xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86TargetMachine.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetObjectFile.h"
21 #include "X86TargetTransformInfo.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/ExecutionDomainFix.h"
27 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
28 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
32 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MIRParser/MIParser.h"
35 #include "llvm/CodeGen/MIRYamlMapping.h"
36 #include "llvm/CodeGen/MachineScheduler.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/CodeGen/RegAllocRegistry.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/MC/MCAsmInfo.h"
44 #include "llvm/MC/TargetRegistry.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CodeGen.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include "llvm/TargetParser/Triple.h"
52 #include "llvm/Transforms/CFGuard.h"
53 #include <memory>
54 #include <optional>
55 #include <string>
56 
57 using namespace llvm;
58 
59 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
60                                cl::desc("Enable the machine combiner pass"),
61                                cl::init(true), cl::Hidden);
62 
63 static cl::opt<bool>
64     EnableTileRAPass("x86-tile-ra",
65                      cl::desc("Enable the tile register allocation pass"),
66                      cl::init(true), cl::Hidden);
67 
68 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
69   // Register the target.
70   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
71   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
72 
73   PassRegistry &PR = *PassRegistry::getPassRegistry();
74   initializeX86LowerAMXIntrinsicsLegacyPassPass(PR);
75   initializeX86LowerAMXTypeLegacyPassPass(PR);
76   initializeX86PreTileConfigPass(PR);
77   initializeGlobalISel(PR);
78   initializeWinEHStatePassPass(PR);
79   initializeFixupBWInstPassPass(PR);
80   initializeCompressEVEXPassPass(PR);
81   initializeFixupLEAPassPass(PR);
82   initializeFPSPass(PR);
83   initializeX86FixupSetCCPassPass(PR);
84   initializeX86CallFrameOptimizationPass(PR);
85   initializeX86CmovConverterPassPass(PR);
86   initializeX86TileConfigPass(PR);
87   initializeX86FastPreTileConfigPass(PR);
88   initializeX86FastTileConfigPass(PR);
89   initializeKCFIPass(PR);
90   initializeX86LowerTileCopyPass(PR);
91   initializeX86ExpandPseudoPass(PR);
92   initializeX86ExecutionDomainFixPass(PR);
93   initializeX86DomainReassignmentPass(PR);
94   initializeX86AvoidSFBPassPass(PR);
95   initializeX86AvoidTrailingCallPassPass(PR);
96   initializeX86SpeculativeLoadHardeningPassPass(PR);
97   initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
98   initializeX86FlagsCopyLoweringPassPass(PR);
99   initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
100   initializeX86LoadValueInjectionRetHardeningPassPass(PR);
101   initializeX86OptimizeLEAPassPass(PR);
102   initializeX86PartialReductionPass(PR);
103   initializePseudoProbeInserterPass(PR);
104   initializeX86ReturnThunksPass(PR);
105   initializeX86DAGToDAGISelLegacyPass(PR);
106   initializeX86ArgumentStackSlotPassPass(PR);
107   initializeX86FixupInstTuningPassPass(PR);
108   initializeX86FixupVectorConstantsPassPass(PR);
109 }
110 
111 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
112   if (TT.isOSBinFormatMachO()) {
113     if (TT.getArch() == Triple::x86_64)
114       return std::make_unique<X86_64MachoTargetObjectFile>();
115     return std::make_unique<TargetLoweringObjectFileMachO>();
116   }
117 
118   if (TT.isOSBinFormatCOFF())
119     return std::make_unique<TargetLoweringObjectFileCOFF>();
120 
121   if (TT.getArch() == Triple::x86_64)
122     return std::make_unique<X86_64ELFTargetObjectFile>();
123   return std::make_unique<X86ELFTargetObjectFile>();
124 }
125 
126 static std::string computeDataLayout(const Triple &TT) {
127   // X86 is little endian
128   std::string Ret = "e";
129 
130   Ret += DataLayout::getManglingComponent(TT);
131   // X86 and x32 have 32 bit pointers.
132   if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl())
133     Ret += "-p:32:32";
134 
135   // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
136   Ret += "-p270:32:32-p271:32:32-p272:64:64";
137 
138   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
139   // 128 bit integers are not specified in the 32-bit ABIs but are used
140   // internally for lowering f128, so we match the alignment to that.
141   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
142     Ret += "-i64:64-i128:128";
143   else if (TT.isOSIAMCU())
144     Ret += "-i64:32-f64:32";
145   else
146     Ret += "-i128:128-f64:32:64";
147 
148   // Some ABIs align long double to 128 bits, others to 32.
149   if (TT.isOSNaCl() || TT.isOSIAMCU())
150     ; // No f80
151   else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment())
152     Ret += "-f80:128";
153   else
154     Ret += "-f80:32";
155 
156   if (TT.isOSIAMCU())
157     Ret += "-f128:32";
158 
159   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
160   if (TT.isArch64Bit())
161     Ret += "-n8:16:32:64";
162   else
163     Ret += "-n8:16:32";
164 
165   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
166   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
167     Ret += "-a:0:32-S32";
168   else
169     Ret += "-S128";
170 
171   return Ret;
172 }
173 
174 static Reloc::Model getEffectiveRelocModel(const Triple &TT, bool JIT,
175                                            std::optional<Reloc::Model> RM) {
176   bool is64Bit = TT.getArch() == Triple::x86_64;
177   if (!RM) {
178     // JIT codegen should use static relocations by default, since it's
179     // typically executed in process and not relocatable.
180     if (JIT)
181       return Reloc::Static;
182 
183     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
184     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
185     // use static relocation model by default.
186     if (TT.isOSDarwin()) {
187       if (is64Bit)
188         return Reloc::PIC_;
189       return Reloc::DynamicNoPIC;
190     }
191     if (TT.isOSWindows() && is64Bit)
192       return Reloc::PIC_;
193     return Reloc::Static;
194   }
195 
196   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
197   // is defined as a model for code which may be used in static or dynamic
198   // executables but not necessarily a shared library. On X86-32 we just
199   // compile in -static mode, in x86-64 we use PIC.
200   if (*RM == Reloc::DynamicNoPIC) {
201     if (is64Bit)
202       return Reloc::PIC_;
203     if (!TT.isOSDarwin())
204       return Reloc::Static;
205   }
206 
207   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
208   // the Mach-O file format doesn't support it.
209   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
210     return Reloc::PIC_;
211 
212   return *RM;
213 }
214 
215 static CodeModel::Model
216 getEffectiveX86CodeModel(const Triple &TT, std::optional<CodeModel::Model> CM,
217                          bool JIT) {
218   bool Is64Bit = TT.getArch() == Triple::x86_64;
219   if (CM) {
220     if (*CM == CodeModel::Tiny)
221       report_fatal_error("Target does not support the tiny CodeModel", false);
222     return *CM;
223   }
224   if (JIT)
225     return Is64Bit ? CodeModel::Large : CodeModel::Small;
226   return CodeModel::Small;
227 }
228 
229 /// Create an X86 target.
230 ///
231 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
232                                    StringRef CPU, StringRef FS,
233                                    const TargetOptions &Options,
234                                    std::optional<Reloc::Model> RM,
235                                    std::optional<CodeModel::Model> CM,
236                                    CodeGenOptLevel OL, bool JIT)
237     : LLVMTargetMachine(
238           T, computeDataLayout(TT), TT, CPU, FS, Options,
239           getEffectiveRelocModel(TT, JIT, RM),
240           getEffectiveX86CodeModel(TT, CM, JIT),
241           OL),
242       TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
243   // On PS4/PS5, the "return address" of a 'noreturn' call must still be within
244   // the calling function, and TrapUnreachable is an easy way to get that.
245   if (TT.isPS() || TT.isOSBinFormatMachO()) {
246     this->Options.TrapUnreachable = true;
247     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
248   }
249 
250   setMachineOutliner(true);
251 
252   // x86 supports the debug entry values.
253   setSupportsDebugEntryValues(true);
254 
255   initAsmInfo();
256 }
257 
258 X86TargetMachine::~X86TargetMachine() = default;
259 
260 const X86Subtarget *
261 X86TargetMachine::getSubtargetImpl(const Function &F) const {
262   Attribute CPUAttr = F.getFnAttribute("target-cpu");
263   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
264   Attribute FSAttr = F.getFnAttribute("target-features");
265 
266   StringRef CPU =
267       CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
268   // "x86-64" is a default target setting for many front ends. In these cases,
269   // they actually request for "generic" tuning unless the "tune-cpu" was
270   // specified.
271   StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString()
272                       : CPU == "x86-64"  ? "generic"
273                                          : (StringRef)CPU;
274   StringRef FS =
275       FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
276 
277   SmallString<512> Key;
278   // The additions here are ordered so that the definitely short strings are
279   // added first so we won't exceed the small size. We append the
280   // much longer FS string at the end so that we only heap allocate at most
281   // one time.
282 
283   // Extract prefer-vector-width attribute.
284   unsigned PreferVectorWidthOverride = 0;
285   Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
286   if (PreferVecWidthAttr.isValid()) {
287     StringRef Val = PreferVecWidthAttr.getValueAsString();
288     unsigned Width;
289     if (!Val.getAsInteger(0, Width)) {
290       Key += 'p';
291       Key += Val;
292       PreferVectorWidthOverride = Width;
293     }
294   }
295 
296   // Extract min-legal-vector-width attribute.
297   unsigned RequiredVectorWidth = UINT32_MAX;
298   Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
299   if (MinLegalVecWidthAttr.isValid()) {
300     StringRef Val = MinLegalVecWidthAttr.getValueAsString();
301     unsigned Width;
302     if (!Val.getAsInteger(0, Width)) {
303       Key += 'm';
304       Key += Val;
305       RequiredVectorWidth = Width;
306     }
307   }
308 
309   // Add CPU to the Key.
310   Key += CPU;
311 
312   // Add tune CPU to the Key.
313   Key += TuneCPU;
314 
315   // Keep track of the start of the feature portion of the string.
316   unsigned FSStart = Key.size();
317 
318   // FIXME: This is related to the code below to reset the target options,
319   // we need to know whether or not the soft float flag is set on the
320   // function before we can generate a subtarget. We also need to use
321   // it as a key for the subtarget since that can be the only difference
322   // between two functions.
323   bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
324   // If the soft float attribute is set on the function turn on the soft float
325   // subtarget feature.
326   if (SoftFloat)
327     Key += FS.empty() ? "+soft-float" : "+soft-float,";
328 
329   Key += FS;
330 
331   // We may have added +soft-float to the features so move the StringRef to
332   // point to the full string in the Key.
333   FS = Key.substr(FSStart);
334 
335   auto &I = SubtargetMap[Key];
336   if (!I) {
337     // This needs to be done before we create a new subtarget since any
338     // creation will depend on the TM and the code generation flags on the
339     // function that reside in TargetOptions.
340     resetTargetOptions(F);
341     I = std::make_unique<X86Subtarget>(
342         TargetTriple, CPU, TuneCPU, FS, *this,
343         MaybeAlign(F.getParent()->getOverrideStackAlignment()),
344         PreferVectorWidthOverride, RequiredVectorWidth);
345   }
346   return I.get();
347 }
348 
349 yaml::MachineFunctionInfo *X86TargetMachine::createDefaultFuncInfoYAML() const {
350   return new yaml::X86MachineFunctionInfo();
351 }
352 
353 yaml::MachineFunctionInfo *
354 X86TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
355   const auto *MFI = MF.getInfo<X86MachineFunctionInfo>();
356   return new yaml::X86MachineFunctionInfo(*MFI);
357 }
358 
359 bool X86TargetMachine::parseMachineFunctionInfo(
360     const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
361     SMDiagnostic &Error, SMRange &SourceRange) const {
362   const auto &YamlMFI = static_cast<const yaml::X86MachineFunctionInfo &>(MFI);
363   PFS.MF.getInfo<X86MachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
364   return false;
365 }
366 
367 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
368                                            unsigned DestAS) const {
369   assert(SrcAS != DestAS && "Expected different address spaces!");
370   if (getPointerSize(SrcAS) != getPointerSize(DestAS))
371     return false;
372   return SrcAS < 256 && DestAS < 256;
373 }
374 
375 //===----------------------------------------------------------------------===//
376 // X86 TTI query.
377 //===----------------------------------------------------------------------===//
378 
379 TargetTransformInfo
380 X86TargetMachine::getTargetTransformInfo(const Function &F) const {
381   return TargetTransformInfo(X86TTIImpl(this, F));
382 }
383 
384 //===----------------------------------------------------------------------===//
385 // Pass Pipeline Configuration
386 //===----------------------------------------------------------------------===//
387 
388 namespace {
389 
390 /// X86 Code Generator Pass Configuration Options.
391 class X86PassConfig : public TargetPassConfig {
392 public:
393   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
394     : TargetPassConfig(TM, PM) {}
395 
396   X86TargetMachine &getX86TargetMachine() const {
397     return getTM<X86TargetMachine>();
398   }
399 
400   ScheduleDAGInstrs *
401   createMachineScheduler(MachineSchedContext *C) const override {
402     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
403     DAG->addMutation(createX86MacroFusionDAGMutation());
404     return DAG;
405   }
406 
407   ScheduleDAGInstrs *
408   createPostMachineScheduler(MachineSchedContext *C) const override {
409     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
410     DAG->addMutation(createX86MacroFusionDAGMutation());
411     return DAG;
412   }
413 
414   void addIRPasses() override;
415   bool addInstSelector() override;
416   bool addIRTranslator() override;
417   bool addLegalizeMachineIR() override;
418   bool addRegBankSelect() override;
419   bool addGlobalInstructionSelect() override;
420   bool addILPOpts() override;
421   bool addPreISel() override;
422   void addMachineSSAOptimization() override;
423   void addPreRegAlloc() override;
424   bool addPostFastRegAllocRewrite() override;
425   void addPostRegAlloc() override;
426   void addPreEmitPass() override;
427   void addPreEmitPass2() override;
428   void addPreSched2() override;
429   bool addRegAssignAndRewriteOptimized() override;
430 
431   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
432 };
433 
434 class X86ExecutionDomainFix : public ExecutionDomainFix {
435 public:
436   static char ID;
437   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
438   StringRef getPassName() const override {
439     return "X86 Execution Dependency Fix";
440   }
441 };
442 char X86ExecutionDomainFix::ID;
443 
444 } // end anonymous namespace
445 
446 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
447   "X86 Execution Domain Fix", false, false)
448 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
449 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
450   "X86 Execution Domain Fix", false, false)
451 
452 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
453   return new X86PassConfig(*this, PM);
454 }
455 
456 MachineFunctionInfo *X86TargetMachine::createMachineFunctionInfo(
457     BumpPtrAllocator &Allocator, const Function &F,
458     const TargetSubtargetInfo *STI) const {
459   return X86MachineFunctionInfo::create<X86MachineFunctionInfo>(Allocator, F,
460                                                                 STI);
461 }
462 
463 void X86PassConfig::addIRPasses() {
464   addPass(createAtomicExpandLegacyPass());
465 
466   // We add both pass anyway and when these two passes run, we skip the pass
467   // based on the option level and option attribute.
468   addPass(createX86LowerAMXIntrinsicsPass());
469   addPass(createX86LowerAMXTypePass());
470 
471   TargetPassConfig::addIRPasses();
472 
473   if (TM->getOptLevel() != CodeGenOptLevel::None) {
474     addPass(createInterleavedAccessPass());
475     addPass(createX86PartialReductionPass());
476   }
477 
478   // Add passes that handle indirect branch removal and insertion of a retpoline
479   // thunk. These will be a no-op unless a function subtarget has the retpoline
480   // feature enabled.
481   addPass(createIndirectBrExpandPass());
482 
483   // Add Control Flow Guard checks.
484   const Triple &TT = TM->getTargetTriple();
485   if (TT.isOSWindows()) {
486     if (TT.getArch() == Triple::x86_64) {
487       addPass(createCFGuardDispatchPass());
488     } else {
489       addPass(createCFGuardCheckPass());
490     }
491   }
492 
493   if (TM->Options.JMCInstrument)
494     addPass(createJMCInstrumenterPass());
495 }
496 
497 bool X86PassConfig::addInstSelector() {
498   // Install an instruction selector.
499   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
500 
501   // For ELF, cleanup any local-dynamic TLS accesses.
502   if (TM->getTargetTriple().isOSBinFormatELF() &&
503       getOptLevel() != CodeGenOptLevel::None)
504     addPass(createCleanupLocalDynamicTLSPass());
505 
506   addPass(createX86GlobalBaseRegPass());
507   addPass(createX86ArgumentStackSlotPass());
508   return false;
509 }
510 
511 bool X86PassConfig::addIRTranslator() {
512   addPass(new IRTranslator(getOptLevel()));
513   return false;
514 }
515 
516 bool X86PassConfig::addLegalizeMachineIR() {
517   addPass(new Legalizer());
518   return false;
519 }
520 
521 bool X86PassConfig::addRegBankSelect() {
522   addPass(new RegBankSelect());
523   return false;
524 }
525 
526 bool X86PassConfig::addGlobalInstructionSelect() {
527   addPass(new InstructionSelect(getOptLevel()));
528   // Add GlobalBaseReg in case there is no SelectionDAG passes afterwards
529   if (isGlobalISelAbortEnabled())
530     addPass(createX86GlobalBaseRegPass());
531   return false;
532 }
533 
534 bool X86PassConfig::addILPOpts() {
535   addPass(&EarlyIfConverterID);
536   if (EnableMachineCombinerPass)
537     addPass(&MachineCombinerID);
538   addPass(createX86CmovConverterPass());
539   return true;
540 }
541 
542 bool X86PassConfig::addPreISel() {
543   // Only add this pass for 32-bit x86 Windows.
544   const Triple &TT = TM->getTargetTriple();
545   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
546     addPass(createX86WinEHStatePass());
547   return true;
548 }
549 
550 void X86PassConfig::addPreRegAlloc() {
551   if (getOptLevel() != CodeGenOptLevel::None) {
552     addPass(&LiveRangeShrinkID);
553     addPass(createX86WinFixupBufferSecurityCheckPass());
554     addPass(createX86FixupSetCC());
555     addPass(createX86OptimizeLEAs());
556     addPass(createX86CallFrameOptimization());
557     addPass(createX86AvoidStoreForwardingBlocks());
558   }
559 
560   addPass(createX86SpeculativeLoadHardeningPass());
561   addPass(createX86FlagsCopyLoweringPass());
562   addPass(createX86DynAllocaExpander());
563 
564   if (getOptLevel() != CodeGenOptLevel::None)
565     addPass(createX86PreTileConfigPass());
566   else
567     addPass(createX86FastPreTileConfigPass());
568 }
569 
570 void X86PassConfig::addMachineSSAOptimization() {
571   addPass(createX86DomainReassignmentPass());
572   TargetPassConfig::addMachineSSAOptimization();
573 }
574 
575 void X86PassConfig::addPostRegAlloc() {
576   addPass(createX86LowerTileCopyPass());
577   addPass(createX86FloatingPointStackifierPass());
578   // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
579   // to using the Speculative Execution Side Effect Suppression pass for
580   // mitigation. This is to prevent slow downs due to
581   // analyses needed by the LVIHardening pass when compiling at -O0.
582   if (getOptLevel() != CodeGenOptLevel::None)
583     addPass(createX86LoadValueInjectionLoadHardeningPass());
584 }
585 
586 void X86PassConfig::addPreSched2() {
587   addPass(createX86ExpandPseudoPass());
588   addPass(createKCFIPass());
589 }
590 
591 void X86PassConfig::addPreEmitPass() {
592   if (getOptLevel() != CodeGenOptLevel::None) {
593     addPass(new X86ExecutionDomainFix());
594     addPass(createBreakFalseDeps());
595   }
596 
597   addPass(createX86IndirectBranchTrackingPass());
598 
599   addPass(createX86IssueVZeroUpperPass());
600 
601   if (getOptLevel() != CodeGenOptLevel::None) {
602     addPass(createX86FixupBWInsts());
603     addPass(createX86PadShortFunctions());
604     addPass(createX86FixupLEAs());
605     addPass(createX86FixupInstTuning());
606     addPass(createX86FixupVectorConstants());
607   }
608   addPass(createX86CompressEVEXPass());
609   addPass(createX86DiscriminateMemOpsPass());
610   addPass(createX86InsertPrefetchPass());
611   addPass(createX86InsertX87waitPass());
612 }
613 
614 void X86PassConfig::addPreEmitPass2() {
615   const Triple &TT = TM->getTargetTriple();
616   const MCAsmInfo *MAI = TM->getMCAsmInfo();
617 
618   // The X86 Speculative Execution Pass must run after all control
619   // flow graph modifying passes. As a result it was listed to run right before
620   // the X86 Retpoline Thunks pass. The reason it must run after control flow
621   // graph modifications is that the model of LFENCE in LLVM has to be updated
622   // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
623   // placement of this pass was hand checked to ensure that the subsequent
624   // passes don't move the code around the LFENCEs in a way that will hurt the
625   // correctness of this pass. This placement has been shown to work based on
626   // hand inspection of the codegen output.
627   addPass(createX86SpeculativeExecutionSideEffectSuppression());
628   addPass(createX86IndirectThunksPass());
629   addPass(createX86ReturnThunksPass());
630 
631   // Insert extra int3 instructions after trailing call instructions to avoid
632   // issues in the unwinder.
633   if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
634     addPass(createX86AvoidTrailingCallPass());
635 
636   // Verify basic block incoming and outgoing cfa offset and register values and
637   // correct CFA calculation rule where needed by inserting appropriate CFI
638   // instructions.
639   if (!TT.isOSDarwin() &&
640       (!TT.isOSWindows() ||
641        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
642     addPass(createCFIInstrInserter());
643 
644   if (TT.isOSWindows()) {
645     // Identify valid longjmp targets for Windows Control Flow Guard.
646     addPass(createCFGuardLongjmpPass());
647     // Identify valid eh continuation targets for Windows EHCont Guard.
648     addPass(createEHContGuardCatchretPass());
649   }
650   addPass(createX86LoadValueInjectionRetHardeningPass());
651 
652   // Insert pseudo probe annotation for callsite profiling
653   addPass(createPseudoProbeInserter());
654 
655   // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms,
656   // also CALL_RVMARKER.
657   addPass(createUnpackMachineBundles([&TT](const MachineFunction &MF) {
658     // Only run bundle expansion if the module uses kcfi, or there are relevant
659     // ObjC runtime functions present in the module.
660     const Function &F = MF.getFunction();
661     const Module *M = F.getParent();
662     return M->getModuleFlag("kcfi") ||
663            (TT.isOSDarwin() &&
664             (M->getFunction("objc_retainAutoreleasedReturnValue") ||
665              M->getFunction("objc_unsafeClaimAutoreleasedReturnValue")));
666   }));
667 }
668 
669 bool X86PassConfig::addPostFastRegAllocRewrite() {
670   addPass(createX86FastTileConfigPass());
671   return true;
672 }
673 
674 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
675   return getStandardCSEConfigForOpt(TM->getOptLevel());
676 }
677 
678 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI,
679                                       const MachineRegisterInfo &MRI,
680                                       const Register Reg) {
681   const TargetRegisterClass *RC = MRI.getRegClass(Reg);
682   return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(RC);
683 }
684 
685 bool X86PassConfig::addRegAssignAndRewriteOptimized() {
686   // Don't support tile RA when RA is specified by command line "-regalloc".
687   if (!isCustomizedRegAlloc() && EnableTileRAPass) {
688     // Allocate tile register first.
689     addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters));
690     addPass(createX86TileConfigPass());
691   }
692   return TargetPassConfig::addRegAssignAndRewriteOptimized();
693 }
694