } 5287 Options.LoadSizes.push_back(4); 5288 Options.LoadSizes.push_back(2); 5289 Options.LoadSizes.push_back(1); 5290 return Options; 5291 } 5292 5293 bool X86TTIImpl::prefersVectorizedAddressing() const { 5294 return supportsGather(); 5295 } 5296 5297 bool X86TTIImpl::supportsEfficientVectorElementLoadStore() const { 5298 return false; 5299 } 5300 5301 bool X86TTIImpl::enableInterleavedAccessVectorization() { 5302 // TODO: We expect this to be beneficial regardless of arch, 5303 // but there are currently some unexplained performance artifacts on Atom. 5304 // As a temporary solution, disable on Atom. 5305 return !(ST->isAtom()); 5306 } 5307 5308 // Get estimation for interleaved load/store operations and strided load. 5309 // \p Indices contains indices for strided load. 5310 // \p Factor - the factor of interleaving. 5311 // AVX-512 provides 3-src shuffles that significantly reduces the cost. 5312 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512( 5313 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor, 5314 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace, 5315 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) { 5316 // VecTy for interleave memop is <VF*Factor x Elt>. 5317 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have 5318 // VecTy = <12 x i32>. 5319 5320 // Calculate the number of memory operations (NumOfMemOps), required 5321 // for load/store the VecTy. 5322 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; 5323 unsigned VecTySize = DL.getTypeStoreSize(VecTy); 5324 unsigned LegalVTSize = LegalVT.getStoreSize(); 5325 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize; 5326 5327 // Get the cost of one memory operation. 5328 auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(), 5329 LegalVT.getVectorNumElements()); 5330 InstructionCost MemOpCost; 5331 bool UseMaskedMemOp = UseMaskForCond || UseMaskForGaps; 5332 if (UseMaskedMemOp) 5333 MemOpCost = getMaskedMemoryOpCost(Opcode, SingleMemOpTy, Alignment, 5334 AddressSpace, CostKind); 5335 else 5336 MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy, MaybeAlign(Alignment), 5337 AddressSpace, CostKind); 5338 5339 unsigned VF = VecTy->getNumElements() / Factor; 5340 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF); 5341 5342 InstructionCost MaskCost; 5343 if (UseMaskedMemOp) { 5344 APInt DemandedLoadStoreElts = APInt::getZero(VecTy->getNumElements()); 5345 for (unsigned Index : Indices) { 5346 assert(Index < Factor && "Invalid index for interleaved memory op"); 5347 for (unsigned Elm = 0; Elm < VF; Elm++) 5348 DemandedLoadStoreElts.setBit(Index + Elm * Factor); 5349 } 5350 5351 Type *I1Type = Type::getInt1Ty(VecTy->getContext()); 5352 5353 MaskCost = getReplicationShuffleCost( 5354 I1Type, Factor, VF, 5355 UseMaskForGaps ? DemandedLoadStoreElts 5356 : APInt::getAllOnes(VecTy->getNumElements()), 5357 CostKind); 5358 5359 // The Gaps mask is invariant and created outside the loop, therefore the 5360 // cost of creating it is not accounted for here. However if we have both 5361 // a MaskForGaps and some other mask that guards the execution of the 5362 // memory access, we need to account for the cost of And-ing the two masks 5363 // inside the loop. 5364 if (UseMaskForGaps) { 5365 auto *MaskVT = FixedVectorType::get(I1Type, VecTy->getNumElements()); 5366 MaskCost += getArithmeticInstrCost(BinaryOperator::And, MaskVT, CostKind); 5367 } 5368 } 5369 5370 if (Opcode == Instruction::Load) { 5371 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl) 5372 // contain the cost of the optimized shuffle sequence that the 5373 // X86InterleavedAccess pass will generate. 5374 // The cost of loads and stores are computed separately from the table. 5375 5376 // X86InterleavedAccess support only the following interleaved-access group. 5377 static const CostTblEntry AVX512InterleavedLoadTbl[] = { 5378 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8 5379 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8 5380 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8 5381 }; 5382 5383 if (const auto *Entry = 5384 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT)) 5385 return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost; 5386 //If an entry does not exist, fallback to the default implementation. 5387 5388 // Kind of shuffle depends on number of loaded values. 5389 // If we load the entire data in one register, we can use a 1-src shuffle. 5390 // Otherwise, we'll merge 2 sources in each operation. 5391 TTI::ShuffleKind ShuffleKind = 5392 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc; 5393 5394 InstructionCost ShuffleCost = 5395 getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr); 5396 5397 unsigned NumOfLoadsInInterleaveGrp = 5398 Indices.size() ? Indices.size() : Factor; 5399 auto *ResultTy = FixedVectorType::get(VecTy->getElementType(), 5400 VecTy->getNumElements() / Factor); 5401 InstructionCost NumOfResults = 5402 getTLI()->getTypeLegalizationCost(DL, ResultTy).first * 5403 NumOfLoadsInInterleaveGrp; 5404 5405 // About a half of the loads may be folded in shuffles when we have only 5406 // one result. If we have more than one result, or the loads are masked, 5407 // we do not fold loads at all. 5408 unsigned NumOfUnfoldedLoads = 5409 UseMaskedMemOp || NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2; 5410 5411 // Get a number of shuffle operations per result. 5412 unsigned NumOfShufflesPerResult = 5413 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1)); 5414 5415 // The SK_MergeTwoSrc shuffle clobbers one of src operands. 5416 // When we have more than one destination, we need additional instructions 5417 // to keep sources. 5418 InstructionCost NumOfMoves = 0; 5419 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc) 5420 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2; 5421 5422 InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost + 5423 MaskCost + NumOfUnfoldedLoads * MemOpCost + 5424 NumOfMoves; 5425 5426 return Cost; 5427 } 5428 5429 // Store. 5430 assert(Opcode == Instruction::Store && 5431 "Expected Store Instruction at this point"); 5432 // X86InterleavedAccess support only the following interleaved-access group. 5433 static const CostTblEntry AVX512InterleavedStoreTbl[] = { 5434 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store) 5435 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store) 5436 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store) 5437 5438 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store) 5439 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store) 5440 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store) 5441 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store) 5442 }; 5443 5444 if (const auto *Entry = 5445 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT)) 5446 return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost; 5447 //If an entry does not exist, fallback to the default implementation. 5448 5449 // There is no strided stores meanwhile. And store can't be folded in 5450 // shuffle. 5451 unsigned NumOfSources = Factor; // The number of values to be merged. 5452 InstructionCost ShuffleCost = 5453 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr); 5454 unsigned NumOfShufflesPerStore = NumOfSources - 1; 5455 5456 // The SK_MergeTwoSrc shuffle clobbers one of src operands. 5457 // We need additional instructions to keep sources. 5458 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2; 5459 InstructionCost Cost = 5460 MaskCost + 5461 NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) + 5462 NumOfMoves; 5463 return Cost; 5464 } 5465 5466 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost( 5467 unsigned Opcode, Type *BaseTy, unsigned Factor, ArrayRef<unsigned> Indices, 5468 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 5469 bool UseMaskForCond, bool UseMaskForGaps) { 5470 auto *VecTy = cast<FixedVectorType>(BaseTy); 5471 5472 auto isSupportedOnAVX512 = [&](Type *VecTy, bool HasBW) { 5473 Type *EltTy = cast<VectorType>(VecTy)->getElementType(); 5474 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) || 5475 EltTy->isIntegerTy(32) || EltTy->isPointerTy()) 5476 return true; 5477 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) || 5478 (!ST->useSoftFloat() && ST->hasFP16() && EltTy->isHalfTy())) 5479 return HasBW; 5480 return false; 5481 }; 5482 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI())) 5483 return getInterleavedMemoryOpCostAVX512( 5484 Opcode, VecTy, Factor, Indices, Alignment, 5485 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); 5486 5487 if (UseMaskForCond || UseMaskForGaps) 5488 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 5489 Alignment, AddressSpace, CostKind, 5490 UseMaskForCond, UseMaskForGaps); 5491 5492 // Get estimation for interleaved load/store operations for SSE-AVX2. 5493 // As opposed to AVX-512, SSE-AVX2 do not have generic shuffles that allow 5494 // computing the cost using a generic formula as a function of generic 5495 // shuffles. We therefore use a lookup table instead, filled according to 5496 // the instruction sequences that codegen currently generates. 5497 5498 // VecTy for interleave memop is <VF*Factor x Elt>. 5499 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have 5500 // VecTy = <12 x i32>. 5501 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; 5502 5503 // This function can be called with VecTy=<6xi128>, Factor=3, in which case 5504 // the VF=2, while v2i128 is an unsupported MVT vector type 5505 // (see MachineValueType.h::getVectorVT()). 5506 if (!LegalVT.isVector()) 5507 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 5508 Alignment, AddressSpace, CostKind); 5509 5510 unsigned VF = VecTy->getNumElements() / Factor; 5511 Type *ScalarTy = VecTy->getElementType(); 5512 // Deduplicate entries, model floats/pointers as appropriately-sized integers. 5513 if (!ScalarTy->isIntegerTy()) 5514 ScalarTy = 5515 Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy)); 5516 5517 // Get the cost of all the memory operations. 5518 // FIXME: discount dead loads. 5519 InstructionCost MemOpCosts = getMemoryOpCost( 5520 Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind); 5521 5522 auto *VT = FixedVectorType::get(ScalarTy, VF); 5523 EVT ETy = TLI->getValueType(DL, VT); 5524 if (!ETy.isSimple()) 5525 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 5526 Alignment, AddressSpace, CostKind); 5527 5528 // TODO: Complete for other data-types and strides. 5529 // Each combination of Stride, element bit width and VF results in a different 5530 // sequence; The cost tables are therefore accessed with: 5531 // Factor (stride) and VectorType=VFxiN. 5532 // The Cost accounts only for the shuffle sequence; 5533 // The cost of the loads/stores is accounted for separately. 5534 // 5535 static const CostTblEntry AVX2InterleavedLoadTbl[] = { 5536 {2, MVT::v2i8, 2}, // (load 4i8 and) deinterleave into 2 x 2i8 5537 {2, MVT::v4i8, 2}, // (load 8i8 and) deinterleave into 2 x 4i8 5538 {2, MVT::v8i8, 2}, // (load 16i8 and) deinterleave into 2 x 8i8 5539 {2, MVT::v16i8, 4}, // (load 32i8 and) deinterleave into 2 x 16i8 5540 {2, MVT::v32i8, 6}, // (load 64i8 and) deinterleave into 2 x 32i8 5541 5542 {2, MVT::v8i16, 6}, // (load 16i16 and) deinterleave into 2 x 8i16 5543 {2, MVT::v16i16, 9}, // (load 32i16 and) deinterleave into 2 x 16i16 5544 {2, MVT::v32i16, 18}, // (load 64i16 and) deinterleave into 2 x 32i16 5545 5546 {2, MVT::v8i32, 4}, // (load 16i32 and) deinterleave into 2 x 8i32 5547 {2, MVT::v16i32, 8}, // (load 32i32 and) deinterleave into 2 x 16i32 5548 {2, MVT::v32i32, 16}, // (load 64i32 and) deinterleave into 2 x 32i32 5549 5550 {2, MVT::v4i64, 4}, // (load 8i64 and) deinterleave into 2 x 4i64 5551 {2, MVT::v8i64, 8}, // (load 16i64 and) deinterleave into 2 x 8i64 5552 {2, MVT::v16i64, 16}, // (load 32i64 and) deinterleave into 2 x 16i64 5553 {2, MVT::v32i64, 32}, // (load 64i64 and) deinterleave into 2 x 32i64 5554 5555 {3, MVT::v2i8, 3}, // (load 6i8 and) deinterleave into 3 x 2i8 5556 {3, MVT::v4i8, 3}, // (load 12i8 and) deinterleave into 3 x 4i8 5557 {3, MVT::v8i8, 6}, // (load 24i8 and) deinterleave into 3 x 8i8 5558 {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8 5559 {3, MVT::v32i8, 14}, // (load 96i8 and) deinterleave into 3 x 32i8 5560 5561 {3, MVT::v2i16, 5}, // (load 6i16 and) deinterleave into 3 x 2i16 5562 {3, MVT::v4i16, 7}, // (load 12i16 and) deinterleave into 3 x 4i16 5563 {3, MVT::v8i16, 9}, // (load 24i16 and) deinterleave into 3 x 8i16 5564 {3, MVT::v16i16, 28}, // (load 48i16 and) deinterleave into 3 x 16i16 5565 {3, MVT::v32i16, 56}, // (load 96i16 and) deinterleave into 3 x 32i16 5566 5567 {3, MVT::v2i32, 3}, // (load 6i32 and) deinterleave into 3 x 2i32 5568 {3, MVT::v4i32, 3}, // (load 12i32 and) deinterleave into 3 x 4i32 5569 {3, MVT::v8i32, 7}, // (load 24i32 and) deinterleave into 3 x 8i32 5570 {3, MVT::v16i32, 14}, // (load 48i32 and) deinterleave into 3 x 16i32 5571 {3, MVT::v32i32, 32}, // (load 96i32 and) deinterleave into 3 x 32i32 5572 5573 {3, MVT::v2i64, 1}, // (load 6i64 and) deinterleave into 3 x 2i64 5574 {3, MVT::v4i64, 5}, // (load 12i64 and) deinterleave into 3 x 4i64 5575 {3, MVT::v8i64, 10}, // (load 24i64 and) deinterleave into 3 x 8i64 5576 {3, MVT::v16i64, 20}, // (load 48i64 and) deinterleave into 3 x 16i64 5577 5578 {4, MVT::v2i8, 4}, // (load 8i8 and) deinterleave into 4 x 2i8 5579 {4, MVT::v4i8, 4}, // (load 16i8 and) deinterleave into 4 x 4i8 5580 {4, MVT::v8i8, 12}, // (load 32i8 and) deinterleave into 4 x 8i8 5581 {4, MVT::v16i8, 24}, // (load 64i8 and) deinterleave into 4 x 16i8 5582 {4, MVT::v32i8, 56}, // (load 128i8 and) deinterleave into 4 x 32i8 5583 5584 {4, MVT::v2i16, 6}, // (load 8i16 and) deinterleave into 4 x 2i16 5585 {4, MVT::v4i16, 17}, // (load 16i16 and) deinterleave into 4 x 4i16 5586 {4, MVT::v8i16, 33}, // (load 32i16 and) deinterleave into 4 x 8i16 5587 {4, MVT::v16i16, 75}, // (load 64i16 and) deinterleave into 4 x 16i16 5588 {4, MVT::v32i16, 150}, // (load 128i16 and) deinterleave into 4 x 32i16 5589 5590 {4, MVT::v2i32, 4}, // (load 8i32 and) deinterleave into 4 x 2i32 5591 {4, MVT::v4i32, 8}, // (load 16i32 and) deinterleave into 4 x 4i32 5592 {4, MVT::v8i32, 16}, // (load 32i32 and) deinterleave into 4 x 8i32 5593 {4, MVT::v16i32, 32}, // (load 64i32 and) deinterleave into 4 x 16i32 5594 {4, MVT::v32i32, 68}, // (load 128i32 and) deinterleave into 4 x 32i32 5595 5596 {4, MVT::v2i64, 6}, // (load 8i64 and) deinterleave into 4 x 2i64 5597 {4, MVT::v4i64, 8}, // (load 16i64 and) deinterleave into 4 x 4i64 5598 {4, MVT::v8i64, 20}, // (load 32i64 and) deinterleave into 4 x 8i64 5599 {4, MVT::v16i64, 40}, // (load 64i64 and) deinterleave into 4 x 16i64 5600 5601 {6, MVT::v2i8, 6}, // (load 12i8 and) deinterleave into 6 x 2i8 5602 {6, MVT::v4i8, 14}, // (load 24i8 and) deinterleave into 6 x 4i8 5603 {6, MVT::v8i8, 18}, // (load 48i8 and) deinterleave into 6 x 8i8 5604 {6, MVT::v16i8, 43}, // (load 96i8 and) deinterleave into 6 x 16i8 5605 {6, MVT::v32i8, 82}, // (load 192i8 and) deinterleave into 6 x 32i8 5606 5607 {6, MVT::v2i16, 13}, // (load 12i16 and) deinterleave into 6 x 2i16 5608 {6, MVT::v4i16, 9}, // (load 24i16 and) deinterleave into 6 x 4i16 5609 {6, MVT::v8i16, 39}, // (load 48i16 and) deinterleave into 6 x 8i16 5610 {6, MVT::v16i16, 106}, // (load 96i16 and) deinterleave into 6 x 16i16 5611 {6, MVT::v32i16, 212}, // (load 192i16 and) deinterleave into 6 x 32i16 5612 5613 {6, MVT::v2i32, 6}, // (load 12i32 and) deinterleave into 6 x 2i32 5614 {6, MVT::v4i32, 15}, // (load 24i32 and) deinterleave into 6 x 4i32 5615 {6, MVT::v8i32, 31}, // (load 48i32 and) deinterleave into 6 x 8i32 5616 {6, MVT::v16i32, 64}, // (load 96i32 and) deinterleave into 6 x 16i32 5617 5618 {6, MVT::v2i64, 6}, // (load 12i64 and) deinterleave into 6 x 2i64 5619 {6, MVT::v4i64, 18}, // (load 24i64 and) deinterleave into 6 x 4i64 5620 {6, MVT::v8i64, 36}, // (load 48i64 and) deinterleave into 6 x 8i64 5621 5622 {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32 5623 }; 5624 5625 static const CostTblEntry SSSE3InterleavedLoadTbl[] = { 5626 {2, MVT::v4i16, 2}, // (load 8i16 and) deinterleave into 2 x 4i16 5627 }; 5628 5629 static const CostTblEntry SSE2InterleavedLoadTbl[] = { 5630 {2, MVT::v2i16, 2}, // (load 4i16 and) deinterleave into 2 x 2i16 5631 {2, MVT::v4i16, 7}, // (load 8i16 and) deinterleave into 2 x 4i16 5632 5633 {2, MVT::v2i32, 2}, // (load 4i32 and) deinterleave into 2 x 2i32 5634 {2, MVT::v4i32, 2}, // (load 8i32 and) deinterleave into 2 x 4i32 5635 5636 {2, MVT::v2i64, 2}, // (load 4i64 and) deinterleave into 2 x 2i64 5637 }; 5638 5639 static const CostTblEntry AVX2InterleavedStoreTbl[] = { 5640 {2, MVT::v16i8, 3}, // interleave 2 x 16i8 into 32i8 (and store) 5641 {2, MVT::v32i8, 4}, // interleave 2 x 32i8 into 64i8 (and store) 5642 5643 {2, MVT::v8i16, 3}, // interleave 2 x 8i16 into 16i16 (and store) 5644 {2, MVT::v16i16, 4}, // interleave 2 x 16i16 into 32i16 (and store) 5645 {2, MVT::v32i16, 8}, // interleave 2 x 32i16 into 64i16 (and store) 5646 5647 {2, MVT::v4i32, 2}, // interleave 2 x 4i32 into 8i32 (and store) 5648 {2, MVT::v8i32, 4}, // interleave 2 x 8i32 into 16i32 (and store) 5649 {2, MVT::v16i32, 8}, // interleave 2 x 16i32 into 32i32 (and store) 5650 {2, MVT::v32i32, 16}, // interleave 2 x 32i32 into 64i32 (and store) 5651 5652 {2, MVT::v2i64, 2}, // interleave 2 x 2i64 into 4i64 (and store) 5653 {2, MVT::v4i64, 4}, // interleave 2 x 4i64 into 8i64 (and store) 5654 {2, MVT::v8i64, 8}, // interleave 2 x 8i64 into 16i64 (and store) 5655 {2, MVT::v16i64, 16}, // interleave 2 x 16i64 into 32i64 (and store) 5656 {2, MVT::v32i64, 32}, // interleave 2 x 32i64 into 64i64 (and store) 5657 5658 {3, MVT::v2i8, 4}, // interleave 3 x 2i8 into 6i8 (and store) 5659 {3, MVT::v4i8, 4}, // interleave 3 x 4i8 into 12i8 (and store) 5660 {3, MVT::v8i8, 6}, // interleave 3 x 8i8 into 24i8 (and store) 5661 {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store) 5662 {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store) 5663 5664 {3, MVT::v2i16, 4}, // interleave 3 x 2i16 into 6i16 (and store) 5665 {3, MVT::v4i16, 6}, // interleave 3 x 4i16 into 12i16 (and store) 5666 {3, MVT::v8i16, 12}, // interleave 3 x 8i16 into 24i16 (and store) 5667 {3, MVT::v16i16, 27}, // interleave 3 x 16i16 into 48i16 (and store) 5668 {3, MVT::v32i16, 54}, // interleave 3 x 32i16 into 96i16 (and store) 5669 5670 {3, MVT::v2i32, 4}, // interleave 3 x 2i32 into 6i32 (and store) 5671 {3, MVT::v4i32, 5}, // interleave 3 x 4i32 into 12i32 (and store) 5672 {3, MVT::v8i32, 11}, // interleave 3 x 8i32 into 24i32 (and store) 5673 {3, MVT::v16i32, 22}, // interleave 3 x 16i32 into 48i32 (and store) 5674 {3, MVT::v32i32, 48}, // interleave 3 x 32i32 into 96i32 (and store) 5675 5676 {3, MVT::v2i64, 4}, // interleave 3 x 2i64 into 6i64 (and store) 5677 {3, MVT::v4i64, 6}, // interleave 3 x 4i64 into 12i64 (and store) 5678 {3, MVT::v8i64, 12}, // interleave 3 x 8i64 into 24i64 (and store) 5679 {3, MVT::v16i64, 24}, // interleave 3 x 16i64 into 48i64 (and store) 5680 5681 {4, MVT::v2i8, 4}, // interleave 4 x 2i8 into 8i8 (and store) 5682 {4, MVT::v4i8, 4}, // interleave 4 x 4i8 into 16i8 (and store) 5683 {4, MVT::v8i8, 4}, // interleave 4 x 8i8 into 32i8 (and store) 5684 {4, MVT::v16i8, 8}, // interleave 4 x 16i8 into 64i8 (and store) 5685 {4, MVT::v32i8, 12}, // interleave 4 x 32i8 into 128i8 (and store) 5686 5687 {4, MVT::v2i16, 2}, // interleave 4 x 2i16 into 8i16 (and store) 5688 {4, MVT::v4i16, 6}, // interleave 4 x 4i16 into 16i16 (and store) 5689 {4, MVT::v8i16, 10}, // interleave 4 x 8i16 into 32i16 (and store) 5690 {4, MVT::v16i16, 32}, // interleave 4 x 16i16 into 64i16 (and store) 5691 {4, MVT::v32i16, 64}, // interleave 4 x 32i16 into 128i16 (and store) 5692 5693 {4, MVT::v2i32, 5}, // interleave 4 x 2i32 into 8i32 (and store) 5694 {4, MVT::v4i32, 6}, // interleave 4 x 4i32 into 16i32 (and store) 5695 {4, MVT::v8i32, 16}, // interleave 4 x 8i32 into 32i32 (and store) 5696 {4, MVT::v16i32, 32}, // interleave 4 x 16i32 into 64i32 (and store) 5697 {4, MVT::v32i32, 64}, // interleave 4 x 32i32 into 128i32 (and store) 5698 5699 {4, MVT::v2i64, 6}, // interleave 4 x 2i64 into 8i64 (and store) 5700 {4, MVT::v4i64, 8}, // interleave 4 x 4i64 into 16i64 (and store) 5701 {4, MVT::v8i64, 20}, // interleave 4 x 8i64 into 32i64 (and store) 5702 {4, MVT::v16i64, 40}, // interleave 4 x 16i64 into 64i64 (and store) 5703 5704 {6, MVT::v2i8, 7}, // interleave 6 x 2i8 into 12i8 (and store) 5705 {6, MVT::v4i8, 9}, // interleave 6 x 4i8 into 24i8 (and store) 5706 {6, MVT::v8i8, 16}, // interleave 6 x 8i8 into 48i8 (and store) 5707 {6, MVT::v16i8, 27}, // interleave 6 x 16i8 into 96i8 (and store) 5708 {6, MVT::v32i8, 90}, // interleave 6 x 32i8 into 192i8 (and store) 5709 5710 {6, MVT::v2i16, 10}, // interleave 6 x 2i16 into 12i16 (and store) 5711 {6, MVT::v4i16, 15}, // interleave 6 x 4i16 into 24i16 (and store) 5712 {6, MVT::v8i16, 21}, // interleave 6 x 8i16 into 48i16 (and store) 5713 {6, MVT::v16i16, 58}, // interleave 6 x 16i16 into 96i16 (and store) 5714 {6, MVT::v32i16, 90}, // interleave 6 x 32i16 into 192i16 (and store) 5715 5716 {6, MVT::v2i32, 9}, // interleave 6 x 2i32 into 12i32 (and store) 5717 {6, MVT::v4i32, 12}, // interleave 6 x 4i32 into 24i32 (and store) 5718 {6, MVT::v8i32, 33}, // interleave 6 x 8i32 into 48i32 (and store) 5719 {6, MVT::v16i32, 66}, // interleave 6 x 16i32 into 96i32 (and store) 5720 5721 {6, MVT::v2i64, 8}, // interleave 6 x 2i64 into 12i64 (and store) 5722 {6, MVT::v4i64, 15}, // interleave 6 x 4i64 into 24i64 (and store) 5723 {6, MVT::v8i64, 30}, // interleave 6 x 8i64 into 48i64 (and store) 5724 }; 5725 5726 static const CostTblEntry SSE2InterleavedStoreTbl[] = { 5727 {2, MVT::v2i8, 1}, // interleave 2 x 2i8 into 4i8 (and store) 5728 {2, MVT::v4i8, 1}, // interleave 2 x 4i8 into 8i8 (and store) 5729 {2, MVT::v8i8, 1}, // interleave 2 x 8i8 into 16i8 (and store) 5730 5731 {2, MVT::v2i16, 1}, // interleave 2 x 2i16 into 4i16 (and store) 5732 {2, MVT::v4i16, 1}, // interleave 2 x 4i16 into 8i16 (and store) 5733 5734 {2, MVT::v2i32, 1}, // interleave 2 x 2i32 into 4i32 (and store) 5735 }; 5736 5737 if (Opcode == Instruction::Load) { 5738 auto GetDiscountedCost = [Factor, NumMembers = Indices.size(), 5739 MemOpCosts](const CostTblEntry *Entry) { 5740 // NOTE: this is just an approximation! 5741 // It can over/under -estimate the cost! 5742 return MemOpCosts + divideCeil(NumMembers * Entry->Cost, Factor); 5743 }; 5744 5745 if (ST->hasAVX2()) 5746 if (const auto *Entry = CostTableLookup(AVX2InterleavedLoadTbl, Factor, 5747 ETy.getSimpleVT())) 5748 return GetDiscountedCost(Entry); 5749 5750 if (ST->hasSSSE3()) 5751 if (const auto *Entry = CostTableLookup(SSSE3InterleavedLoadTbl, Factor, 5752 ETy.getSimpleVT())) 5753 return GetDiscountedCost(Entry); 5754 5755 if (ST->hasSSE2()) 5756 if (const auto *Entry = CostTableLookup(SSE2InterleavedLoadTbl, Factor, 5757 ETy.getSimpleVT())) 5758 return GetDiscountedCost(Entry); 5759 } else { 5760 assert(Opcode == Instruction::Store && 5761 "Expected Store Instruction at this point"); 5762 assert((!Indices.size() || Indices.size() == Factor) && 5763 "Interleaved store only supports fully-interleaved groups."); 5764 if (ST->hasAVX2()) 5765 if (const auto *Entry = CostTableLookup(AVX2InterleavedStoreTbl, Factor, 5766 ETy.getSimpleVT())) 5767 return MemOpCosts + Entry->Cost; 5768 5769 if (ST->hasSSE2()) 5770 if (const auto *Entry = CostTableLookup(SSE2InterleavedStoreTbl, Factor, 5771 ETy.getSimpleVT())) 5772 return MemOpCosts + Entry->Cost; 5773 } 5774 5775 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 5776 Alignment, AddressSpace, CostKind, 5777 UseMaskForCond, UseMaskForGaps); 5778 } 5779