xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86TargetMachine.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/CFGuard.h"
50 #include <memory>
51 #include <string>
52 
53 using namespace llvm;
54 
55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
56                                cl::desc("Enable the machine combiner pass"),
57                                cl::init(true), cl::Hidden);
58 
59 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
60                                cl::desc("Enable the conditional branch "
61                                         "folding pass"),
62                                cl::init(false), cl::Hidden);
63 
64 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
65   // Register the target.
66   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
67   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
68 
69   PassRegistry &PR = *PassRegistry::getPassRegistry();
70   initializeGlobalISel(PR);
71   initializeWinEHStatePassPass(PR);
72   initializeFixupBWInstPassPass(PR);
73   initializeEvexToVexInstPassPass(PR);
74   initializeFixupLEAPassPass(PR);
75   initializeFPSPass(PR);
76   initializeX86CallFrameOptimizationPass(PR);
77   initializeX86CmovConverterPassPass(PR);
78   initializeX86ExpandPseudoPass(PR);
79   initializeX86ExecutionDomainFixPass(PR);
80   initializeX86DomainReassignmentPass(PR);
81   initializeX86AvoidSFBPassPass(PR);
82   initializeX86SpeculativeLoadHardeningPassPass(PR);
83   initializeX86FlagsCopyLoweringPassPass(PR);
84   initializeX86CondBrFoldingPassPass(PR);
85   initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
86   initializeX86LoadValueInjectionRetHardeningPassPass(PR);
87   initializeX86OptimizeLEAPassPass(PR);
88 }
89 
90 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
91   if (TT.isOSBinFormatMachO()) {
92     if (TT.getArch() == Triple::x86_64)
93       return std::make_unique<X86_64MachoTargetObjectFile>();
94     return std::make_unique<TargetLoweringObjectFileMachO>();
95   }
96 
97   if (TT.isOSFreeBSD())
98     return std::make_unique<X86FreeBSDTargetObjectFile>();
99   if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
100     return std::make_unique<X86LinuxNaClTargetObjectFile>();
101   if (TT.isOSSolaris())
102     return std::make_unique<X86SolarisTargetObjectFile>();
103   if (TT.isOSFuchsia())
104     return std::make_unique<X86FuchsiaTargetObjectFile>();
105   if (TT.isOSBinFormatELF())
106     return std::make_unique<X86ELFTargetObjectFile>();
107   if (TT.isOSBinFormatCOFF())
108     return std::make_unique<TargetLoweringObjectFileCOFF>();
109   llvm_unreachable("unknown subtarget type");
110 }
111 
112 static std::string computeDataLayout(const Triple &TT) {
113   // X86 is little endian
114   std::string Ret = "e";
115 
116   Ret += DataLayout::getManglingComponent(TT);
117   // X86 and x32 have 32 bit pointers.
118   if ((TT.isArch64Bit() &&
119        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
120       !TT.isArch64Bit())
121     Ret += "-p:32:32";
122 
123   // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
124   Ret += "-p270:32:32-p271:32:32-p272:64:64";
125 
126   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
127   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
128     Ret += "-i64:64";
129   else if (TT.isOSIAMCU())
130     Ret += "-i64:32-f64:32";
131   else
132     Ret += "-f64:32:64";
133 
134   // Some ABIs align long double to 128 bits, others to 32.
135   if (TT.isOSNaCl() || TT.isOSIAMCU())
136     ; // No f80
137   else if (TT.isArch64Bit() || TT.isOSDarwin())
138     Ret += "-f80:128";
139   else
140     Ret += "-f80:32";
141 
142   if (TT.isOSIAMCU())
143     Ret += "-f128:32";
144 
145   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
146   if (TT.isArch64Bit())
147     Ret += "-n8:16:32:64";
148   else
149     Ret += "-n8:16:32";
150 
151   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
152   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
153     Ret += "-a:0:32-S32";
154   else
155     Ret += "-S128";
156 
157   return Ret;
158 }
159 
160 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
161                                            bool JIT,
162                                            Optional<Reloc::Model> RM) {
163   bool is64Bit = TT.getArch() == Triple::x86_64;
164   if (!RM.hasValue()) {
165     // JIT codegen should use static relocations by default, since it's
166     // typically executed in process and not relocatable.
167     if (JIT)
168       return Reloc::Static;
169 
170     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
171     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
172     // use static relocation model by default.
173     if (TT.isOSDarwin()) {
174       if (is64Bit)
175         return Reloc::PIC_;
176       return Reloc::DynamicNoPIC;
177     }
178     if (TT.isOSWindows() && is64Bit)
179       return Reloc::PIC_;
180     return Reloc::Static;
181   }
182 
183   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
184   // is defined as a model for code which may be used in static or dynamic
185   // executables but not necessarily a shared library. On X86-32 we just
186   // compile in -static mode, in x86-64 we use PIC.
187   if (*RM == Reloc::DynamicNoPIC) {
188     if (is64Bit)
189       return Reloc::PIC_;
190     if (!TT.isOSDarwin())
191       return Reloc::Static;
192   }
193 
194   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
195   // the Mach-O file format doesn't support it.
196   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
197     return Reloc::PIC_;
198 
199   return *RM;
200 }
201 
202 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
203                                                  bool JIT, bool Is64Bit) {
204   if (CM) {
205     if (*CM == CodeModel::Tiny)
206       report_fatal_error("Target does not support the tiny CodeModel", false);
207     return *CM;
208   }
209   if (JIT)
210     return Is64Bit ? CodeModel::Large : CodeModel::Small;
211   return CodeModel::Small;
212 }
213 
214 /// Create an X86 target.
215 ///
216 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
217                                    StringRef CPU, StringRef FS,
218                                    const TargetOptions &Options,
219                                    Optional<Reloc::Model> RM,
220                                    Optional<CodeModel::Model> CM,
221                                    CodeGenOpt::Level OL, bool JIT)
222     : LLVMTargetMachine(
223           T, computeDataLayout(TT), TT, CPU, FS, Options,
224           getEffectiveRelocModel(TT, JIT, RM),
225           getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
226           OL),
227       TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
228   // On PS4, the "return address" of a 'noreturn' call must still be within
229   // the calling function, and TrapUnreachable is an easy way to get that.
230   if (TT.isPS4() || TT.isOSBinFormatMachO()) {
231     this->Options.TrapUnreachable = true;
232     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
233   }
234 
235   setMachineOutliner(true);
236 
237   initAsmInfo();
238 }
239 
240 X86TargetMachine::~X86TargetMachine() = default;
241 
242 const X86Subtarget *
243 X86TargetMachine::getSubtargetImpl(const Function &F) const {
244   Attribute CPUAttr = F.getFnAttribute("target-cpu");
245   Attribute FSAttr = F.getFnAttribute("target-features");
246 
247   StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
248                       ? CPUAttr.getValueAsString()
249                       : (StringRef)TargetCPU;
250   StringRef FS = !FSAttr.hasAttribute(Attribute::None)
251                      ? FSAttr.getValueAsString()
252                      : (StringRef)TargetFS;
253 
254   SmallString<512> Key;
255   Key.reserve(CPU.size() + FS.size());
256   Key += CPU;
257   Key += FS;
258 
259   // FIXME: This is related to the code below to reset the target options,
260   // we need to know whether or not the soft float flag is set on the
261   // function before we can generate a subtarget. We also need to use
262   // it as a key for the subtarget since that can be the only difference
263   // between two functions.
264   bool SoftFloat =
265       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
266   // If the soft float attribute is set on the function turn on the soft float
267   // subtarget feature.
268   if (SoftFloat)
269     Key += FS.empty() ? "+soft-float" : ",+soft-float";
270 
271   // Keep track of the key width after all features are added so we can extract
272   // the feature string out later.
273   unsigned CPUFSWidth = Key.size();
274 
275   // Extract prefer-vector-width attribute.
276   unsigned PreferVectorWidthOverride = 0;
277   if (F.hasFnAttribute("prefer-vector-width")) {
278     StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
279     unsigned Width;
280     if (!Val.getAsInteger(0, Width)) {
281       Key += ",prefer-vector-width=";
282       Key += Val;
283       PreferVectorWidthOverride = Width;
284     }
285   }
286 
287   // Extract min-legal-vector-width attribute.
288   unsigned RequiredVectorWidth = UINT32_MAX;
289   if (F.hasFnAttribute("min-legal-vector-width")) {
290     StringRef Val =
291         F.getFnAttribute("min-legal-vector-width").getValueAsString();
292     unsigned Width;
293     if (!Val.getAsInteger(0, Width)) {
294       Key += ",min-legal-vector-width=";
295       Key += Val;
296       RequiredVectorWidth = Width;
297     }
298   }
299 
300   // Extracted here so that we make sure there is backing for the StringRef. If
301   // we assigned earlier, its possible the SmallString reallocated leaving a
302   // dangling StringRef.
303   FS = Key.slice(CPU.size(), CPUFSWidth);
304 
305   auto &I = SubtargetMap[Key];
306   if (!I) {
307     // This needs to be done before we create a new subtarget since any
308     // creation will depend on the TM and the code generation flags on the
309     // function that reside in TargetOptions.
310     resetTargetOptions(F);
311     I = std::make_unique<X86Subtarget>(
312         TargetTriple, CPU, FS, *this,
313         MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride,
314         RequiredVectorWidth);
315   }
316   return I.get();
317 }
318 
319 //===----------------------------------------------------------------------===//
320 // Command line options for x86
321 //===----------------------------------------------------------------------===//
322 static cl::opt<bool>
323 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
324   cl::desc("Minimize AVX to SSE transition penalty"),
325   cl::init(true));
326 
327 //===----------------------------------------------------------------------===//
328 // X86 TTI query.
329 //===----------------------------------------------------------------------===//
330 
331 TargetTransformInfo
332 X86TargetMachine::getTargetTransformInfo(const Function &F) {
333   return TargetTransformInfo(X86TTIImpl(this, F));
334 }
335 
336 //===----------------------------------------------------------------------===//
337 // Pass Pipeline Configuration
338 //===----------------------------------------------------------------------===//
339 
340 namespace {
341 
342 /// X86 Code Generator Pass Configuration Options.
343 class X86PassConfig : public TargetPassConfig {
344 public:
345   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
346     : TargetPassConfig(TM, PM) {}
347 
348   X86TargetMachine &getX86TargetMachine() const {
349     return getTM<X86TargetMachine>();
350   }
351 
352   ScheduleDAGInstrs *
353   createMachineScheduler(MachineSchedContext *C) const override {
354     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
355     DAG->addMutation(createX86MacroFusionDAGMutation());
356     return DAG;
357   }
358 
359   ScheduleDAGInstrs *
360   createPostMachineScheduler(MachineSchedContext *C) const override {
361     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
362     DAG->addMutation(createX86MacroFusionDAGMutation());
363     return DAG;
364   }
365 
366   void addIRPasses() override;
367   bool addInstSelector() override;
368   bool addIRTranslator() override;
369   bool addLegalizeMachineIR() override;
370   bool addRegBankSelect() override;
371   bool addGlobalInstructionSelect() override;
372   bool addILPOpts() override;
373   bool addPreISel() override;
374   void addMachineSSAOptimization() override;
375   void addPreRegAlloc() override;
376   void addPostRegAlloc() override;
377   void addPreEmitPass() override;
378   void addPreEmitPass2() override;
379   void addPreSched2() override;
380 
381   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
382 };
383 
384 class X86ExecutionDomainFix : public ExecutionDomainFix {
385 public:
386   static char ID;
387   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
388   StringRef getPassName() const override {
389     return "X86 Execution Dependency Fix";
390   }
391 };
392 char X86ExecutionDomainFix::ID;
393 
394 } // end anonymous namespace
395 
396 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
397   "X86 Execution Domain Fix", false, false)
398 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
399 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
400   "X86 Execution Domain Fix", false, false)
401 
402 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
403   return new X86PassConfig(*this, PM);
404 }
405 
406 void X86PassConfig::addIRPasses() {
407   addPass(createAtomicExpandPass());
408 
409   TargetPassConfig::addIRPasses();
410 
411   if (TM->getOptLevel() != CodeGenOpt::None)
412     addPass(createInterleavedAccessPass());
413 
414   // Add passes that handle indirect branch removal and insertion of a retpoline
415   // thunk. These will be a no-op unless a function subtarget has the retpoline
416   // feature enabled.
417   addPass(createIndirectBrExpandPass());
418 
419   // Add Control Flow Guard checks.
420   const Triple &TT = TM->getTargetTriple();
421   if (TT.isOSWindows()) {
422     if (TT.getArch() == Triple::x86_64) {
423       addPass(createCFGuardDispatchPass());
424     } else {
425       addPass(createCFGuardCheckPass());
426     }
427   }
428 }
429 
430 bool X86PassConfig::addInstSelector() {
431   // Install an instruction selector.
432   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
433 
434   // For ELF, cleanup any local-dynamic TLS accesses.
435   if (TM->getTargetTriple().isOSBinFormatELF() &&
436       getOptLevel() != CodeGenOpt::None)
437     addPass(createCleanupLocalDynamicTLSPass());
438 
439   addPass(createX86GlobalBaseRegPass());
440   return false;
441 }
442 
443 bool X86PassConfig::addIRTranslator() {
444   addPass(new IRTranslator());
445   return false;
446 }
447 
448 bool X86PassConfig::addLegalizeMachineIR() {
449   addPass(new Legalizer());
450   return false;
451 }
452 
453 bool X86PassConfig::addRegBankSelect() {
454   addPass(new RegBankSelect());
455   return false;
456 }
457 
458 bool X86PassConfig::addGlobalInstructionSelect() {
459   addPass(new InstructionSelect());
460   return false;
461 }
462 
463 bool X86PassConfig::addILPOpts() {
464   if (EnableCondBrFoldingPass)
465     addPass(createX86CondBrFolding());
466   addPass(&EarlyIfConverterID);
467   if (EnableMachineCombinerPass)
468     addPass(&MachineCombinerID);
469   addPass(createX86CmovConverterPass());
470   return true;
471 }
472 
473 bool X86PassConfig::addPreISel() {
474   // Only add this pass for 32-bit x86 Windows.
475   const Triple &TT = TM->getTargetTriple();
476   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
477     addPass(createX86WinEHStatePass());
478   return true;
479 }
480 
481 void X86PassConfig::addPreRegAlloc() {
482   if (getOptLevel() != CodeGenOpt::None) {
483     addPass(&LiveRangeShrinkID);
484     addPass(createX86FixupSetCC());
485     addPass(createX86OptimizeLEAs());
486     addPass(createX86CallFrameOptimization());
487     addPass(createX86AvoidStoreForwardingBlocks());
488   }
489 
490   addPass(createX86SpeculativeLoadHardeningPass());
491   addPass(createX86FlagsCopyLoweringPass());
492   addPass(createX86WinAllocaExpander());
493 }
494 void X86PassConfig::addMachineSSAOptimization() {
495   addPass(createX86DomainReassignmentPass());
496   TargetPassConfig::addMachineSSAOptimization();
497 }
498 
499 void X86PassConfig::addPostRegAlloc() {
500   addPass(createX86FloatingPointStackifierPass());
501   if (getOptLevel() != CodeGenOpt::None)
502     addPass(createX86LoadValueInjectionLoadHardeningPass());
503   else
504     addPass(createX86LoadValueInjectionLoadHardeningUnoptimizedPass());
505 }
506 
507 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
508 
509 void X86PassConfig::addPreEmitPass() {
510   if (getOptLevel() != CodeGenOpt::None) {
511     addPass(new X86ExecutionDomainFix());
512     addPass(createBreakFalseDeps());
513   }
514 
515   addPass(createX86IndirectBranchTrackingPass());
516 
517   if (UseVZeroUpper)
518     addPass(createX86IssueVZeroUpperPass());
519 
520   if (getOptLevel() != CodeGenOpt::None) {
521     addPass(createX86FixupBWInsts());
522     addPass(createX86PadShortFunctions());
523     addPass(createX86FixupLEAs());
524     addPass(createX86EvexToVexInsts());
525   }
526   addPass(createX86DiscriminateMemOpsPass());
527   addPass(createX86InsertPrefetchPass());
528 }
529 
530 void X86PassConfig::addPreEmitPass2() {
531   const Triple &TT = TM->getTargetTriple();
532   const MCAsmInfo *MAI = TM->getMCAsmInfo();
533 
534   addPass(createX86IndirectThunksPass());
535 
536   // Insert extra int3 instructions after trailing call instructions to avoid
537   // issues in the unwinder.
538   if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
539     addPass(createX86AvoidTrailingCallPass());
540 
541   // Verify basic block incoming and outgoing cfa offset and register values and
542   // correct CFA calculation rule where needed by inserting appropriate CFI
543   // instructions.
544   if (!TT.isOSDarwin() &&
545       (!TT.isOSWindows() ||
546        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
547     addPass(createCFIInstrInserter());
548   // Identify valid longjmp targets for Windows Control Flow Guard.
549   if (TT.isOSWindows())
550     addPass(createCFGuardLongjmpPass());
551   addPass(createX86LoadValueInjectionRetHardeningPass());
552 }
553 
554 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
555   return getStandardCSEConfigForOpt(TM->getOptLevel());
556 }
557