xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86TargetMachine.cpp (revision c9539b89010900499a200cdd6c0265ea5d950875)
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
31 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
34 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
35 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
37 #include "llvm/CodeGen/MachineScheduler.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/RegAllocRegistry.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/MC/MCAsmInfo.h"
45 #include "llvm/MC/TargetRegistry.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CodeGen.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Target/TargetLoweringObjectFile.h"
51 #include "llvm/Target/TargetOptions.h"
52 #include "llvm/Transforms/CFGuard.h"
53 #include <memory>
54 #include <string>
55 
56 using namespace llvm;
57 
58 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
59                                cl::desc("Enable the machine combiner pass"),
60                                cl::init(true), cl::Hidden);
61 
62 static cl::opt<bool>
63     EnableTileRAPass("x86-tile-ra",
64                      cl::desc("Enable the tile register allocation pass"),
65                      cl::init(true), cl::Hidden);
66 
67 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
68   // Register the target.
69   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
70   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
71 
72   PassRegistry &PR = *PassRegistry::getPassRegistry();
73   initializeX86LowerAMXIntrinsicsLegacyPassPass(PR);
74   initializeX86LowerAMXTypeLegacyPassPass(PR);
75   initializeX86PreAMXConfigPassPass(PR);
76   initializeX86PreTileConfigPass(PR);
77   initializeGlobalISel(PR);
78   initializeWinEHStatePassPass(PR);
79   initializeFixupBWInstPassPass(PR);
80   initializeEvexToVexInstPassPass(PR);
81   initializeFixupLEAPassPass(PR);
82   initializeFPSPass(PR);
83   initializeX86FixupSetCCPassPass(PR);
84   initializeX86CallFrameOptimizationPass(PR);
85   initializeX86CmovConverterPassPass(PR);
86   initializeX86TileConfigPass(PR);
87   initializeX86FastPreTileConfigPass(PR);
88   initializeX86FastTileConfigPass(PR);
89   initializeX86LowerTileCopyPass(PR);
90   initializeX86ExpandPseudoPass(PR);
91   initializeX86ExecutionDomainFixPass(PR);
92   initializeX86DomainReassignmentPass(PR);
93   initializeX86AvoidSFBPassPass(PR);
94   initializeX86AvoidTrailingCallPassPass(PR);
95   initializeX86SpeculativeLoadHardeningPassPass(PR);
96   initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
97   initializeX86FlagsCopyLoweringPassPass(PR);
98   initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
99   initializeX86LoadValueInjectionRetHardeningPassPass(PR);
100   initializeX86OptimizeLEAPassPass(PR);
101   initializeX86PartialReductionPass(PR);
102   initializePseudoProbeInserterPass(PR);
103   initializeX86ReturnThunksPass(PR);
104 }
105 
106 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
107   if (TT.isOSBinFormatMachO()) {
108     if (TT.getArch() == Triple::x86_64)
109       return std::make_unique<X86_64MachoTargetObjectFile>();
110     return std::make_unique<TargetLoweringObjectFileMachO>();
111   }
112 
113   if (TT.isOSBinFormatCOFF())
114     return std::make_unique<TargetLoweringObjectFileCOFF>();
115   return std::make_unique<X86ELFTargetObjectFile>();
116 }
117 
118 static std::string computeDataLayout(const Triple &TT) {
119   // X86 is little endian
120   std::string Ret = "e";
121 
122   Ret += DataLayout::getManglingComponent(TT);
123   // X86 and x32 have 32 bit pointers.
124   if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl())
125     Ret += "-p:32:32";
126 
127   // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
128   Ret += "-p270:32:32-p271:32:32-p272:64:64";
129 
130   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
131   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
132     Ret += "-i64:64";
133   else if (TT.isOSIAMCU())
134     Ret += "-i64:32-f64:32";
135   else
136     Ret += "-f64:32:64";
137 
138   // Some ABIs align long double to 128 bits, others to 32.
139   if (TT.isOSNaCl() || TT.isOSIAMCU())
140     ; // No f80
141   else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment())
142     Ret += "-f80:128";
143   else
144     Ret += "-f80:32";
145 
146   if (TT.isOSIAMCU())
147     Ret += "-f128:32";
148 
149   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
150   if (TT.isArch64Bit())
151     Ret += "-n8:16:32:64";
152   else
153     Ret += "-n8:16:32";
154 
155   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
156   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
157     Ret += "-a:0:32-S32";
158   else
159     Ret += "-S128";
160 
161   return Ret;
162 }
163 
164 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
165                                            bool JIT,
166                                            Optional<Reloc::Model> RM) {
167   bool is64Bit = TT.getArch() == Triple::x86_64;
168   if (!RM) {
169     // JIT codegen should use static relocations by default, since it's
170     // typically executed in process and not relocatable.
171     if (JIT)
172       return Reloc::Static;
173 
174     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
175     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
176     // use static relocation model by default.
177     if (TT.isOSDarwin()) {
178       if (is64Bit)
179         return Reloc::PIC_;
180       return Reloc::DynamicNoPIC;
181     }
182     if (TT.isOSWindows() && is64Bit)
183       return Reloc::PIC_;
184     return Reloc::Static;
185   }
186 
187   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
188   // is defined as a model for code which may be used in static or dynamic
189   // executables but not necessarily a shared library. On X86-32 we just
190   // compile in -static mode, in x86-64 we use PIC.
191   if (*RM == Reloc::DynamicNoPIC) {
192     if (is64Bit)
193       return Reloc::PIC_;
194     if (!TT.isOSDarwin())
195       return Reloc::Static;
196   }
197 
198   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
199   // the Mach-O file format doesn't support it.
200   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
201     return Reloc::PIC_;
202 
203   return *RM;
204 }
205 
206 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
207                                                  bool JIT, bool Is64Bit) {
208   if (CM) {
209     if (*CM == CodeModel::Tiny)
210       report_fatal_error("Target does not support the tiny CodeModel", false);
211     return *CM;
212   }
213   if (JIT)
214     return Is64Bit ? CodeModel::Large : CodeModel::Small;
215   return CodeModel::Small;
216 }
217 
218 /// Create an X86 target.
219 ///
220 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
221                                    StringRef CPU, StringRef FS,
222                                    const TargetOptions &Options,
223                                    Optional<Reloc::Model> RM,
224                                    Optional<CodeModel::Model> CM,
225                                    CodeGenOpt::Level OL, bool JIT)
226     : LLVMTargetMachine(
227           T, computeDataLayout(TT), TT, CPU, FS, Options,
228           getEffectiveRelocModel(TT, JIT, RM),
229           getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
230           OL),
231       TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
232   // On PS4/PS5, the "return address" of a 'noreturn' call must still be within
233   // the calling function, and TrapUnreachable is an easy way to get that.
234   if (TT.isPS() || TT.isOSBinFormatMachO()) {
235     this->Options.TrapUnreachable = true;
236     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
237   }
238 
239   setMachineOutliner(true);
240 
241   // x86 supports the debug entry values.
242   setSupportsDebugEntryValues(true);
243 
244   initAsmInfo();
245 }
246 
247 X86TargetMachine::~X86TargetMachine() = default;
248 
249 const X86Subtarget *
250 X86TargetMachine::getSubtargetImpl(const Function &F) const {
251   Attribute CPUAttr = F.getFnAttribute("target-cpu");
252   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
253   Attribute FSAttr = F.getFnAttribute("target-features");
254 
255   StringRef CPU =
256       CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
257   // "x86-64" is a default target setting for many front ends. In these cases,
258   // they actually request for "generic" tuning unless the "tune-cpu" was
259   // specified.
260   StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString()
261                       : CPU == "x86-64"  ? "generic"
262                                          : (StringRef)CPU;
263   StringRef FS =
264       FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
265 
266   SmallString<512> Key;
267   // The additions here are ordered so that the definitely short strings are
268   // added first so we won't exceed the small size. We append the
269   // much longer FS string at the end so that we only heap allocate at most
270   // one time.
271 
272   // Extract prefer-vector-width attribute.
273   unsigned PreferVectorWidthOverride = 0;
274   Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
275   if (PreferVecWidthAttr.isValid()) {
276     StringRef Val = PreferVecWidthAttr.getValueAsString();
277     unsigned Width;
278     if (!Val.getAsInteger(0, Width)) {
279       Key += 'p';
280       Key += Val;
281       PreferVectorWidthOverride = Width;
282     }
283   }
284 
285   // Extract min-legal-vector-width attribute.
286   unsigned RequiredVectorWidth = UINT32_MAX;
287   Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
288   if (MinLegalVecWidthAttr.isValid()) {
289     StringRef Val = MinLegalVecWidthAttr.getValueAsString();
290     unsigned Width;
291     if (!Val.getAsInteger(0, Width)) {
292       Key += 'm';
293       Key += Val;
294       RequiredVectorWidth = Width;
295     }
296   }
297 
298   // Add CPU to the Key.
299   Key += CPU;
300 
301   // Add tune CPU to the Key.
302   Key += TuneCPU;
303 
304   // Keep track of the start of the feature portion of the string.
305   unsigned FSStart = Key.size();
306 
307   // FIXME: This is related to the code below to reset the target options,
308   // we need to know whether or not the soft float flag is set on the
309   // function before we can generate a subtarget. We also need to use
310   // it as a key for the subtarget since that can be the only difference
311   // between two functions.
312   bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
313   // If the soft float attribute is set on the function turn on the soft float
314   // subtarget feature.
315   if (SoftFloat)
316     Key += FS.empty() ? "+soft-float" : "+soft-float,";
317 
318   Key += FS;
319 
320   // We may have added +soft-float to the features so move the StringRef to
321   // point to the full string in the Key.
322   FS = Key.substr(FSStart);
323 
324   auto &I = SubtargetMap[Key];
325   if (!I) {
326     // This needs to be done before we create a new subtarget since any
327     // creation will depend on the TM and the code generation flags on the
328     // function that reside in TargetOptions.
329     resetTargetOptions(F);
330     I = std::make_unique<X86Subtarget>(
331         TargetTriple, CPU, TuneCPU, FS, *this,
332         MaybeAlign(F.getParent()->getOverrideStackAlignment()),
333         PreferVectorWidthOverride, RequiredVectorWidth);
334   }
335   return I.get();
336 }
337 
338 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
339                                            unsigned DestAS) const {
340   assert(SrcAS != DestAS && "Expected different address spaces!");
341   if (getPointerSize(SrcAS) != getPointerSize(DestAS))
342     return false;
343   return SrcAS < 256 && DestAS < 256;
344 }
345 
346 //===----------------------------------------------------------------------===//
347 // X86 TTI query.
348 //===----------------------------------------------------------------------===//
349 
350 TargetTransformInfo
351 X86TargetMachine::getTargetTransformInfo(const Function &F) const {
352   return TargetTransformInfo(X86TTIImpl(this, F));
353 }
354 
355 //===----------------------------------------------------------------------===//
356 // Pass Pipeline Configuration
357 //===----------------------------------------------------------------------===//
358 
359 namespace {
360 
361 /// X86 Code Generator Pass Configuration Options.
362 class X86PassConfig : public TargetPassConfig {
363 public:
364   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
365     : TargetPassConfig(TM, PM) {}
366 
367   X86TargetMachine &getX86TargetMachine() const {
368     return getTM<X86TargetMachine>();
369   }
370 
371   ScheduleDAGInstrs *
372   createMachineScheduler(MachineSchedContext *C) const override {
373     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
374     DAG->addMutation(createX86MacroFusionDAGMutation());
375     return DAG;
376   }
377 
378   ScheduleDAGInstrs *
379   createPostMachineScheduler(MachineSchedContext *C) const override {
380     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
381     DAG->addMutation(createX86MacroFusionDAGMutation());
382     return DAG;
383   }
384 
385   void addIRPasses() override;
386   bool addInstSelector() override;
387   bool addIRTranslator() override;
388   bool addLegalizeMachineIR() override;
389   bool addRegBankSelect() override;
390   bool addGlobalInstructionSelect() override;
391   bool addILPOpts() override;
392   bool addPreISel() override;
393   void addMachineSSAOptimization() override;
394   void addPreRegAlloc() override;
395   bool addPostFastRegAllocRewrite() override;
396   void addPostRegAlloc() override;
397   void addPreEmitPass() override;
398   void addPreEmitPass2() override;
399   void addPreSched2() override;
400   bool addRegAssignAndRewriteOptimized() override;
401 
402   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
403 };
404 
405 class X86ExecutionDomainFix : public ExecutionDomainFix {
406 public:
407   static char ID;
408   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
409   StringRef getPassName() const override {
410     return "X86 Execution Dependency Fix";
411   }
412 };
413 char X86ExecutionDomainFix::ID;
414 
415 } // end anonymous namespace
416 
417 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
418   "X86 Execution Domain Fix", false, false)
419 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
420 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
421   "X86 Execution Domain Fix", false, false)
422 
423 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
424   return new X86PassConfig(*this, PM);
425 }
426 
427 void X86PassConfig::addIRPasses() {
428   addPass(createAtomicExpandPass());
429 
430   // We add both pass anyway and when these two passes run, we skip the pass
431   // based on the option level and option attribute.
432   addPass(createX86LowerAMXIntrinsicsPass());
433   addPass(createX86LowerAMXTypePass());
434 
435   TargetPassConfig::addIRPasses();
436 
437   if (TM->getOptLevel() != CodeGenOpt::None) {
438     addPass(createInterleavedAccessPass());
439     addPass(createX86PartialReductionPass());
440   }
441 
442   // Add passes that handle indirect branch removal and insertion of a retpoline
443   // thunk. These will be a no-op unless a function subtarget has the retpoline
444   // feature enabled.
445   addPass(createIndirectBrExpandPass());
446 
447   // Add Control Flow Guard checks.
448   const Triple &TT = TM->getTargetTriple();
449   if (TT.isOSWindows()) {
450     if (TT.getArch() == Triple::x86_64) {
451       addPass(createCFGuardDispatchPass());
452     } else {
453       addPass(createCFGuardCheckPass());
454     }
455   }
456 
457   if (TM->Options.JMCInstrument)
458     addPass(createJMCInstrumenterPass());
459 }
460 
461 bool X86PassConfig::addInstSelector() {
462   // Install an instruction selector.
463   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
464 
465   // For ELF, cleanup any local-dynamic TLS accesses.
466   if (TM->getTargetTriple().isOSBinFormatELF() &&
467       getOptLevel() != CodeGenOpt::None)
468     addPass(createCleanupLocalDynamicTLSPass());
469 
470   addPass(createX86GlobalBaseRegPass());
471   return false;
472 }
473 
474 bool X86PassConfig::addIRTranslator() {
475   addPass(new IRTranslator(getOptLevel()));
476   return false;
477 }
478 
479 bool X86PassConfig::addLegalizeMachineIR() {
480   addPass(new Legalizer());
481   return false;
482 }
483 
484 bool X86PassConfig::addRegBankSelect() {
485   addPass(new RegBankSelect());
486   return false;
487 }
488 
489 bool X86PassConfig::addGlobalInstructionSelect() {
490   addPass(new InstructionSelect(getOptLevel()));
491   return false;
492 }
493 
494 bool X86PassConfig::addILPOpts() {
495   addPass(&EarlyIfConverterID);
496   if (EnableMachineCombinerPass)
497     addPass(&MachineCombinerID);
498   addPass(createX86CmovConverterPass());
499   return true;
500 }
501 
502 bool X86PassConfig::addPreISel() {
503   // Only add this pass for 32-bit x86 Windows.
504   const Triple &TT = TM->getTargetTriple();
505   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
506     addPass(createX86WinEHStatePass());
507   return true;
508 }
509 
510 void X86PassConfig::addPreRegAlloc() {
511   if (getOptLevel() != CodeGenOpt::None) {
512     addPass(&LiveRangeShrinkID);
513     addPass(createX86FixupSetCC());
514     addPass(createX86OptimizeLEAs());
515     addPass(createX86CallFrameOptimization());
516     addPass(createX86AvoidStoreForwardingBlocks());
517   }
518 
519   addPass(createX86SpeculativeLoadHardeningPass());
520   addPass(createX86FlagsCopyLoweringPass());
521   addPass(createX86DynAllocaExpander());
522 
523   if (getOptLevel() != CodeGenOpt::None)
524     addPass(createX86PreTileConfigPass());
525   else
526     addPass(createX86FastPreTileConfigPass());
527 }
528 
529 void X86PassConfig::addMachineSSAOptimization() {
530   addPass(createX86DomainReassignmentPass());
531   TargetPassConfig::addMachineSSAOptimization();
532 }
533 
534 void X86PassConfig::addPostRegAlloc() {
535   addPass(createX86LowerTileCopyPass());
536   addPass(createX86FloatingPointStackifierPass());
537   // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
538   // to using the Speculative Execution Side Effect Suppression pass for
539   // mitigation. This is to prevent slow downs due to
540   // analyses needed by the LVIHardening pass when compiling at -O0.
541   if (getOptLevel() != CodeGenOpt::None)
542     addPass(createX86LoadValueInjectionLoadHardeningPass());
543 }
544 
545 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
546 
547 void X86PassConfig::addPreEmitPass() {
548   if (getOptLevel() != CodeGenOpt::None) {
549     addPass(new X86ExecutionDomainFix());
550     addPass(createBreakFalseDeps());
551   }
552 
553   addPass(createX86IndirectBranchTrackingPass());
554 
555   addPass(createX86IssueVZeroUpperPass());
556 
557   if (getOptLevel() != CodeGenOpt::None) {
558     addPass(createX86FixupBWInsts());
559     addPass(createX86PadShortFunctions());
560     addPass(createX86FixupLEAs());
561   }
562   addPass(createX86EvexToVexInsts());
563   addPass(createX86DiscriminateMemOpsPass());
564   addPass(createX86InsertPrefetchPass());
565   addPass(createX86InsertX87waitPass());
566 }
567 
568 void X86PassConfig::addPreEmitPass2() {
569   const Triple &TT = TM->getTargetTriple();
570   const MCAsmInfo *MAI = TM->getMCAsmInfo();
571 
572   // The X86 Speculative Execution Pass must run after all control
573   // flow graph modifying passes. As a result it was listed to run right before
574   // the X86 Retpoline Thunks pass. The reason it must run after control flow
575   // graph modifications is that the model of LFENCE in LLVM has to be updated
576   // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
577   // placement of this pass was hand checked to ensure that the subsequent
578   // passes don't move the code around the LFENCEs in a way that will hurt the
579   // correctness of this pass. This placement has been shown to work based on
580   // hand inspection of the codegen output.
581   addPass(createX86SpeculativeExecutionSideEffectSuppression());
582   addPass(createX86IndirectThunksPass());
583   addPass(createX86ReturnThunksPass());
584 
585   // Insert extra int3 instructions after trailing call instructions to avoid
586   // issues in the unwinder.
587   if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
588     addPass(createX86AvoidTrailingCallPass());
589 
590   // Verify basic block incoming and outgoing cfa offset and register values and
591   // correct CFA calculation rule where needed by inserting appropriate CFI
592   // instructions.
593   if (!TT.isOSDarwin() &&
594       (!TT.isOSWindows() ||
595        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
596     addPass(createCFIInstrInserter());
597 
598   if (TT.isOSWindows()) {
599     // Identify valid longjmp targets for Windows Control Flow Guard.
600     addPass(createCFGuardLongjmpPass());
601     // Identify valid eh continuation targets for Windows EHCont Guard.
602     addPass(createEHContGuardCatchretPass());
603   }
604   addPass(createX86LoadValueInjectionRetHardeningPass());
605 
606   // Insert pseudo probe annotation for callsite profiling
607   addPass(createPseudoProbeInserter());
608 
609   // On Darwin platforms, BLR_RVMARKER pseudo instructions are lowered to
610   // bundles.
611   if (TT.isOSDarwin())
612     addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
613       // Only run bundle expansion if there are relevant ObjC runtime functions
614       // present in the module.
615       const Function &F = MF.getFunction();
616       const Module *M = F.getParent();
617       return M->getFunction("objc_retainAutoreleasedReturnValue") ||
618              M->getFunction("objc_unsafeClaimAutoreleasedReturnValue");
619     }));
620 }
621 
622 bool X86PassConfig::addPostFastRegAllocRewrite() {
623   addPass(createX86FastTileConfigPass());
624   return true;
625 }
626 
627 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
628   return getStandardCSEConfigForOpt(TM->getOptLevel());
629 }
630 
631 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI,
632                                       const TargetRegisterClass &RC) {
633   return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(&RC);
634 }
635 
636 bool X86PassConfig::addRegAssignAndRewriteOptimized() {
637   // Don't support tile RA when RA is specified by command line "-regalloc".
638   if (!isCustomizedRegAlloc() && EnableTileRAPass) {
639     // Allocate tile register first.
640     addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters));
641     addPass(createX86TileConfigPass());
642   }
643   return TargetPassConfig::addRegAssignAndRewriteOptimized();
644 }
645