1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <memory> 50 #include <string> 51 52 using namespace llvm; 53 54 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 55 cl::desc("Enable the machine combiner pass"), 56 cl::init(true), cl::Hidden); 57 58 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 59 cl::desc("Enable the conditional branch " 60 "folding pass"), 61 cl::init(false), cl::Hidden); 62 63 extern "C" void LLVMInitializeX86Target() { 64 // Register the target. 65 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 66 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 67 68 PassRegistry &PR = *PassRegistry::getPassRegistry(); 69 initializeGlobalISel(PR); 70 initializeWinEHStatePassPass(PR); 71 initializeFixupBWInstPassPass(PR); 72 initializeEvexToVexInstPassPass(PR); 73 initializeFixupLEAPassPass(PR); 74 initializeFPSPass(PR); 75 initializeX86CallFrameOptimizationPass(PR); 76 initializeX86CmovConverterPassPass(PR); 77 initializeX86ExpandPseudoPass(PR); 78 initializeX86ExecutionDomainFixPass(PR); 79 initializeX86DomainReassignmentPass(PR); 80 initializeX86AvoidSFBPassPass(PR); 81 initializeX86SpeculativeLoadHardeningPassPass(PR); 82 initializeX86FlagsCopyLoweringPassPass(PR); 83 initializeX86CondBrFoldingPassPass(PR); 84 initializeX86OptimizeLEAPassPass(PR); 85 } 86 87 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 88 if (TT.isOSBinFormatMachO()) { 89 if (TT.getArch() == Triple::x86_64) 90 return std::make_unique<X86_64MachoTargetObjectFile>(); 91 return std::make_unique<TargetLoweringObjectFileMachO>(); 92 } 93 94 if (TT.isOSFreeBSD()) 95 return std::make_unique<X86FreeBSDTargetObjectFile>(); 96 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 97 return std::make_unique<X86LinuxNaClTargetObjectFile>(); 98 if (TT.isOSSolaris()) 99 return std::make_unique<X86SolarisTargetObjectFile>(); 100 if (TT.isOSFuchsia()) 101 return std::make_unique<X86FuchsiaTargetObjectFile>(); 102 if (TT.isOSBinFormatELF()) 103 return std::make_unique<X86ELFTargetObjectFile>(); 104 if (TT.isOSBinFormatCOFF()) 105 return std::make_unique<TargetLoweringObjectFileCOFF>(); 106 llvm_unreachable("unknown subtarget type"); 107 } 108 109 static std::string computeDataLayout(const Triple &TT) { 110 // X86 is little endian 111 std::string Ret = "e"; 112 113 Ret += DataLayout::getManglingComponent(TT); 114 // X86 and x32 have 32 bit pointers. 115 if ((TT.isArch64Bit() && 116 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 117 !TT.isArch64Bit()) 118 Ret += "-p:32:32"; 119 120 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 121 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 122 123 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 124 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 125 Ret += "-i64:64"; 126 else if (TT.isOSIAMCU()) 127 Ret += "-i64:32-f64:32"; 128 else 129 Ret += "-f64:32:64"; 130 131 // Some ABIs align long double to 128 bits, others to 32. 132 if (TT.isOSNaCl() || TT.isOSIAMCU()) 133 ; // No f80 134 else if (TT.isArch64Bit() || TT.isOSDarwin()) 135 Ret += "-f80:128"; 136 else 137 Ret += "-f80:32"; 138 139 if (TT.isOSIAMCU()) 140 Ret += "-f128:32"; 141 142 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 143 if (TT.isArch64Bit()) 144 Ret += "-n8:16:32:64"; 145 else 146 Ret += "-n8:16:32"; 147 148 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 149 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 150 Ret += "-a:0:32-S32"; 151 else 152 Ret += "-S128"; 153 154 return Ret; 155 } 156 157 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 158 bool JIT, 159 Optional<Reloc::Model> RM) { 160 bool is64Bit = TT.getArch() == Triple::x86_64; 161 if (!RM.hasValue()) { 162 // JIT codegen should use static relocations by default, since it's 163 // typically executed in process and not relocatable. 164 if (JIT) 165 return Reloc::Static; 166 167 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 168 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 169 // use static relocation model by default. 170 if (TT.isOSDarwin()) { 171 if (is64Bit) 172 return Reloc::PIC_; 173 return Reloc::DynamicNoPIC; 174 } 175 if (TT.isOSWindows() && is64Bit) 176 return Reloc::PIC_; 177 return Reloc::Static; 178 } 179 180 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 181 // is defined as a model for code which may be used in static or dynamic 182 // executables but not necessarily a shared library. On X86-32 we just 183 // compile in -static mode, in x86-64 we use PIC. 184 if (*RM == Reloc::DynamicNoPIC) { 185 if (is64Bit) 186 return Reloc::PIC_; 187 if (!TT.isOSDarwin()) 188 return Reloc::Static; 189 } 190 191 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 192 // the Mach-O file format doesn't support it. 193 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 194 return Reloc::PIC_; 195 196 return *RM; 197 } 198 199 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 200 bool JIT, bool Is64Bit) { 201 if (CM) { 202 if (*CM == CodeModel::Tiny) 203 report_fatal_error("Target does not support the tiny CodeModel", false); 204 return *CM; 205 } 206 if (JIT) 207 return Is64Bit ? CodeModel::Large : CodeModel::Small; 208 return CodeModel::Small; 209 } 210 211 /// Create an X86 target. 212 /// 213 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 214 StringRef CPU, StringRef FS, 215 const TargetOptions &Options, 216 Optional<Reloc::Model> RM, 217 Optional<CodeModel::Model> CM, 218 CodeGenOpt::Level OL, bool JIT) 219 : LLVMTargetMachine( 220 T, computeDataLayout(TT), TT, CPU, FS, Options, 221 getEffectiveRelocModel(TT, JIT, RM), 222 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 223 OL), 224 TLOF(createTLOF(getTargetTriple())) { 225 // On PS4, the "return address" of a 'noreturn' call must still be within 226 // the calling function, and TrapUnreachable is an easy way to get that. 227 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 228 this->Options.TrapUnreachable = true; 229 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 230 } 231 232 // Outlining is available for x86-64. 233 if (TT.getArch() == Triple::x86_64) 234 setMachineOutliner(true); 235 236 initAsmInfo(); 237 } 238 239 X86TargetMachine::~X86TargetMachine() = default; 240 241 const X86Subtarget * 242 X86TargetMachine::getSubtargetImpl(const Function &F) const { 243 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 244 Attribute FSAttr = F.getFnAttribute("target-features"); 245 246 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 247 ? CPUAttr.getValueAsString() 248 : (StringRef)TargetCPU; 249 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 250 ? FSAttr.getValueAsString() 251 : (StringRef)TargetFS; 252 253 SmallString<512> Key; 254 Key.reserve(CPU.size() + FS.size()); 255 Key += CPU; 256 Key += FS; 257 258 // FIXME: This is related to the code below to reset the target options, 259 // we need to know whether or not the soft float flag is set on the 260 // function before we can generate a subtarget. We also need to use 261 // it as a key for the subtarget since that can be the only difference 262 // between two functions. 263 bool SoftFloat = 264 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 265 // If the soft float attribute is set on the function turn on the soft float 266 // subtarget feature. 267 if (SoftFloat) 268 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 269 270 // Keep track of the key width after all features are added so we can extract 271 // the feature string out later. 272 unsigned CPUFSWidth = Key.size(); 273 274 // Extract prefer-vector-width attribute. 275 unsigned PreferVectorWidthOverride = 0; 276 if (F.hasFnAttribute("prefer-vector-width")) { 277 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 278 unsigned Width; 279 if (!Val.getAsInteger(0, Width)) { 280 Key += ",prefer-vector-width="; 281 Key += Val; 282 PreferVectorWidthOverride = Width; 283 } 284 } 285 286 // Extract min-legal-vector-width attribute. 287 unsigned RequiredVectorWidth = UINT32_MAX; 288 if (F.hasFnAttribute("min-legal-vector-width")) { 289 StringRef Val = 290 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 291 unsigned Width; 292 if (!Val.getAsInteger(0, Width)) { 293 Key += ",min-legal-vector-width="; 294 Key += Val; 295 RequiredVectorWidth = Width; 296 } 297 } 298 299 // Extracted here so that we make sure there is backing for the StringRef. If 300 // we assigned earlier, its possible the SmallString reallocated leaving a 301 // dangling StringRef. 302 FS = Key.slice(CPU.size(), CPUFSWidth); 303 304 auto &I = SubtargetMap[Key]; 305 if (!I) { 306 // This needs to be done before we create a new subtarget since any 307 // creation will depend on the TM and the code generation flags on the 308 // function that reside in TargetOptions. 309 resetTargetOptions(F); 310 I = std::make_unique<X86Subtarget>( 311 TargetTriple, CPU, FS, *this, 312 MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride, 313 RequiredVectorWidth); 314 } 315 return I.get(); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // Command line options for x86 320 //===----------------------------------------------------------------------===// 321 static cl::opt<bool> 322 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 323 cl::desc("Minimize AVX to SSE transition penalty"), 324 cl::init(true)); 325 326 //===----------------------------------------------------------------------===// 327 // X86 TTI query. 328 //===----------------------------------------------------------------------===// 329 330 TargetTransformInfo 331 X86TargetMachine::getTargetTransformInfo(const Function &F) { 332 return TargetTransformInfo(X86TTIImpl(this, F)); 333 } 334 335 //===----------------------------------------------------------------------===// 336 // Pass Pipeline Configuration 337 //===----------------------------------------------------------------------===// 338 339 namespace { 340 341 /// X86 Code Generator Pass Configuration Options. 342 class X86PassConfig : public TargetPassConfig { 343 public: 344 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 345 : TargetPassConfig(TM, PM) {} 346 347 X86TargetMachine &getX86TargetMachine() const { 348 return getTM<X86TargetMachine>(); 349 } 350 351 ScheduleDAGInstrs * 352 createMachineScheduler(MachineSchedContext *C) const override { 353 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 354 DAG->addMutation(createX86MacroFusionDAGMutation()); 355 return DAG; 356 } 357 358 ScheduleDAGInstrs * 359 createPostMachineScheduler(MachineSchedContext *C) const override { 360 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 361 DAG->addMutation(createX86MacroFusionDAGMutation()); 362 return DAG; 363 } 364 365 void addIRPasses() override; 366 bool addInstSelector() override; 367 bool addIRTranslator() override; 368 bool addLegalizeMachineIR() override; 369 bool addRegBankSelect() override; 370 bool addGlobalInstructionSelect() override; 371 bool addILPOpts() override; 372 bool addPreISel() override; 373 void addMachineSSAOptimization() override; 374 void addPreRegAlloc() override; 375 void addPostRegAlloc() override; 376 void addPreEmitPass() override; 377 void addPreEmitPass2() override; 378 void addPreSched2() override; 379 380 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 381 }; 382 383 class X86ExecutionDomainFix : public ExecutionDomainFix { 384 public: 385 static char ID; 386 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 387 StringRef getPassName() const override { 388 return "X86 Execution Dependency Fix"; 389 } 390 }; 391 char X86ExecutionDomainFix::ID; 392 393 } // end anonymous namespace 394 395 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 396 "X86 Execution Domain Fix", false, false) 397 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 398 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 399 "X86 Execution Domain Fix", false, false) 400 401 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 402 return new X86PassConfig(*this, PM); 403 } 404 405 void X86PassConfig::addIRPasses() { 406 addPass(createAtomicExpandPass()); 407 408 TargetPassConfig::addIRPasses(); 409 410 if (TM->getOptLevel() != CodeGenOpt::None) 411 addPass(createInterleavedAccessPass()); 412 413 // Add passes that handle indirect branch removal and insertion of a retpoline 414 // thunk. These will be a no-op unless a function subtarget has the retpoline 415 // feature enabled. 416 addPass(createIndirectBrExpandPass()); 417 } 418 419 bool X86PassConfig::addInstSelector() { 420 // Install an instruction selector. 421 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 422 423 // For ELF, cleanup any local-dynamic TLS accesses. 424 if (TM->getTargetTriple().isOSBinFormatELF() && 425 getOptLevel() != CodeGenOpt::None) 426 addPass(createCleanupLocalDynamicTLSPass()); 427 428 addPass(createX86GlobalBaseRegPass()); 429 return false; 430 } 431 432 bool X86PassConfig::addIRTranslator() { 433 addPass(new IRTranslator()); 434 return false; 435 } 436 437 bool X86PassConfig::addLegalizeMachineIR() { 438 addPass(new Legalizer()); 439 return false; 440 } 441 442 bool X86PassConfig::addRegBankSelect() { 443 addPass(new RegBankSelect()); 444 return false; 445 } 446 447 bool X86PassConfig::addGlobalInstructionSelect() { 448 addPass(new InstructionSelect()); 449 return false; 450 } 451 452 bool X86PassConfig::addILPOpts() { 453 if (EnableCondBrFoldingPass) 454 addPass(createX86CondBrFolding()); 455 addPass(&EarlyIfConverterID); 456 if (EnableMachineCombinerPass) 457 addPass(&MachineCombinerID); 458 addPass(createX86CmovConverterPass()); 459 return true; 460 } 461 462 bool X86PassConfig::addPreISel() { 463 // Only add this pass for 32-bit x86 Windows. 464 const Triple &TT = TM->getTargetTriple(); 465 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 466 addPass(createX86WinEHStatePass()); 467 return true; 468 } 469 470 void X86PassConfig::addPreRegAlloc() { 471 if (getOptLevel() != CodeGenOpt::None) { 472 addPass(&LiveRangeShrinkID); 473 addPass(createX86FixupSetCC()); 474 addPass(createX86OptimizeLEAs()); 475 addPass(createX86CallFrameOptimization()); 476 addPass(createX86AvoidStoreForwardingBlocks()); 477 } 478 479 addPass(createX86SpeculativeLoadHardeningPass()); 480 addPass(createX86FlagsCopyLoweringPass()); 481 addPass(createX86WinAllocaExpander()); 482 } 483 void X86PassConfig::addMachineSSAOptimization() { 484 addPass(createX86DomainReassignmentPass()); 485 TargetPassConfig::addMachineSSAOptimization(); 486 } 487 488 void X86PassConfig::addPostRegAlloc() { 489 addPass(createX86FloatingPointStackifierPass()); 490 } 491 492 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 493 494 void X86PassConfig::addPreEmitPass() { 495 if (getOptLevel() != CodeGenOpt::None) { 496 addPass(new X86ExecutionDomainFix()); 497 addPass(createBreakFalseDeps()); 498 } 499 500 addPass(createX86IndirectBranchTrackingPass()); 501 502 if (UseVZeroUpper) 503 addPass(createX86IssueVZeroUpperPass()); 504 505 if (getOptLevel() != CodeGenOpt::None) { 506 addPass(createX86FixupBWInsts()); 507 addPass(createX86PadShortFunctions()); 508 addPass(createX86FixupLEAs()); 509 addPass(createX86EvexToVexInsts()); 510 } 511 addPass(createX86DiscriminateMemOpsPass()); 512 addPass(createX86InsertPrefetchPass()); 513 } 514 515 void X86PassConfig::addPreEmitPass2() { 516 const Triple &TT = TM->getTargetTriple(); 517 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 518 519 addPass(createX86RetpolineThunksPass()); 520 521 // Insert extra int3 instructions after trailing call instructions to avoid 522 // issues in the unwinder. 523 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 524 addPass(createX86AvoidTrailingCallPass()); 525 526 // Verify basic block incoming and outgoing cfa offset and register values and 527 // correct CFA calculation rule where needed by inserting appropriate CFI 528 // instructions. 529 if (!TT.isOSDarwin() && 530 (!TT.isOSWindows() || 531 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 532 addPass(createCFIInstrInserter()); 533 } 534 535 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 536 return getStandardCSEConfigForOpt(TM->getOptLevel()); 537 } 538