xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86TargetMachine.cpp (revision b9128a37faafede823eb456aa65a11ac69997284)
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetObjectFile.h"
21 #include "X86TargetTransformInfo.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/ExecutionDomainFix.h"
27 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
28 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
32 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MachineScheduler.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/TargetRegistry.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/TargetParser/Triple.h"
50 #include "llvm/Transforms/CFGuard.h"
51 #include <memory>
52 #include <optional>
53 #include <string>
54 
55 using namespace llvm;
56 
57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
58                                cl::desc("Enable the machine combiner pass"),
59                                cl::init(true), cl::Hidden);
60 
61 static cl::opt<bool>
62     EnableTileRAPass("x86-tile-ra",
63                      cl::desc("Enable the tile register allocation pass"),
64                      cl::init(true), cl::Hidden);
65 
66 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
67   // Register the target.
68   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
69   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
70 
71   PassRegistry &PR = *PassRegistry::getPassRegistry();
72   initializeX86LowerAMXIntrinsicsLegacyPassPass(PR);
73   initializeX86LowerAMXTypeLegacyPassPass(PR);
74   initializeX86PreTileConfigPass(PR);
75   initializeGlobalISel(PR);
76   initializeWinEHStatePassPass(PR);
77   initializeFixupBWInstPassPass(PR);
78   initializeCompressEVEXPassPass(PR);
79   initializeFixupLEAPassPass(PR);
80   initializeFPSPass(PR);
81   initializeX86FixupSetCCPassPass(PR);
82   initializeX86CallFrameOptimizationPass(PR);
83   initializeX86CmovConverterPassPass(PR);
84   initializeX86TileConfigPass(PR);
85   initializeX86FastPreTileConfigPass(PR);
86   initializeX86FastTileConfigPass(PR);
87   initializeKCFIPass(PR);
88   initializeX86LowerTileCopyPass(PR);
89   initializeX86ExpandPseudoPass(PR);
90   initializeX86ExecutionDomainFixPass(PR);
91   initializeX86DomainReassignmentPass(PR);
92   initializeX86AvoidSFBPassPass(PR);
93   initializeX86AvoidTrailingCallPassPass(PR);
94   initializeX86SpeculativeLoadHardeningPassPass(PR);
95   initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
96   initializeX86FlagsCopyLoweringPassPass(PR);
97   initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
98   initializeX86LoadValueInjectionRetHardeningPassPass(PR);
99   initializeX86OptimizeLEAPassPass(PR);
100   initializeX86PartialReductionPass(PR);
101   initializePseudoProbeInserterPass(PR);
102   initializeX86ReturnThunksPass(PR);
103   initializeX86DAGToDAGISelPass(PR);
104   initializeX86ArgumentStackSlotPassPass(PR);
105 }
106 
107 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
108   if (TT.isOSBinFormatMachO()) {
109     if (TT.getArch() == Triple::x86_64)
110       return std::make_unique<X86_64MachoTargetObjectFile>();
111     return std::make_unique<TargetLoweringObjectFileMachO>();
112   }
113 
114   if (TT.isOSBinFormatCOFF())
115     return std::make_unique<TargetLoweringObjectFileCOFF>();
116 
117   if (TT.getArch() == Triple::x86_64)
118     return std::make_unique<X86_64ELFTargetObjectFile>();
119   return std::make_unique<X86ELFTargetObjectFile>();
120 }
121 
122 static std::string computeDataLayout(const Triple &TT) {
123   // X86 is little endian
124   std::string Ret = "e";
125 
126   Ret += DataLayout::getManglingComponent(TT);
127   // X86 and x32 have 32 bit pointers.
128   if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl())
129     Ret += "-p:32:32";
130 
131   // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
132   Ret += "-p270:32:32-p271:32:32-p272:64:64";
133 
134   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
135   // 128 bit integers are not specified in the 32-bit ABIs but are used
136   // internally for lowering f128, so we match the alignment to that.
137   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
138     Ret += "-i64:64-i128:128";
139   else if (TT.isOSIAMCU())
140     Ret += "-i64:32-f64:32";
141   else
142     Ret += "-i128:128-f64:32:64";
143 
144   // Some ABIs align long double to 128 bits, others to 32.
145   if (TT.isOSNaCl() || TT.isOSIAMCU())
146     ; // No f80
147   else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment())
148     Ret += "-f80:128";
149   else
150     Ret += "-f80:32";
151 
152   if (TT.isOSIAMCU())
153     Ret += "-f128:32";
154 
155   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
156   if (TT.isArch64Bit())
157     Ret += "-n8:16:32:64";
158   else
159     Ret += "-n8:16:32";
160 
161   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
162   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
163     Ret += "-a:0:32-S32";
164   else
165     Ret += "-S128";
166 
167   return Ret;
168 }
169 
170 static Reloc::Model getEffectiveRelocModel(const Triple &TT, bool JIT,
171                                            std::optional<Reloc::Model> RM) {
172   bool is64Bit = TT.getArch() == Triple::x86_64;
173   if (!RM) {
174     // JIT codegen should use static relocations by default, since it's
175     // typically executed in process and not relocatable.
176     if (JIT)
177       return Reloc::Static;
178 
179     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
180     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
181     // use static relocation model by default.
182     if (TT.isOSDarwin()) {
183       if (is64Bit)
184         return Reloc::PIC_;
185       return Reloc::DynamicNoPIC;
186     }
187     if (TT.isOSWindows() && is64Bit)
188       return Reloc::PIC_;
189     return Reloc::Static;
190   }
191 
192   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
193   // is defined as a model for code which may be used in static or dynamic
194   // executables but not necessarily a shared library. On X86-32 we just
195   // compile in -static mode, in x86-64 we use PIC.
196   if (*RM == Reloc::DynamicNoPIC) {
197     if (is64Bit)
198       return Reloc::PIC_;
199     if (!TT.isOSDarwin())
200       return Reloc::Static;
201   }
202 
203   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
204   // the Mach-O file format doesn't support it.
205   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
206     return Reloc::PIC_;
207 
208   return *RM;
209 }
210 
211 static CodeModel::Model
212 getEffectiveX86CodeModel(std::optional<CodeModel::Model> CM, bool JIT,
213                          bool Is64Bit) {
214   if (CM) {
215     if (*CM == CodeModel::Tiny)
216       report_fatal_error("Target does not support the tiny CodeModel", false);
217     return *CM;
218   }
219   if (JIT)
220     return Is64Bit ? CodeModel::Large : CodeModel::Small;
221   return CodeModel::Small;
222 }
223 
224 /// Create an X86 target.
225 ///
226 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
227                                    StringRef CPU, StringRef FS,
228                                    const TargetOptions &Options,
229                                    std::optional<Reloc::Model> RM,
230                                    std::optional<CodeModel::Model> CM,
231                                    CodeGenOptLevel OL, bool JIT)
232     : LLVMTargetMachine(
233           T, computeDataLayout(TT), TT, CPU, FS, Options,
234           getEffectiveRelocModel(TT, JIT, RM),
235           getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
236           OL),
237       TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
238   // On PS4/PS5, the "return address" of a 'noreturn' call must still be within
239   // the calling function, and TrapUnreachable is an easy way to get that.
240   if (TT.isPS() || TT.isOSBinFormatMachO()) {
241     this->Options.TrapUnreachable = true;
242     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
243   }
244 
245   setMachineOutliner(true);
246 
247   // x86 supports the debug entry values.
248   setSupportsDebugEntryValues(true);
249 
250   initAsmInfo();
251 }
252 
253 X86TargetMachine::~X86TargetMachine() = default;
254 
255 const X86Subtarget *
256 X86TargetMachine::getSubtargetImpl(const Function &F) const {
257   Attribute CPUAttr = F.getFnAttribute("target-cpu");
258   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
259   Attribute FSAttr = F.getFnAttribute("target-features");
260 
261   StringRef CPU =
262       CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
263   // "x86-64" is a default target setting for many front ends. In these cases,
264   // they actually request for "generic" tuning unless the "tune-cpu" was
265   // specified.
266   StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString()
267                       : CPU == "x86-64"  ? "generic"
268                                          : (StringRef)CPU;
269   StringRef FS =
270       FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
271 
272   SmallString<512> Key;
273   // The additions here are ordered so that the definitely short strings are
274   // added first so we won't exceed the small size. We append the
275   // much longer FS string at the end so that we only heap allocate at most
276   // one time.
277 
278   // Extract prefer-vector-width attribute.
279   unsigned PreferVectorWidthOverride = 0;
280   Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
281   if (PreferVecWidthAttr.isValid()) {
282     StringRef Val = PreferVecWidthAttr.getValueAsString();
283     unsigned Width;
284     if (!Val.getAsInteger(0, Width)) {
285       Key += 'p';
286       Key += Val;
287       PreferVectorWidthOverride = Width;
288     }
289   }
290 
291   // Extract min-legal-vector-width attribute.
292   unsigned RequiredVectorWidth = UINT32_MAX;
293   Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
294   if (MinLegalVecWidthAttr.isValid()) {
295     StringRef Val = MinLegalVecWidthAttr.getValueAsString();
296     unsigned Width;
297     if (!Val.getAsInteger(0, Width)) {
298       Key += 'm';
299       Key += Val;
300       RequiredVectorWidth = Width;
301     }
302   }
303 
304   // Add CPU to the Key.
305   Key += CPU;
306 
307   // Add tune CPU to the Key.
308   Key += TuneCPU;
309 
310   // Keep track of the start of the feature portion of the string.
311   unsigned FSStart = Key.size();
312 
313   // FIXME: This is related to the code below to reset the target options,
314   // we need to know whether or not the soft float flag is set on the
315   // function before we can generate a subtarget. We also need to use
316   // it as a key for the subtarget since that can be the only difference
317   // between two functions.
318   bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
319   // If the soft float attribute is set on the function turn on the soft float
320   // subtarget feature.
321   if (SoftFloat)
322     Key += FS.empty() ? "+soft-float" : "+soft-float,";
323 
324   Key += FS;
325 
326   // We may have added +soft-float to the features so move the StringRef to
327   // point to the full string in the Key.
328   FS = Key.substr(FSStart);
329 
330   auto &I = SubtargetMap[Key];
331   if (!I) {
332     // This needs to be done before we create a new subtarget since any
333     // creation will depend on the TM and the code generation flags on the
334     // function that reside in TargetOptions.
335     resetTargetOptions(F);
336     I = std::make_unique<X86Subtarget>(
337         TargetTriple, CPU, TuneCPU, FS, *this,
338         MaybeAlign(F.getParent()->getOverrideStackAlignment()),
339         PreferVectorWidthOverride, RequiredVectorWidth);
340   }
341   return I.get();
342 }
343 
344 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
345                                            unsigned DestAS) const {
346   assert(SrcAS != DestAS && "Expected different address spaces!");
347   if (getPointerSize(SrcAS) != getPointerSize(DestAS))
348     return false;
349   return SrcAS < 256 && DestAS < 256;
350 }
351 
352 //===----------------------------------------------------------------------===//
353 // X86 TTI query.
354 //===----------------------------------------------------------------------===//
355 
356 TargetTransformInfo
357 X86TargetMachine::getTargetTransformInfo(const Function &F) const {
358   return TargetTransformInfo(X86TTIImpl(this, F));
359 }
360 
361 //===----------------------------------------------------------------------===//
362 // Pass Pipeline Configuration
363 //===----------------------------------------------------------------------===//
364 
365 namespace {
366 
367 /// X86 Code Generator Pass Configuration Options.
368 class X86PassConfig : public TargetPassConfig {
369 public:
370   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
371     : TargetPassConfig(TM, PM) {}
372 
373   X86TargetMachine &getX86TargetMachine() const {
374     return getTM<X86TargetMachine>();
375   }
376 
377   ScheduleDAGInstrs *
378   createMachineScheduler(MachineSchedContext *C) const override {
379     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
380     DAG->addMutation(createX86MacroFusionDAGMutation());
381     return DAG;
382   }
383 
384   ScheduleDAGInstrs *
385   createPostMachineScheduler(MachineSchedContext *C) const override {
386     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
387     DAG->addMutation(createX86MacroFusionDAGMutation());
388     return DAG;
389   }
390 
391   void addIRPasses() override;
392   bool addInstSelector() override;
393   bool addIRTranslator() override;
394   bool addLegalizeMachineIR() override;
395   bool addRegBankSelect() override;
396   bool addGlobalInstructionSelect() override;
397   bool addILPOpts() override;
398   bool addPreISel() override;
399   void addMachineSSAOptimization() override;
400   void addPreRegAlloc() override;
401   bool addPostFastRegAllocRewrite() override;
402   void addPostRegAlloc() override;
403   void addPreEmitPass() override;
404   void addPreEmitPass2() override;
405   void addPreSched2() override;
406   bool addRegAssignAndRewriteOptimized() override;
407 
408   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
409 };
410 
411 class X86ExecutionDomainFix : public ExecutionDomainFix {
412 public:
413   static char ID;
414   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
415   StringRef getPassName() const override {
416     return "X86 Execution Dependency Fix";
417   }
418 };
419 char X86ExecutionDomainFix::ID;
420 
421 } // end anonymous namespace
422 
423 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
424   "X86 Execution Domain Fix", false, false)
425 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
426 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
427   "X86 Execution Domain Fix", false, false)
428 
429 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
430   return new X86PassConfig(*this, PM);
431 }
432 
433 MachineFunctionInfo *X86TargetMachine::createMachineFunctionInfo(
434     BumpPtrAllocator &Allocator, const Function &F,
435     const TargetSubtargetInfo *STI) const {
436   return X86MachineFunctionInfo::create<X86MachineFunctionInfo>(Allocator, F,
437                                                                 STI);
438 }
439 
440 void X86PassConfig::addIRPasses() {
441   addPass(createAtomicExpandPass());
442 
443   // We add both pass anyway and when these two passes run, we skip the pass
444   // based on the option level and option attribute.
445   addPass(createX86LowerAMXIntrinsicsPass());
446   addPass(createX86LowerAMXTypePass());
447 
448   TargetPassConfig::addIRPasses();
449 
450   if (TM->getOptLevel() != CodeGenOptLevel::None) {
451     addPass(createInterleavedAccessPass());
452     addPass(createX86PartialReductionPass());
453   }
454 
455   // Add passes that handle indirect branch removal and insertion of a retpoline
456   // thunk. These will be a no-op unless a function subtarget has the retpoline
457   // feature enabled.
458   addPass(createIndirectBrExpandPass());
459 
460   // Add Control Flow Guard checks.
461   const Triple &TT = TM->getTargetTriple();
462   if (TT.isOSWindows()) {
463     if (TT.getArch() == Triple::x86_64) {
464       addPass(createCFGuardDispatchPass());
465     } else {
466       addPass(createCFGuardCheckPass());
467     }
468   }
469 
470   if (TM->Options.JMCInstrument)
471     addPass(createJMCInstrumenterPass());
472 }
473 
474 bool X86PassConfig::addInstSelector() {
475   // Install an instruction selector.
476   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
477 
478   // For ELF, cleanup any local-dynamic TLS accesses.
479   if (TM->getTargetTriple().isOSBinFormatELF() &&
480       getOptLevel() != CodeGenOptLevel::None)
481     addPass(createCleanupLocalDynamicTLSPass());
482 
483   addPass(createX86GlobalBaseRegPass());
484   addPass(createX86ArgumentStackSlotPass());
485   return false;
486 }
487 
488 bool X86PassConfig::addIRTranslator() {
489   addPass(new IRTranslator(getOptLevel()));
490   return false;
491 }
492 
493 bool X86PassConfig::addLegalizeMachineIR() {
494   addPass(new Legalizer());
495   return false;
496 }
497 
498 bool X86PassConfig::addRegBankSelect() {
499   addPass(new RegBankSelect());
500   return false;
501 }
502 
503 bool X86PassConfig::addGlobalInstructionSelect() {
504   addPass(new InstructionSelect(getOptLevel()));
505   return false;
506 }
507 
508 bool X86PassConfig::addILPOpts() {
509   addPass(&EarlyIfConverterID);
510   if (EnableMachineCombinerPass)
511     addPass(&MachineCombinerID);
512   addPass(createX86CmovConverterPass());
513   return true;
514 }
515 
516 bool X86PassConfig::addPreISel() {
517   // Only add this pass for 32-bit x86 Windows.
518   const Triple &TT = TM->getTargetTriple();
519   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
520     addPass(createX86WinEHStatePass());
521   return true;
522 }
523 
524 void X86PassConfig::addPreRegAlloc() {
525   if (getOptLevel() != CodeGenOptLevel::None) {
526     addPass(&LiveRangeShrinkID);
527     addPass(createX86FixupSetCC());
528     addPass(createX86OptimizeLEAs());
529     addPass(createX86CallFrameOptimization());
530     addPass(createX86AvoidStoreForwardingBlocks());
531   }
532 
533   addPass(createX86SpeculativeLoadHardeningPass());
534   addPass(createX86FlagsCopyLoweringPass());
535   addPass(createX86DynAllocaExpander());
536 
537   if (getOptLevel() != CodeGenOptLevel::None)
538     addPass(createX86PreTileConfigPass());
539   else
540     addPass(createX86FastPreTileConfigPass());
541 }
542 
543 void X86PassConfig::addMachineSSAOptimization() {
544   addPass(createX86DomainReassignmentPass());
545   TargetPassConfig::addMachineSSAOptimization();
546 }
547 
548 void X86PassConfig::addPostRegAlloc() {
549   addPass(createX86LowerTileCopyPass());
550   addPass(createX86FloatingPointStackifierPass());
551   // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
552   // to using the Speculative Execution Side Effect Suppression pass for
553   // mitigation. This is to prevent slow downs due to
554   // analyses needed by the LVIHardening pass when compiling at -O0.
555   if (getOptLevel() != CodeGenOptLevel::None)
556     addPass(createX86LoadValueInjectionLoadHardeningPass());
557 }
558 
559 void X86PassConfig::addPreSched2() {
560   addPass(createX86ExpandPseudoPass());
561   addPass(createKCFIPass());
562 }
563 
564 void X86PassConfig::addPreEmitPass() {
565   if (getOptLevel() != CodeGenOptLevel::None) {
566     addPass(new X86ExecutionDomainFix());
567     addPass(createBreakFalseDeps());
568   }
569 
570   addPass(createX86IndirectBranchTrackingPass());
571 
572   addPass(createX86IssueVZeroUpperPass());
573 
574   if (getOptLevel() != CodeGenOptLevel::None) {
575     addPass(createX86FixupBWInsts());
576     addPass(createX86PadShortFunctions());
577     addPass(createX86FixupLEAs());
578     addPass(createX86FixupInstTuning());
579     addPass(createX86FixupVectorConstants());
580   }
581   addPass(createX86CompressEVEXPass());
582   addPass(createX86DiscriminateMemOpsPass());
583   addPass(createX86InsertPrefetchPass());
584   addPass(createX86InsertX87waitPass());
585 }
586 
587 void X86PassConfig::addPreEmitPass2() {
588   const Triple &TT = TM->getTargetTriple();
589   const MCAsmInfo *MAI = TM->getMCAsmInfo();
590 
591   // The X86 Speculative Execution Pass must run after all control
592   // flow graph modifying passes. As a result it was listed to run right before
593   // the X86 Retpoline Thunks pass. The reason it must run after control flow
594   // graph modifications is that the model of LFENCE in LLVM has to be updated
595   // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
596   // placement of this pass was hand checked to ensure that the subsequent
597   // passes don't move the code around the LFENCEs in a way that will hurt the
598   // correctness of this pass. This placement has been shown to work based on
599   // hand inspection of the codegen output.
600   addPass(createX86SpeculativeExecutionSideEffectSuppression());
601   addPass(createX86IndirectThunksPass());
602   addPass(createX86ReturnThunksPass());
603 
604   // Insert extra int3 instructions after trailing call instructions to avoid
605   // issues in the unwinder.
606   if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
607     addPass(createX86AvoidTrailingCallPass());
608 
609   // Verify basic block incoming and outgoing cfa offset and register values and
610   // correct CFA calculation rule where needed by inserting appropriate CFI
611   // instructions.
612   if (!TT.isOSDarwin() &&
613       (!TT.isOSWindows() ||
614        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
615     addPass(createCFIInstrInserter());
616 
617   if (TT.isOSWindows()) {
618     // Identify valid longjmp targets for Windows Control Flow Guard.
619     addPass(createCFGuardLongjmpPass());
620     // Identify valid eh continuation targets for Windows EHCont Guard.
621     addPass(createEHContGuardCatchretPass());
622   }
623   addPass(createX86LoadValueInjectionRetHardeningPass());
624 
625   // Insert pseudo probe annotation for callsite profiling
626   addPass(createPseudoProbeInserter());
627 
628   // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms,
629   // also CALL_RVMARKER.
630   addPass(createUnpackMachineBundles([&TT](const MachineFunction &MF) {
631     // Only run bundle expansion if the module uses kcfi, or there are relevant
632     // ObjC runtime functions present in the module.
633     const Function &F = MF.getFunction();
634     const Module *M = F.getParent();
635     return M->getModuleFlag("kcfi") ||
636            (TT.isOSDarwin() &&
637             (M->getFunction("objc_retainAutoreleasedReturnValue") ||
638              M->getFunction("objc_unsafeClaimAutoreleasedReturnValue")));
639   }));
640 }
641 
642 bool X86PassConfig::addPostFastRegAllocRewrite() {
643   addPass(createX86FastTileConfigPass());
644   return true;
645 }
646 
647 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
648   return getStandardCSEConfigForOpt(TM->getOptLevel());
649 }
650 
651 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI,
652                                       const TargetRegisterClass &RC) {
653   return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(&RC);
654 }
655 
656 bool X86PassConfig::addRegAssignAndRewriteOptimized() {
657   // Don't support tile RA when RA is specified by command line "-regalloc".
658   if (!isCustomizedRegAlloc() && EnableTileRAPass) {
659     // Allocate tile register first.
660     addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters));
661     addPass(createX86TileConfigPass());
662   }
663   return TargetPassConfig::addRegAssignAndRewriteOptimized();
664 }
665