1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 31 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 35 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MachineScheduler.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/RegAllocRegistry.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/MC/MCAsmInfo.h" 45 #include "llvm/MC/TargetRegistry.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CodeGen.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Transforms/CFGuard.h" 53 #include <memory> 54 #include <string> 55 56 using namespace llvm; 57 58 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 59 cl::desc("Enable the machine combiner pass"), 60 cl::init(true), cl::Hidden); 61 62 static cl::opt<bool> 63 EnableTileRAPass("x86-tile-ra", 64 cl::desc("Enable the tile register allocation pass"), 65 cl::init(true), cl::Hidden); 66 67 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 68 // Register the target. 69 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 70 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 71 72 PassRegistry &PR = *PassRegistry::getPassRegistry(); 73 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR); 74 initializeX86LowerAMXTypeLegacyPassPass(PR); 75 initializeX86PreAMXConfigPassPass(PR); 76 initializeX86PreTileConfigPass(PR); 77 initializeGlobalISel(PR); 78 initializeWinEHStatePassPass(PR); 79 initializeFixupBWInstPassPass(PR); 80 initializeEvexToVexInstPassPass(PR); 81 initializeFixupLEAPassPass(PR); 82 initializeFPSPass(PR); 83 initializeX86FixupSetCCPassPass(PR); 84 initializeX86CallFrameOptimizationPass(PR); 85 initializeX86CmovConverterPassPass(PR); 86 initializeX86TileConfigPass(PR); 87 initializeX86FastPreTileConfigPass(PR); 88 initializeX86FastTileConfigPass(PR); 89 initializeX86LowerTileCopyPass(PR); 90 initializeX86ExpandPseudoPass(PR); 91 initializeX86ExecutionDomainFixPass(PR); 92 initializeX86DomainReassignmentPass(PR); 93 initializeX86AvoidSFBPassPass(PR); 94 initializeX86AvoidTrailingCallPassPass(PR); 95 initializeX86SpeculativeLoadHardeningPassPass(PR); 96 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 97 initializeX86FlagsCopyLoweringPassPass(PR); 98 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 99 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 100 initializeX86OptimizeLEAPassPass(PR); 101 initializeX86PartialReductionPass(PR); 102 initializePseudoProbeInserterPass(PR); 103 initializeX86ReturnThunksPass(PR); 104 } 105 106 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 107 if (TT.isOSBinFormatMachO()) { 108 if (TT.getArch() == Triple::x86_64) 109 return std::make_unique<X86_64MachoTargetObjectFile>(); 110 return std::make_unique<TargetLoweringObjectFileMachO>(); 111 } 112 113 if (TT.isOSBinFormatCOFF()) 114 return std::make_unique<TargetLoweringObjectFileCOFF>(); 115 return std::make_unique<X86ELFTargetObjectFile>(); 116 } 117 118 static std::string computeDataLayout(const Triple &TT) { 119 // X86 is little endian 120 std::string Ret = "e"; 121 122 Ret += DataLayout::getManglingComponent(TT); 123 // X86 and x32 have 32 bit pointers. 124 if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl()) 125 Ret += "-p:32:32"; 126 127 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 128 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 129 130 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 131 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 132 Ret += "-i64:64"; 133 else if (TT.isOSIAMCU()) 134 Ret += "-i64:32-f64:32"; 135 else 136 Ret += "-f64:32:64"; 137 138 // Some ABIs align long double to 128 bits, others to 32. 139 if (TT.isOSNaCl() || TT.isOSIAMCU()) 140 ; // No f80 141 else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment()) 142 Ret += "-f80:128"; 143 else 144 Ret += "-f80:32"; 145 146 if (TT.isOSIAMCU()) 147 Ret += "-f128:32"; 148 149 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 150 if (TT.isArch64Bit()) 151 Ret += "-n8:16:32:64"; 152 else 153 Ret += "-n8:16:32"; 154 155 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 156 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 157 Ret += "-a:0:32-S32"; 158 else 159 Ret += "-S128"; 160 161 return Ret; 162 } 163 164 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 165 bool JIT, 166 Optional<Reloc::Model> RM) { 167 bool is64Bit = TT.getArch() == Triple::x86_64; 168 if (!RM) { 169 // JIT codegen should use static relocations by default, since it's 170 // typically executed in process and not relocatable. 171 if (JIT) 172 return Reloc::Static; 173 174 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 175 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 176 // use static relocation model by default. 177 if (TT.isOSDarwin()) { 178 if (is64Bit) 179 return Reloc::PIC_; 180 return Reloc::DynamicNoPIC; 181 } 182 if (TT.isOSWindows() && is64Bit) 183 return Reloc::PIC_; 184 return Reloc::Static; 185 } 186 187 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 188 // is defined as a model for code which may be used in static or dynamic 189 // executables but not necessarily a shared library. On X86-32 we just 190 // compile in -static mode, in x86-64 we use PIC. 191 if (*RM == Reloc::DynamicNoPIC) { 192 if (is64Bit) 193 return Reloc::PIC_; 194 if (!TT.isOSDarwin()) 195 return Reloc::Static; 196 } 197 198 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 199 // the Mach-O file format doesn't support it. 200 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 201 return Reloc::PIC_; 202 203 return *RM; 204 } 205 206 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 207 bool JIT, bool Is64Bit) { 208 if (CM) { 209 if (*CM == CodeModel::Tiny) 210 report_fatal_error("Target does not support the tiny CodeModel", false); 211 return *CM; 212 } 213 if (JIT) 214 return Is64Bit ? CodeModel::Large : CodeModel::Small; 215 return CodeModel::Small; 216 } 217 218 /// Create an X86 target. 219 /// 220 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 221 StringRef CPU, StringRef FS, 222 const TargetOptions &Options, 223 Optional<Reloc::Model> RM, 224 Optional<CodeModel::Model> CM, 225 CodeGenOpt::Level OL, bool JIT) 226 : LLVMTargetMachine( 227 T, computeDataLayout(TT), TT, CPU, FS, Options, 228 getEffectiveRelocModel(TT, JIT, RM), 229 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 230 OL), 231 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 232 // On PS4/PS5, the "return address" of a 'noreturn' call must still be within 233 // the calling function, and TrapUnreachable is an easy way to get that. 234 if (TT.isPS() || TT.isOSBinFormatMachO()) { 235 this->Options.TrapUnreachable = true; 236 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 237 } 238 239 setMachineOutliner(true); 240 241 // x86 supports the debug entry values. 242 setSupportsDebugEntryValues(true); 243 244 initAsmInfo(); 245 } 246 247 X86TargetMachine::~X86TargetMachine() = default; 248 249 const X86Subtarget * 250 X86TargetMachine::getSubtargetImpl(const Function &F) const { 251 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 252 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 253 Attribute FSAttr = F.getFnAttribute("target-features"); 254 255 StringRef CPU = 256 CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU; 257 // "x86-64" is a default target setting for many front ends. In these cases, 258 // they actually request for "generic" tuning unless the "tune-cpu" was 259 // specified. 260 StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString() 261 : CPU == "x86-64" ? "generic" 262 : (StringRef)CPU; 263 StringRef FS = 264 FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS; 265 266 SmallString<512> Key; 267 // The additions here are ordered so that the definitely short strings are 268 // added first so we won't exceed the small size. We append the 269 // much longer FS string at the end so that we only heap allocate at most 270 // one time. 271 272 // Extract prefer-vector-width attribute. 273 unsigned PreferVectorWidthOverride = 0; 274 Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width"); 275 if (PreferVecWidthAttr.isValid()) { 276 StringRef Val = PreferVecWidthAttr.getValueAsString(); 277 unsigned Width; 278 if (!Val.getAsInteger(0, Width)) { 279 Key += 'p'; 280 Key += Val; 281 PreferVectorWidthOverride = Width; 282 } 283 } 284 285 // Extract min-legal-vector-width attribute. 286 unsigned RequiredVectorWidth = UINT32_MAX; 287 Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width"); 288 if (MinLegalVecWidthAttr.isValid()) { 289 StringRef Val = MinLegalVecWidthAttr.getValueAsString(); 290 unsigned Width; 291 if (!Val.getAsInteger(0, Width)) { 292 Key += 'm'; 293 Key += Val; 294 RequiredVectorWidth = Width; 295 } 296 } 297 298 // Add CPU to the Key. 299 Key += CPU; 300 301 // Add tune CPU to the Key. 302 Key += TuneCPU; 303 304 // Keep track of the start of the feature portion of the string. 305 unsigned FSStart = Key.size(); 306 307 // FIXME: This is related to the code below to reset the target options, 308 // we need to know whether or not the soft float flag is set on the 309 // function before we can generate a subtarget. We also need to use 310 // it as a key for the subtarget since that can be the only difference 311 // between two functions. 312 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 313 // If the soft float attribute is set on the function turn on the soft float 314 // subtarget feature. 315 if (SoftFloat) 316 Key += FS.empty() ? "+soft-float" : "+soft-float,"; 317 318 Key += FS; 319 320 // We may have added +soft-float to the features so move the StringRef to 321 // point to the full string in the Key. 322 FS = Key.substr(FSStart); 323 324 auto &I = SubtargetMap[Key]; 325 if (!I) { 326 // This needs to be done before we create a new subtarget since any 327 // creation will depend on the TM and the code generation flags on the 328 // function that reside in TargetOptions. 329 resetTargetOptions(F); 330 I = std::make_unique<X86Subtarget>( 331 TargetTriple, CPU, TuneCPU, FS, *this, 332 MaybeAlign(F.getParent()->getOverrideStackAlignment()), 333 PreferVectorWidthOverride, RequiredVectorWidth); 334 } 335 return I.get(); 336 } 337 338 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 339 unsigned DestAS) const { 340 assert(SrcAS != DestAS && "Expected different address spaces!"); 341 if (getPointerSize(SrcAS) != getPointerSize(DestAS)) 342 return false; 343 return SrcAS < 256 && DestAS < 256; 344 } 345 346 //===----------------------------------------------------------------------===// 347 // X86 TTI query. 348 //===----------------------------------------------------------------------===// 349 350 TargetTransformInfo 351 X86TargetMachine::getTargetTransformInfo(const Function &F) const { 352 return TargetTransformInfo(X86TTIImpl(this, F)); 353 } 354 355 //===----------------------------------------------------------------------===// 356 // Pass Pipeline Configuration 357 //===----------------------------------------------------------------------===// 358 359 namespace { 360 361 /// X86 Code Generator Pass Configuration Options. 362 class X86PassConfig : public TargetPassConfig { 363 public: 364 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 365 : TargetPassConfig(TM, PM) {} 366 367 X86TargetMachine &getX86TargetMachine() const { 368 return getTM<X86TargetMachine>(); 369 } 370 371 ScheduleDAGInstrs * 372 createMachineScheduler(MachineSchedContext *C) const override { 373 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 374 DAG->addMutation(createX86MacroFusionDAGMutation()); 375 return DAG; 376 } 377 378 ScheduleDAGInstrs * 379 createPostMachineScheduler(MachineSchedContext *C) const override { 380 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 381 DAG->addMutation(createX86MacroFusionDAGMutation()); 382 return DAG; 383 } 384 385 void addIRPasses() override; 386 bool addInstSelector() override; 387 bool addIRTranslator() override; 388 bool addLegalizeMachineIR() override; 389 bool addRegBankSelect() override; 390 bool addGlobalInstructionSelect() override; 391 bool addILPOpts() override; 392 bool addPreISel() override; 393 void addMachineSSAOptimization() override; 394 void addPreRegAlloc() override; 395 bool addPostFastRegAllocRewrite() override; 396 void addPostRegAlloc() override; 397 void addPreEmitPass() override; 398 void addPreEmitPass2() override; 399 void addPreSched2() override; 400 bool addRegAssignAndRewriteOptimized() override; 401 402 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 403 }; 404 405 class X86ExecutionDomainFix : public ExecutionDomainFix { 406 public: 407 static char ID; 408 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 409 StringRef getPassName() const override { 410 return "X86 Execution Dependency Fix"; 411 } 412 }; 413 char X86ExecutionDomainFix::ID; 414 415 } // end anonymous namespace 416 417 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 418 "X86 Execution Domain Fix", false, false) 419 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 420 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 421 "X86 Execution Domain Fix", false, false) 422 423 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 424 return new X86PassConfig(*this, PM); 425 } 426 427 void X86PassConfig::addIRPasses() { 428 addPass(createAtomicExpandPass()); 429 430 // We add both pass anyway and when these two passes run, we skip the pass 431 // based on the option level and option attribute. 432 addPass(createX86LowerAMXIntrinsicsPass()); 433 addPass(createX86LowerAMXTypePass()); 434 435 TargetPassConfig::addIRPasses(); 436 437 if (TM->getOptLevel() != CodeGenOpt::None) { 438 addPass(createInterleavedAccessPass()); 439 addPass(createX86PartialReductionPass()); 440 } 441 442 // Add passes that handle indirect branch removal and insertion of a retpoline 443 // thunk. These will be a no-op unless a function subtarget has the retpoline 444 // feature enabled. 445 addPass(createIndirectBrExpandPass()); 446 447 // Add Control Flow Guard checks. 448 const Triple &TT = TM->getTargetTriple(); 449 if (TT.isOSWindows()) { 450 if (TT.getArch() == Triple::x86_64) { 451 addPass(createCFGuardDispatchPass()); 452 } else { 453 addPass(createCFGuardCheckPass()); 454 } 455 } 456 457 if (TM->Options.JMCInstrument) 458 addPass(createJMCInstrumenterPass()); 459 } 460 461 bool X86PassConfig::addInstSelector() { 462 // Install an instruction selector. 463 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 464 465 // For ELF, cleanup any local-dynamic TLS accesses. 466 if (TM->getTargetTriple().isOSBinFormatELF() && 467 getOptLevel() != CodeGenOpt::None) 468 addPass(createCleanupLocalDynamicTLSPass()); 469 470 addPass(createX86GlobalBaseRegPass()); 471 return false; 472 } 473 474 bool X86PassConfig::addIRTranslator() { 475 addPass(new IRTranslator(getOptLevel())); 476 return false; 477 } 478 479 bool X86PassConfig::addLegalizeMachineIR() { 480 addPass(new Legalizer()); 481 return false; 482 } 483 484 bool X86PassConfig::addRegBankSelect() { 485 addPass(new RegBankSelect()); 486 return false; 487 } 488 489 bool X86PassConfig::addGlobalInstructionSelect() { 490 addPass(new InstructionSelect(getOptLevel())); 491 return false; 492 } 493 494 bool X86PassConfig::addILPOpts() { 495 addPass(&EarlyIfConverterID); 496 if (EnableMachineCombinerPass) 497 addPass(&MachineCombinerID); 498 addPass(createX86CmovConverterPass()); 499 return true; 500 } 501 502 bool X86PassConfig::addPreISel() { 503 // Only add this pass for 32-bit x86 Windows. 504 const Triple &TT = TM->getTargetTriple(); 505 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 506 addPass(createX86WinEHStatePass()); 507 return true; 508 } 509 510 void X86PassConfig::addPreRegAlloc() { 511 if (getOptLevel() != CodeGenOpt::None) { 512 addPass(&LiveRangeShrinkID); 513 addPass(createX86FixupSetCC()); 514 addPass(createX86OptimizeLEAs()); 515 addPass(createX86CallFrameOptimization()); 516 addPass(createX86AvoidStoreForwardingBlocks()); 517 } 518 519 addPass(createX86SpeculativeLoadHardeningPass()); 520 addPass(createX86FlagsCopyLoweringPass()); 521 addPass(createX86DynAllocaExpander()); 522 523 if (getOptLevel() != CodeGenOpt::None) 524 addPass(createX86PreTileConfigPass()); 525 else 526 addPass(createX86FastPreTileConfigPass()); 527 } 528 529 void X86PassConfig::addMachineSSAOptimization() { 530 addPass(createX86DomainReassignmentPass()); 531 TargetPassConfig::addMachineSSAOptimization(); 532 } 533 534 void X86PassConfig::addPostRegAlloc() { 535 addPass(createX86LowerTileCopyPass()); 536 addPass(createX86FloatingPointStackifierPass()); 537 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 538 // to using the Speculative Execution Side Effect Suppression pass for 539 // mitigation. This is to prevent slow downs due to 540 // analyses needed by the LVIHardening pass when compiling at -O0. 541 if (getOptLevel() != CodeGenOpt::None) 542 addPass(createX86LoadValueInjectionLoadHardeningPass()); 543 } 544 545 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 546 547 void X86PassConfig::addPreEmitPass() { 548 if (getOptLevel() != CodeGenOpt::None) { 549 addPass(new X86ExecutionDomainFix()); 550 addPass(createBreakFalseDeps()); 551 } 552 553 addPass(createX86IndirectBranchTrackingPass()); 554 555 addPass(createX86IssueVZeroUpperPass()); 556 557 if (getOptLevel() != CodeGenOpt::None) { 558 addPass(createX86FixupBWInsts()); 559 addPass(createX86PadShortFunctions()); 560 addPass(createX86FixupLEAs()); 561 } 562 addPass(createX86EvexToVexInsts()); 563 addPass(createX86DiscriminateMemOpsPass()); 564 addPass(createX86InsertPrefetchPass()); 565 addPass(createX86InsertX87waitPass()); 566 } 567 568 void X86PassConfig::addPreEmitPass2() { 569 const Triple &TT = TM->getTargetTriple(); 570 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 571 572 // The X86 Speculative Execution Pass must run after all control 573 // flow graph modifying passes. As a result it was listed to run right before 574 // the X86 Retpoline Thunks pass. The reason it must run after control flow 575 // graph modifications is that the model of LFENCE in LLVM has to be updated 576 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 577 // placement of this pass was hand checked to ensure that the subsequent 578 // passes don't move the code around the LFENCEs in a way that will hurt the 579 // correctness of this pass. This placement has been shown to work based on 580 // hand inspection of the codegen output. 581 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 582 addPass(createX86IndirectThunksPass()); 583 addPass(createX86ReturnThunksPass()); 584 585 // Insert extra int3 instructions after trailing call instructions to avoid 586 // issues in the unwinder. 587 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 588 addPass(createX86AvoidTrailingCallPass()); 589 590 // Verify basic block incoming and outgoing cfa offset and register values and 591 // correct CFA calculation rule where needed by inserting appropriate CFI 592 // instructions. 593 if (!TT.isOSDarwin() && 594 (!TT.isOSWindows() || 595 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 596 addPass(createCFIInstrInserter()); 597 598 if (TT.isOSWindows()) { 599 // Identify valid longjmp targets for Windows Control Flow Guard. 600 addPass(createCFGuardLongjmpPass()); 601 // Identify valid eh continuation targets for Windows EHCont Guard. 602 addPass(createEHContGuardCatchretPass()); 603 } 604 addPass(createX86LoadValueInjectionRetHardeningPass()); 605 606 // Insert pseudo probe annotation for callsite profiling 607 addPass(createPseudoProbeInserter()); 608 609 // On Darwin platforms, BLR_RVMARKER pseudo instructions are lowered to 610 // bundles. 611 if (TT.isOSDarwin()) 612 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 613 // Only run bundle expansion if there are relevant ObjC runtime functions 614 // present in the module. 615 const Function &F = MF.getFunction(); 616 const Module *M = F.getParent(); 617 return M->getFunction("objc_retainAutoreleasedReturnValue") || 618 M->getFunction("objc_unsafeClaimAutoreleasedReturnValue"); 619 })); 620 } 621 622 bool X86PassConfig::addPostFastRegAllocRewrite() { 623 addPass(createX86FastTileConfigPass()); 624 return true; 625 } 626 627 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 628 return getStandardCSEConfigForOpt(TM->getOptLevel()); 629 } 630 631 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI, 632 const TargetRegisterClass &RC) { 633 return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(&RC); 634 } 635 636 bool X86PassConfig::addRegAssignAndRewriteOptimized() { 637 // Don't support tile RA when RA is specified by command line "-regalloc". 638 if (!isCustomizedRegAlloc() && EnableTileRAPass) { 639 // Allocate tile register first. 640 addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters)); 641 addPass(createX86TileConfigPass()); 642 } 643 return TargetPassConfig::addRegAssignAndRewriteOptimized(); 644 } 645