1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include <memory> 51 #include <string> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 56 cl::desc("Enable the machine combiner pass"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 60 cl::desc("Enable the conditional branch " 61 "folding pass"), 62 cl::init(false), cl::Hidden); 63 64 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 65 // Register the target. 66 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 67 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 68 69 PassRegistry &PR = *PassRegistry::getPassRegistry(); 70 initializeGlobalISel(PR); 71 initializeWinEHStatePassPass(PR); 72 initializeFixupBWInstPassPass(PR); 73 initializeEvexToVexInstPassPass(PR); 74 initializeFixupLEAPassPass(PR); 75 initializeFPSPass(PR); 76 initializeX86FixupSetCCPassPass(PR); 77 initializeX86CallFrameOptimizationPass(PR); 78 initializeX86CmovConverterPassPass(PR); 79 initializeX86ExpandPseudoPass(PR); 80 initializeX86ExecutionDomainFixPass(PR); 81 initializeX86DomainReassignmentPass(PR); 82 initializeX86AvoidSFBPassPass(PR); 83 initializeX86AvoidTrailingCallPassPass(PR); 84 initializeX86SpeculativeLoadHardeningPassPass(PR); 85 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 86 initializeX86FlagsCopyLoweringPassPass(PR); 87 initializeX86CondBrFoldingPassPass(PR); 88 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 89 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 90 initializeX86OptimizeLEAPassPass(PR); 91 initializeX86PartialReductionPass(PR); 92 } 93 94 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 95 if (TT.isOSBinFormatMachO()) { 96 if (TT.getArch() == Triple::x86_64) 97 return std::make_unique<X86_64MachoTargetObjectFile>(); 98 return std::make_unique<TargetLoweringObjectFileMachO>(); 99 } 100 101 if (TT.isOSBinFormatCOFF()) 102 return std::make_unique<TargetLoweringObjectFileCOFF>(); 103 return std::make_unique<X86ELFTargetObjectFile>(); 104 } 105 106 static std::string computeDataLayout(const Triple &TT) { 107 // X86 is little endian 108 std::string Ret = "e"; 109 110 Ret += DataLayout::getManglingComponent(TT); 111 // X86 and x32 have 32 bit pointers. 112 if ((TT.isArch64Bit() && 113 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 114 !TT.isArch64Bit()) 115 Ret += "-p:32:32"; 116 117 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 118 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 119 120 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 121 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 122 Ret += "-i64:64"; 123 else if (TT.isOSIAMCU()) 124 Ret += "-i64:32-f64:32"; 125 else 126 Ret += "-f64:32:64"; 127 128 // Some ABIs align long double to 128 bits, others to 32. 129 if (TT.isOSNaCl() || TT.isOSIAMCU()) 130 ; // No f80 131 else if (TT.isArch64Bit() || TT.isOSDarwin()) 132 Ret += "-f80:128"; 133 else 134 Ret += "-f80:32"; 135 136 if (TT.isOSIAMCU()) 137 Ret += "-f128:32"; 138 139 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 140 if (TT.isArch64Bit()) 141 Ret += "-n8:16:32:64"; 142 else 143 Ret += "-n8:16:32"; 144 145 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 146 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 147 Ret += "-a:0:32-S32"; 148 else 149 Ret += "-S128"; 150 151 return Ret; 152 } 153 154 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 155 bool JIT, 156 Optional<Reloc::Model> RM) { 157 bool is64Bit = TT.getArch() == Triple::x86_64; 158 if (!RM.hasValue()) { 159 // JIT codegen should use static relocations by default, since it's 160 // typically executed in process and not relocatable. 161 if (JIT) 162 return Reloc::Static; 163 164 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 165 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 166 // use static relocation model by default. 167 if (TT.isOSDarwin()) { 168 if (is64Bit) 169 return Reloc::PIC_; 170 return Reloc::DynamicNoPIC; 171 } 172 if (TT.isOSWindows() && is64Bit) 173 return Reloc::PIC_; 174 return Reloc::Static; 175 } 176 177 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 178 // is defined as a model for code which may be used in static or dynamic 179 // executables but not necessarily a shared library. On X86-32 we just 180 // compile in -static mode, in x86-64 we use PIC. 181 if (*RM == Reloc::DynamicNoPIC) { 182 if (is64Bit) 183 return Reloc::PIC_; 184 if (!TT.isOSDarwin()) 185 return Reloc::Static; 186 } 187 188 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 189 // the Mach-O file format doesn't support it. 190 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 191 return Reloc::PIC_; 192 193 return *RM; 194 } 195 196 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 197 bool JIT, bool Is64Bit) { 198 if (CM) { 199 if (*CM == CodeModel::Tiny) 200 report_fatal_error("Target does not support the tiny CodeModel", false); 201 return *CM; 202 } 203 if (JIT) 204 return Is64Bit ? CodeModel::Large : CodeModel::Small; 205 return CodeModel::Small; 206 } 207 208 /// Create an X86 target. 209 /// 210 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 211 StringRef CPU, StringRef FS, 212 const TargetOptions &Options, 213 Optional<Reloc::Model> RM, 214 Optional<CodeModel::Model> CM, 215 CodeGenOpt::Level OL, bool JIT) 216 : LLVMTargetMachine( 217 T, computeDataLayout(TT), TT, CPU, FS, Options, 218 getEffectiveRelocModel(TT, JIT, RM), 219 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 220 OL), 221 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 222 // On PS4, the "return address" of a 'noreturn' call must still be within 223 // the calling function, and TrapUnreachable is an easy way to get that. 224 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 225 this->Options.TrapUnreachable = true; 226 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 227 } 228 229 setMachineOutliner(true); 230 231 // x86 supports the debug entry values. 232 setSupportsDebugEntryValues(true); 233 234 initAsmInfo(); 235 } 236 237 X86TargetMachine::~X86TargetMachine() = default; 238 239 const X86Subtarget * 240 X86TargetMachine::getSubtargetImpl(const Function &F) const { 241 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 242 Attribute FSAttr = F.getFnAttribute("target-features"); 243 244 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 245 ? CPUAttr.getValueAsString() 246 : (StringRef)TargetCPU; 247 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 248 ? FSAttr.getValueAsString() 249 : (StringRef)TargetFS; 250 251 SmallString<512> Key; 252 Key.reserve(CPU.size() + FS.size()); 253 Key += CPU; 254 Key += FS; 255 256 // FIXME: This is related to the code below to reset the target options, 257 // we need to know whether or not the soft float flag is set on the 258 // function before we can generate a subtarget. We also need to use 259 // it as a key for the subtarget since that can be the only difference 260 // between two functions. 261 bool SoftFloat = 262 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 263 // If the soft float attribute is set on the function turn on the soft float 264 // subtarget feature. 265 if (SoftFloat) 266 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 267 268 // Keep track of the key width after all features are added so we can extract 269 // the feature string out later. 270 unsigned CPUFSWidth = Key.size(); 271 272 // Extract prefer-vector-width attribute. 273 unsigned PreferVectorWidthOverride = 0; 274 if (F.hasFnAttribute("prefer-vector-width")) { 275 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 276 unsigned Width; 277 if (!Val.getAsInteger(0, Width)) { 278 Key += ",prefer-vector-width="; 279 Key += Val; 280 PreferVectorWidthOverride = Width; 281 } 282 } 283 284 // Extract min-legal-vector-width attribute. 285 unsigned RequiredVectorWidth = UINT32_MAX; 286 if (F.hasFnAttribute("min-legal-vector-width")) { 287 StringRef Val = 288 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 289 unsigned Width; 290 if (!Val.getAsInteger(0, Width)) { 291 Key += ",min-legal-vector-width="; 292 Key += Val; 293 RequiredVectorWidth = Width; 294 } 295 } 296 297 // Extracted here so that we make sure there is backing for the StringRef. If 298 // we assigned earlier, its possible the SmallString reallocated leaving a 299 // dangling StringRef. 300 FS = Key.slice(CPU.size(), CPUFSWidth); 301 302 auto &I = SubtargetMap[Key]; 303 if (!I) { 304 // This needs to be done before we create a new subtarget since any 305 // creation will depend on the TM and the code generation flags on the 306 // function that reside in TargetOptions. 307 resetTargetOptions(F); 308 I = std::make_unique<X86Subtarget>( 309 TargetTriple, CPU, FS, *this, 310 MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride, 311 RequiredVectorWidth); 312 } 313 return I.get(); 314 } 315 316 //===----------------------------------------------------------------------===// 317 // X86 TTI query. 318 //===----------------------------------------------------------------------===// 319 320 TargetTransformInfo 321 X86TargetMachine::getTargetTransformInfo(const Function &F) { 322 return TargetTransformInfo(X86TTIImpl(this, F)); 323 } 324 325 //===----------------------------------------------------------------------===// 326 // Pass Pipeline Configuration 327 //===----------------------------------------------------------------------===// 328 329 namespace { 330 331 /// X86 Code Generator Pass Configuration Options. 332 class X86PassConfig : public TargetPassConfig { 333 public: 334 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 335 : TargetPassConfig(TM, PM) {} 336 337 X86TargetMachine &getX86TargetMachine() const { 338 return getTM<X86TargetMachine>(); 339 } 340 341 ScheduleDAGInstrs * 342 createMachineScheduler(MachineSchedContext *C) const override { 343 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 344 DAG->addMutation(createX86MacroFusionDAGMutation()); 345 return DAG; 346 } 347 348 ScheduleDAGInstrs * 349 createPostMachineScheduler(MachineSchedContext *C) const override { 350 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 351 DAG->addMutation(createX86MacroFusionDAGMutation()); 352 return DAG; 353 } 354 355 void addIRPasses() override; 356 bool addInstSelector() override; 357 bool addIRTranslator() override; 358 bool addLegalizeMachineIR() override; 359 bool addRegBankSelect() override; 360 bool addGlobalInstructionSelect() override; 361 bool addILPOpts() override; 362 bool addPreISel() override; 363 void addMachineSSAOptimization() override; 364 void addPreRegAlloc() override; 365 void addPostRegAlloc() override; 366 void addPreEmitPass() override; 367 void addPreEmitPass2() override; 368 void addPreSched2() override; 369 370 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 371 }; 372 373 class X86ExecutionDomainFix : public ExecutionDomainFix { 374 public: 375 static char ID; 376 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 377 StringRef getPassName() const override { 378 return "X86 Execution Dependency Fix"; 379 } 380 }; 381 char X86ExecutionDomainFix::ID; 382 383 } // end anonymous namespace 384 385 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 386 "X86 Execution Domain Fix", false, false) 387 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 388 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 389 "X86 Execution Domain Fix", false, false) 390 391 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 392 return new X86PassConfig(*this, PM); 393 } 394 395 void X86PassConfig::addIRPasses() { 396 addPass(createAtomicExpandPass()); 397 398 TargetPassConfig::addIRPasses(); 399 400 if (TM->getOptLevel() != CodeGenOpt::None) { 401 addPass(createInterleavedAccessPass()); 402 addPass(createX86PartialReductionPass()); 403 } 404 405 // Add passes that handle indirect branch removal and insertion of a retpoline 406 // thunk. These will be a no-op unless a function subtarget has the retpoline 407 // feature enabled. 408 addPass(createIndirectBrExpandPass()); 409 410 // Add Control Flow Guard checks. 411 const Triple &TT = TM->getTargetTriple(); 412 if (TT.isOSWindows()) { 413 if (TT.getArch() == Triple::x86_64) { 414 addPass(createCFGuardDispatchPass()); 415 } else { 416 addPass(createCFGuardCheckPass()); 417 } 418 } 419 } 420 421 bool X86PassConfig::addInstSelector() { 422 // Install an instruction selector. 423 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 424 425 // For ELF, cleanup any local-dynamic TLS accesses. 426 if (TM->getTargetTriple().isOSBinFormatELF() && 427 getOptLevel() != CodeGenOpt::None) 428 addPass(createCleanupLocalDynamicTLSPass()); 429 430 addPass(createX86GlobalBaseRegPass()); 431 return false; 432 } 433 434 bool X86PassConfig::addIRTranslator() { 435 addPass(new IRTranslator()); 436 return false; 437 } 438 439 bool X86PassConfig::addLegalizeMachineIR() { 440 addPass(new Legalizer()); 441 return false; 442 } 443 444 bool X86PassConfig::addRegBankSelect() { 445 addPass(new RegBankSelect()); 446 return false; 447 } 448 449 bool X86PassConfig::addGlobalInstructionSelect() { 450 addPass(new InstructionSelect()); 451 return false; 452 } 453 454 bool X86PassConfig::addILPOpts() { 455 if (EnableCondBrFoldingPass) 456 addPass(createX86CondBrFolding()); 457 addPass(&EarlyIfConverterID); 458 if (EnableMachineCombinerPass) 459 addPass(&MachineCombinerID); 460 addPass(createX86CmovConverterPass()); 461 return true; 462 } 463 464 bool X86PassConfig::addPreISel() { 465 // Only add this pass for 32-bit x86 Windows. 466 const Triple &TT = TM->getTargetTriple(); 467 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 468 addPass(createX86WinEHStatePass()); 469 return true; 470 } 471 472 void X86PassConfig::addPreRegAlloc() { 473 if (getOptLevel() != CodeGenOpt::None) { 474 addPass(&LiveRangeShrinkID); 475 addPass(createX86FixupSetCC()); 476 addPass(createX86OptimizeLEAs()); 477 addPass(createX86CallFrameOptimization()); 478 addPass(createX86AvoidStoreForwardingBlocks()); 479 } 480 481 addPass(createX86SpeculativeLoadHardeningPass()); 482 addPass(createX86FlagsCopyLoweringPass()); 483 addPass(createX86WinAllocaExpander()); 484 } 485 void X86PassConfig::addMachineSSAOptimization() { 486 addPass(createX86DomainReassignmentPass()); 487 TargetPassConfig::addMachineSSAOptimization(); 488 } 489 490 void X86PassConfig::addPostRegAlloc() { 491 addPass(createX86FloatingPointStackifierPass()); 492 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 493 // to using the Speculative Execution Side Effect Suppression pass for 494 // mitigation. This is to prevent slow downs due to 495 // analyses needed by the LVIHardening pass when compiling at -O0. 496 if (getOptLevel() != CodeGenOpt::None) 497 addPass(createX86LoadValueInjectionLoadHardeningPass()); 498 } 499 500 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 501 502 void X86PassConfig::addPreEmitPass() { 503 if (getOptLevel() != CodeGenOpt::None) { 504 addPass(new X86ExecutionDomainFix()); 505 addPass(createBreakFalseDeps()); 506 } 507 508 addPass(createX86IndirectBranchTrackingPass()); 509 510 addPass(createX86IssueVZeroUpperPass()); 511 512 if (getOptLevel() != CodeGenOpt::None) { 513 addPass(createX86FixupBWInsts()); 514 addPass(createX86PadShortFunctions()); 515 addPass(createX86FixupLEAs()); 516 } 517 addPass(createX86EvexToVexInsts()); 518 addPass(createX86DiscriminateMemOpsPass()); 519 addPass(createX86InsertPrefetchPass()); 520 addPass(createX86InsertX87waitPass()); 521 } 522 523 void X86PassConfig::addPreEmitPass2() { 524 const Triple &TT = TM->getTargetTriple(); 525 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 526 527 // The X86 Speculative Execution Pass must run after all control 528 // flow graph modifying passes. As a result it was listed to run right before 529 // the X86 Retpoline Thunks pass. The reason it must run after control flow 530 // graph modifications is that the model of LFENCE in LLVM has to be updated 531 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 532 // placement of this pass was hand checked to ensure that the subsequent 533 // passes don't move the code around the LFENCEs in a way that will hurt the 534 // correctness of this pass. This placement has been shown to work based on 535 // hand inspection of the codegen output. 536 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 537 addPass(createX86IndirectThunksPass()); 538 539 // Insert extra int3 instructions after trailing call instructions to avoid 540 // issues in the unwinder. 541 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 542 addPass(createX86AvoidTrailingCallPass()); 543 544 // Verify basic block incoming and outgoing cfa offset and register values and 545 // correct CFA calculation rule where needed by inserting appropriate CFI 546 // instructions. 547 if (!TT.isOSDarwin() && 548 (!TT.isOSWindows() || 549 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 550 addPass(createCFIInstrInserter()); 551 // Identify valid longjmp targets for Windows Control Flow Guard. 552 if (TT.isOSWindows()) 553 addPass(createCFGuardLongjmpPass()); 554 addPass(createX86LoadValueInjectionRetHardeningPass()); 555 } 556 557 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 558 return getStandardCSEConfigForOpt(TM->getOptLevel()); 559 } 560